
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRUNCPROOF: LL(1)-CONSTRAINED GENERATION IN
LARGE LANGUAGE MODELS WITH MAXIMUM TOKEN
LIMITATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The generation of machine-readable outputs using LLMs has attracted signifi-
cant attention. However, existing approaches cannot strictly enforce the maxi-
mum number of tokens to be generated. To address this limitation, we propose
TruncProof, a novel grammar-constrained generation method that enables LLMs
to produce grammatically valid outputs while adhering to a predefined token limit.
By leveraging the properties of LL(1) parsers, TruncProof efficiently estimates
the minimum number of tokens required to complete a grammatically valid out-
put at each decoding step. Experiments on the Text-to-JSON instruction task and
Code generation task demonstrate that TruncProof successfully generates syntac-
tically correct outputs even under strict token constraints. Furthermore, we show
that TruncProof can be effectively combined with advanced decoding strategies,
resulting in outputs that are not only grammatically valid but also semantically
accurate. The source code will be made public upon acceptance.

1 INTRODUCTION

Recently, there has been a growing body of research on solving complex tasks by combining the
code generation capabilities of large language models (LLMs) with external tools such as Python
interpreters (Wang et al., 2024) and neuro-symbolic systems (Gupta & Kembhavi, 2023). For these
applications to be reliable, LLMs must consistently produce well-formed, machine-readable outputs.
However, most LLM tokenizers are designed for natural language, making it difficult to ensure
grammatically valid outputs through fine-tuning or prompting alone. To address this robustness
issue, several grammar-constrained generation (GCG) methods have been proposed (Scholak et al.,
2021; Poesia et al., 2022; Beurer-Kellner et al., 2023; Lundberg et al., 2023; Willard & Louf, 2023;
Gerganov et al., 2023; Beurer-Kellner et al., 2024; Ugare et al., 2024; Dong et al., 2025). Recent
approaches typically rely on context-free grammar (CFG) parsers, which can express a wide range
of machine-readable formats and programming languages.

While these methods can enforce complex grammatical constraints on LLM outputs, they have a
critical limitation: they cannot strictly enforce a maximum number of generated tokens. In practical
applications, imposing a token limit is essential to prevent infinite generation, control memory usage,
and keep the output within the model’s context window. However, because current constraint-based
methods cannot dynamically estimate the number of tokens needed to complete a grammatically
valid output, they terminate generation abruptly once the token limit is reached, often resulting in
incomplete or grammatically invalid outputs. This issue is particularly problematic in agent-based
applications, where autonomous agents are required to quickly exchange structured text without
human intervention; such termination leads to parse errors that can subsequently disrupt downstream
processes.

To address this truncation issue, we propose a novel GCG guardrail that enables LLMs to gener-
ate grammatically correct outputs while adhering to a specified maximum number of tokens. This
requires estimating, at each decoding step, the minimum number of tokens needed to complete a
grammatically valid output. We address this challenge by leveraging the properties of LL(1) parsers
(Aho & Ullman, 1972), which accept a diverse subset of CFGs (Parr & Fisher, 2011). Unlike the
CFG parsers employed in existing methods (e.g., LR(*) parsers), LL(1) parsers can determine gram-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

matically permissible continuations given a partially generated sequence. This property allows us
to compute the shortest valid token sequence required to complete the output at each step. With this
information, we construct constraint masks to prevent the selection of tokens that would violate the
grammar or token limit. We formally describe our approach and provide theoretical guarantees (see
§ 4 and § B.5, B.6 and B.7 of our supplementary material).

Our proposed method, called TruncProof hereafter, has a form of logit modifier. Therefore, it is com-
patible with a wide range of tokenizers, language models, other logit modifiers and various decoding
strategies. We evaluate TruncProof on the Text-to-JSON instruction task (NousResearch, 2024) and
Code generation task. Experimental results show that TruncProof enables LLMs (e.g., Google, 2024,
Touvron et al., 2023) to produce grammatically valid JSON outputs, even under strict token budget
constraints, whereas existing methods almost fail to do so. Furthermore, by incorporating advanced
decoding strategies such as Beam Search and Monte Carlo Tree Search, TruncProof significantly
enhances the semantic robustness of the JSON and C outputs while preserving grammatical validity,
whereas existing methods fail to achieve this balance.

2 BACKGROUND

To enhance self-containment, we first introduce the foundation of Grammar-Constrained Generation
in §2.1. We then provide an overview of Context-Free Grammars in §2.2, followed by implementa-
tions of its parsers in §2.3. Throughout this paper, we denote the finite set of characters that can be
generated by an LLM as Σ, and the set of all finite-length strings over Σ as Σ∗ 1. The empty string
is denoted by ϵ, and the concatenation of two strings w and v is represented as (w.v).

2.1 GRAMMER-CONSTRAINED GENERATION (GCG)

Modern LLMs generate output tokens from a vocabulary V in an auto-regressive manner: At each
generation step i, the model takes the current partial output t<i = t1. · · · .ti−1 ∈ V∗ and predicts
the probability distribution of the i-th token P (ti | t<i). In Grammar-Constrained Generation
(GCG), constraint functions evaluate the grammatical validity of each candidate token ti at every
step. Specifically, given a string t<i, the constraint function uses a parser to check whether there
exists a string w that extends the candidate token into a grammatically valid sentence, and returns
the result in the form of a constraint mask m. Formally, the element of m for a next token candidate
t, mt, is defined as follows:

mt = true ⇒ ∃w ∈ V∗ s.t. (t<i.t.w) ∈ L(G), (1)

where G is a grammar and L(G) is the language defined as the set of strings accepted by G. To-
kens deemed grammatically invalid are re-assigned zero probability by element-wise multiplication
between the probability distribution and the constraint mask i.e., P (ti | t<i) ⊙m. Note that this
modification is applied prior to selecting the next token for generation. Consequently, from an algo-
rithmic perspective, any GCG method, including our proposed TruncProof, can be combined with
various decoding strategies. Details are provided in §4.2.

2.2 CONTEXT-FREE GRAMMAR (CFG)

Context-Free Grammar (CFG) has been used to define a variety of machine-readable formats. CFG
is characterized by a four-tuple (N ,ΣT , R, S): a finite set of the nonterminal symbols that does not
appear in the language N , a finite set of the terminal symbols as the alphabet in the language ΣT , a
finite relation which represents derivation rules that rewrite a single nonterminal to the terminal or
nonterminal symbols with 0 or more length R ⊂ N × (N ∪ ΣT)

∗, and the start symbol S ∈ N .
Using this expression, we can define the language L(G) as the set of the terminal sequences. Any
terminal sequence σ ∈ Σ∗

T in the language can be generated by repeated derivations (denoted as
→∗) from the start symbol. CFG parsers must construct a derivation process that generates the
string from the start symbol to determine whether the string belongs to the language. Notice that
these processes can be visualized as derivation trees, with the start symbol at the root and terminal
symbols at the leaves. An example of a CFG and its derivation process is provided in §B.4 of our
supplementary material.

1For example, when Σ = {a, b, c}, Σ∗ = {ϵ, a, b, c, aa, ab, ac, ba, · · · }.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Usually, to prevent grammars being too complicated, terminal symbols in CFG are defined as Reg-
ular Expression (Regex) instead of characters (Shinan, 2017) and the parsers preprocess the input
string to identify the equivalent terminal sequence. Regex can be parsed by using Deterministic
Finite Automaton (DFA), which characterized by a five-tuple (Q,Σ, δ, q0, F): a finite set of states
Q, a finite set of recognizable characters Σ, a transition function that determines the next state based
on a current state and a captured character δ : Q × Σ → Q, the initial state q0 ∈ Q, and a set of
accepting states F ⊆ Q. DFA starts from the initial state and accepts the input if and only if its state
transitions to an accepting state by processing each character one by one.

2.3 IMPLEMENTATIONS OF CFG PARSERS

There are two primary approaches to implement CFG parsers (Aho & Ullman, 1972): The bottom-
up approach, such as LR(*) parsers, which identifies the derivation tree from the bottom (i.e.,
from the leaf nodes), and the top-down approach, such as LL(*) parsers, which constructs the
derivation tree from its top (i.e., from the root). Their distinction is reflected in the structure of the
partially constructed derivation tree when they process incomplete input, as illustrated in Figure 1.
Contrary to bottom-up parsers, top-down parsers can easily enumerate possible continuations of
the current input by applying arbitrary derivations from the unexpanded nonterminals. To leverage
this advantage and ensure that the content of the derivation tree is deterministically fixed at each
generation step, our TruncProof employs LL(1), a top-down parser that permits only single-terminal
lookahead without allowing backtracking (reconstruction of the derivation tree). Note that the LL(1)
grammars (i.e., grammars supported by LL(1) parsers) form a strict subset of CFGs. Although LL(1)
does not support all Context-Free languages, it still supports sufficiently expressive grammars with
unlimited enumeration and deeply nested structures such as JSON, which is the de-facto standard
machine-readable format in practical systems (OpenAI; Anthropic; Google). A formal definition of
LL(1) grammar based on Lewis & Stearns (1968) is described in Appendix B.1.

a a

a a ?
(possible continuation)

Input Buffer

(start symbol)
S

b

b

E
S

possible
derivation
S →* aS?

(a) bottom-up parser

a
a

a a ?
(possible continuation)

Input Buffer

(start symbol)
S

E

S

possible
derivation
E →* ?

E

b

(b) top-down parser

Figure 1: Examples of partially constructed derivation trees generated by two different parsers.

3 RELATED WORKS

Several GCG methods have been proposed in recent years, most of which can be classified based
on the type of grammar they support. For example, PICARD (Scholak et al., 2021) is designed
for SQL, where it generates multiple candidates simultaneously and checks the parsability of each.
LMQL (Beurer-Kellner et al., 2023) allows user-defined grammars based on Regex through a cus-
tom specification language. Outlines (Willard & Louf, 2023) improves the efficiency of Regex-based
generation by precomputing valid token sets for each DFA state. Although Outlines also supports
CFGs, it is usually slow since it repeats sampling and validation of candidates until a grammatically
valid token is found. Recently, research has widely been conducted to further optimize precompu-
tation or runtime processing within the scope of CFGs: DOMINO (Beurer-Kellner et al., 2024) and
SynCode (Ugare et al., 2024) integrate optimized Regex validation with the CFG parsers that enu-
merate acceptable terminal sequences. XGrammar (Dong et al., 2025) introduces a variant of CFG
parser that operates on characters rather than terminals, thereby reducing the overhead associated

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with terminal processing. LLGuidance (Moskal et al., 2025) adopts trie trees to handle LLM tokens
with low-level optimization to reduce the overhead in runtime. GreatGramma (Park et al., 2025)
aggregates all terminal definitions and the LLM vocabulary into a single Finit State Transducer that
processes input token by token, which largely reduces the preprocessing cost.

While the above methods can impose sufficiently complex grammatical constraints on LLMs, they
share a common limitation: they cannot ensure that generation halts within a specified number of
tokens. IterGen (Ugare et al., 2025) can address this problem by repeatedly regenerating outputs
until a desired result is obtained. However, it does not guarantee that a grammatically correct output
will be found within a reasonable number of iterations.

We also note that the literature includes methods that extend beyond CFG-based constraints.
Mündler et al. (2025) and Li et al. (2025) propose a code generation framework that imposes richer
constraints than CFGs, aiming to avoid any errors during compilation or execution. While this
direction is promising, these methods abandon constraint mask generation and instead rely on inef-
ficient candidate sampling, similar to Outlines, which is especially disadvantageous when combined
with advanced decoding strategies. Geng et al. (2023) introduces token-level grammars that directly
provide next valid tokens and supports more flexible grammars than CFGs. However, this token-
level approach potentially results in worse perplexity, since it prohibits to generate the same string
consisting of natural token combinations.

4 TRUNCPROOF

Let a grammar G be specified in the form of an LL(1) grammar (N ,ΣT , R, S). We assume that each
terminal symbol in ΣT is defined by a Regex; For each terminal, there exists a corresponding DFA
Ma := (Qa,Σ, δa, qa0, Fa) that accepts the strings defined by the Regex. Given a grammatically
valid partial output t<i, our TruncProof serves as a constraint function that returns the binary mask
m, where each entry mt represents the grammatical validity of a token t ∈ V within the pre-defined
token limit Nmax. By extending Equation 1, mt is formally defined as follows:

mt = true ⇒ ∃w ∈ V∗ s.t. ((t<i.t.w) ∈ L(G) and |t<i.t.w| ≤ Nmax) . (2)

This mask can be used to filter out tokens that would result in either (1) a grammatically invalid
continuation or (2) an output exceeding Nmax.

In § 4, we describe the details of TruncProof, which returns the mask m. Note that this mask ensures
grammatical validity but does not fully account for semantic correctness. To produce outputs that are
both grammatically valid and semantically coherent, we extend TruncProof with advanced decoding
strategies, as detailed in § 4.2.

4.1 DETAILS OF TRUNCPROOF

Decoding Strategy
§4.2

Lexer
(DFAs)

Parser[["key
LLM tokens

t<i

terminals τ
TruncProof

Cost Validator
Eq. 5

accept sequences 𝒜
,STRING

INT ,

]

vocab mask m

logits P(ti | t<i)

LLM

masked logits

"key

reminder r STRING

multiply

Precomputed
Ca+b[q], D[A], δ*a+b(q,t)

§4.1.2next token
ti

",
word

":

",

"

word

":

",

"

word

":

",

"

1
1
0
1

Figure 2: Overview of TruncProof. For i-th generation step, Lexer parses the intermediate LLM
tokens generated by the LLM into the terminals τ and the reminder r, Parser collects all possible
terminal sequences (called accept sequences A) whose length is at most two, and Cost Validator
constructs the vocabulary mask m by validating the future cost for each candidate token based on
the precomputed cache.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

"

*

"

,

state after consuming
"key minimum tokens to be

accepted as STRING,
(Eq. 3)

word

(a) Counting future tokens that are accepted by the
DFA for STRING followed by COMMA.

<start>
<array>

dangling
symbols

<value> <value>]

[STRING ,

minimum tokens to
be accepted as]

(Eq. 3)

minimum tokens to be
derived to <value>

(Eq. 4)

(b) Counting future tokens to finish output after ac-
cepting [“keyword”,

Figure 3: The examples of counting the future tokens in Cost Validator illustrated in Figure 2.

Figure 2 illustrates the overall structure of TruncProof. In runtime, the following steps are executed
iteratively within the generation loop: (i) Given the intermediate output generated by the LLM, Lexer
that handles Regex and Parser that handles LL(1) grammar incrementally parse the newly generated
token based on the terminal sequence obtained in the previous iteration. (ii) Cost Validator estimates
the number of tokens needed in the future assuming a next token (as illustrated in Figure 3), and
verifies whether the generated output remains grammatically valid under the specified token budget.

To efficiently operate Cost Validator, we precompute the estimation of the shortest token lengths
for realizing any terminal and nonterminal defined by the given LL(1) grammar. In the following
sections we describe the behavior in the runtime phase and the things to be prepared in the precom-
putation phase.

4.1.1 RUNTIME PHASE

As shown in Figure 2, we first divide the intermediate input t<i into the terminal sequence τ ∈ Σ∗
T

and the reminder2 r ∈ Σ∗ by using the DFAs, then partially parse τ to identify the derivation tree
by using the LL(1) parser. This process can be executed incrementally by using the results in the
previous iteration. Next, we enumerate the terminal sequences with a length of at most two i.e.,
a, b ∈ ΣT , that can be given to the current parser in this generation step. We hereafter call the set
of the sequences as accept sequence A ⊆ ΣT ∪ Σ2

T . The reason why we take two-length terminals
in consideration is because this extension allows us to better exploit the generative capabilities of
the LLM3 while the relaxed constraint still ensures the condition defined in Equation 2. After that,
we calculate the two types of cost to complete the generation: the number of tokens to complete the
reminder as terminals (a, b) (as illustrated in Figure 3a), and the further cost dcost(τ.a.b) to complete
the whole string after a and b are accepted by the parser (as illustrated in Figure 3b). The former
cost can be estimated as the minimum number of tokens required to transition from each state q in
the corresponding DFA Ma+b to an accepting state, which is formulated as follows:

Ca+b[q] :=

{
minw∈V∗ |w| subject to δ∗a+b(q, w) ∈ Fa+b (if ∃w s.t. δ∗a+b(q, w) ∈ Fa+b)

∞ (otherwise), (3)

where δ∗a is an iterated transition function i.e., δ∗a(q, x1. · · · .xn) = δa(· · · δa(q, x1) · · · , xn). If
there is no token sequence w which can reach to any accepting state from q, Ca+b[q] is set to
infinity. This ensures that grammatically invalid tokens are automatically excluded due to their
infinity cost. The latter cost dcost(τ.a.b) is computed as the sum of the minimum number of tokens to
consume the terminals and nonterminals that remains unresolved by the LL(1) parser (the dangling
symbols illustrated in Figure 3b). To compute it, we need the approximate shortest token length

2User-defined terminal symbols may not align exactly with LLM tokens. In such cases, some suffixes of the
output remain unprocessed as reminders.

3For instance, in the case of JSON, by precomputing the constraint mask for the concatenation of a left
brace and a string, we can treat a token such as {" as a valid starting sequence of a JSON object. This allows
the model to generate more natural and compact outputs while still adhering to the grammatical constraints.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

D[A] derivable from each nonterminal A ∈ N , by the following equation:

D[A] := min
σ∈Σ∗

T

|σ|∑
i=1

Cσi [qσi0] subject to A→∗ σ, (4)

where σi denotes the i-th terminal symbol in the sequence σ. In summary, the entry of the constraint
mask m(a,b) for a token t, i.e., m(a,b)

t , is computed as follows:

m
(a,b)
t := true iff.

i + Ca+b[δ
∗
a+b(qa+b0, r.t)] + dcost(τ.a.b) < Nmax,

(consumed (future tokens (future tokens
tokens) that DFA accepts) to finish output)

(5)

where i is the number of generated tokens. Once the simulation of the parser and the calculation
of the future cost are performed, the constraint mask m can be obtained by taking the element-
wise union of the masks m(a,b) for each (a, b) ∈ A. Since each valid entry corresponds an actual
sequence of tokens, it guarantees the result that adheres to the grammar and token limit. For the
proof of this guarantee, refer to §B.7 in our supplementary material.

Time Complexity Analysis. At each iteration of the generation loop, the computational bottle-
neck is the simulation of the LL(1) parser to calculate dcost(τ.a.b) for each (a, b) ∈ A. It takes
O(|ΣT |2(TG + |Γ|)), where TG is the cost to feed one terminal to the LL(1) parser and |Γ| is the
number of dangling symbols in the derivation tree, which tends to be proportional to the nesting
depth of the output code. In practice, |ΣT | is not so large; JSON has about 15 terminals and Ugare
et al. (2024) reports that Python has 94. Calculation of δa+b(qa+b0, r.t) can be accelerated by pre-
computing the mapping δ∗a+b(q, t) for each terminal, DFA state, and LLM token. At runtime, we
calculate the state q′ = δa+b(qa+b0, r) and lookup the precomputed state δ∗a+b(q

′, t) for each termi-
nal sequence (a, b) and token t. This lookup operation can be parallelized into a vector computation
across the entire V . Mask generation is processed by at most |ΣT |2 times of element-wise Boolean
and arithmetic operations on the vector of length |V|, which also can be parallelized. Notice that
this cost is usually smaller than the brute force method that searches the shortest terminal sequence
by simulating the parser; The cost is O(|ΣT |DTG), where D is the minimum number of terminals
in continuation, and D tends to be proportional to the nesting depth of generated sentences.

4.1.2 PRECOMPUTATION PHASE

In this phase, we precompute the necessary values required for efficiently calculating Equation 5.
First we calculate Ca[q] provided in Equation 3 for each terminal a ∈ ΣT and Ca+b[q] for each two-
length terminals (a, b). To compute them, we use Dijkstra’s algorithm, treating DFA states as nodes,
transitions as edges, and token lengths as edge costs. The pseudo-code is provided in Algorithm 1
of Appendix B.5. Next, we estimate D[A] provided in Equation 4. The computation of D[A] is also
based on Dijkstra’s algorithm, where possible derivation states are treated as nodes and derivation
steps as edges. The corresponding pseudo-code is Algorithm 2 in Appendix B.5. Although the
underlying search graph may be infinitely large in theory, our algorithm is guaranteed to terminate
whenever the nonterminal A can derive at least one terminal sequence. This is ensured by the
property of LL(1) grammars, which prohibits infinitely recursive derivations without increasing the
number of leading terminals. We present the formal proof of this termination in Appendix B.6.
Finally, we precompute the mapping δ∗a+b(q, t) for each terminal, DFA state, and LLM token. This
is used to efficiently retrieve the DFA state in consuming a reminder and a LLM token illustrated in
Figure 3a.

Space Complexity Analysis. The amount of memory for precomputation is the sum of the mem-
ory O(|ΣT |2|Q|) for Ca[q], O(|N |) for D[A], and O(|ΣT |2|V||Q|) for precomputing mapping
δ∗a+b(q, t), where |Q| is the average size of the DFA states. Note that the mapping δ∗a+b(q, t) is
sparse because most tokens lead DFAs to a dead state.

4.2 COMBINING TRUNCPROOF WITH DECODING STRATEGIES

TruncProof can be seamlessly integrated with various decoding strategies. In this work we consider
the following three decoding methods: (1) Greedy decoding (Greedy) is the default strategy in
most text-generation libraries. It takes the token with the best likelihood P (t | t<i) in each iteration

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

of the text generation. (2) Beam Search (BS) maintains b best candidates in each iteration and
re-selects the b best sequences among the possible continuations. Scholak et al. (2021) adopts BS
with their constraint method to improve the accuracy of the generation. Although BS takes diverse
candidates into account and obtains better contents than the greedy strategy, it remains difficult to
completely avoid future token shortages. (3) Monte Carlo Tree Search (MCTS) is known to be
effective for this type of issue where the selections in beginning have a large effect but their precise
value is evaluated in the ending phase. MCTS originally aims to find the best move in two-person
games (Coulom (2006)), but there are some studies for LLM-based text generation (Leblond et al.
(2021); Chaffin et al. (2022); Loula et al. (2025)). In each generation step i, MCTS constructs the
search tree whose nodes are possible continuations t<i+k and edges are the selectable next tokens.
MCTS repeats the following stages to grow the search tree: Selection, Expansion, Simulation, and
Backup. In Selection, we traverse the tree up to a leaf based on the following evaluation function
introduced by Silver et al. (2017) that utilizes the likelihood of sequences as a prior:

F (t<i, t) := Q(t<i, t) + cpuctP
′
τ (t | t<i)

√∑
u N(t<i, u)

1 +N(t<i, t)
, (6)

where Q(t<i, t) is the maximum value observed among the continuations of t<i.t, P ′
τ is the likeli-

hood modified by the constraint mask and normalized by softmax with temperature τ , N(t<i, t) is
the number of investigations beyond t<i.t, and cpuct is the hyperparameter that balances exploration
and exploitation. In Expansion, we expand the tree to investigate more deeply beyond the leaf which
we arrived at. In Simulation, we apply greedy decoding from the leaf until the end of generation
and evaluate the value of the result text v(t<n) as the geometric mean of the unmodified likelihood
provided directly by the LLM, which is known as the inverse of the perplexity. In Backup, we
tell the evaluated value v to the ancestors and update their observed values Q(t<i, t). After some
repetitions, we decide the next token t with highest Q(t<i, t).

5 EXPERIMENTS AND DISCUSSION

We conduct the experiments on LL(1) grammars, JSON and a subset of C. Note that, in our experi-
ments we do not consider Python, Go and SQL, which have been evaluated by Ugare et al. (2024),
because they cannot be fully expressed using LL(1) grammars.

5.1 EXPERIMENTAL SETTING

Quantitative Analysis on Text-to-JSON Instruction. To evaluate TruncProof, we conduct exper-
iments on the JSON-Mode-Eval dataset (NousResearch, 2024), which comprises 100 text-to-JSON
tasks. In this instruction-following task, the goal is to generate syntactically and semantically valid
JSON outputs given a natural language prompt (cf, Appendix B.2). In Ugare et al. (2024), the max-
imum token limit is fixed at 400, which is approximately six times the average length of the ground
truth. To assess performance under stricter constraints, we define a more challenging configuration,
where the maximum token length is dynamically set to ⌊LGT

i × e⌋ for each instance i, with LGT
i

denoting the token length of the ground truth and e an expansion ratio. Unless otherwise specified,
we set e = 1.1 when comparing TruncProof with other methods. For completeness, we conduct
experiments under different token-limit settings, including the configuration used by Ugare et al.
(2024), as well as various values of e. We also demonstrate the superiority of TruncProof over
prompt engineering. The corresponding results are presented in Appendix B.8, B.10 and B.11 of the
supplementary material, respectively.

As evaluation metrics, we use the following: (1) the percentage of outputs that are grammatically
correct, denoted as Syntax; (2) the percentage of outputs that adhere to the schema specified in the
prompt, referred to as Schema; and (3) the percentage of outputs that are parsed into JSON objects
identical to the ground truth, termed Exact-match. The last Exact-match metric is newly introduced
in this work to specifically assess the semantic validity of the generated JSON outputs.

Notice that the JSON grammar used in Ugare et al. (2024) does not fully comply with the official
JSON standard, RFC 82594. To ensure a practical and standards-compliant evaluation, we apply

4For example, numbers with a trailing decimal point such as 100. are permitted by the grammar in Ugare
et al. (2024), but are considered invalid under RFC 8259.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

an RFC 8259-compliant JSON grammar (shown in Appendix B.3) to all constraint methods when
assessing their performance.

Qualitative Analysis on Code Generation. In the experiments using JSON-Mode-Eval, we mea-
sure accuracy by checking whether keys and values in generated JSONs match exactly. Therefore,
shorter JSON that maintains semantic meaning would be the one whose whitespace is reduced. To
demonstrate how TruncProof with advanced decoding strategies can significantly alter content while
preserving the semantics, we define the Code generation task to generate C functions that sums up
1 to N using a limited C grammar adopted by Gerganov et al. (2023) with strict token limits. Under
this setting, we observe the results of TruncProof and a prior work SynCode (Ugare et al., 2024).

Environment. We used 1x H200 GPU to produce all the results. Beam Search (BS) is performed
with 10 beams while Monte Carlo Tree Search (MCTS) is performed with the following hyperpa-
rameters: cpuct = 5, τ = 2, 20 trials for each generation step. We precompute the shortest token
lengths for all terminals and nonterminals described in §4 before the experiments. It takes about 1
minute for the JSON grammar, and 5 minutes for the subset of C grammar.

Table 1: Accuracy and generation speed of JSON-mode-eval with e = 1.1. Time (ms) denotes the
time of generating one token in milliseconds, and the value in parenthesis denotes the overhead of
constrained generation, which is calculated by comparing with “No constraint”. †XGrammar uses
its builtin JSON grammar because its grammar format (EBNF) is incompatible with others (Lark).

Accuracy (%)

Model Method Decoding Syntax Schema Exact-match Time (ms)

No constraint Greedy 1 1 0 21.8

Outlines Greedy 36 33 22 458.7 (+436.9)
(Willard & Louf, 2023) BS 4 4 2 4347.8 (+4326.0)

SynCode Greedy 4 3 0 23.5 (+1.7)
(Ugare et al., 2024) BS 1 1 0 54.0 (+32.2)

MCTS 4 4 0 438.6 (+416.8)

XGrammar † Greedy 5 5 3 22.1 (+0.3)
(Dong et al., 2025) BS 1 1 0 34.3 (+12.5)

MCTS 5 5 2 293.3 (+271.5)

Ours Greedy 100 62 21 25.7 (+3.9)
BS 100 85 37 60.8 (+39.0)

Gemma2-2B MCTS 100 86 58 518.1 (+496.3)

No constraint Greedy 2 2 0 17.6

Outlines Greedy 18 13 4 72.2 (+54.6)
(Willard & Louf, 2023) BS 10 8 4 598.8 (+581.2)

SynCode Greedy 11 10 4 18.4 (+0.8)
(Ugare et al., 2024) BS 6 6 4 58.7 (+41.1)

MCTS 8 8 4 183.5 (+165.9)

XGrammar † Greedy 11 9 2 18.3 (+0.7)
(Dong et al., 2025) BS 5 3 2 32.5 (+14.9)

MCTS 9 8 3 175.1 (+157.5)

Ours Greedy 100 51 2 19.0 (+1.4)
BS 100 67 29 37.0 (+19.4)

Llama2-7B-Chat-HF MCTS 100 70 41 209.2 (+191.6)

5.2 RESULTS

Table 1 presents the results of five approaches: the baseline without any GCG method (denoted as
No constraint), Outlines (Willard & Louf, 2023), SynCode (Ugare et al., 2024), XGrammar (Dong
et al., 2025), and our proposed method, TruncProof. For the No constraint baseline, we adopt Greedy
decoding. All constraint methods except Outlines are evaluated with Greedy, BS, and MCTS. Note
that BS and MCTS are implemented by ourselves, as they are not provided by the original authors.
Following prior work (Ugare et al., 2024), we use Gemma2-2B (Google, 2024) and Llama2-7B-
Chat-HF (Touvron et al., 2023) as the underlying language models.

Syntax Robustness. As expected, under this challenging setting, most outputs generated by the
baseline methods are grammatically invalid, with their Syntax accuracies ranging from only 1% to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

36%. This failure occurs mainly because LLMs include excessive whitespace in JSON for readabil-
ity and thereby waste LLM tokens. In contrast, TruncProof consistently produces grammatically
valid outputs across all decoding strategies and backend LLMs, achieving perfect Syntax accuracy
i.e., 100%. These results clearly demonstrate the effectiveness of our approach in maintaining gram-
matical correctness under strict token constraints.

Semantics Robustness. Table 1 also shows that when using simple decoding strategies such as
Greedy, the Exact-match accuracies of TruncProof remain relatively low (2%–21%) although about
half (51%-62%) of the cases are faithful to the schema. We emphasize that this outcome is expected;
TruncProof only cares about the grammar and the number of tokens, but it does not fully account for
the semantic correctness of its outputs. Also as shown in the same table, these scores improve sig-
nificantly when more advanced decoding strategies are employed. In particular, using BS raises the
Exact-match accuracies to 29%–37%, and further improvements are observed with MCTS, reaching
41%–58%, all while preserving perfect grammatical correctness. These results highlight the com-
patibility of TruncProof with various decoding strategies and its ability to enhance semantic quality
without compromising syntactic validity.

Also note that such compatibility with various decoding strategies is not necessarily supported by
existing methods; As shown in Table 1, prior works with BS performs worse than Greedy. This may
be attributed to the presence of many high-likelihood candidates that are grammatically invalid. To
validate this hypothesis, in Figure 4, we visualize the perplexity of outputs under token shortage
(labeled “Reached limit”) for both SynCode (Ugare et al., 2024) and our TruncProof. As shown,
when generation is constrained by SynCode, the perplexity of truncated outputs is worse than that
of exact-match outputs (i.e., successful generations), yet still better than the perplexity of the ground
truth (see Figure 4a). This indicates that simply optimizing for likelihood under SynCode may lead
to grammatically incorrect outputs due to local optima. In contrast, when our method reaches the
token limit and generates unnatural outputs, the perplexity becomes worse than that of the ground
truth, suggesting that TruncProof avoids such invalid local optima by preserving grammatical cor-
rectness throughout generation (see Figure 4b).

The result of the Code generation is demonstrated in Figure 5. We find that TruncProof with MCTS
generates the simpler algorithm whereas SynCode (Ugare et al., 2024) with MCTS fails to find
a better solution than Greedy. Notice that the perplexities exhibit the same trend as in Figure 4;
Truncated codes found by SynCode are judged more “natural” by LLMs than the shorter, correct
code produced by TruncProof. These findings also indicate that prior methods do not consistently
benefit from advanced decoding strategies, whereas TruncProof does.

(a) SynCode (Ugare et al., 2024) (b) TruncProof (Ours)

Figure 4: The perplexities provided by Gemma2-2B on JSON-Mode-Eval. Exact-matched indicates
the output whose keys and values are correct under the relaxed token limit. Reached limit indicates
the output which is truncated in (a) or incorrect in (b) due to the strict token limit. Refer to §5.2 for
more details.

6 LIMITATIONS

As demonstrated in § 5.2, TruncProof is capable of generating both syntactically and semantically
valid outputs under strict token budget constraints, particularly when paired with advanced decoding
strategies. However, these strategies can slow down the generation process (e.g., BS is 2.0-2.4x

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

TruncProof (PPL 70.0) Incorrect

int sumToN(int N) {
 int sum = 0;
 for (int i = 1; i <= N; i = i +1) { } }

SynCode (PPL 50.5) Syntax error

int sumToN(int N) {
 int sum = 0;
 for (int i = 1; i <= N; i = i + 1)

TruncProof + MCTS (PPL 63.75) Correct

int sum_to_n(int n) { return n * (n + 1) / 2; }

SynCode + MCTS (PPL 50.5) Syntax error

int sumToN(int N) {
 int sum = 0;
 for (int i = 1; i <= N; i = i + 1)

No Constraint (PPL 17.125)

```c
int sum_to_n(int n) {
  int sum = 0;
  for (int i = 1; i <= n; i++) {
    sum += i;
  }
  return sum;
}
```

Figure 5: Responses of Gemma2-2B and their perplexity (PPL) for the prompt “Write a C function
that sums up 1 to N. Only output the code without codeblock quotations.” Without grammar con-
straint, the response has 58 tokens. When we apply SynCode or our TruncProof, we set the token
limit to 40. The applied grammar is described in Appendix B.9.

slower and MCTS is 11.0-20.2x slower than Greedy). Although successful integration with the
strategies is unattainable by other methods, the associated overheads may pose a practical limitation,
especially in latency-critical applications.

Another potential limitation of TruncProof lies in its reliance on LL(1) parsing, which cannot sup-
port all CFGs. For example, in Python 3.9 and later versions (Guido van Rossum (2020)), the
official parser transitioned away from LL(1). Note that such grammars can be approximated by
removing certain features or imposing additional syntactic restrictions, though this often requires
further workarounds and customized implementations.

Furthermore, although this issue is common across GCG methods, enforcing grammatical con-
straints often distorts the probability distribution produced by the LLM, making it difficult to sample
text in a manner that faithfully reflects the model’s original conditional probabilities under grammat-
ical correctness. To address this, it is important to explore compatibility with methods that approxi-
mate the conditional distribution of LLMs under constraints, like Park et al. (2024).

7 CONCLUSION

In this paper, we proposed TruncProof, a novel LL(1)-constrained generation method designed to
enable LLMs to produce grammatically valid outputs while adhering to a maximum token limit.
Experiments on the Text-to-JSON instruction task (NousResearch, 2024) and Code generation task
demonstrated that TruncProof can successfully generate syntactically correct outputs even under
strict token constraints. We also show that TruncProof can be effectively combined with advanced
decoding strategies, resulting in outputs that are not only grammatically valid but also semantically
accurate. In future work, we plan to investigate methods to accelerate generation, particularly when
using complex strategies. We also aim to extend our work to support general CFGs for broader
applicability.

REFERENCES

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling. Prentice-
Hall, Inc., USA, 1972. ISBN 0139145567.

Anthropic. Increase output consistency (JSON mode). https://platform.claude.com/docs/en/test-
and-evaluate/strengthen-guardrails/increase-consistency (accessed December 2025).

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models. volume 7, pp. 1946–1969. Association for Computing
Machinery (ACM), June 2023. doi: 10.1145/3591300. URL http://dx.doi.org/10.
1145/3591300.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs The Right Way: Fast, Non-
Invasive Constrained Generation. 2024. https://arxiv.org/abs/2403.06988.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. PPL-MCTS: Constrained Textual Generation
Through Discriminator-Guided MCTS Decoding. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language

10

http://dx.doi.org/10.1145/3591300
http://dx.doi.org/10.1145/3591300

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Technologies, pp. 2953–2967, Seattle, United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.215. URL https://aclanthology.org/
2022.naacl-main.215/.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Com-
puters and Games, 2006. URL https://api.semanticscholar.org/CorpusID:
16724115.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ziyi Xu, Yilong Zhao, Ruihang Lai, and Tianqi Chen.
XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models. In
Eighth Conference on Machine Learning and Systems, 2025. URL https://openreview.
net/forum?id=rjQfX0YgDl.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-Constrained Decoding
for Structured NLP Tasks without Finetuning. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
KkHY1WGDII.

Georgi Gerganov, Diego Devesa, et al. ggml-org/llama.cpp: LLM inference in C/C++., 2023.
https://github.com/ggml-org/llama.cpp.

Google. Structured Outputs. https://ai.google.dev/gemini-api/docs/structured-output (accessed De-
cember 2025).

Google. Gemma, 2024. https://www.kaggle.com/m/3301.

Lysandros Nikolaou Guido van Rossum, Pablo Galindo. PEP 617 - New PEG parser for CPython,
2020. https://peps.python.org/pep-0617/.

Tanmay Gupta and Aniruddha Kembhavi. Visual Programming: Compositional Visual Reasoning
Without Training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14953–14962, June 2023.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-Baptiste, Ioan-
nis Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine Translation Decoding beyond
Beam Search. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 8410–8434, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.662. URL
https://aclanthology.org/2021.emnlp-main.662/.

P. M. Lewis and R. E. Stearns. Syntax-Directed Transduction. J. ACM, 15(3):465–488, July
1968. ISSN 0004-5411. doi: 10.1145/321466.321477. URL https://doi.org/10.1145/
321466.321477.

Lingxiao Li, salar rahili, and Yiwei Zhao. Correctness-Guaranteed Code Generation via Con-
strained Decoding. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=CYiXNIQegF.

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu,
Yahya Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexan-
der K. Lew, Tim Vieira, and Timothy J. O’Donnell. Syntactic and Semantic Control of Large Lan-
guage Models via Sequential Monte Carlo. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=xoXn62FzD0.

Scott Lundberg, Marco Tulio Correia Ribeiro, et al. guidance-ai/guidance: A Guidance Language
for Controlling Large Language Models., 2023. https://github.com/guidance-ai/guidance.

Michał Moskal, Harsha Nori, Hudson Cooper, and Loc Huynh. guidance-ai/llguidance., 2025.
https://github.com/guidance-ai/llguidance.

Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-Aware
Constraining for Code LLMs. In ICLR 2025 Third Workshop on Deep Learning for Code, 2025.
URL https://openreview.net/forum?id=DNAapYMXkc.

11

https://aclanthology.org/2022.naacl-main.215/
https://aclanthology.org/2022.naacl-main.215/
https://api.semanticscholar.org/CorpusID:16724115
https://api.semanticscholar.org/CorpusID:16724115
https://openreview.net/forum?id=rjQfX0YgDl
https://openreview.net/forum?id=rjQfX0YgDl
https://openreview.net/forum?id=KkHY1WGDII
https://openreview.net/forum?id=KkHY1WGDII
https://aclanthology.org/2021.emnlp-main.662/
https://doi.org/10.1145/321466.321477
https://doi.org/10.1145/321466.321477
https://openreview.net/forum?id=CYiXNIQegF
https://openreview.net/forum?id=CYiXNIQegF
https://openreview.net/forum?id=xoXn62FzD0
https://openreview.net/forum?id=DNAapYMXkc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

NousResearch. JSON-Mode-Eval, 2024. https://huggingface.co/datasets/NousResearch/json-mode-
eval.

OpenAI. Structured model outputs. https://platform.openai.com/docs/guides/structured-
outputs/json-mode (accessed December 2025).

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D' An-
toni. Grammar-Aligned Decoding. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 24547–24568. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf.

Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained
decoding. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=L6CYAzpO1k.

Terence Parr and Kathleen Fisher. LL(*): The Foundation of the ANTLR Parser Generator. SIG-
PLAN Not., 46(6):425–436, June 2011. doi: 10.1145/1993316.1993548.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models. In In-
ternational Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=KmtVD97J43e.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing Incrementally for
Constrained Auto-Regressive Decoding from Language Models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 9895–9901, November
2021. doi: 10.18653/v1/2021.emnlp-main.779.

Erez Shinan. Lark - A Parsing Toolkit for Python, 2017. https://github.com/lark-parser/lark.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550:354–359, 2017. URL https://api.
semanticscholar.org/CorpusID:205261034.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
2023. https://arxiv.org/abs/2307.09288.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
LLM Generation with Grammar Augmentation, 2024. https://arxiv.org/abs/2403.01632.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. IterGen:
Iterative Semantic-aware Structured LLM Generation with Backtracking. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ac93gRzxxV.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. MathCoder: Seamless Code Integration in LLMs for
Enhanced Mathematical Reasoning. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=z8TW0ttBPp.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://api.semanticscholar.org/CorpusID:205261034
https://api.semanticscholar.org/CorpusID:205261034
https://openreview.net/forum?id=ac93gRzxxV
https://openreview.net/forum?id=ac93gRzxxV
https://openreview.net/forum?id=z8TW0ttBPp

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. 2023.
https://arxiv.org/abs/2307.09702.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS IN THIS PAPER

We used LLMs only to aid or polish writing.

B SUPPLEMENTARY MATERIAL

B.1 DEFINITION OF LL(1) GRAMMAR

Definition B.1 (LL(1) grammar). A context-free grammar (N ,ΣT , R, S) is LL(1) grammar if, for
all terminal sequences w1, w2, w

′
2, w3, w

′
3 ∈ Σ⋆

T , a nonterminal A ∈ N , and derivation rules
p, p′ ∈ R, 

S →⋆ w1Aw3

S →⋆ w1Aw′
3

A→⋆ w2 (The rule p is applied first)

A→⋆ w′
2 (The rule p′ is applied first)

(w2.w3) and (w′
2.w

′
3) have the same prefix

(7)

implies p = p′.

B.2 SAMPLE PROMPT FOR JSON-MODE-EVAL

<bos><start_of_turn>user
You are a helpful assistant that answers in JSON. Here’s the json schema you must adhere to:
<schema>
{’$id’: ’https://example.com/entry-schema’, ’$schema’: ’https://json-schema.org/draft/2020-12/

schema’, ’description’: ’JSON Schema for an fstab entry’, ’type’: ’object’, ’required’:
[’storage’, ’fstype’, ’options’, ’readonly’], ’properties’: {’storage’: {’type’: ’string
’, ’pattern’: ’ˆ/dev/[ˆ/]+(/[ˆ/]+)*$’}, ’fstype’: {’type’: ’string’, ’enum’: [’ext3’, ’
ext4’, ’btrfs’]}, ’options’: {’type’: ’string’, ’pattern’: ’ˆ[a-zA-Z0-9,_-]+$’}, ’
readonly’: {’type’: ’boolean’}}}

</schema>
I need to define a JSON schema for a file system entry that includes specific constraints for

the properties ’fstype’, ’options’, and ’readonly’. The ’fstype’ should be limited to ’
ext3’, ’ext4’, or ’btrfs’. The ’options’ should be a string that matches the pattern of
comma-separated values, and ’readonly’ should be a boolean indicating if the entry is
read-only. Please provide me with a valid JSON object that adheres to these constraints.
The file system entry should be for the storage ’/dev/sda1’, with ’fstype’ as ’ext4’, ’
options’ set to ’rw,noatime’, and ’readonly’ as false.

Only output JSON.<end_of_turn>

B.3 JSON GRAMMAR

?start: value

_BEGIN_ARR: /[\t\f\r\n]*\[[\t\f\r\n]*/
_BEGIN_OBJ: /[\t\f\r\n]*\{[\t\f\r\n]*/
_END_ARR: /[\t\f\r\n]*\][\t\f\r\n]*/
_END_OBJ: /[\t\f\r\n]*\}[\t\f\r\n]*/
_NAME_SEP: /[\t\f\r\n]*:[\t\f\r\n]*/
_VALUE_SEP: /[\t\f\r\n]*,[\t\f\r\n]*/

?value: object
| array
| STRING
| number
| "true" -> true
| "false" -> false
| "null" -> null

object: _BEGIN_OB [member (_VALUE_SEP member)*] _END_OBJ
member: STRING _NAME_SEP value
array : _BEGIN_ARR [value (_VALUE_SEP value)*] _END_ARR

number: MINUS? INT FRAC? EXP?
MINUS: "-"
INT: "0" | ("1".."9") DIGIT*
DIGIT: "0".."9"
FRAC: "." DIGIT+

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

EXP: ("e"|"E") ["+"|"-"] DIGIT+

STRING: /"([ˆ"\\\x00-\x19]|\\["\\\/bfnrt]|\\u[0-9A-Fa-f]{4})*"/

B.4 AN EXAMPLE OF CONTEXT-FREE GRAMMAR

For example, we consider the following CFG representing nested numbers list:

N = {⟨Expr⟩, ⟨Val⟩, ⟨Tail⟩}, Σ = {Num,[,],;}

R =

{ ⟨Expr⟩ → [⟨Expr⟩ ⟨Tail⟩]
⟨Expr⟩ → [⟨Expr⟩], ⟨Expr⟩ → Num
⟨Tail⟩ → ;⟨Expr⟩⟨Tail⟩, ⟨Tail⟩ → ;⟨Expr⟩

S = ⟨Expr⟩

(8)

Note that this definition is equivalent to the following Backus-Naur Form (BNF):

<Expr> ::= "[" <Expr> <Tail> "]"
| "[" <Expr> "]"
| <Num>

<Tail> ::= ";" <Expr> <Tail>
| ";" <Expr>

For example, this CFG accepts a terminal sequence [Num; [Num]] because there is a derivation
process described below.

⟨Expr⟩ → [⟨Expr⟩⟨Tail⟩]→ [Num⟨Tail⟩]→ [Num;⟨Expr⟩]
→ [Num;[⟨Expr⟩]]→ [Num;[Num]]

(9)

We can visualize this derivation process as a derivation tree in Figure 6.

<Expr>

<Expr> <Tail>

<Expr>
[

Num ;

[
<Expr>

Num

]

]

Figure 6: The derivation tree that represents the process in Equation 9.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.5 OUR ALGORITHMS IN DETAIL

Algorithm 1 Estimate shortest token length acceptable by a terminal’s DFA
Inputs: (Qa,Σ, δa, qa0, Fa): DFA that accepts a terminal a, Qlive

a : a set of live states, V: vocabulary
Output: the terminal’s lexical acceptance cost Ca[q] ∈ Z≥0 ∪ {∞}

1: Fill Ca[q] with∞ for all q ∈ Qa

2: for each q′ ∈ Qlive
a do

3: Fill D[q] with∞ for all q ∈ Qa

4: D[q′]← 0
5: Qsearch ← Qlive

a
6: while Qsearch ̸= ∅ do
7: u← argminu∈Qsearch D[u]

8: Qsearch ← Qsearch − {u}
9: for each t ∈ V do

10: v ← δ∗a(u, t)
11: D[v]← min(D[v], D[u] + 1)
12: end for
13: end while
14: Ca[q

′]← minq∈Fa D[q]
15: end for

Algorithm 2 Approximate shortest token length derivable from a nonterminal
Inputs: (N ,ΣT , R, S): LL(1) grammar, A: nonterminal,
Ca: acceptance cost provided by Algorithm 1 for each a ∈ ΣT

Output: the length of approximately shortest token sequence derivable from A
Notation: A,B ∈ N , σ, τ ∈ Σ∗, α, αnew, β, γi, δ ∈ (N ∪ ΣT)

∗

1: Initialize D as a map with default value∞
2: Qsearch ← {A}
3: D[A]← 0
4: while true do
5: α← argminα∈Qsearch D[α]

6: Qsearch ← Qsearch − {α}
7: if α is empty or all symbols in α are terminals then
8: return D[α]
9: end if

10: // Expand the leftmost nonterminal
11: σ,Bβ ← Split α into the leading terminals and the others
12: for each rule B → γi in R do
13: αnew ← σγiβ
14: // Add costs of newly introduced leading terminals
15: τ, δ ← Split γiβ into the leading terminals and the others
16: dnew ← D[α]
17: for each terminal a in τ do
18: dnew ← dnew + Ca[qa0]
19: end for
20: D[αnew]← dnew

21: Qsearch ← Qsearch ∪ {αnew}
22: end for
23: end while

B.6 HALTING PROBLEM OF ALGORITHM 2

Lemma B.1. Algorithm 2 always halts when the given grammar is LL(1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Let G = (N ,ΣT , R, S) be the given LL(1) grammar and A be a nonterminal inN . Assume
there is a sentence w ∈ Σ∗

T such that A →∗ w, and there is no terminal which allows an empty
string, i.e. Ca[qa0] > 0 for all a ∈ ΣT . With this assumption, when the number of leading terminals
in a sequence αnew increases, the cost D[αnew] increases monotonically. On the other hand, in
some finite derivation steps, the number of leading terminals increases monotonically because LL(1)
grammars don’t accept the left-recursion B →∗ Bβ (Lemma 8.3 in Aho & Ullman (1972)) and a
set of nonterminals is finite. Therefore, for any cost d, the number of the possible derivation α from
A with D[α] < d is finite. This means the algorithm finds w with D[w] and halts in some finite
iterations of the while-loop.

B.7 GUARANTEE OF TRUNCPROOF

Lemma B.2. Our constraint mask guarantees grammatically correct output shorter than the speci-
fied limit Nmax.

Proof. Assume that we have selected the token ti based on the constraint mask in iteration i, and the
intermediate output becomes t<i.ti. At that time t<i is divided into the terminal sequence τ ∈ Σ∗

T
and the reminder r, and there is an accept sequence (a, b) that holds:

i+ Ca+b[δ
∗
a+b(qa+b0, r.ti)] + dcost(τ.a.b) < Nmax (10)

and there are three possibilities.

(A) When Ca+b[δ
∗
a+b(qa+b0, r.ti)] = dcost(τ.a.b) = 0, the intermediate output completes the gram-

matically correct string, so we can stop generation or optionally output EOS. The generated result is
grammatically correct and meets the token limit because i < Nmax.

(B) When Ca+b[δ
∗
a+b(qa+b0, r.ti)] > 0, there is a token t that holds:

Ca+b[δ
∗
a+b(qa+b0, r.ti.t)] ≤ Ca+b[δ

∗
a+b(qa+b0, r.ti)]− 1 (11)

Based on Equation 10,

i+ 1 + Ca+b[δ
∗
a+b(qa+b0, r.ti.t)] + dcost(τ.a.b) < Nmax (12)

This means m(a,b)
t = true in iteration i+ 1.

(C) When Ca+b[δ
∗
a+b(qa+b0, r.ti)] = 0 and dcost(τ.a.b) > 0, the intermediate output t<i.ti is

divided into τ.a.b and there is a sequence of terminals σ1. · · ·σk where τ.a.b.σ1. · · ·σk ∈ L(G) and∑k
j=1 Cσj

[qσj0] = dcost(τ.a.b). Note that k ≥ 1 because Cσj
[qσj0] > 0 for all j. Therefore, it

holds:

i+ Cσ1 [qσ10] + dcost(τ.a.b.σ1) < Nmax (13)

Because Cσ1
[qσ10] > 0, there is a token t that holds:

i+ 1 + Cσ1
[δ∗σ1

(qσ10, t)] + dcost(τ.a.b.σ1) < Nmax (14)

This means m(σ1)
t = true in iteration i+ 1.

Therefore, we can continue to build valid constraint masks throughout text generation and can stop
the generation once condition (A) holds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.8 EXPERIMENTS ON JSON-MODE-EVAL UNDER THE TOKEN LIMIT PROVIDED BY UGARE
ET AL. (2024)

Table 2: Accuracy of JSON-Mode-Eval under the original token limit 400.

Accuracy (%)

Model Method Decoding Syntax Schema Exact-match

No constraint Greedy 38 38 29
Outlines Greedy 100 96 72
SynCode Greedy 99 97 73
XGrammar Greedy 99 99 74

Gemma2-2B Ours Greedy 100 95 72

No constraint Greedy 6 5 0
Outlines Greedy 100 67 45
SynCode Greedy 98 61 40
XGrammar Greedy 98 44 26

Llama2-7B-Chat-HF Ours Greedy 100 63 40

B.9 C GRAMMAR SPECIFIED IN FIGURE 5

start: declaration*

declaration: data_type NAME "(" parameters? ")" "{" statement* "}"

statement: data_type NAME "=" expression ";"
| NAME "=" expression ";"
| NAME "(" arg_list? ")" ";"
| "return" expression ";"
| "while" "(" condition ")" "{" statement* "}"
| "for" "(" for_init ";" condition ";" for_update ")" "{" statement* "}"
| "if" "(" condition ")" "{" statement* "}" ("else" "{" statement* "}")?

data_type: "int" | "float" | "char" | "void"
NAME: /[a-zA-Z_][a-zA-Z_0-9]*/

parameters: parameter ("," parameter)*
parameter: data_type NAME

for_init: data_type NAME "=" expression | NAME "=" expression
for_update: NAME "=" expression

condition: expression relation_operator expression
relation_operator: ("<=" | "<" | "==" | "!=" | ">=" | ">")

expression: term (("+" | "-") term)*
term: factor(("*" | "/") factor)*

factor: NAME | number | unary_term | NAME "(" arg_list? ")" | paren_expr
unary_term: "-" factor
paren_expr: "(" expression ")"

arg_list: expression ("," expression)*

number: /[0-9]+/

WS : /[\t\n]+/
%ignore WS

B.10 RANGING EXPANSION RATIOS

Figure 7 presents the results with different expansion ratios, i.e., e ∈ [1.0, 1.5]. We observe that
our method consistently adheres to the instructed schema, even under strict maximum token lim-
its. Moreover, when combined with BS or MCTS, our approach preserves the correctness of the
generated content across various expansion settings. These results experimentally validate the ef-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

fectiveness of TruncProof in generating grammatically correct outputs, as well as its compatibility
with various decoding strategies, which leads to improved semantic quality of the generated texts.

Figure 7: Accuracy of Gemma2-2B with respect to the expansion ratio e ∈ [1.0, 1.5]. Six bars
drawn in each ratio are the results of SynCode with Greedy decoding, SynCode with Beam Search,
SynCode with Monte Carlo Tree Search, ours with Greedy decoding, ours with Beam Search and
ours with Monte Carlo Tree Search.

B.11 ACCURACY OF JSON-MODE-EVAL WITH PROMPT ENGINEERING

To compare the shortening effect of prompt engineering with TruncProof’s capabilities, we add the
prompt “Only output JSON. Eliminate white spaces and keep the output as compact as possible.”
to the original prompt provided by JSON-Mode-Eval. Results are shown as +prompt in Table 3 and
Table 4. This additional prompt improves the performance slightly in several settings. As a side
effect, unnecessary text such as ‘‘‘json is less frequent, leading to a certain degree of gains in
the absence of grammar constraints (“No Constraint” rows). However, it was challenging to ensure
LLMs adhere to the maximum token limit when relying solely on prompts.

Table 3: Accuracy of JSON-Mode-Eval under the token limit 400.

Accuracy (%)

Model Method Decoding Syntax Schema Exact-match

No constraint Greedy 38 38 29
No constraint +prompt Greedy 79 78 59
SynCode Greedy 99 97 73
SynCode +prompt Greedy 100 98 72
Ours Greedy 100 95 72

Gemma2-2B Ours +prompt Greedy 100 99 72

No constraint Greedy 6 5 0
No constraint +prompt Greedy 6 6 2
SynCode Greedy 98 61 40
SynCode +prompt Greedy 95 73 49
Ours Greedy 100 63 40

Llama2-7B-Chat-HF Ours +prompt Greedy 100 76 48

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Accuracy of JSON-mode-eval with e = 1.1.

Accuracy (%)

Model Method Decoding Syntax Schema Exact-match

No constraint Greedy 1 1 0
No constraint +prompt Greedy 8 8 4

SynCode Greedy 4 3 0
SynCode +prompt Greedy 6 6 1
SynCode BS 1 1 0
SynCode +prompt BS 2 2 0

Ours Greedy 100 62 21
Ours +prompt Greedy 100 68 12
Ours BS 100 85 37
Ours +prompt BS 100 84 45
Ours MCTS 100 86 58

Gemma2-2B Ours +prompt MCTS 100 90 65

No constraint Greedy 2 2 0
No constraint +prompt Greedy 2 2 0

SynCode Greedy 11 10 4
SynCode +prompt Greedy 16 14 5
SynCode BS 6 6 4
SynCode +prompt BS 13 12 5

Ours Greedy 100 51 2
Ours +prompt Greedy 100 57 2
Ours BS 100 67 29
Ours +prompt BS 100 68 32

Llama2-7B Ours MCTS 100 70 41
-Chat-HF Ours +prompt MCTS 100 70 41

20

	Introduction
	Background
	Grammer-Constrained Generation (GCG)
	Context-Free Grammar (CFG)
	Implementations of CFG parsers

	Related Works
	TruncProof
	Details of TruncProof
	Runtime Phase
	Precomputation Phase

	Combining TruncProof with Decoding Strategies

	Experiments and Discussion
	Experimental Setting
	Results

	Limitations
	Conclusion
	The Use of Large Language Models in this paper
	Supplementary Material
	Definition of LL(1) Grammar
	Sample Prompt for JSON-Mode-Eval
	JSON Grammar
	An Example of Context-Free Grammar
	Our Algorithms in Detail
	Halting Problem of Algorithm 2
	Guarantee of TruncProof
	Experiments on JSON-Mode-Eval under the token limit provided by SynCode
	C Grammar specified in Figure 5
	Ranging expansion ratios
	Accuracy of JSON-mode-eval with prompt engineering

