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Abstract
For extremely weak-supervised text classifica-001
tion, pioneer research generates pseudo labels002
by mining texts similar to the class names from003
the raw corpus, which may end up with very004
limited or even no samples for the minority005
classes. Recent works have started to generate006
the relevant texts by prompting LLMs using007
the class names or definitions; however, there008
is a high risk that LLMs cannot generate in-009
distribution (i.e., similar to the corpus where010
the text classifier will be applied) data, lead-011
ing to ungeneralizable classifiers. In this paper,012
we combine the advantages of these two ap-013
proaches and propose to bridge the gap via a014
novel framework, text grafting, which aims to015
obtain clean and near-distribution weak super-016
vision for minority classes. Specifically, we017
first use LLM-based logits to mine masked018
templates from the raw corpus, which have a019
high potential for data synthesis into the target020
minority class. Then, the templates are filled021
by state-of-the-art LLMs to synthesize near-022
distribution texts falling into minority classes.023
Text grafting shows significant improvement024
over direct mining or synthesis on minority025
classes. We also use analysis and case stud-026
ies to comprehend the property of text grafting.027

1 Introduction028

Recent research has made rapid progress on ex-029

tremely weak-supervised text classification (XWS-030

TC) (Wang et al., 2023), limiting the supervision to031

a brief natural-language description without any an-032

notated samples. For example, text mining-based033

XWS-TC (Meng et al., 2020; Wang et al., 2021;034

Shen et al., 2021; Mekala et al., 2022; Zhao et al.,035

2023; Dong et al., 2023a) takes only class names036

or seed words from humans and discovers potential037

in-class texts following designated heuristics.038

Minority classes are arguably the most chal-039

lenging part of XWS-TC. The class distribution040

in real-world datasets is often a long-tailed distribu-041

tion (Zhang et al., 2023), with a non-trivial number042

I believe in luck, and when 

luck is not on my side, I feel 

beaten and sometimes upset.

_ believe __________ when 

luck _______________ feel 

_____________________

Minority class “Surprised”

Potentially grafted

into “Surprised”

I can't believe it when luck 

suddenly changes, and I feel 

completely astonished.

Stage 1: Potential Text Mining

 Gather texts with beneficial components to appear in the grafted results.

Stage 2: Template Creation

 Mask the components that do not contribute to grafting.

Stage 3: Template Filling

Fill in the template to synthesize new data.

Figure 1: The framework of text grafting.

Framework Mining? Train Data Data Quality In-Distribution

Text Mining Text Raw Noisy Yes
Data Synthesis None Generated Clean Hardly

Text Grafting (ours) Template Grafted Clean Mostly

Table 1: High-level comparison among three discussed
XWS-TC frameworks.

of minority classes. These minority classes have a 043

very small number of documents in the raw corpus, 044

therefore, it is difficult to locate the right docu- 045

ments by mining-based methods, leading to noisy 046

pseudo-labels. Under extreme circumstances, the 047

mining-based methods may end up with no sample 048

for minority classes. 049

A potential way to address this issue is data 050

synthesis-based XWS-TC (Ye et al., 2022a,b; Peng 051

and Shang, 2024), which hopes to generate in- 052

class texts by prompting large language models 053

(LLM) (Brown et al., 2020; OpenAI, 2023; Tou- 054

vron et al., 2023a,b; Meta, 2024; Mesnard et al., 055

2024; OpenAI, 2024) with class names or defini- 056

tions. However, such synthesized texts may follow 057
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a distribution different from the corpus where the058

text classifier will be later applied (Mitchell et al.,059

2023), which makes the learned text classifier out-060

of-distribution, leading to poor performance.061

This paper combines the advantages of mining-062

based and synthesis-based frameworks to propose063

a new framework, text grafting, which aims to ob-064

tain clean and near-distribution weak supervision065

for minority classes. As specified in Figure 1, text066

grafting incorporates three stages: (1) Potential067

Text Mining gathers raw texts with beneficial com-068

ponents to synthesize in-class texts for the target069

minority class. (2) Template Creation forms tem-070

plates by masking the components that do not con-071

tribute to the in-class text synthesis. (3) Template072

Filling synthesizes in-class texts by filling in the073

blanks. Table 1 systematically compares the weak074

supervision obtained by different frameworks.075

To identify the words not contributing to the clas-076

sification, we borrow the marginalization idea from077

LLM reasoning (Holtzman et al., 2021). We get078

the probability logit of each word in the raw text079

by instructing LLMs (relatively small, specifically080

Gemma (Mesnard et al., 2024)) to generate with or081

without the in-class as a requirement. The differ-082

ence between the two logits represents the potential083

of each word to appear in the grafted text. As only084

words with high potential will be left, we use the085

average potential of top-K% words to represent086

the text potential score. The bottom-(100−K)%087

words will be masked to form the template for088

data synthesis. We rank the templates by their po-089

tential scores and select top-T% templates for the090

last template-filling stage. Finally, these selected091

templates are filled by prompting a state-of-the-art092

LLM, GPT-4o (OpenAI, 2024).093

We compare the three mentioned frameworks on094

various raw corpora to classify different minority095

classes. The experiment results show text graft-096

ing can outperform state-of-the-art text mining and097

dataset synthesis methods. The ablation study ver-098

ifies that all stages and the intermediate template099

contribute to the success of our proposed text graft-100

ing. The mask-and-filling scenario also shows its101

advantage over simple in-context generation, since102

it forces the LLM to incorporate components from103

the raw texts. We also involve an extreme situa-104

tion where the target class does not appear in the105

raw corpus completely. Remarkably, text grafting106

shows its robustness to this extreme situation, indi-107

cating its applicability does not require the target108

class to appear in the raw corpus. This enables109

text grafting to work on a very small corpus which 110

boosts efficiency. 111

Furthermore, we analyze and discuss the prop- 112

erty of text grafting. We apply principal component 113

analysis to visualize that the drafted texts are in- 114

deed near in-distribution. We also find the grafted 115

texts are near-distribution enough that we do not 116

need to synthesize negative samples as in tradi- 117

tional data synthesis, which reduces the cost. We 118

also conduct a comprehensive hyperparameter anal- 119

ysis of our method. Interestingly, we found that 120

The mask ratio is searched to be better set to a high 121

value like 0.75 and the mined template number can 122

be as small as 200. These case studies explore the 123

advantages of text grafting in distribution approxi- 124

mation and its failure when the raw texts are near 125

the distribution of LLM generation. 126

We summarize our contributions as follows, 127

• We propose a novel XWS-TC framework for mi- 128

nority classes, text grafting, combining the in- 129

distribution advantage of text mining and the in- 130

class advantage of data synthesis. 131

• We implement text grafting following the 132

marginalization idea from LLM reasoning, uti- 133

lizing the probability logits for template mining 134

and masking. 135

• We provide comprehensive analysis and case 136

studies to show the strength, property, and possi- 137

ble failure of text grafting.1 138

2 Related Works 139

Extremely Weak-Supervised Text Classification 140

(XWS-TC) needs only minimal human guidance to 141

label the text, such as a few rules by human experts 142

that match the text to the labels (Wang et al., 2023). 143

Mainstream XWS-TC methods can be divided into 144

two categories: Text Mining and Data Synthesis. 145

Text Mining is a fundamentak task (Han and 146

Kamber, 2000) for natural language processing. 147

In XWS-TC, the text miner follows high-level 148

rules from humans to annotate raw texts, which 149

are used to train the text classifier. A mainstream 150

rule is whether a seed word appears in the raw 151

text (Mekala and Shang, 2020; Meng et al., 2020; 152

Wang et al., 2021), categorized as seed methods. 153

Another mining way is to prompt language models 154

for logits that reflect the probability of texts falling 155

in classes (Brown et al., 2020), which can be cali- 156

brated by several techniques (Holtzman et al., 2021; 157

1The datasets and models used in the experiments will be
released for reproducibility.
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Zhao et al., 2021; Han et al., 2023). The strong per-158

formance of existing text mining methods is highly159

dependent on the precision of the class-indicative160

rules (Dong et al., 2023a), which is hard to main-161

tain for minority classes.162

Data Synthesis (He et al., 2022) addresses the163

precision degradation in text mining by directly164

prompting LLMs with the label names to generate165

in-class texts (Ye et al., 2022a; Peng and Shang,166

2024). With the powerful generative ability of167

LLMs, the synthesized texts are generally clean168

(in-class) for training strong classifiers. However,169

synthesized texts hold LLM-specific patterns, dis-170

covered by LLM-generated text detectors (Mitchell171

et al., 2023; Wu et al., 2023). This pattern is hard to172

be eliminated even with in-context learning (Koike173

et al., 2024). Thus, synthesized texts are generally174

out-of-domain and consequently fine-tune a weaker175

classifier on the test set.176

Minority Classes widely appear in classifica-177

tion datasets as a result of long-tailed distribu-178

tion (Zhang et al., 2023; Henning et al., 2023). For179

minority classes with supervised annotations, tech-180

niques like re-sampling (Shen et al., 2016; Pouyan-181

far et al., 2018; Tepper et al., 2020) and data aug-182

mentation (Wei and Zou, 2019; Juuti et al., 2020;183

Tian et al., 2021; Chen et al., 2021). However,184

these methods are applied to unbalanced annota-185

tions, which are unavailable under XWS.186

Counterfactual Augmentation refers to generat-187

ing annotated data out of the dataset or raw corpus.188

Different from regular augmentation, counterfac-189

tual augmentation changes the reference, e.g., la-190

bel flipping (Zhou et al., 2022; Peng et al., 2023).191

Counterfactual augmentation is also applied for192

text-to-text tasks like translation (Liu et al., 2021)193

or summarization (Rajagopal et al., 2022). Coun-194

terfactual augmentation shares the same require-195

ment for known reference as regular augmentation.196

This paper explores a counterfactual augmentation197

method for unannotated raw text under XWS.198

3 Text Grafting199

3.1 Preliminary200

XWS Minority Class Classification takes a raw201

corpus D = {X(i)}i=1:|D| and the target minority202

class name c as the input to train a binary classifier203

f(X) that discerns a text falling in c or not. We204

denote the j-th word in the i-th text of the raw205

corpus as x(i,j).206
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Figure 2: The precision of state-of-the-art text mining
on same classes with different class proportions. “Preci-
sion” refers to the precision of the pseudo-labels. “Class
Proportion” means the ratio of the texts of this class in
the entire corpus after down-sampling.

Text Mining gathers in-class texts with high- 207

level rules g(X) that can precisely assign X to 208

target class c. Example rules include whether X 209

contains words indicating c (seed words) (Dong 210

et al., 2023a) or X has top confidence to be in c 211

by prompting LLMs (Brown et al., 2020) among 212

D. The mined D(TM) = {X(i)|g(X(i))}i=1:|D| is 213

combined with some randomly sampled negative 214

texts (due to the scarcity of c) to train f(·). 215

However, text miners fail in minority classes due 216

to their low proportion in the raw corpus. By run- 217

ning a state-of-the-art text mining method (Dong 218

et al., 2023a) on AG-News (Zhang et al., 2015) 219

with class name proportion modified by sampling, 220

we observe the mining precision drops sharply with 221

the decrease of proportion, presented in Figure 2. 222

Another concern is the class might be too minor 223

that even no ground truth can be mined from the 224

raw corpus, limiting the precision to 0% no matter 225

how intuitive the mining rule is. 226

Data Synthesis does not annotate raw texts for 227

classifier fine-tuning but directly prompts LLMs to 228

generate in-class texts (X ′ ∼ LLM(Ic)), where Ic 229

is an instruction to write a text in class c. With the 230

strong capability of state-of-the-art LLMs (OpenAI, 231

2024; Meta, 2024), the generated X ′ are highly 232

confident to fall in class. Another advantage of 233

data synthesis is the ability of LLMs to generate 234

negative samples (Ye et al., 2022a; Peng and Shang, 235

2024). However, synthesized texts consist of pat- 236

terns different from other sources (Mitchell et al., 237

2023), which indicates classifiers f(·) fine-tuned by 238

synthesized texts are out-of-domain, consequently 239

weaker in the classification task. 240

3.2 Overview of Text Grafting 241

As depicted in Figure 3, our text grafting is a hybrid 242

method that combines the strengths of text mining 243
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I believe in luck , and when luck is not on my side , I feel beaten and sometimes upset .

Instruction for Regularization (Ir): Write a sentence. 

Instruction with Class Name (Ic): Write a **surprised ** sentence. 

P|Ic

P|Ir

4.0 6.5 9.0 7.5 7.0 4.5 8.0 9.5 9.0 4.5 5.5 6.5 9.0 9.5 8.0 8.0 2.0 6.5 5.0 3.5 9.0

ΔP

T

3.5 2.5 9.0 6.0 7.5 5.5 5.0 6.5 9.0 5.0 6.5 7.0 9.0 9.5 9.0 5.0 5.0 6.0 5.5 7.5 9.5

-0.5 4.0 0.0 1.5 -0.5 -1.0 3.0 3.0 0.0 -0.5 -1.0 -0.5 0.0 0.0 -1.0 3.0 -3.0 0.5 -0.5 -4.0 -0.5

_ believe _______________________________ when luck _______________________________________________________________ feel ________________________________________________

4.0 3.0 3.0 3.0S Average
3.75

Raw Text: I believe in luck, and when luck is not on my side, I feel beaten and sometimes upset.

Template: _ believe _________ when luck _______________ feel _____________ Score: 3.75

Raw Text: I never had that sense of belonging anywhere and where if anywhere is anyone supposed to belong and feel accepted.

Template: _ never had that ____ of ________________________________________________________________ Score: 3.50

Raw Text: I really remember is feeling wonderful in the oatmeal bath.

Template: _ really remember_______________________ Score: 3.00

……

Top ΔP

Mine Templates with Top Scores

_ believe _________ when luck _______________ feel _____________

I can't believe it when luck suddenly changes, and I feel completely astonished.

LLM Filling

D
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y
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Figure 3: The overview of text grafting with the minority class “Surprised” in the Emotion dataset as an example.
Text grafting includes two stages: 1) Text (Template) Mining: Create scored templates and select the ones with the
top scores. 2) Data Synthesis: Prompt the LLM to fill in the templates to synthesize in-class texts.

and data synthesis. The core observation is that244

out-of-class texts can contain useful components245

for writing in-class texts. The text mining stage246

of text grafting aims to discover these potential247

components and formalize them as templates. In248

the data synthesis stage, the templates are filled by249

LLMs to produce in-class texts. With components250

from both raw texts and synthesis, the grafted texts251

are both in-class and near-distribution, which are252

supposed to fine-tune a better classifier than only253

text mining or data synthesis.254

3.3 Implementation255

In detail, the text mining stage includes Potential256

Text Mining and Template Creation, while in257

the data synthesis stage we conduct Template Fill-258

ing. The text mining stage requires relatively small259

open-source LLMs with higher efficiency and ac-260

cessible logits. Template Filling can utilize state-261

of-the-art LLMs even with API accessibility.262

Potential Text Mining discovers texts with po-263

tential components to appear in the grafted texts.264

We evaluate the potential of each word x(i,j) in265

the raw text X(i) with regularized logits prompted266

from LLMs following the regularization idea in267

DC-PMI (Holtzman et al., 2021). The potential268

∆p(i,j) for x(i,j) is defined as the difference be-269

tween the probability logit of x(i,j) prompted by270

an instruction with the class name (Ic) and an in-271

struction for regularization (Ir). The difference can272

also be viewed as the probability of x(i,j) raised by 273

incorporating the class name c into the instruction. 274

∆p(i,j) = logPLLM(x(i,j)|Ic)− logPLLM(x(i,j)|Ir) (1) 275

The words with top-K% ∆p among the words 276

in text Xi will remain in the template. Thus, the 277

average of their ∆p represents the potential (∆Pi) 278

of the template created based on Xi. As we are 279

mining potential templates rather than directly in- 280

class texts, the mining rate K% can be much larger 281

than text mining. 282

∆Pi =

⌈
1

K% · |Xi|

⌉ ∑
∆pi∈Top−K%(∆p1:|Xi|)

∆pi (2) 283

Then the texts are ranked by their grafting poten- 284

tial ∆P and texts with top-N% potential are mined 285

to create the templates. 286

Template Creation simply masks the words with 287

bottom-(100−K)% potential ∆p by blank tokens 288

“_” and uses the top-K% as template part. Text 289

Xi is thus converted to template Ti, which is pre- 290

pared for LLMs to fill in during the data synthesis 291

stage. As the example in Figure 3, the components 292

with the top potential to be in a grafted “Surprised” 293

remain in the template such as “believe”, “when 294

luck”, “feel”. These components support the data 295

synthesis to better write an in-class text while keep- 296

ing the style in distribution with the writing struc- 297

ture from the raw corpus. 298
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Function Prompt

TM (Ic) “Please write a <label> <style>.”
TM (Ir) “Please write a <style>.”

DS “Fill in the blanks in the template to pro-
duce a <label> <style>.”

Table 2: The prompts used in text grafting. In prompts,
<label> refers to the label names like “Surprised” while
<style> represents the distribution like “Tweet”.

Template Filling prompts an LLM to fill in the299

blanks in T , which produces a grafted text that300

generally falls in the target class c. Referring to301

the example in Figure 3, the LLM well utilizes the302

writing structure in the template and fills in the303

blanks to produce the in-class text. As the template304

keeps the writing structure of the raw corpus, the305

grafted text is quite similar to the original one but306

flipped into the target minority class.307

Specific prompts in these stages are shown in Ta-308

ble 2, where the label and distribution information309

is filled to support the text grafting.310

4 Experiments311

4.1 Evaluation312

Datasets We take several minority classes from313

popular text classification datasets to evaluate the314

performance of different XWS-TC methods on mi-315

nority classes. We include 1) TweetEval (Bar-316

bieri et al., 2020) and Emotion (Saravia et al.,317

2018), which contain minority emotion classes318

“Optimism” (8.9%) and “Surprised” (3.6%); 2) 20319

News (Lang, 1995), which contains minority news320

topic “Religion” (3.3%) and “Politics” (4.1%);321

3) BigPatent (Sharma et al., 2019), which con-322

tains minority patent class “Mechanical Engineer-323

ing” (7.0%). The raw corpus is down-sampled to324

10, 000 samples to improve experiment efficiency325

and save budget costs. We use the F1 score as the326

metric for evaluation.327

Baselines We include various text mining and328

data synthesis methods as the baselines for compar-329

ison to illustrate the advantage of our text grafting.330

Text mining methods include,331

• Prompting Confidence (Brown et al., 2020),332

which is a prompting method that directly queries333

an LLM whether the text falls in the target mi-334

nority class, and uses the probability logit of an-335

swering “yes” for ranking. Considering the class336

minority, the mining rate is set to 1%.337

• Debiased Seed Word (Dong et al., 2023a), 338

which is the current state-of-the-art XWS-TC 339

method. This method uses a seed word (the same 340

as the label name) to match the target minority 341

class and then drops the seed word from the con- 342

text to eliminate spurious correlation. Then the 343

texts are filtered by text selection (Mekala et al., 344

2022) to produce the final mined texts. 345

Data synthesis methods include, 346

• ZeroGen (Ye et al., 2022a), which directly 347

prompts the LLM to synthesize texts in or out of 348

the target minority class. 349

• In-Context Generation (Dong et al., 2023b), 350

which uses raw texts as the in-context examples 351

to generate texts with a similar writing style as 352

the raw corpus. 353

• Incubator (Peng and Shang, 2024), which uses 354

instruction-tuned LLMs and in-context learning 355

based on annotated instruction-to-dataset sam- 356

ples to generate data points for fine-tuning. 357

All text synthesis methods synthesize 1000 texts 358

as positive (in the target minority class) or negative 359

samples (out of the target minority class, 2000 in 360

total). 361

The LLM used for text mining is a popular and 362

advanced open-source LLM, Gemma (Mesnard 363

et al., 2024) (gemma-1.1-7b-it) with accessible 364

possibility logits. The LLM used for data synthe- 365

sis is the state-of-the-art LLM, GPT-4o (OpenAI, 366

2024). 367

Grafting Hyperparameters The mining rates of 368

our text grafter are set to 25% (K%) for potential 369

components in templates and 10% (N%) for poten- 370

tial templates. Thus, the synthesized data number 371

is less than 1000, not more than the data number 372

from pure data synthesis. 373

Fine-tuning Hyperparameters We fine-tune a 374

RoBERTa-Large (Liu et al., 2019) as the classifier 375

with the AdamW (Loshchilov and Hutter, 2019) 376

as the optimizer whose learning rate is initialized 377

to 1 × 10−5. The classifier is fine-tuned by 10 378

epochs with batch size 8 and 20% training data are 379

split for validation to select the best-performing 380

checkpoint. All the experiment results are achieved 381

by an average of 5 runs. The two stages in text 382

grafting apply the same LLM as text mining and 383

data synthesis. 384

4.2 Main Result 385

The main results from our experiments are pre- 386

sented in Table 3. The comparison inside text 387
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Dataset TWEET PATENT EMOTION 20NEWS

AverageDistribution Tweet Patent Tweet News
Minority Class Optimism Mechanical Surprised Religion Politics
Class Proportion 8.9% 7.0% 3.6% 3.3% 4.1%

Supervised 45.88 34.30 32.28 24.10 32.27 35.14

Text Mining
(TM)

Prompting Confidence 17.93 14.59 7.00 6.50 15.77 12.81
Debaised Seed Word 19.15 20.46 8.78 11.47 19.53 15.88

Data Synthesis
(DS)

ZeroGen 10.82 24.17 7.19 6.97 17.60 13.35
Incubator 22.46 20.86 7.44 23.96 24.48 19.84
In-Context Generation 16.24 24.53 22.24 21.98 24.13 21.83

TM+DS Text Grafting (Ours) 32.70 25.42 27.46 25.32 27.32 27.64

Ablation

w/o Mining 26.54 16.74 24.32 17.69 15.16 20.09
w/o Synthesis (DC-PMI) 17.86 11.34 7.34 4.33 4.28 9.03
w/ Random Masking 30.11 19.07 23.37 23.57 26.65 24.55
w/ MF → ICG 21.31 20.58 15.33 23.60 25.06 21.18

Zero-Occur
Debaised Seed Word 0.00 17.66 5.88 8.79 20.73 10.61
In-Context Generation 18.84 23.15 19.50 20.63 24.11 21.25
Text Grafting (Ours) 30.61 25.27 31.08 26.15 25.54 27.73

Table 3: Text mining performance (F1 Score) for minority classes among different datasets.

Method EMOTION TNEWS
Language English Chinese

Debiased Seed Word 19.14 22.84
+ Text Grafting 31.30 28.61

Table 4: Results (Macro F1 Score) on end-to-end XWS-
TC for different languages. Emotion (English) contains
minority classes “Surprised” and “Love” while TNEWS
(Chinese) has a minority class “Stock”.

mining methods shows the advantage of the seed388

method over the prompt method, consistent with389

the findings of Wang et al.. The comparison among390

text synthesis methods reflects the importance of391

knowledge about the distribution of the corpus, as392

in-context generation outperforms other baselines393

with raw texts as an example for synthesis. Finally,394

text grafting outperforms all the baselines, which395

verifies the benefit of text grafting to produce in-396

class and near-distribution texts.397

However, there is still a significant gap between398

the performance of supervised classification and399

XWS-TC even with text grafting. This indicates400

the grafted texts still have differences with the raw401

corpus distribution for further improvement.402

4.3 Ablation Study403

Table 3 also includes the ablation study results for404

text grafting in the Ablation columns. The first405

comparison focuses on the necessity of text mining406

and data grafting in the pipelines of text grafting.407

Without Mining removes the template score-based408

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Original (Optimism)
Original (Other)
Text Mining (Debiased Seed Word)
Data Synthesis (Incubator)
Text Grafting (Ours)

Figure 4: The visualization of text distributions from
different methods.

sorting and lets the LLM fill in randomly selected 409

templates, which significantly underperforms the 410

initial grafting. Without Synthesis does not create 411

templates for data synthesis, but directly uses the 412

∆p averaged over all words to mine texts for fine- 413

tuning, equal to DC-PMI (Holtzman et al., 2021). 414

The result is similar to the Prompting Confidence 415

method, which shows the limitation of text mining 416

for minority classes. Then we emphasize the ne- 417

cessity of intermediate templates. With Random 418

Masking randomly masks the mined texts instead 419

of following the word-level potential ∆p, which 420

also results in a performance drop. With Mask 421

Filling → In-Context Generation takes the mined 422
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Data Synthesis (w/ Negative Synthesis, 2000 LLM DS Calls)
Data Synthesis (w/o Negative Synthesis, 1000 LLM DS Calls)
Text Grafting (w/ Negative Synthesis, 2000 LLM DS Calls)
Text Grafting (w/o Negative Synthesis, 1000 LLM DS Calls)

Figure 5: The analysis on the necessity of negative data
synthesis.

texts as the in-context examples, which result in423

a similar performance as the one without mining,424

indicating the importance of template creation and425

filling. Based on these ablation results, our grafting426

framework is shown to be essential for achieving427

optimal performance by effectively combining data428

synthesis, text mining, and templates.429

4.4 Further Analysis430

Q1: How does Text Grafting Benefit End-to-431

End XWS-TC? Table 4 shows how text graft-432

ing can be integrated into end-to-end XWS-TC433

pipelines for different languages. We include the434

English Emotion dataset with “Surprised” and435

“Love” as the minority classes and the Chinese436

TNEWS dataset (Xu et al., 2020) with a minor-437

ity class “Stock”. For the minority classes, texts438

are synthesized by grafting while other classes439

apply the traditional debiased seed word method.440

The result shows text grafting improves end-to-end441

XWS-TC on different languages, which verifies442

the cross-lingual benefit of integrating text grafting443

into XWS-TC pipelines to handle minority classes.444

Q2: What if the class proportion is 0%? In the445

Zero-Occur part of Table 3, we also include the dis-446

cussed extreme situation when the raw corpus does447

not contain any text falling in the target minority448

class. A dramatic drop appears in the performance449

of text mining as there is no ground truth that any450

miner can get. The data synthesis and text graft-451

ing methods are robust to this change as they do452

not require the existence of ground truth examples.453

Thus, text grafting is verified to be applicable to454

raw corpus without the target minority class. Thus,455

text grafting can be based on a small subset of the456

corpus which might not contain the target minority457

class to boost efficiency.458

Q3: How are grafted texts “near-distribution”?459

In Figure 4, we apply semantic text embeddings460
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Figure 6: Analysis of the effect of mask ratio.
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Figure 7: Analysis of the effect of data number.

(Gao et al., 2021) to represent the texts mined or 461

synthesized by different methods. These embed- 462

dings are then reduced to 2-dimension by principal 463

component analysis (F.R.S., 1901) for visualiza- 464

tion. We use the “Optimism” class of the TweetE- 465

val benchmark and compare the most competitive 466

methods (Debiased Seed Word, Incubator, Text 467

Grafting) of different frameworks. We can observe 468

that text mining only discovers a limited proportion 469

of in-class texts. The synthesized texts fall into a 470

very different domain from the raw corpus, which 471

fine-tunes an out-of-domain classifier with limited 472

generalizability. In contrast, the grafted texts are 473

much more near-distribution, contributing to the 474

performance of the fine-tuned classifier. 475

Q4: Is Negative Data Synthesis Necessary? For 476

data synthesis-based methods, the synthesis of neg- 477

ative data is an essential stage in the pipeline, which 478

doubles the calls for LLM to synthesize texts. In 479

text grafting, we efficiently use the raw texts as the 480

negative examples. Thus, we explore the necessity 481

of negative synthesis by evaluating the performance 482

of data synthesis (In-Context Generation) and text 483

grafting with or without negative data synthesis 484

with the results presented in Figure 5. 485

Based on the results, we observe negative data 486

synthesis is very necessary to pure data synthesis as 487

the performance drops dramatically by removing 488

this stage. In contrast, text grafting without neg- 489

ative data synthesis works even better, indicating 490

that our text grafting can work more efficiently by 491
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________weight 221___old___________please__

senator johnson's stance on the new policy carries significant weight. the 

221-page document, though old, still holds relevance in today's political 

climate. please stay informed and engaged.

i'm looking for a singer featherweight 221 sewing machine (old, black 

sewing machine in black case). please contact:

senator maria hernandez, a strong advocate for environmental policies, will 

address the upcoming climate summit in geneva. attendees can expect:

T
em

p
la

te
 C

re
a
ti

o
n

In-Context Generation

Template Filling

____ shot__ 1923_ which famous wolf was shot in 1923?

what mexican leader was shot dead in 1923? what bird species was declared extinct in 1914?

T
em

p
la

te
 C

re
a
ti

o
n

In-Context Generation

Template Filling

Strength: Able to adapt hard templates to in-class texts (Raw News Paragraph → Religion News Paragraph)

Failure: Not necessary when text distribution is not special (Raw Question → Animal Question)

Figure 8: A case study on the strength and possible failure of text grafting.

reducing the effort to call LLM at double times.492

We attribute this efficiency to the near-distribution493

property of the grafted texts, which makes the dis-494

crimination between them and the original raw495

texts no longer degrade to the classifying of text496

sources (Mitchell et al., 2023).497

Q5: What mask ratio to choose? In Figure 6,498

we analyze the mask ratio used in text graft-499

ing. Within the considered set of mask ratios,500

{0.5, 0.625, 0.75, 0.875, 1.0}, the best-performing501

ratio is 0.75 among different datasets, the same as502

the setup in our experiments. We can also observe503

a trend of performance decrease when the mask504

ratio becomes away from 0.75. This indicates a505

too-high masking ratio will make the synthesized506

text deviate from the domain of raw corpus (100%507

leads to in-context generation). On the other hand,508

a too-low mask ratio will limit the synthesizer to509

generate in-class texts, which might cause more510

severe performance drops.511

Q6: How many templates to mine? In Figure 7,512

we further analyze the necessary number of tem-513

plates to train a strong classifier, which can guide514

the efficient application of text grafting. The result515

of the “surprised” class shows about 200 samples516

can reach the best performance, which results in517

about $0.2 budget for each class (OpenAI, 2024).518

We also present how the efficiency of text min-519

ing (Debiased Seed Word) and data synthesis (In-520

Context Generation) is affected by sample numbers.521

Text mining cannot fine-tune a well-performing522

classifier due to severe noise in minority class min-523

ing. Data synthesis shows a similar scaling trend524

as text grafting but generally underperforms text525

grafting.526

5 Case Study527

In Figure 8, we depict workflows of text grafting in528

comparison with in-context generation to illustrate529

the strength of grafting and possible failure. 530

Strength of text grafting is the ability of state- 531

of-the-art LLMs to fill in hard templates as shown 532

in the first case. While the template is not easy to 533

be grafted into the target “Politics” class, the LLM 534

comes up with the methodology to synthesize such 535

a text. The text is also more similar in writing style 536

to the original text than the in-context generation, 537

which depicts the benefit from text grafting. 538

Failure of text grafting can happen when the cor- 539

pus does not have a writing style very far from 540

the way that LLMs can imitate. As shown in the 541

second case, the LLM can synthesize the animal 542

question without the intermediate template on the 543

TREC corpus (Li and Roth, 2002), which reduces 544

the necessity of text grafting. The XWS-TC of the 545

minority class “Animal” on this corpus also shows 546

a similar performance between data synthesis (F1 547

Score = 53.88) and text grafting (F1 Score = 53.46), 548

which again emphasizes “near-distribution” to be 549

an essential motivation to use text grafting. 550

6 Conclusion and Future Work 551

We introduced text grafting, a technique to gener- 552

ate in-distribution texts for minority classes using 553

LLMs. By mining high-potential masked templates 554

from the raw corpus and filling them with state-of- 555

the-art LLMs, we achieve significant improvements 556

in classifier performance on minority classes. Our 557

analysis and case studies demonstrate the effective- 558

ness of text grafting in enhancing text synthesis for 559

minority classes. Future work will concentrate on 560

improving the precision of template mining and 561

the extension of text grafting to other tasks like 562

information extraction. 563
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Limitation564

Despite the presented strengths in the paper, there565

are still several limitations in the text grafting566

pipeline. As a hybrid method, text grafting requires567

a large raw corpus more than data synthesis and568

LLM calls more than text mining. Other limitations569

of text grafting also succeed from text mining and570

data synthesis, such as the dependency on LLM571

ability (for mining and synthesis). Thus, the appli-572

cation scope for text grafting depends on how LLM573

comprehends the class name semantics. The per-574

formance of different classes might also be biased575

to the LLM ability in different classes.576
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