

000 001 TRUNC PROOF: LL(1)-CONSTRAINED GENERATION IN 002 LARGE LANGUAGE MODELS WITH MAXIMUM TOKEN 003 LIMITATIONS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 The generation of machine-readable outputs using LLMs has attracted signifi-
014 cant attention. However, existing approaches cannot strictly enforce the maxi-
015 mum number of tokens to be generated. To address this limitation, we propose
016 TruncProof, a novel grammar-constrained generation method that enables LLMs
017 to produce grammatically valid outputs while adhering to a predefined token limit.
018 By leveraging the properties of LL(1) parsers, TruncProof efficiently estimates
019 the minimum number of tokens required to complete a grammatically valid out-
020 put at each decoding step. Experiments on the Text-to-JSON instruction task and
021 Code generation task demonstrate that TruncProof successfully generates syntac-
022 tically correct outputs even under strict token constraints. Furthermore, we show
023 that TruncProof can be effectively combined with advanced decoding strategies,
024 resulting in outputs that are not only grammatically valid but also semantically
025 accurate. The source code will be made public upon acceptance.
026
027

1 INTRODUCTION

028 Recently, there has been a growing body of research on solving complex tasks by combining the
029 code generation capabilities of large language models (LLMs) with external tools such as Python
030 interpreters (Wang et al., 2024) and neuro-symbolic systems (Gupta & Kembhavi, 2023). For these
031 applications to be reliable, LLMs must consistently produce well-formed, machine-readable outputs.
032 However, most LLM tokenizers are designed for natural language, making it difficult to ensure
033 grammatically valid outputs through fine-tuning or prompting alone. To address this robustness
034 issue, several grammar-constrained generation (GCG) methods have been proposed (Scholak et al.,
035 2021; Poesia et al., 2022; Beurer-Kellner et al., 2023; Lundberg et al., 2023; Willard & Louf, 2023;
036 Gerganov et al., 2023; Beurer-Kellner et al., 2024; Ugare et al., 2024; Dong et al., 2025). Recent
037 approaches typically rely on context-free grammar (CFG) parsers, which can express a wide range
038 of machine-readable formats and programming languages.
039

040 While these methods can enforce complex grammatical constraints on LLM outputs, they have a
041 critical limitation: *they cannot strictly enforce a maximum number of generated tokens*. In practical
042 applications, imposing a token limit is essential to prevent infinite generation, control memory usage,
043 and keep the output within the model’s context window. However, because current constraint-based
044 methods cannot dynamically estimate the number of tokens needed to complete a grammatically
045 valid output, they terminate generation abruptly once the token limit is reached, often resulting in
046 incomplete or grammatically invalid outputs. **This issue is particularly problematic in agent-based
047 applications, where autonomous agents are required to quickly exchange structured text without
048 human intervention; such termination leads to parse errors that can subsequently disrupt downstream
049 processes.**

050 To address this truncation issue, we propose a novel GCG guardrail that enables LLMs to gener-
051 ate grammatically correct outputs while adhering to a specified maximum number of tokens. This
052 requires estimating, at each decoding step, the minimum number of tokens needed to complete a
053 grammatically valid output. We address this challenge by leveraging the properties of LL(1) parsers
(Aho & Ullman, 1972), which accept a diverse subset of CFGs (Parr & Fisher, 2011). Unlike the
CFG parsers employed in existing methods (*e.g.*, LR(*) parsers), LL(1) parsers can determine gram-

054 matically permissible continuations given a partially generated sequence. This property allows us
 055 to compute the shortest valid token sequence required to complete the output at each step. With this
 056 information, we construct constraint masks to prevent the selection of tokens that would violate the
 057 grammar or token limit. We formally describe our approach and provide theoretical guarantees (see
 058 § 4 and § B.5, B.6 and B.7 of our supplementary material).

059 Our proposed method, called TruncProof hereafter, has a form of logit modifier. Therefore, it is com-
 060 patible with a wide range of tokenizers, language models, other logit modifiers and various decoding
 061 strategies. We evaluate TruncProof on the Text-to-JSON instruction task (NousResearch, 2024) and
 062 Code generation task. Experimental results show that TruncProof enables LLMs (e.g., Google, 2024,
 063 Touvron et al., 2023) to produce grammatically valid JSON outputs, even under strict token budget
 064 constraints, whereas existing methods almost fail to do so. Furthermore, by incorporating advanced
 065 decoding strategies such as Beam Search and Monte Carlo Tree Search, TruncProof significantly
 066 enhances the semantic robustness of the JSON and C outputs while preserving grammatical validity,
 067 whereas existing methods fail to achieve this balance.

069 2 BACKGROUND

071 To enhance self-containment, we first introduce the foundation of Grammar-Constrained Generation
 072 in §2.1. We then provide an overview of Context-Free Grammars in §2.2, followed by implemen-
 073 tations of its parsers in §2.3. Throughout this paper, we denote the finite set of characters that can be
 074 generated by an LLM as Σ , and the set of all finite-length strings over Σ as Σ^* ¹. The empty string
 075 is denoted by ϵ , and the concatenation of two strings w and v is represented as $(w.v)$.

076 2.1 GRAMMER-CONSTRAINED GENERATION (GCG)

077 Modern LLMs generate output tokens from a vocabulary \mathcal{V} in an auto-regressive manner: At each
 078 generation step i , the model takes the current partial output $t_{<i} = t_1 \cdots t_{i-1} \in \mathcal{V}^*$ and predicts
 079 the probability distribution of the i -th token $P(t_i \mid t_{<i})$. In Grammar-Constrained Generation
 080 (GCG), *constraint functions* evaluate the grammatical validity of each candidate token t_i at every
 081 step. Specifically, given a string $t_{<i}$, the constraint function uses a *parser* to check whether there
 082 exists a string w that extends the candidate token into a grammatically valid sentence, and returns
 083 the result in the form of a *constraint mask* \mathbf{m} . Formally, the element of \mathbf{m} for a next token candidate
 084 t , m_t , is defined as follows:

$$085 m_t = \text{true} \Rightarrow \exists w \in \mathcal{V}^* \text{ s.t. } (t_{<i}.t.w) \in L(G), \quad (1)$$

086 where G is a grammar and $L(G)$ is the *language* defined as the set of strings accepted by G . To-
 087 kens deemed grammatically invalid are re-assigned zero probability by element-wise multiplication
 088 between the probability distribution and the constraint mask *i.e.*, $P(t_i \mid t_{<i}) \odot \mathbf{m}$. Note that this
 089 modification is applied prior to selecting the next token for generation. Consequently, from an algo-
 090 rithmic perspective, any GCG method, including our proposed TruncProof, can be combined with
 091 various decoding strategies. Details are provided in §4.2.

094 2.2 CONTEXT-FREE GRAMMAR (CFG)

095 Context-Free Grammar (CFG) has been used to define a variety of machine-readable formats. CFG
 096 is characterized by a four-tuple $(\mathcal{N}, \Sigma_T, R, S)$: a finite set of the *nonterminal* symbols that does not
 097 appear in the language \mathcal{N} , a finite set of the *terminal* symbols as the alphabet in the language Σ_T , a
 098 finite relation which represents derivation rules that rewrite a single nonterminal to the terminal or
 099 nonterminal symbols with 0 or more length $R \subset \mathcal{N} \times (\mathcal{N} \cup \Sigma_T)^*$, and the start symbol $S \in \mathcal{N}$.
 100 Using this expression, we can define the language $L(G)$ as the set of the terminal sequences. Any
 101 terminal sequence $\sigma \in \Sigma_T^*$ in the language can be generated by repeated derivations (denoted as
 102 \rightarrow^*) from the start symbol. CFG parsers must construct a derivation process that generates the
 103 string from the start symbol to determine whether the string belongs to the language. Notice that
 104 these processes can be visualized as derivation trees, with the start symbol at the root and terminal
 105 symbols at the leaves. An example of a CFG and its derivation process is provided in §B.4 of our
 106 supplementary material.

107 ¹For example, when $\Sigma = \{a, b, c\}$, $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, \dots\}$.

108 Usually, to prevent grammars being too complicated, terminal symbols in CFG are defined as *Regular Expression (Regex)* instead of characters (Shinan, 2017) and the parsers preprocess the input
 109 string to identify the equivalent terminal sequence. Regex can be parsed by using *Deterministic*
 110 *Finite Automaton (DFA)*, which characterized by a five-tuple $(Q, \Sigma, \delta, q_0, F)$: a finite set of states
 111 Q , a finite set of recognizable characters Σ , a transition function that determines the next state based
 112 on a current state and a captured character $\delta : Q \times \Sigma \rightarrow Q$, the initial state $q_0 \in Q$, and a set of
 113 accepting states $F \subseteq Q$. DFA starts from the initial state and accepts the input if and only if its state
 114 transitions to an accepting state by processing each character one by one.
 115

116
 117 **2.3 IMPLEMENTATIONS OF CFG PARSERS**

118 There are two primary approaches to implement CFG parsers (Aho & Ullman, 1972): **The bottom-**
 119 **up approach**, such as LR(*) parsers, which identifies the derivation tree from the bottom (*i.e.*,
 120 from the leaf nodes), and **the top-down approach**, such as LL(*) parsers, which constructs the
 121 derivation tree from its top (*i.e.*, from the root). Their distinction is reflected in the structure of the
 122 partially constructed derivation tree when they process incomplete input, as illustrated in Figure 1.
 123 Contrary to bottom-up parsers, top-down parsers can easily enumerate possible continuations of
 124 the current input by applying arbitrary derivations from the unexpanded nonterminals. To leverage
 125 this advantage and ensure that the content of the derivation tree is deterministically fixed at each
 126 generation step, our TruncProof employs LL(1), a top-down parser that permits only single-terminal
 127 lookahead without allowing backtracking (reconstruction of the derivation tree). Note that the LL(1)
 128 grammars (*i.e.*, grammars supported by LL(1) parsers) form a strict subset of CFGs. Although LL(1)
 129 does not support all Context-Free languages, it still supports sufficiently expressive grammars with
 130 unlimited enumeration and deeply nested structures such as JSON, which is the de-facto standard
 131 machine-readable format in practical systems (OpenAI; Anthropic; Google). A formal definition of
 132 LL(1) grammar based on Lewis & Stearns (1968) is described in Appendix B.1.
 133

146 Figure 1: Examples of partially constructed derivation trees generated by two different parsers.
 147

148
 149 **3 RELATED WORKS**

150 Several GCG methods have been proposed in recent years, most of which can be classified based
 151 on the type of grammar they support. For example, PICARD (Scholak et al., 2021) is designed
 152 for SQL, where it generates multiple candidates simultaneously and checks the parsability of each.
 153 LMQL (Beurer-Kellner et al., 2023) allows user-defined grammars based on Regex through a cus-
 154 tom specification language. Outlines (Willard & Louf, 2023) improves the efficiency of Regex-based
 155 generation by precomputing valid token sets for each DFA state. **Although Outlines also supports**
 156 **CFGs, it is usually slow since it repeats sampling and validation of candidates until a grammatically**
 157 **valid token is found.** Recently, research has widely been conducted to further optimize precom-
 158 **putation or runtime processing within the scope of CFGs: DOMINO (Beurer-Kellner et al., 2024) and**
 159 **SynCode (Ugare et al., 2024) integrate optimized Regex validation with the CFG parsers that**
 160 **enumerate acceptable terminal sequences. XGrammar (Dong et al., 2025) introduces a variant of CFG**
 161 **parser that operates on characters rather than terminals, thereby reducing the overhead associated**

162 with terminal processing. LLGuidance (Moskal et al., 2025) adopts trie trees to handle LLM tokens
 163 with low-level optimization to reduce the overhead in runtime. GreatGramma (Park et al., 2025)
 164 aggregates all terminal definitions and the LLM vocabulary into a single Finit State Transducer that
 165 processes input token by token, which largely reduces the preprocessing cost.

166 While the above methods can impose sufficiently complex grammatical constraints on LLMs, they
 167 share a common limitation: they cannot ensure that generation halts within a specified number of
 168 tokens. IterGen (Ugare et al., 2025) can address this problem by repeatedly regenerating outputs
 169 until a desired result is obtained. However, it does not guarantee that a grammatically correct output
 170 will be found within a reasonable number of iterations.

171 We also note that the literature includes methods that extend beyond CFG-based constraints.
 172 Mündler et al. (2025) and Li et al. (2025) propose a code generation framework that imposes richer
 173 constraints than CFGs, aiming to avoid any errors during compilation or execution. While this
 174 direction is promising, these methods abandon constraint mask generation and instead rely on inef-
 175 ficient candidate sampling, similar to Outlines, which is especially disadvantageous when combined
 176 with advanced decoding strategies. Geng et al. (2023) introduces token-level grammars that directly
 177 provide next valid tokens and supports more flexible grammars than CFGs. However, this token-
 178 level approach potentially results in worse perplexity, since it prohibits to generate the same string
 179 consisting of natural token combinations.

181 4 TRUNC PROOF

182 Let a grammar G be specified in the form of an LL(1) grammar $(\mathcal{N}, \Sigma_T, R, S)$. We assume that each
 183 terminal symbol in Σ_T is defined by a Regex; For each terminal, there exists a corresponding DFA
 184 $\mathcal{M}_a := (Q_a, \Sigma, \delta_a, q_{a0}, F_a)$ that accepts the strings defined by the Regex. Given a grammatically
 185 valid partial output $t_{<i}$, our TruncProof serves as a constraint function that returns the binary mask
 186 \mathbf{m} , where each entry m_t represents the grammatical validity of a token $t \in \mathcal{V}$ within the pre-defined
 187 token limit N_{max} . By extending Equation 1, m_t is formally defined as follows:

$$189 \quad m_t = \text{true} \Rightarrow \exists w \in \mathcal{V}^* \text{ s.t. } ((t_{<i} \cdot t \cdot w) \in L(G) \text{ and } |t_{<i} \cdot t \cdot w| \leq N_{max}). \quad (2)$$

190 This mask can be used to filter out tokens that would result in either (1) a grammatically invalid
 191 continuation or (2) an output exceeding N_{max} .

192 In § 4, we describe the details of TruncProof, which returns the mask \mathbf{m} . Note that this mask ensures
 193 grammatical validity but does not fully account for semantic correctness. To produce outputs that are
 194 both grammatically valid and semantically coherent, we extend TruncProof with advanced decoding
 195 strategies, as detailed in § 4.2.

196 4.1 DETAILS OF TRUNC PROOF

211 Figure 2: Overview of TruncProof. For i -th generation step, Lexer parses the intermediate LLM
 212 tokens generated by the LLM into the terminals τ and the reminder r , Parser collects all possible
 213 terminal sequences (called accept sequences \mathcal{A}) whose length is at most two, and Cost Validator
 214 constructs the vocabulary mask \mathbf{m} by validating the future cost for each candidate token based on
 215 the precomputed cache.

Figure 3: The examples of counting the future tokens in Cost Validator illustrated in Figure 2.

Figure 2 illustrates the overall structure of TruncProof. In runtime, the following steps are executed iteratively within the generation loop: (i) Given the intermediate output generated by the LLM, Lexer that handles Regex and Parser that handles LL(1) grammar incrementally parse the newly generated token based on the terminal sequence obtained in the previous iteration. (ii) Cost Validator estimates the number of tokens needed in the future assuming a next token (as illustrated in Figure 3), and verifies whether the generated output remains grammatically valid under the specified token budget.

To efficiently operate Cost Validator, we precompute the estimation of the shortest token lengths for realizing any terminal and nonterminal defined by the given LL(1) grammar. In the following sections we describe the behavior in the runtime phase and the things to be prepared in the precomputation phase.

4.1.1 RUNTIME PHASE

As shown in Figure 2, we first divide the intermediate input $t_{<i}$ into the terminal sequence $\tau \in \Sigma_T^*$ and the reminder² $r \in \Sigma^*$ by using the DFAs, then partially parse τ to identify the derivation tree by using the LL(1) parser. This process can be executed incrementally by using the results in the previous iteration. Next, we enumerate the terminal sequences with a length of at most two *i.e.*, $a, b \in \Sigma_T$, that can be given to the current parser in this generation step. We hereafter call the set of the sequences as *accept sequence* $\mathcal{A} \subseteq \Sigma_T \cup \Sigma_T^2$. The reason why we take two-length terminals in consideration is because this extension allows us to better exploit the generative capabilities of the LLM³ while the relaxed constraint still ensures the condition defined in Equation 2. After that, we calculate the two types of cost to complete the generation: the number of tokens to complete the reminder as terminals (a, b) (as illustrated in Figure 3a), and the further cost $d_{cost}(\tau.a.b)$ to complete the whole string after a and b are accepted by the parser (as illustrated in Figure 3b). The former cost can be estimated as the minimum number of tokens required to transition from each state q in the corresponding DFA M_{a+b} to an accepting state, which is formulated as follows:

where δ_a^* is an iterated transition function *i.e.*, $\delta_a^*(q, x_1 \cdots x_n) = \delta_a(\cdots \delta_a(q, x_1) \cdots, x_n)$. If there is no token sequence w which can reach to any accepting state from q , $C_{a+b}[q]$ is set to infinity. This ensures that grammatically invalid tokens are automatically excluded due to their infinity cost. The latter cost $d_{cost}(\tau.a.b)$ is computed as the sum of the minimum number of tokens to consume the terminals and nonterminals that remains unresolved by the LL(1) parser (the dangling symbols illustrated in Figure 3b). To compute it, we need the approximate shortest token length

²User-defined terminal symbols may not align exactly with LLM tokens. In such cases, some suffixes of the output remain unprocessed as reminders.

³For instance, in the case of JSON, by precomputing the constraint mask for the concatenation of a left brace and a string, we can treat a token such as `{ "` as a valid starting sequence of a JSON object. This allows the model to generate more natural and compact outputs while still adhering to the grammatical constraints.

270 $D[A]$ derivable from each nonterminal $A \in \mathcal{N}$, by the following equation:
 271

$$272 \quad 273 \quad 274 \quad D[A] := \min_{\sigma \in \Sigma_T^*} \sum_{i=1}^{|\sigma|} C_{\sigma_i}[q_{\sigma_i 0}] \text{ subject to } A \rightarrow^* \sigma, \quad (4)$$

275 where σ_i denotes the i -th terminal symbol in the sequence σ . In summary, the entry of the constraint
 276 mask $\mathbf{m}^{(a,b)}$ for a token t , i.e., $m_t^{(a,b)}$, is computed as follows:
 277

$$278 \quad m_t^{(a,b)} := \text{true iff.}$$

$$279 \quad 280 \quad 281 \quad \begin{array}{llll} i & + & C_{a+b}[\delta_{a+b}^*(q_{a+b 0}, r.t)] & + d_{cost}(\tau.a.b) \\ (\text{consumed} & & (\text{future tokens} & < N_{max}, \\ \text{tokens}) & & \text{that DFA accepts}) & (\text{future tokens} \\ & & & \text{to finish output}) \end{array} \quad (5)$$

282 where i is the number of generated tokens. Once the simulation of the parser and the calculation
 283 of the future cost are performed, the constraint mask \mathbf{m} can be obtained by taking the element-
 284 wise union of the masks $\mathbf{m}^{(a,b)}$ for each $(a, b) \in \mathcal{A}$. Since each valid entry corresponds an actual
 285 sequence of tokens, it guarantees the result that adheres to the grammar and token limit. For the
 286 proof of this guarantee, refer to §B.7 in our supplementary material.
 287

Time Complexity Analysis. At each iteration of the generation loop, the computational bottleneck
 288 is the simulation of the LL(1) parser to calculate $d_{cost}(\tau.a.b)$ for each $(a, b) \in \mathcal{A}$. It takes
 289 $O(|\Sigma_T|^2(T_G + |\Gamma|))$, where T_G is the cost to feed one terminal to the LL(1) parser and $|\Gamma|$ is the
 290 number of dangling symbols in the derivation tree, which tends to be proportional to the nesting
 291 depth of the output code. In practice, $|\Sigma_T|$ is not so large; JSON has about 15 terminals and Ugare
 292 et al. (2024) reports that Python has 94. Calculation of $\delta_{a+b}(q_{a+b 0}, r.t)$ can be accelerated by pre-
 293 computing the mapping $\delta_{a+b}^*(q, t)$ for each terminal, DFA state, and LLM token. At runtime, we
 294 calculate the state $q' = \delta_{a+b}(q_{a+b 0}, r)$ and lookup the precomputed state $\delta_{a+b}^*(q', t)$ for each termi-
 295 nal sequence (a, b) and token t . This lookup operation can be parallelized into a vector computation
 296 across the entire \mathcal{V} . Mask generation is processed by at most $|\Sigma_T|^2$ times of element-wise Boolean
 297 and arithmetic operations on the vector of length $|\mathcal{V}|$, which also can be parallelized. Notice that
 298 this cost is usually smaller than the brute force method that searches the shortest terminal sequence
 299 by simulating the parser; The cost is $O(|\Sigma_T|^D T_G)$, where D is the minimum number of terminals
 300 in continuation, and D tends to be proportional to the nesting depth of generated sentences.
 301

4.1.2 PRECOMPUTATION PHASE

302 In this phase, we precompute the necessary values required for efficiently calculating Equation 5.
 303 First we calculate $C_a[q]$ provided in Equation 3 for each terminal $a \in \Sigma_T$ and $C_{a+b}[q]$ for each two-
 304 length terminals (a, b) . To compute them, we use Dijkstra's algorithm, treating DFA states as nodes,
 305 transitions as edges, and token lengths as edge costs. The pseudo-code is provided in Algorithm 1
 306 of Appendix B.5. Next, we estimate $D[A]$ provided in Equation 4. The computation of $D[A]$ is also
 307 based on Dijkstra's algorithm, where possible derivation states are treated as nodes and derivation
 308 steps as edges. The corresponding pseudo-code is Algorithm 2 in Appendix B.5. Although the
 309 underlying search graph may be infinitely large in theory, our algorithm is guaranteed to terminate
 310 whenever the nonterminal A can derive at least one terminal sequence. This is ensured by the
 311 property of LL(1) grammars, which prohibits infinitely recursive derivations without increasing the
 312 number of leading terminals. We present the formal proof of this termination in Appendix B.6.
 313 Finally, we precompute the mapping $\delta_{a+b}^*(q, t)$ for each terminal, DFA state, and LLM token. This
 314 is used to efficiently retrieve the DFA state in consuming a reminder and a LLM token illustrated in
 315 Figure 3a.
 316

Space Complexity Analysis. The amount of memory for precomputation is the sum of the memory
 317 $O(|\Sigma_T|^2|Q|)$ for $C_a[q]$, $O(|\mathcal{N}|)$ for $D[A]$, and $O(|\Sigma_T|^2|\mathcal{V}||Q|)$ for precomputing mapping
 318 $\delta_{a+b}^*(q, t)$, where $|Q|$ is the average size of the DFA states. Note that the mapping $\delta_{a+b}^*(q, t)$ is
 319 sparse because most tokens lead DFAs to a dead state.
 320

4.2 COMBINING TRUNCProof WITH DECODING STRATEGIES

321 TruncProof can be seamlessly integrated with various decoding strategies. In this work we consider
 322 the following three decoding methods: (1) **Greedy decoding (Greedy)** is the default strategy in
 323 most text-generation libraries. It takes the token with the best likelihood $P(t | t_{<i})$ in each iteration

of the text generation. (2) **Beam Search (BS)** maintains b best candidates in each iteration and re-selects the b best sequences among the possible continuations. Scholak et al. (2021) adopts BS with their constraint method to improve the accuracy of the generation. Although BS takes diverse candidates into account and obtains better contents than the greedy strategy, it remains difficult to completely avoid future token shortages. (3) **Monte Carlo Tree Search (MCTS)** is known to be effective for this type of issue where the selections in beginning have a large effect but their precise value is evaluated in the ending phase. MCTS originally aims to find the best move in two-person games (Coulom (2006)), but there are some studies for LLM-based text generation (Leblond et al. (2021); Chaffin et al. (2022); Loula et al. (2025)). In each generation step i , MCTS constructs the search tree whose nodes are possible continuations $t_{<i+k}$ and edges are the selectable next tokens. MCTS repeats the following stages to grow the search tree: Selection, Expansion, Simulation, and Backup. In Selection, we traverse the tree up to a leaf based on the following evaluation function introduced by Silver et al. (2017) that utilizes the likelihood of sequences as a prior:

$$F(t_{<i}, t) := Q(t_{<i}, t) + c_{puct} P'_\tau(t \mid t_{<i}) \frac{\sqrt{\sum_u N(t_{<i}, u)}}{1 + N(t_{<i}, t)}, \quad (6)$$

where $Q(t_{<i}, t)$ is the maximum value observed among the continuations of $t_{<i}, t$, P'_τ is the likelihood modified by the constraint mask and normalized by softmax with temperature τ , $N(t_{<i}, t)$ is the number of investigations beyond $t_{<i}, t$, and c_{puct} is the hyperparameter that balances exploration and exploitation. In Expansion, we expand the tree to investigate more deeply beyond the leaf which we arrived at. In Simulation, we apply greedy decoding from the leaf until the end of generation and evaluate the value of the result text $v(t_{<n})$ as the geometric mean of the unmodified likelihood provided directly by the LLM, which is known as the inverse of the perplexity. In Backup, we tell the evaluated value v to the ancestors and update their observed values $Q(t_{<i}, t)$. After some repetitions, we decide the next token t with highest $Q(t_{<i}, t)$.

5 EXPERIMENTS AND DISCUSSION

We conduct the experiments on LL(1) grammars, JSON and a subset of C. Note that, in our experiments we do not consider Python, Go and SQL, which have been evaluated by Ugare et al. (2024), because they cannot be fully expressed using LL(1) grammars.

5.1 EXPERIMENTAL SETTING

Quantitative Analysis on Text-to-JSON Instruction. To evaluate TruncProof, we conduct experiments on the JSON-Mode-Eval dataset (NousResearch, 2024), which comprises 100 text-to-JSON tasks. In this instruction-following task, the goal is to generate syntactically and semantically valid JSON outputs given a natural language prompt (*cf.* Appendix B.2). In Ugare et al. (2024), the maximum token limit is fixed at 400, which is approximately six times the average length of the ground truth. To assess performance under stricter constraints, we define a more challenging configuration, where the maximum token length is dynamically set to $\lfloor L_i^{\text{GT}} \times e \rfloor$ for each instance i , with L_i^{GT} denoting the token length of the ground truth and e an expansion ratio. Unless otherwise specified, we set $e = 1.1$ when comparing TruncProof with other methods. For completeness, we conduct experiments under different token-limit settings, including the configuration used by Ugare et al. (2024), as well as various values of e . We also demonstrate the superiority of TruncProof over prompt engineering. The corresponding results are presented in Appendix B.8, B.10 and B.11 of the supplementary material, respectively.

As evaluation metrics, we use the following: (1) the percentage of outputs that are grammatically correct, denoted as *Syntax*; (2) the percentage of outputs that adhere to the schema specified in the prompt, referred to as *Schema*; and (3) the percentage of outputs that are parsed into JSON objects identical to the ground truth, termed *Exact-match*. The last Exact-match metric is newly introduced in this work to specifically assess the semantic validity of the generated JSON outputs.

Notice that the JSON grammar used in Ugare et al. (2024) does not fully comply with the official JSON standard, RFC 8259⁴. To ensure a practical and standards-compliant evaluation, we apply

⁴For example, numbers with a trailing decimal point such as 100. are permitted by the grammar in Ugare et al. (2024), but are considered invalid under RFC 8259.

378 an RFC 8259-compliant JSON grammar (shown in Appendix B.3) to all constraint methods when
 379 assessing their performance.
 380

381 **Qualitative Analysis on Code Generation.** In the experiments using JSON-Mode-Eval, we
 382 measure accuracy by checking whether keys and values in generated JSONs match exactly. Therefore,
 383 shorter JSON that maintains semantic meaning would be the one whose whitespace is reduced. To
 384 demonstrate how TruncProof with advanced decoding strategies can significantly alter content while
 385 preserving the semantics, we define the Code generation task to generate C functions that sums up
 386 1 to N using a limited C grammar adopted by Gerganov et al. (2023) with strict token limits. Under
 387 this setting, we observe the results of TruncProof and a prior work SynCode (Ugare et al., 2024).
 388

389 **Environment.** We used 1x H200 GPU to produce all the results. Beam Search (BS) is performed
 390 with 10 beams while Monte Carlo Tree Search (MCTS) is performed with the following hyperpa-
 391 rameters: $c_{puct} = 5, \tau = 2, 20$ trials for each generation step. We precompute the shortest token
 392 lengths for all terminals and nonterminals described in §4 before the experiments. It takes about 1
 393 minute for the JSON grammar, and 5 minutes for the subset of C grammar.
 394

395 Table 1: Accuracy and generation speed of JSON-mode-eval with $e = 1.1$. **Time (ms)** denotes the
 396 time of generating one token in milliseconds, and the value in parenthesis denotes the overhead of
 397 constrained generation, which is calculated by comparing with “No constraint”. †XGrammar uses
 398 its builtin JSON grammar because its grammar format (EBNF) is incompatible with others (Lark).
 399

399 Model	400 Method	401 Decoding	402 Accuracy (%)			403 Time (ms)
			404 Syntax	405 Schema	406 Exact-match	
407 Gemma2-2B	No constraint	Greedy	1	1	0	21.8
	Outlines (Willard & Louf, 2023)	Greedy BS	36 4	33 4	22 2	458.7 (+436.9) 4347.8 (+4326.0)
	SynCode (Ugare et al., 2024)	Greedy BS MCTS	4 1 4	3 1 4	0 0 0	23.5 (+1.7) 54.0 (+32.2) 438.6 (+416.8)
	XGrammar † (Dong et al., 2025)	Greedy BS MCTS	5 1 5	5 1 5	3 0 2	22.1 (+0.3) 34.3 (+12.5) 293.3 (+271.5)
	Ours	Greedy BS MCTS	100 100 100	62 85 86	21 37 58	25.7 (+3.9) 60.8 (+39.0) 518.1 (+496.3)
	No constraint	Greedy	2	2	0	17.6
	Outlines (Willard & Louf, 2023)	Greedy BS	18 10	13 8	4 4	72.2 (+54.6) 598.8 (+581.2)
	SynCode (Ugare et al., 2024)	Greedy BS MCTS	11 6 8	10 6 8	4 4 4	18.4 (+0.8) 58.7 (+41.1) 183.5 (+165.9)
	XGrammar † (Dong et al., 2025)	Greedy BS MCTS	11 5 9	9 3 8	2 2 3	18.3 (+0.7) 32.5 (+14.9) 175.1 (+157.5)
	Ours	Greedy BS MCTS	100 100 100	51 67 70	2 29 41	19.0 (+1.4) 37.0 (+19.4) 209.2 (+191.6)
421 Llama2-7B-Chat-HF						

422 5.2 RESULTS

423 Table 1 presents the results of five approaches: the baseline without any GCG method (denoted as
 424 No constraint), Outlines (Willard & Louf, 2023), SynCode (Ugare et al., 2024), XGrammar (Dong
 425 et al., 2025), and our proposed method, TruncProof. For the No constraint baseline, we adopt Greedy
 426 decoding. All constraint methods except Outlines are evaluated with Greedy, BS, and MCTS. Note
 427 that BS and MCTS are implemented by ourselves, as they are not provided by the original authors.
 428 Following prior work (Ugare et al., 2024), we use Gemma2-2B (Google, 2024) and Llama2-7B-
 429 Chat-HF (Touvron et al., 2023) as the underlying language models.
 430

431 **Syntax Robustness.** As expected, under this challenging setting, most outputs generated by the
 432 baseline methods are grammatically invalid, with their Syntax accuracies ranging from only 1% to

432 36%. This failure occurs mainly because LLMs include excessive whitespace in JSON for readability and thereby waste LLM tokens. In contrast, TruncProof consistently produces grammatically 433 valid outputs across all decoding strategies and backend LLMs, achieving perfect Syntax accuracy 434 *i.e.*, 100%. These results clearly demonstrate the effectiveness of our approach in maintaining 435 grammatical correctness under strict token constraints.

436 **Semantics Robustness.** Table 1 also shows that when using simple decoding strategies such as 437 Greedy, the Exact-match accuracies of TruncProof remain relatively low (2%–21%) although about 438 half (51%–62%) of the cases are faithful to the schema. **We emphasize that this outcome is expected;** 439 **TruncProof only cares about the grammar and the number of tokens, but it does not fully account for** 440 **the semantic correctness of its outputs.** Also as shown in the same table, these scores improve 441 significantly when more advanced decoding strategies are employed. In particular, using BS raises the 442 Exact-match accuracies to 29%–37%, and further improvements are observed with MCTS, reaching 443 41%–58%, all while preserving perfect grammatical correctness. These results highlight the 444 compatibility of TruncProof with various decoding strategies and its ability to enhance semantic quality 445 without compromising syntactic validity.

446 Also note that such compatibility with various decoding strategies is not necessarily supported by 447 existing methods; As shown in Table 1, prior works with BS performs worse than Greedy. This may 448 be attributed to the presence of many high-likelihood candidates that are grammatically invalid. To 449 validate this hypothesis, in Figure 4, we visualize the perplexity of outputs under token shortage 450 (labeled “Reached limit”) for both SynCode (Ugare et al., 2024) and our TruncProof. As shown, 451 when generation is constrained by SynCode, the perplexity of truncated outputs is worse than that 452 of exact-match outputs (*i.e.*, successful generations), yet still better than the perplexity of the ground 453 truth (see Figure 4a). This indicates that simply optimizing for likelihood under SynCode may lead 454 to grammatically incorrect outputs due to local optima. In contrast, when our method reaches the 455 token limit and generates unnatural outputs, the perplexity becomes worse than that of the ground 456 truth, suggesting that TruncProof avoids such invalid local optima by preserving grammatical 457 correctness throughout generation (see Figure 4b).

458 The result of the Code generation is demonstrated in Figure 5. We find that TruncProof with MCTS 459 generates the simpler algorithm whereas SynCode (Ugare et al., 2024) with MCTS fails to find 460 a better solution than Greedy. Notice that the perplexities exhibit the same trend as in Figure 4; 461 Truncated codes found by SynCode are judged more “natural” by LLMs than the shorter, correct 462 code produced by TruncProof. These findings also indicate that prior methods do not consistently 463 benefit from advanced decoding strategies, whereas TruncProof does.

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 4: The perplexities provided by Gemma2-2B on JSON-Mode-Eval. Exact-matched indicates the output whose keys and values are correct under the relaxed token limit. Reached limit indicates the output which is truncated in (a) or incorrect in (b) due to the strict token limit. Refer to §5.2 for more details.

6 LIMITATIONS

As demonstrated in § 5.2, TruncProof is capable of generating both syntactically and semantically valid outputs under strict token budget constraints, particularly when paired with advanced decoding strategies. However, these strategies can slow down the generation process (*e.g.*, BS is 2.0–2.4x

486	No Constraint (PPL 17.125)	TruncProof (PPL 70.0) Incorrect	TruncProof + MCTS (PPL 63.75) Correct
487	```c	int sumToN(int N) {	int sum_to_n(int n) { return n * (n + 1) / 2; }
488	int sum = 0;	int sum = 0;	
489	for (int i = 1; i <= n; i++) {	for (int i = 1; i <= N; i = i + 1) { } }	
490	sum += i;		
491	}		
492	return sum;		
493	...		
494		SynCode (PPL 50.5) Syntax error	SynCode + MCTS (PPL 50.5) Syntax error
495		int sumToN(int N) {	int sumToN(int N) {
496		int sum = 0;	int sum = 0;
497		for (int i = 1; i <= N; i = i + 1)	for (int i = 1; i <= N; i = i + 1)

Figure 5: Responses of Gemma2-2B and their perplexity (PPL) for the prompt “*Write a C function that sums up 1 to N. Only output the code without codeblock quotations.*” Without grammar constraint, the response has 58 tokens. When we apply SynCode or our TruncProof, we set the token limit to 40. The applied grammar is described in Appendix B.9.

slower and MCTS is 11.0-20.2x slower than Greedy). Although successful integration with the strategies is unattainable by other methods, the associated overheads may pose a practical limitation, especially in latency-critical applications.

Another potential limitation of TruncProof lies in its reliance on LL(1) parsing, which cannot support all CFGs. For example, in Python 3.9 and later versions (Guido van Rossum (2020)), the official parser transitioned away from LL(1). Note that such grammars can be approximated by removing certain features or imposing additional syntactic restrictions, though this often requires further workarounds and customized implementations.

Furthermore, although this issue is common across GCG methods, enforcing grammatical constraints often distorts the probability distribution produced by the LLM, making it difficult to sample text in a manner that faithfully reflects the model’s original conditional probabilities under grammatical correctness. To address this, it is important to explore compatibility with methods that approximate the conditional distribution of LLMs under constraints, like Park et al. (2024).

7 CONCLUSION

In this paper, we proposed TruncProof, a novel LL(1)-constrained generation method designed to enable LLMs to produce grammatically valid outputs while adhering to a maximum token limit. Experiments on the Text-to-JSON instruction task (NousResearch, 2024) and Code generation task demonstrated that TruncProof can successfully generate syntactically correct outputs even under strict token constraints. We also show that TruncProof can be effectively combined with advanced decoding strategies, resulting in outputs that are not only grammatically valid but also semantically accurate. In future work, we plan to investigate methods to accelerate generation, particularly when using complex strategies. We also aim to extend our work to support general CFGs for broader applicability.

REFERENCES

Alfred V. Aho and Jeffrey D. Ullman. *The Theory of Parsing, Translation, and Compiling*. Prentice-Hall, Inc., USA, 1972. ISBN 0139145567.

Anthropic. Increase output consistency (JSON mode). <https://platform.claude.com/docs/en/test-and-evaluate/strengthen-guardrails/increase-consistency> (accessed December 2025).

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query Language for Large Language Models. volume 7, pp. 1946–1969. Association for Computing Machinery (ACM), June 2023. doi: 10.1145/3591300. URL <http://dx.doi.org/10.1145/3591300>.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation. 2024. <https://arxiv.org/abs/2403.06988>.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language*

540 Technologies, pp. 2953–2967, Seattle, United States, July 2022. Association for Computational
 541 Linguistics. doi: 10.18653/v1/2022.nacl-main.215. URL <https://aclanthology.org/2022.nacl-main.215/>.

543 Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In *Computers and Games*, 2006. URL <https://api.semanticscholar.org/CorpusID:16724115>.

547 Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ziyi Xu, Yilong Zhao, Ruihang Lai, and Tianqi Chen.
 548 XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models. In
 549 *Eighth Conference on Machine Learning and Systems*, 2025. URL <https://openreview.net/forum?id=rjQfx0YgD1>.

551 Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-Constrained Decoding
 552 for Structured NLP Tasks without Finetuning. In *The 2023 Conference on Empirical Methods
 553 in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=KKHY1WGDI>.

555 Georgi Gerganov, Diego Devesa, et al. ggml-org/llama.cpp: LLM inference in C/C++, 2023.
 556 <https://github.com/ggml-org/llama.cpp>.

558 Google. Structured Outputs. <https://ai.google.dev/gemini-api/docs/structured-output> (accessed De-
 559 cember 2025).

560 Google. Gemma, 2024. <https://www.kaggle.com/m/3301>.

562 Lysandros Nikolaou Guido van Rossum, Pablo Galindo. PEP 617 - New PEG parser for CPython,
 563 2020. <https://peps.python.org/pep-0617/>.

565 Tanmay Gupta and Aniruddha Kembhavi. Visual Programming: Compositional Visual Reasoning
 566 Without Training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 567 Recognition (CVPR)*, pp. 14953–14962, June 2023.

568 Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-Baptiste, Ioan-
 569 nis Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine Translation Decoding beyond
 570 Beam Search. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 571 guage Processing*, pp. 8410–8434, Online and Punta Cana, Dominican Republic, November
 572 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.662. URL
 573 <https://aclanthology.org/2021.emnlp-main.662/>.

574 P. M. Lewis and R. E. Stearns. Syntax-Directed Transduction. *J. ACM*, 15(3):465–488, July
 575 1968. ISSN 0004-5411. doi: 10.1145/321466.321477. URL <https://doi.org/10.1145/321466.321477>.

578 Lingxiao Li, salar rahili, and Yiwei Zhao. Correctness-Guaranteed Code Generation via Con-
 579 strained Decoding. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=CYiXNIQegF>.

581 João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu,
 582 Yahya Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexan-
 583 der K. Lew, Tim Vieira, and Timothy J. O’Donnell. Syntactic and Semantic Control of Large Lan-
 584 guage Models via Sequential Monte Carlo. In *The Thirteenth International Conference on Learn-
 585 ing Representations*, 2025. URL <https://openreview.net/forum?id=xoXn62FzD0>.

586 Scott Lundberg, Marco Tulio Correia Ribeiro, et al. guidance-ai/guidance: A Guidance Language
 587 for Controlling Large Language Models., 2023. <https://github.com/guidance-ai/guidance>.

589 Michał Moskal, Harsha Nori, Hudson Cooper, and Loc Huynh. guidance-ai/llguidance., 2025.
 590 <https://github.com/guidance-ai/llguidance>.

592 Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-Aware
 593 Constraining for Code LLMs. In *ICLR 2025 Third Workshop on Deep Learning for Code*, 2025.
 URL <https://openreview.net/forum?id=DNAapYMXkc>.

594 NousResearch. JSON-Mode-Eval, 2024. <https://huggingface.co/datasets/NousResearch/json-mode->
 595 eval.

596

597 OpenAI. Structured model outputs. <https://platform.openai.com/docs/guides/structured->
 598 outputs/json-mode (accessed December 2025).

599 Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D' Antoni.
 600 Grammar-Aligned Decoding. In A. Globerson, L. Mackey, D. Belgrave,
 601 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*
 602 *formation Processing Systems*, volume 37, pp. 24547–24568. Curran Associates, Inc.,
 603 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf.

604

605 Kanghee Park, Timothy Zhou, and Loris D'Antoni. Flexible and efficient grammar-constrained
 606 decoding. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=L6CYAzp01k>.

607

608 Terence Parr and Kathleen Fisher. LL(*): The Foundation of the ANTLR Parser Generator. *SIG-*
 609 *PLAN Not.*, 46(6):425–436, June 2011. doi: 10.1145/1993316.1993548.

610

611 Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
 612 Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models. In *Interna-*
 613 *tional Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=KmtVD97J43e>.

614

615 Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing Incrementally for
 616 Constrained Auto-Regressive Decoding from Language Models. In *Proceedings of the 2021*
 617 *Conference on Empirical Methods in Natural Language Processing*, pp. 9895–9901, November
 618 2021. doi: 10.18653/v1/2021.emnlp-main.779.

619

620 Erez Shinan. Lark - A Parsing Toolkit for Python, 2017. <https://github.com/lark-parser/lark>.

621

622 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 623 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
 624 Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
 625 the game of Go without human knowledge. *Nature*, 550:354–359, 2017. URL <https://api.semanticscholar.org/CorpusID:205261034>.

626

627 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 628 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 629 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esibou, Jude Fernandes, Jeremy
 630 Fu, Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 631 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madijan Khabsa, Isabel
 632 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 633 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 634 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 635 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 636 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 637 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
 2023. <https://arxiv.org/abs/2307.09288>.

638

639 Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
 640 LLM Generation with Grammar Augmentation, 2024. <https://arxiv.org/abs/2403.01632>.

641

642 Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. IterGen:
 643 Iterative Semantic-aware Structured LLM Generation with Backtracking. In *The Thirteenth In-*
 644 *ternational Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ac93gRzxxV>.

645

646 Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
 647 Song, Mingjie Zhan, and Hongsheng Li. MathCoder: Seamless Code Integration in LLMs for
 Enhanced Mathematical Reasoning. In *The Twelfth International Conference on Learning Rep-*
 648 *resentations*, 2024. URL <https://openreview.net/forum?id=z8TW0ttBPP>.

648 Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. 2023.
649 <https://arxiv.org/abs/2307.09702>.
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A THE USE OF LARGE LANGUAGE MODELS IN THIS PAPER
703704 We used LLMs only to aid or polish writing.
705706 B SUPPLEMENTARY MATERIAL
707709 B.1 DEFINITION OF LL(1) GRAMMAR
710711 **Definition B.1** (LL(1) grammar). A context-free grammar $(\mathcal{N}, \Sigma_T, R, S)$ is LL(1) grammar if, for
712 all terminal sequences $w_1, w_2, w'_2, w_3, w'_3 \in \Sigma_T^*$, a nonterminal $A \in \mathcal{N}$, and derivation rules
713 $p, p' \in R$,

714
$$\left\{ \begin{array}{l} S \rightarrow^* w_1 A w_3 \\ S \rightarrow^* w_1 A w'_3 \\ A \rightarrow^* w_2 \text{ (The rule } p \text{ is applied first)} \\ A \rightarrow^* w'_2 \text{ (The rule } p' \text{ is applied first)} \\ (w_2.w_3) \text{ and } (w'_2.w'_3) \text{ have the same prefix} \end{array} \right. \quad (7)$$

715
716
717
718
719

720 implies $p = p'$.
721722 B.2 SAMPLE PROMPT FOR JSON-MODE-EVAL
723

```

<bos><start_of_turn>user
You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:
<schema>
{$id: 'https://example.com/entry-schema', '$schema': 'https://json-schema.org/draft/2020-12-
  schema', 'description': 'JSON Schema for an fstab entry', 'type': 'object', 'required':
  ['storage', 'fstype', 'options', 'readonly'], 'properties': {'storage': {'type': 'string
  ', 'pattern': '^/dev/[^/]+([^\^/]+)*$'}, 'fstype': {'type': 'string', 'enum': ['ext3', 'ext4', 'btrfs']}, 'options': {'type': 'string', 'pattern': '^a-zA-Z0-9,-]+$'}, 'readonly': {'type': 'boolean'}}}
</schema>
I need to define a JSON schema for a file system entry that includes specific constraints for
the properties 'fstype', 'options', and 'readonly'. The 'fstype' should be limited to 'ext3', 'ext4', or 'btrfs'. The 'options' should be a string that matches the pattern of
comma-separated values, and 'readonly' should be a boolean indicating if the entry is
read-only. Please provide me with a valid JSON object that adheres to these constraints.
The file system entry should be for the storage '/dev/sdal', with 'fstype' as 'ext4', 'options' set to 'rw,noatime', and 'readonly' as false.
Only output JSON.<end_of_turn>

```

737 B.3 JSON GRAMMAR
738

```

?start: value
_BEGIN_ARR:   /[\t\f\r\n]*\[[\t\f\r\n]*/
_BEGIN_OBJ:   /[\t\f\r\n]*{\[\t\f\r\n]*/
_END_ARR:     /[\t\f\r\n]*\][\t\f\r\n]*/
_END_OBJ:     /[\t\f\r\n]*\}[\t\f\r\n]*/
_NAME_SEP:    /[\t\f\r\n]*:[\t\f\r\n]*/
_VALUE_SEP:   /[\t\f\r\n]*,[\t\f\r\n]*/

?value: object
| array
| STRING
| number
| "true"      -> true
| "false"     -> false
| "null"      -> null

object: _BEGIN_OBJ [member (_VALUE_SEP member)*] _END_OBJ
member: STRING _NAME_SEP value
array : _BEGIN_ARR [value (_VALUE_SEP value)*] _END_ARR

number: MINUS? INT FRAC? EXP?
MINUS: "-"
INT: "0" | ("1".."9") DIGIT*
DIGIT: "0".."9"
FRAC: "." DIGIT+

```

```
756 | EXP:  ("e"|"E")  [ "+"| "-" ]  DIGIT+
757 | STRING:  /"([^\\"\\x00-\x19]|\\["\\\"/bfnrt]|\\u[0-9A-Fa-f]{4})*"/
758 |
```

B.4 AN EXAMPLE OF CONTEXT-FREE GRAMMARS

For example, we consider the following CFG representing nested numbers list:

$$\begin{aligned} \mathcal{N} &= \{\langle \text{Expr} \rangle, \langle \text{Val} \rangle, \langle \text{Tail} \rangle\}, \quad \Sigma = \{\text{Num}, [,], ;\} \\ R &= \left\{ \begin{array}{ll} \langle \text{Expr} \rangle \rightarrow & [\langle \text{Expr} \rangle \langle \text{Tail} \rangle] \\ \langle \text{Expr} \rangle \rightarrow & [\langle \text{Expr} \rangle], \quad \langle \text{Expr} \rangle \rightarrow \text{Num} \\ \langle \text{Tail} \rangle \rightarrow & ; \langle \text{Expr} \rangle \langle \text{Tail} \rangle, \quad \langle \text{Tail} \rangle \rightarrow ; \langle \text{Expr} \rangle \end{array} \right. \\ S &= \langle \text{Expr} \rangle \end{aligned} \tag{8}$$

Note that this definition is equivalent to the following Backus-Naur Form (BNF):

```

<Expr> ::= "[" <Expr> <Tail> "]"
          | "[" <Expr> "]"
          | <Num>
<Tail> ::= ";" <Expr> <Tail>
          | ";" <Expr>

```

For example, this CFG accepts a terminal sequence `[Num; [Num]]` because there is a derivation process described below.

$$\langle \text{Expr} \rangle \rightarrow [\langle \text{Expr} \rangle \langle \text{Tail} \rangle] \rightarrow [\text{Num} \langle \text{Tail} \rangle] \rightarrow [\text{Num}; \langle \text{Expr} \rangle] \rightarrow [\text{Num}; [\langle \text{Expr} \rangle]] \rightarrow [\text{Num}; [\text{Num}]] \quad (9)$$

We can visualize this derivation process as a derivation tree in Figure 6.

Figure 6: The derivation tree that represents the process in Equation 9.

810 B.5 OUR ALGORITHMS IN DETAIL
811

812

813 **Algorithm 1** Estimate shortest token length acceptable by a terminal's DFA814 **Inputs:** $(Q_a, \Sigma, \delta_a, q_{a0}, F_a)$: DFA that accepts a terminal a , Q_a^{live} : a set of live states, \mathcal{V} : vocabulary815 **Output:** the terminal's lexical acceptance cost $C_a[q] \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$

```

816 1: Fill  $C_a[q]$  with  $\infty$  for all  $q \in Q_a$ 
817 2: for each  $q' \in Q_a^{live}$  do
818 3:   Fill  $D[q]$  with  $\infty$  for all  $q \in Q_a$ 
819 4:    $D[q'] \leftarrow 0$ 
820 5:    $Q^{search} \leftarrow Q_a^{live}$ 
821 6:   while  $Q^{search} \neq \emptyset$  do
822 7:      $u \leftarrow \arg \min_{u \in Q^{search}} D[u]$ 
823 8:      $Q^{search} \leftarrow Q^{search} - \{u\}$ 
824 9:     for each  $t \in \mathcal{V}$  do
825 10:     $v \leftarrow \delta_a^*(u, t)$ 
826 11:     $D[v] \leftarrow \min(D[v], D[u] + 1)$ 
827 12:  end for
828 13: end while
829 14:  $C_a[q'] \leftarrow \min_{q \in F_a} D[q]$ 
830 15: end for

```

831

832

833 **Algorithm 2** Approximate shortest token length derivable from a nonterminal834 **Inputs:** $(\mathcal{N}, \Sigma_T, R, S)$: LL(1) grammar, A : nonterminal,835 C_a : acceptance cost provided by Algorithm 1 for each $a \in \Sigma_T$ 836 **Output:** the length of approximately shortest token sequence derivable from A 837 **Notation:** $A, B \in \mathcal{N}$, $\sigma, \tau \in \Sigma^*$, $\alpha, \alpha^{new}, \beta, \gamma_i, \delta \in (\mathcal{N} \cup \Sigma_T)^*$

```

838 1: Initialize  $D$  as a map with default value  $\infty$ 
839 2:  $Q^{search} \leftarrow \{A\}$ 
840 3:  $D[A] \leftarrow 0$ 
841 4: while true do
842 5:    $\alpha \leftarrow \arg \min_{\alpha \in Q^{search}} D[\alpha]$ 
843 6:    $Q^{search} \leftarrow Q^{search} - \{\alpha\}$ 
844 7:   if  $\alpha$  is empty or all symbols in  $\alpha$  are terminals then
845 8:     return  $D[\alpha]$ 
846 9:   end if
847 10:  // Expand the leftmost nonterminal
848 11:   $\sigma, B\beta \leftarrow$  Split  $\alpha$  into the leading terminals and the others
849 12:  for each rule  $B \rightarrow \gamma_i$  in  $R$  do
850 13:     $\alpha^{new} \leftarrow \sigma\gamma_i\beta$ 
851 14:    // Add costs of newly introduced leading terminals
852 15:     $\tau, \delta \leftarrow$  Split  $\gamma_i\beta$  into the leading terminals and the others
853 16:     $d^{new} \leftarrow D[\alpha]$ 
854 17:    for each terminal  $a$  in  $\tau$  do
855 18:       $d^{new} \leftarrow d^{new} + C_a[q_{a0}]$ 
856 19:    end for
857 20:     $D[\alpha^{new}] \leftarrow d^{new}$ 
858 21:     $Q^{search} \leftarrow Q^{search} \cup \{\alpha^{new}\}$ 
859 22:  end for
23: end while

```

860

861

862 B.6 HALTING PROBLEM OF ALGORITHM 2

863

Lemma B.1. *Algorithm 2 always halts when the given grammar is LL(1).*

864 *Proof.* Let $G = (\mathcal{N}, \Sigma_T, R, S)$ be the given LL(1) grammar and A be a nonterminal in \mathcal{N} . Assume
 865 there is a sentence $w \in \Sigma_T^*$ such that $A \rightarrow^* w$, and there is no terminal which allows an empty
 866 string, i.e. $C_a[q_{a0}] > 0$ for all $a \in \Sigma_T$. With this assumption, when the number of leading terminals
 867 in a sequence α^{new} increases, the cost $D[\alpha^{new}]$ increases monotonically. On the other hand, in
 868 some finite derivation steps, the number of leading terminals increases monotonically because LL(1)
 869 grammars don't accept the left-recursion $B \rightarrow^* B\beta$ (Lemma 8.3 in Aho & Ullman (1972)) and a
 870 set of nonterminals is finite. Therefore, for any cost d , the number of the possible derivation α from
 871 A with $D[\alpha] < d$ is finite. This means the algorithm finds w with $D[w]$ and halts in some finite
 872 iterations of the while-loop. \square

874 B.7 GUARANTEE OF TRUNC PROOF

875 **Lemma B.2.** *Our constraint mask guarantees grammatically correct output shorter than the specified limit N_{max} .*

882 *Proof.* Assume that we have selected the token t_i based on the constraint mask in iteration i , and the
 883 intermediate output becomes $t_{<i}.t_i$. At that time $t_{<i}$ is divided into the terminal sequence $\tau \in \Sigma_T^*$
 884 and the reminder r , and there is an accept sequence (a, b) that holds:

$$885 \quad i + C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i)] + d_{cost}(\tau.a.b) < N_{max} \quad (10)$$

888 and there are three possibilities.

889 **(A)** When $C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i)] = d_{cost}(\tau.a.b) = 0$, the intermediate output completes the
 890 grammatically correct string, so we can stop generation or optionally output EOS. The generated result is
 891 grammatically correct and meets the token limit because $i < N_{max}$.

892 **(B)** When $C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i)] > 0$, there is a token t that holds:

$$895 \quad C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i.t)] \leq C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i)] - 1 \quad (11)$$

897 Based on Equation 10,

$$899 \quad i + 1 + C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i.t)] + d_{cost}(\tau.a.b) < N_{max} \quad (12)$$

901 This means $m_t^{(a,b)} = \text{true}$ in iteration $i + 1$.

903 **(C)** When $C_{a+b}[\delta_{a+b}^*(q_{a+b0}, r.t_i)] = 0$ and $d_{cost}(\tau.a.b) > 0$, the intermediate output $t_{<i}.t_i$ is
 904 divided into $\tau.a.b$ and there is a sequence of terminals $\sigma_1 \dots \sigma_k$ where $\tau.a.b.\sigma_1 \dots \sigma_k \in L(G)$ and
 905 $\sum_{j=1}^k C_{\sigma_j}[q_{\sigma_j0}] = d_{cost}(\tau.a.b)$. Note that $k \geq 1$ because $C_{\sigma_j}[q_{\sigma_j0}] > 0$ for all j . Therefore, it
 906 holds:

$$908 \quad i + C_{\sigma_1}[q_{\sigma_10}] + d_{cost}(\tau.a.b.\sigma_1) < N_{max} \quad (13)$$

910 Because $C_{\sigma_1}[q_{\sigma_10}] > 0$, there is a token t that holds:

$$913 \quad i + 1 + C_{\sigma_1}[\delta_{\sigma_1}^*(q_{\sigma_10}, t)] + d_{cost}(\tau.a.b.\sigma_1) < N_{max} \quad (14)$$

915 This means $m_t^{(\sigma_1)} = \text{true}$ in iteration $i + 1$.

917 Therefore, we can continue to build valid constraint masks throughout text generation and can stop
 the generation once condition (A) holds. \square

918 B.8 EXPERIMENTS ON JSON-MODE-EVAL UNDER THE TOKEN LIMIT PROVIDED BY UGARE
919 ET AL. (2024)
920921
922 Table 2: Accuracy of JSON-Mode-Eval under the original token limit 400.
923

Model	Method	Decoding	Accuracy (%)		
			Syntax	Schema	Exact-match
Gemma2-2B	No constraint	Greedy	38	38	29
	Outlines	Greedy	100	96	72
	SynCode	Greedy	99	97	73
	XGrammar	Greedy	99	99	74
	Ours	Greedy	100	95	72
Llama2-7B-Chat-HF	No constraint	Greedy	6	5	0
	Outlines	Greedy	100	67	45
	SynCode	Greedy	98	61	40
	XGrammar	Greedy	98	44	26
	Ours	Greedy	100	63	40

938 B.9 C GRAMMAR SPECIFIED IN FIGURE 5
939

```

940 start: declaration*
941 declaration: data_type NAME "(" parameters? ")" "{" statement* "}"
942 statement: data_type NAME "=" expression ";"
943   | NAME "=" expression ";"
944   | NAME "(" arg_list? ")" ";"
945   | "return" expression ";"
946   | "while" "(" condition ")" "{" statement* "}"
947   | "for" "(" for_init ";" condition ";" for_update ")" "{" statement* "}"
948   | "if" "(" condition ")" "{" statement* "}" ("else" "{" statement* "}")?
949 data_type: "int" | "float" | "char" | "void"
950 NAME: /[a-zA-Z_][a-zA-Z_0-9]*/
951 parameters: parameter ("," parameter)*
952 parameter: data_type NAME
953 for_init: data_type NAME "=" expression | NAME "=" expression
954 for_update: NAME "=" expression
955 condition: expression relation_operator expression
956 relation_operator: ("<=" | "<" | "==" | "!=" | ">=" | ">")
957 expression: term (( "+" | "-") term)*
958 term: factor ("*" | "/") factor)*
959 factor: NAME | number | unary_term | NAME "(" arg_list? ")" | paren_expr
960 unary_term: "-" factor
961 paren_expr: "(" expression ")"
962 arg_list: expression ("," expression)*
963 number: /[0-9]+/
964 WS : /[ \t\n]+/
965 %ignore WS
966
967 B.10 RANGING EXPANSION RATIOS
968
969 Figure 7 presents the results with different expansion ratios, i.e.,  $e \in [1.0, 1.5]$ . We observe that
970 our method consistently adheres to the instructed schema, even under strict maximum token lim-
971 its. Moreover, when combined with BS or MCTS, our approach preserves the correctness of the
972 generated content across various expansion settings. These results experimentally validate the ef-
973
```

972 effectiveness of TruncProof in generating grammatically correct outputs, as well as its compatibility
 973 with various decoding strategies, which leads to improved semantic quality of the generated texts.
 974

975
 976 Figure 7: Accuracy of Gemma2-2B with respect to the expansion ratio $e \in [1.0, 1.5]$. Six bars
 977 drawn in each ratio are the results of SynCode with Greedy decoding, SynCode with Beam Search,
 978 SynCode with Monte Carlo Tree Search, ours with Greedy decoding, ours with Beam Search and
 979 ours with Monte Carlo Tree Search.
 980

981 B.11 ACCURACY OF JSON-MODE-EVAL WITH PROMPT ENGINEERING

982 To compare the shortening effect of prompt engineering with TruncProof’s capabilities, we add the
 983 prompt “*Only output JSON. Eliminate white spaces and keep the output as compact as possible.*”
 984 to the original prompt provided by JSON-Mode-Eval. Results are shown as *+prompt* in Table 3 and
 985 Table 4. This additional prompt improves the performance slightly in several settings. As a side
 986 effect, unnecessary text such as ‘`json is less frequent, leading to a certain degree of gains in
 987 the absence of grammar constraints (“No Constraint” rows). However, it was challenging to ensure
 988 LLMs adhere to the maximum token limit when relying solely on prompts.
 989

1000 Table 3: Accuracy of JSON-Mode-Eval under the token limit 400.
 1001

Model	Method	Decoding	Accuracy (%)		
			Syntax	Schema	Exact-match
Gemma2-2B	No constraint	Greedy	38	38	29
	No constraint <i>+prompt</i>	Greedy	79	78	59
	SynCode	Greedy	99	97	73
	SynCode <i>+prompt</i>	Greedy	100	98	72
	Ours	Greedy	100	95	72
	Ours <i>+prompt</i>	Greedy	100	99	72
Llama2-7B-Chat-HF	No constraint	Greedy	6	5	0
	No constraint <i>+prompt</i>	Greedy	6	6	2
	SynCode	Greedy	98	61	40
	SynCode <i>+prompt</i>	Greedy	95	73	49
	Ours	Greedy	100	63	40
	Ours <i>+prompt</i>	Greedy	100	76	48

Table 4: Accuracy of JSON-mode-eval with $e = 1.1$.

Model	Method	Decoding	Accuracy (%)		
			Syntax	Schema	Exact-match
	No constraint	Greedy	1	1	0
	No constraint <i>+prompt</i>	Greedy	8	8	4
	SynCode	Greedy	4	3	0
	SynCode <i>+prompt</i>	Greedy	6	6	1
	SynCode	BS	1	1	0
	SynCode <i>+prompt</i>	BS	2	2	0
Gemma2-2B	Ours	Greedy	100	62	21
	Ours <i>+prompt</i>	Greedy	100	68	12
	Ours	BS	100	85	37
	Ours <i>+prompt</i>	BS	100	84	45
	Ours	MCTS	100	86	58
	Ours <i>+prompt</i>	MCTS	100	90	65
	No constraint	Greedy	2	2	0
	No constraint <i>+prompt</i>	Greedy	2	2	0
	SynCode	Greedy	11	10	4
	SynCode <i>+prompt</i>	Greedy	16	14	5
	SynCode	BS	6	6	4
	SynCode <i>+prompt</i>	BS	13	12	5
Llama2-7B -Chat-HF	Ours	Greedy	100	51	2
	Ours <i>+prompt</i>	Greedy	100	57	2
	Ours	BS	100	67	29
	Ours <i>+prompt</i>	BS	100	68	32
	Ours	MCTS	100	70	41
	Ours <i>+prompt</i>	MCTS	100	70	41