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ABSTRACT

The generation of machine-readable outputs using LLMs has attracted signifi-
cant attention. However, existing approaches cannot strictly enforce the maxi-
mum number of tokens to be generated. To address this limitation, we propose
TruncProof, a novel grammar-constrained generation method that enables LLMs
to produce grammatically valid outputs while adhering to a predefined token limit.
By leveraging the properties of LL(1) parsers, TruncProof efficiently estimates
the minimum number of tokens required to complete a grammatically valid out-
put at each decoding step. Experiments on the Text-to-JSON instruction task and
Code generation task demonstrate that TruncProof successfully generates syntac-
tically correct outputs even under strict token constraints. Furthermore, we show
that TruncProof can be effectively combined with advanced decoding strategies,
resulting in outputs that are not only grammatically valid but also semantically
accurate. The source code will be made public upon acceptance.

1 INTRODUCTION

Recently, there has been a growing body of research on solving complex tasks by combining the
code generation capabilities of large language models (LLMs) with external tools such as Python
interpreters (Wang et al.| 2024) and neuro-symbolic systems (Gupta & Kembhavil [2023). For these
applications to be reliable, LLMs must consistently produce well-formed, machine-readable outputs.
However, most LLM tokenizers are designed for natural language, making it difficult to ensure
grammatically valid outputs through fine-tuning or prompting alone. To address this robustness
issue, several grammar-constrained generation (GCG) methods have been proposed (Scholak et al.,
2021} [Poesia et al., [ 2022; |Beurer-Kellner et al., 2023} |Lundberg et al.,|2023; Willard & Louf], 2023
Gerganov et al.| 2023} Beurer-Kellner et al., |2024; [Ugare et al., 2024} Dong et al., [2025)). Recent
approaches typically rely on context-free grammar (CFG) parsers, which can express a wide range
of machine-readable formats and programming languages.

While these methods can enforce complex grammatical constraints on LLM outputs, they have a
critical limitation: they cannot strictly enforce a maximum number of generated tokens. In practical
applications, imposing a token limit is essential to prevent infinite generation, control memory usage,
and keep the output within the model’s context window. However, because current constraint-based
methods cannot dynamically estimate the number of tokens needed to complete a grammatically
valid output, they terminate generation abruptly once the token limit is reached, often resulting in
incomplete or grammatically invalid outputs.

To address this truncation issue, we propose a novel GCG guardrail that enables LLMs to gener-
ate grammatically correct outputs while adhering to a specified maximum number of tokens. This
requires estimating, at each decoding step, the minimum number of tokens needed to complete a
grammatically valid output. We address this challenge by leveraging the properties of LL(1) parsers
(Aho & Ullman, [1972)), which accept a diverse subset of CFGs (Parr & Fisher| [2011). Unlike the
CFG parsers employed in existing methods (e.g., LR(*) parsers), LL(1) parsers can determine gram-
matically permissible continuations given a partially generated sequence. This property allows us
to compute the shortest valid token sequence required to complete the output at each step. With this
information, we construct constraint masks to prevent the selection of tokens that would violate the
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grammar or token limit. We formally describe our approach and provide theoretical guarantees (see

§@land § and [B.7]of our supplementary material).

Our proposed method, called TruncProof hereafter, has a form of logit modifier. Therefore, it is com-
patible with a wide range of tokenizers, language models, other logit modifiers and various decoding
strategies. We evaluate TruncProof on the Text-to-JSON instruction task (NousResearch, [2024) and
Code generation task. Experimental results show that TruncProof enables LLMs (e.g.,|Googlel 2024,
Touvron et al., [2023) to produce grammatically valid JSON outputs, even under strict token budget
constraints, whereas existing methods almost fail to do so. Furthermore, by incorporating advanced
decoding strategies such as Beam Search and Monte Carlo Tree Search, TruncProof significantly
enhances the semantic robustness of the JSON and C outputs while preserving grammatical validity,
whereas existing methods fail to achieve this balance.

2 BACKGROUND

To enhance self-containment, we first introduce the foundation of Grammar-Constrained Generation
in §2.1] We then provide an overview of Context-Free Grammars in §2.2] followed by implementa-
tions of its parsers in §2.3] Throughout this paper, we denote the finite set of characters that can be
generated by an LLM as ¥, and the set of all finite-length strings over ¥ as ¥* [ﬂ The empty string
is denoted by ¢, and the concatenation of two strings w and v is represented as (w.v).

2.1 GRAMMER-CONSTRAINED GENERATION (GCGQG)

Modern LLMs generate output tokens from a vocabulary V in an auto-regressive manner: At each
generation step ¢, the model takes the current partial output t; = ¢1.--- .t;—; € V* and predicts
the probability distribution of the i-th token P(¢; | t~;). In Grammar-Constrained Generation
(GCQ), constraint functions evaluate the grammatical validity of each candidate token ¢; at every
step. Specifically, given a string t;, the constraint function uses a parser to check whether there
exists a string w that extends the candidate token into a grammatically valid sentence, and returns
the result in the form of a constraint mask m. Formally, the element of m for a next token candidate
t, my, is defined as follows:

me = true = Jw € V' s.t. (t<;.t.w) € L(G), ()

where G is a grammar and L(G) is the language defined as the set of strings accepted by G. To-
kens deemed grammatically invalid are re-assigned zero probability by element-wise multiplication
between the probability distribution and the constraint mask i.e., P(t; | t<;) ©® m. Note that this
modification is applied prior to selecting the next token for generation. Consequently, from an algo-
rithmic perspective, any GCG method, including our proposed TruncProof, can be combined with
various decoding strategies. Details are provided in

2.2 CONTEXT-FREE GRAMMAR (CFG)

Context-Free Grammar (CFG) has been used to define a variety of machine-readable formats. CFG
is characterized by a four-tuple (N, X7, R, S): a finite set of the nonterminal symbols that does not
appear in the language A/, a finite set of the terminal symbols as the alphabet in the language Y7, a
finite relation which represents derivation rules that rewrite a single nonterminal to the terminal or
nonterminal symbols with 0 or more length R C M x (N U X7)*, and the start symbol S € N.
Using this expression, we can define the language L(G) as the set of the terminal sequences. Any
terminal sequence o € X7 in the language can be generated by repeated derivations (denoted as
—™) from the start symbol. CFG parsers must construct a derivation process that generates the
string from the start symbol to determine whether the string belongs to the language. Notice that
these processes can be visualized as derivation trees, with the start symbol at the root and terminal
symbols at the leaves. An example of a CFG and its derivation process is provided in of our
supplementary material.

Usually, to prevent grammars being too complicated, terminal symbols in CFG are defined as Reg-
ular Expression (Regex) instead of characters (Shinan, 2017)) and the parsers preprocess the input

"For example, when 3 = {a,b,c}, ¥* = {¢,a,b,c,aa,ab,ac,ba, - - - }.
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string to identify the equivalent terminal sequence. Regex can be parsed by using Deterministic
Finite Automaton (DFA), which characterized by a five-tuple (Q, X, d, o, F'): a finite set of states
@, a finite set of recognizable characters ¥, a transition function that determines the next state based
on a current state and a captured character § : @@ x ¥ — (@, the initial state gy € @, and a set of
accepting states F' C (). DFA starts from the initial state and accepts the input if and only if its state
transitions to an accepting state by processing each character one by one.

2.3 IMPLEMENTATIONS OF CFG PARSERS

There are two primary approaches to implement CFG parsers (Aho & Ullman,|1972): The bottom-
up approach, such as LR(*) parsers, which identifies the derivation tree from the bottom (i.e.,
from the leaf nodes), and the top-down approach, such as LL(*) parsers, which constructs the
derivation tree from its top (i.e., from the root). Their distinction is reflected in the structure of the
partially constructed derivation tree when they process incomplete input, as illustrated in Figure
Contrary to bottom-up parsers, top-down parsers can easily enumerate possible continuations of
the current input by applying arbitrary derivations from the unexpanded nonterminals. To leverage
this advantage and ensure that the content of the derivation tree is deterministically fixed at each
generation step, our TruncProof employs LL(1), a top-down parser that permits only single-terminal
lookahead without allowing backtracking (reconstruction of the derivation tree). Note that the LL(1)
grammars (i.e., grammars supported by LL(1) parsers) form a strict subset of CFGs. A formal
definition of LL(1) grammar based on (Lewis & Stearns, |1968) is described in Appendix

(start symbol) (start symbol)
S S
/ E
E | possible :
@ @ | derivation ossib ;
| S —>*aS? derivation
‘ ‘ i E—*?
b ? ‘ ?
a 2 (possible continuation) a a (possible continuation)
Input Buffer Input Buffer
(a) bottom-up parser (b) top-down parser

Figure 1: Examples of partially constructed derivation trees generated by two different parsers.

3 RELATED WORKS

Several GCG methods have been proposed in recent years, most of which can be classified based
on the type of grammar they support. For example, PICARD (Scholak et al.| 2021)) is designed
for SQL, where it generates multiple candidates simultaneously and checks the parsability of each.
LMQL (Beurer-Kellner et al., [2023) allows user-defined grammars based on Regex through a cus-
tom specification language. Outlines (Willard & Louf],|2023) improves the efficiency of Regex-based
generation by precomputing valid token sets for each DFA state. Although Outlines also supports
CFGs, it is usually slow since it repeats sampling and validation of candidates until a grammat-
ically valid token is found. DOMINO (Beurer-Kellner et al., 2024) and SynCode (Ugare et al.,
2024) tackle this limitation by integrating optimized Regex validation with the behavior of CFG
parsers. They enumerate acceptable terminal sequences according to the state of the CFG parser
and optimize the construction of constraint masks described in Equation[T|using Regex. In contrast,
XGrammar (Dong et al.| |2025) introduces a variant of CFG parser that operates on characters rather
than terminals, thereby reducing the overhead associated with terminal processing.

While the above methods can impose sufficiently complex grammatical constraints on LLMs, they
share a common limitation: they cannot ensure that generation halts within a specified number of
tokens. IterGen (Ugare et al., |2025) can address this problem by repeatedly regenerating outputs
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until a desired result is obtained. However, it does not guarantee that a grammatically correct output
will be found within a reasonable number of iterations.

We also note that the literature includes methods that extend beyond CFG-based constraints.
Miindler et al.[(2025) and |Li et al.| (2025)) propose a code generation framework that imposes richer
constraints than CFGs, aiming to avoid any errors during compilation or execution. While this
direction is promising, these methods abandon constraint mask generation and instead rely on inef-
ficient candidate sampling, similar to Outlines, which is especially disadvantageous when combined
with advanced decoding strategies. |Geng et al.[(2023) introduces token-level grammars that directly
provide next valid tokens and supports more flexible grammars than CFGs. However, this token-
level approach potentially results in worse perplexity, since it prohibits to generate the same string
consisting of natural token combinations.

4 TRUNCPROOF

Let a grammar G be specified in the form of an LL(1) grammar (A, X7, R, S). We assume that each
terminal symbol in X7 is defined by a Regex; For each terminal, there exists a corresponding DFA
Mg = (Qa, X, 4, quo, F,) that accepts the strings defined by the Regex. Given a grammatically
valid partial output t.;, our TruncProof serves as a constraint function that returns the binary mask
m, where each entry m, represents the grammatical validity of a token ¢ € 1 within the pre-defined
token limit N,,,,,. By extending Equation|[T] m, is formally defined as follows:

my = true = Jw € V' s.t. ((t<;.t.w) € L(G) and [t<;.t.w| < Nppaz) - 2)

This mask can be used to filter out tokens that would result in either (1) a grammatically invalid
continuation or (2) an output exceeding N, 4.

In § 4.1} we describe the details of TruncProof, which returns the mask m. Note that this mask
ensures grammatical validity but does not fully account for semantic correctness. To produce outputs
that are both grammatically valid and semantically coherent, we extend TruncProof with advanced
decoding strategies, as detailed in § 4.2

4.1 DETAILS OF TRUNCPROOF

TruncProof consists of two main phases: precomputation and runtime. In the precomputation phase,
we estimate the shortest token lengths for all terminals and nonterminals defined by the given LL(1)
grammar. During the runtime phase, the following steps are executed iteratively within the gen-
eration loop: (i) Given the intermediate output generated by the LLM, we incrementally parse the
newly generated token based on the terminal sequence obtained in the previous iteration. (ii) We
compute the constraint mask for the next token (see Equation [2) to verify whether the generated
output remains grammatically valid under the specified token budget. We show the sketch of our
algorithm in Figure 2|and describe their details below.

4.1.1 PRECOMPUTATION PHASE

In this phase, we first estimate the lexical acceptance cost C,[q] for each terminal a € X (illustrated
in Figure[2a)), which represents the minimum number of tokens required to transition from each state
q in the corresponding DFA M, to an accepting state. Formally, C,[q] is defined as follows:

min,, ey~ |w| subjectto §%(q,w) € F, (if Jws.t. 0} (q,w) € F,)
Culq] == : 3)
00 (otherwise),
where 0 is an iterated transition function i.e., 6 (q, 1. -+ .2n) = (- 0a(q,x1) -+, Tpn). If

there is no token sequence w which can reach to any accepting state from ¢, C,[g] is set to infinity.
This ensures that grammatically invalid tokens are automatically excluded due to their infinity cost.
To compute C,[g], we use Dijkstra’s algorithm, treating DFA states as nodes, transitions as edges,
and token lengths as edge costs. The pseudo-code is provided in Algorithm [I]of Appendix [B.5]

In addition to the lexical acceptance cost for individual terminals, we also compute the cost C, 4, for
all pairs of terminal symbols a, b € ¥, corresponding to the DFA that recognizes the two-terminal
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sequence. This extension allows us to relax the constraints and better exploit the generative capabil-
ities of the LLME] while the relaxed constraint still ensures the condition defined in Equation

Next, we estimate D[A] (illustrated in Figure , the approximate shortest token length derivable
from each nonterminal A € AV, by the following Equation 4}

lo|

DI[A] .= rglzn Cy,lq5,0] subjectto A —* o, “4)
TR

where o; denotes the i-th terminal symbol in the sequence o. It minimizes the total lexical accep-
tance cost of the terminal sequence derivable from A. The computation of D[A] is also based on
Dijkstra’s algorithm, where possible derivation states are treated as nodes and derivation steps as
edges. The corresponding pseudo-code is Algorithm 2]in Appendix [B.3] Although the underlying
search graph may be infinitely large in theory, our algorithm is guaranteed to terminate whenever the
nonterminal A can derive at least one terminal sequence. This is ensured by the property of LL(1)
grammars, which prohibits infinitely recursive derivations without increasing the number of leading
terminals. We present the formal proof of this termination in Appendix

4.1.2 RUNTIME PHASE

We first divide the intermediate input ¢ ; into the terminal sequence 7 € X7, and the remindeﬂr €
>* by using the DFAs, then partially parse 7 to identify the derivation tree by using the LL(1) parser.
This process can be executed incrementally by using the results in the previous iteration. Next, we
enumerate the terminal sequences with a length of at most two i.e., a,b € X7, that can be given to
the current parser. We hereafter call the set of the sequences as accept sequence A C Sp U ¥2..
After that, we calculate the cost to complete the reminder as terminals (a,b) and the further cost
deost(T.a.b) to complete the whole string, after a and b are accepted by the parser. dgost(7.a.b)
is computed as the sum of C,[g.0] and D[A] for each terminal a and nonterminal A that remains
unresolved by the LL(1) parser (the dangling symbols illustrated in Figure 2c)). In summary, the

entry of the constraint mask m(®?) for a token t, ie., mga’b), is computed as follows:

(a;b)

m; = true iff.
1 + Ca+b[5:;+b(qa+b07 Tt)] + dcost (T.G,.b) < Nmamv (5)
(consumed (future tokens (future tokens
tokens) that DFA accepts) to finish output)

where ¢ is the number of generated tokens. Once the simulation of the parser and the calculation
of the future cost are performed, the constraint mask m can be obtained by taking the element-
wise union of the masks m(®*) for each (a,b) € A. Since each valid entry corresponds an actual
sequence of tokens, it guarantees the result that adheres to the grammar and token limit. For the
proof of this guarantee, refer to in our supplementary material.

<start>

<vajue> ey <object>  dangling

<number>
<value>

@ <nunﬁber> Tﬁ )
i (WD e ] T

1 token 1 token 2 tokens 1 token 3 tokens Input buffer like 0}

(a) Precompute Eqn (b) Precompute Eqn (c) Count future tokens at runtime

Figure 2: The examples of counting the future tokens based on the grammar shown in Section

2For instance, in the case of JSON, by precomputing the constraint mask for the concatenation of a left
brace and a string, we can treat a token such as {" as a valid starting sequence of a JSON object. This allows
the model to generate more natural and compact outputs while still adhering to the grammatical constraints.

3User-defined terminal symbols may not align exactly with LLM tokens. In such cases, some suffixes of the
output remain unprocessed as reminders.



Under review as a conference paper at ICLR 2026

Time Complexity Analysis. At each iteration of the generation loop, the computational bottle-
neck is the simulation of the LL(1) parser to calculate d.,s¢(7.a.b) for each (a,b) € A. It takes
O(|Z7|*(Tg + |T'|)), where Tg is the cost to feed one terminal to the LL(1) parser and |T'| is the
number of dangling symbols in the derivation tree, which tends to be proportional to the nesting
depth of the output code. In practice, | Y| is not so large; JSON has about 15 terminals and [Ugare
et al.[(2024) reports that Python has 94. Calculation of d,44(qa+s0, 7-t) can be accelerated by pre-
computing the mapping &7, ,(q,t) for each terminal, DFA state, and LLM token. At runtime, we
calculate the state ¢ = 0q5(qatb0, ) and lookup the precomputed state 6, (¢', ¢) for each termi-
nal sequence (a, b) and token ¢. This lookup operation can be parallelized into a vector computation
across the entire V. Mask generation is processed by at most |Xr|? times of element-wise Boolean
and arithmetic operations on the vector of length V|, which also can be parallelized. Notice that
this cost is usually smaller than the brute force method that searches the shortest terminal sequence
by simulating the parser; The cost is O(|27|PTg), where D is the minimum number of terminals
in continuation, and D tends to be proportional to the nesting depth of generated sentences.

Space Complexity Analysis. The amount of memory for precomputation is the sum of the mem-
ory O(|%7]?%|Q|) for C,[q], O(JN|) for D[A], and O(|Xr|?|V||Q]) for precomputing mapping
% 15(q,t), where |Q] is the average size of the DFA states. Note that the mapping 6, (q,1) is
sparse because most tokens lead DFAS to a dead state.

4.2 COMBINING TRUNCPROOF WITH DECODING STRATEGIES

TruncProof can be seamlessly integrated with various decoding strategies. In this work we consider
the following three decoding methods: (1) Greedy decoding (Greedy) is the default strategy in
most text-generation libraries. It takes the token with the best likelihood P(¢ | t«;) in each iteration
of the text generation. (2) Beam Search (BS) maintains b best candidates in each iteration and
re-selects the b best sequences among the possible continuations. |Scholak et al.| (2021) adopts BS
with their constraint method to improve the accuracy of the generation. Although BS takes diverse
candidates into account and obtains better contents than the greedy strategy, it remains difficult to
completely avoid future token shortages. (3) Monte Carlo Tree Search (MCTS) is known to be
effective for this type of issue where the selections in beginning have a large effect but their precise
value is evaluated in the ending phase. MCTS originally aims to find the best move in two-person
games (Coulom| (2000)), but there are some studies for LLM-based text generation (Leblond et al.
(2021)); (Chatffin et al.| (2022); Loula et al.| (2025)). In each generation step ¢, MCTS constructs the
search tree whose nodes are possible continuations ;1 and edges are the selectable next tokens.
MCTS repeats the following stages to grow the search tree: Selection, Expansion, Simulation, and
Backup. In Selection, we traverse the tree up to a leaf based on the following evaluation function
introduced by |Silver et al.[(2017) that utilizes the likelihood of sequences as a prior:

Zu N(t<i7u)
14+ N(te,t) '

where Q(t<;,t) is the maximum value observed among the continuations of t,.t, P/ is the likeli-
hood modified by the constraint mask and normalized by softmax with temperature 7, N (t<;,t) is
the number of investigations beyond t<;.t, and ¢yt is the hyperparameter that balances exploration
and exploitation. In Expansion, we expand the tree to investigate more deeply beyond the leaf which
we arrived at. In Simulation, we apply greedy decoding from the leaf until the end of generation
and evaluate the value of the result text v(t<,,) as the geometric mean of the unmodified likelihood
provided directly by the LLM, which is known as the inverse of the perplexity. In Backup, we
tell the evaluated value v to the ancestors and update their observed values Q(t-;,t). After some
repetitions, we decide the next token ¢ with highest Q(t<;,t).

F(t<l7t) = Q(t<ia t) + cpuctP-,/—(t | t<z> (6)

5 EXPERIMENTS AND DISCUSSION

5.1 EXPERIMENTAL SETTING

Quantitative Analysis on Text-to-JSON Instruction. To evaluate TruncProof, we conduct exper-
iments on the JSON-Mode-Eval dataset (NousResearch| [2024), which comprises 100 text-to-JSON
tasks. In this instruction-following task, the goal is to generate syntactically and semantically valid
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JSON outputs given a natural language prompt (cf, Appendix [B.2Z). In[Ugare et al.|(2024), the max-
imum token limit is fixed at 400, which is approximately six times the average length of the ground
truth. To assess performance under stricter constraints, we define a more challenging configuration,
where the maximum token length is dynamically set to |LST x e] for each instance i, with LT
denoting the token length of the ground truth and e an expansion ratio. Unless otherwise specified,
we set e = 1.1 when comparing TruncProof with other methods. For completeness, we conduct
experiments under different token-limit settings, including the configuration used by [Ugare et al.
(2024), as well as various values of e. We also demonstrate the superiority of TruncProof over
prompt engineering. The corresponding results are presented in Appendix [B.8] [B.I0]and [B.TT]of the
supplementary material, respectively.

As evaluation metrics, we use the following: (1) the percentage of outputs that are grammatically
correct, denoted as Syntax; (2) the percentage of outputs that adhere to the schema specified in the
prompt, referred to as Schema; and (3) the percentage of outputs that are parsed into JSON objects
identical to the ground truth, termed Exact-match. The last Exact-match metric is newly introduced
in this work to specifically assess the semantic validity of the generated JSON outputs.

Notice that the JSON grammar used in [Ugare et al.| (2024) does not fully comply with the official
JSON standard, RFC 825% To ensure a practical and standards-compliant evaluation, we apply
an RFC 8259-compliant JSON grammar (shown in Appendix to all constraint methods when
assessing their performance.

Qualitative Analysis on Code Generation. In the experiments using JSON-Mode-Eval, we mea-
sure accuracy by checking whether keys and values in generated JSONs match exactly. Therefore,
shorter JSON that maintains semantic meaning would be the one whose whitespace is reduced. To
demonstrate how TruncProof with advanced decoding strategies can significantly alter content while
preserving the semantics, we define the Code generation task to generate C functions that sums up
1 to N using a limited C grammar adopted by (Gerganov et al.|(2023) with strict token limits. Under
this setting, we observe the results of TruncProof and a prior work SynCode (Ugare et al.,[2024).

Environment. We used 1x H200 GPU to produce all the results. Beam Search (BS) is performed
with 10 beams while Monte Carlo Tree Search (MCTS) is performed with the following hyperpa-
rameters: Cpuct = 9,7 = 2, 20 trials for each generation step. We precompute the shortest token
lengths for all terminals and nonterminals described in §4.T.T|before the experiments. It takes about
1 minute for the JSON grammar, and 5 minutes for the subset of C grammar.

5.2 RESULTS

Table [T] presents the results of five approaches: the baseline without any GCG method (denoted as
No constraint), Outlines (Willard & Louf] 2023)), SynCode (Ugare et al., [2024), XGrammar (Dong
et al.,|2025)), and our proposed method, TruncProof. For the No constraint baseline, we adopt Greedy
decoding. All constraint methods except Outlines are evaluated with Greedy, BS, and MCTS. Note
that BS and MCTS are implemented by ourselves, as they are not provided by the original authors.
Following prior work (Ugare et al.| [2024), we use Gemma2-2B (Google, |2024) and Llama2-7B-
Chat-HF (Touvron et al.,[2023) as the underlying language models.

Syntax Robustness. As expected, under this challenging setting, most outputs generated by the
baseline methods are grammatically invalid, with their Syntax accuracies ranging from only 1% to
36%. This failure occurs mainly because LLMs include excessive whitespace in JSON for readabil-
ity and thereby waste LLM tokens. In contrast, TruncProof consistently produces grammatically
valid outputs across all decoding strategies and backend LLMs, achieving perfect Syntax accuracy
i.e., 100%. These results clearly demonstrate the effectiveness of our approach in maintaining gram-
matical correctness under strict token constraints.

Semantics Robustness. Table [I] also shows that when using simple decoding strategies such as
Greedy, the Exact-match accuracies of TruncProof remain relatively low (2%-21%) although about
half (51%-62%) of the cases are faithful to the schema. We emphasize that this outcome is expected;
As discussed in § ] TruncProof with Greedy decoding does not fully account for the semantic
correctness of its outputs. Also as shown in the same table, these scores improve significantly when

*For example, numbers with a trailing decimal point such as 100 . are permitted by the grammar inUgare
et al.|(2024)), but are considered invalid under RFC 8259.
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Table 1: Accuracy and generation speed of JSON-mode-eval with e = 1.1. $XGrammar uses its
builtin JSON grammar because its grammar format (EBNF) is incompatible with others (Lark).

Accuracy (%)
Model Method Decoding Syntax Schema Exact-match Tokens/sec.
No constraint Greedy 1 1 0 45.87
Outlines Greedy 36 33 22 2.18
(Willard & Louf}[2023) BS 4 4 2 0.23
SynCode Greedy 4 3 0 42.53
(Ugare et al.|[2024) BS 1 1 0 18.52
MCTS 4 4 0 2.28
XGrammar T Greedy 5 5 3 45.21
(Dong et al.||2025) BS 1 1 0 29.18
MCTS 5 5 2 341
Ours Greedy 100 62 21 38.93
BS 100 85 37 16.44
Gemma2-2B MCTS 100 86 58 1.93
No constraint Greedy 2 2 0 56.90
Outlines Greedy 18 13 4 13.86
(Willard & Louf}[2023) BS 10 8 4 1.67
SynCode Greedy 11 10 4 54.35
(Ugare et al.|[2024) BS 6 6 4 17.04
MCTS 8 8 4 5.45
XGrammar T Greedy 11 9 2 54.69
(Dong et al.|[2025) BS 5 3 2 30.79
MCTS 9 8 3 5.71
Ours Greedy 100 51 2 52.70
BS 100 67 29 27.00
Llama2-7B-Chat-HF MCTS 100 70 41 4.78

more advanced decoding strategies are employed. In particular, using BS raises the Exact-match
accuracies to 29%-37%, and further improvements are observed with MCTS, reaching 41%—-58%,
all while preserving perfect grammatical correctness. These results highlight the compatibility of
TruncProof with various decoding strategies and its ability to enhance semantic quality without
compromising syntactic validity.

Also note that such compatibility with various decoding strategies is not necessarily supported by
existing methods; As shown in Table[I] prior works with BS performs worse than Greedy. This may
be attributed to the presence of many high-likelihood candidates that are grammatically invalid. To
validate this hypothesis, in Figure [3| we visualize the perplexity of outputs under token shortage
(labeled “Reached limit”) for both SynCode (Ugare et al., 2024) and our TruncProof. As shown,
when generation is constrained by SynCode, the perplexity of truncated outputs is worse than that
of exact-match outputs (i.e., successful generations), yet still better than the perplexity of the ground
truth (see Figure[3a). This indicates that simply optimizing for likelihood under SynCode may lead
to grammatically incorrect outputs due to local optima. In contrast, when our method reaches the
token limit and generates unnatural outputs, the perplexity becomes worse than that of the ground
truth, suggesting that TruncProof avoids such invalid local optima by preserving grammatical cor-
rectness throughout generation (see Figure [3b).

The result of the Code generation is demonstrated in Figure[d We find that TruncProof with MCTS
generates the simpler algorithm whereas SynCode (Ugare et al. [2024) with MCTS fails to find
a better solution than Greedy. Notice that the perplexities exhibit the same trend as in Figure [3}
Truncated codes found by SynCode are judged more “natural” by LLMs than the shorter, correct
code produced by TruncProof. These findings also indicate that prior methods do not consistently
benefit from advanced decoding strategies, whereas TruncProof does.

6 LIMITATIONS

As demonstrated in § [5.2] TruncProof is capable of generating both syntactically and semantically
valid outputs under strict token budget constraints, particularly when paired with advanced decoding
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(a) SynCode (Ugare et al.| 2024) (b) TruncProof (Ours)

Figure 3: The perplexities provided by Gemma2-2B on JSON-Mode-Eval. Exact-matched indicates
the output whose keys and values are correct under the relaxed token limit. Reached limit indicates
the output which is truncated in (a) or incorrect in (b) due to the strict token limit. Refer to for
more details.

No Constraint (PPL 17.125) TruncProof (PPL 70.0) Incorrect TruncProof + MCTS (PPL 63.75) Correct
e int sumToN (int N) { int sum to_n(int n) { returnn * (n + 1) / 2; }
int sum_to_n(int n) { int sum = 0;
int sum = 0; for (int i = 1; i <= N; i =i +1) { } }
for (int i = 1; 1 <= n; i++) {
sum += i;
} SynCode (PPL 50.5) Syntax error SynCode + MCTS (PPL 50.5) Syntax error

t 1 S ;
return sum int sumToN (int N) { int sumToN(int N) {

int sum = 0; int sum = 0;
for (int i = 1; i <= N; i =1 + 1) for (int i = 1; i <= N; i =i + 1)

Figure 4: Responses of Gemma2-2B and their perplexity (PPL) for the prompt “Write a C function
that sums up 1 to N. Only output the code without codeblock quotations.” Without grammar con-
straint, the response has 58 tokens. When we apply SynCode or our TruncProof, we set the token
limit to 40. The applied grammar is described in Appendix

strategies. However, these strategies can slow down the generation process (e.g., BS is 2.0-2.4x
slower and MCTS is 11.0-20.2x slower than Greedy). Although successful integration with the
strategies is unattainable by other methods, the associated overheads may pose a practical limitation,
especially in latency-critical applications.

Another potential limitation of TruncProof lies in its reliance on LL(1) parsing, which cannot sup-
port all CFGs. For example, in Python 3.9 and later versions (Guido van Rossum| (2020)), the
official parser transitioned away from LL(1). Note that such grammars can be approximated by
removing certain features or imposing additional syntactic restrictions, though this often requires
further workarounds and customized implementations.

Furthermore, although this issue is common across GCG methods, enforcing grammatical con-
straints often distorts the probability distribution produced by the LLM, making it difficult to sample
text in a manner that faithfully reflects the model’s original conditional probabilities under grammat-
ical correctness. To address this, it is important to explore compatibility with methods that approxi-
mate the conditional distribution of LLMs under constraints, like [Park et al.| (2024)).

7 CONCLUSION

In this paper, we proposed TruncProof, a novel LL(1)-constrained generation method designed to
enable LLMs to produce grammatically valid outputs while adhering to a maximum token limit.
Experiments on the Text-to-JSON instruction task (NousResearch| 2024) and Code generation task
demonstrated that TruncProof can successfully generate syntactically correct outputs even under
strict token constraints. We also show that TruncProof can be effectively combined with advanced
decoding strategies, resulting in outputs that are not only grammatically valid but also semantically
accurate. In future work, we plan to investigate methods to accelerate generation, particularly when
using complex strategies. We also aim to extend our work to support general CFGs for broader
applicability.
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A THE USE OF LARGE LANGUAGE MODELS IN THIS PAPER

We used LLMs only to aid or polish writing.

B SUPPLEMENTARY MATERIAL

B.1 DEFINITION OF LL(1) GRAMMAR

Definition B.1 (LL(1) grammar). A context-free grammar (N, X1, R, S) is LL(1) grammar if, for
all terminal sequences wy,ws, wh, w3, ws € Xk, a nonterminal A € N, and derivation rules
pp ER

S —7 1U114103

S —* wy Aws

A —* wy (The rule p is applied first) 7
A —* wh (The rule p' is applied first)

(we.w3) and (wh.w4) have the same prefix

implies p = p'.

B.2 SAMPLE PROMPT FOR JSON-MODE-EVAL

<bos><start_of_turn>user

You are a helpful assistant that answers in JSON. Here’s the json schema you must adhere to:

<schema>

{’$id’: "https://example.com/entry-schema’, ’$schema’: "https://json-schema.org/draft/2020-12/
schema’, ’description’: ’JSON Schema for an fstab entry’, ’‘type’: ’'object’, ’'required’:
["storage’, ’fstype’, ’'options’, ’'readonly’], ’properties’: {’storage’: {’type’: ’'string
', 'pattern’: ’"/dev/["/1+(/["/]1+)*S$"}, ’fstype’: {’type’: ’string’, ’‘enum’: [’ext3’, ’

ext4’, ’'btrfs’]}, 'options’: {’type’: ’string’, ’pattern’: ’"[a-zA-Z0-9,_-]1+$"}, '
readonly’: {’type’: 'boolean’}}}
</schema>

I need to define a JSON schema for a file system entry that includes specific constraints for
the properties ’fstype’, ’options’, and ’'readonly’. The ’fstype’ should be limited to '
ext3’, ’'ext4’, or ’'btrfs’. The ’'options’ should be a string that matches the pattern of
comma-separated values, and ’readonly’ should be a boolean indicating if the entry is
read-only. Please provide me with a valid JSON object that adheres to these constraints.
The file system entry should be for the storage ’/dev/sdal’, with ’fstype’ as ’‘ext4’, '’
options’ set to 'rw,noatime’, and ’'readonly’ as false.

Only output JSON.<end_of_turn>

B.3 JSON GRAMMAR

?start: value

_BEGIN_ARR: /1 NENENZART N\ [ [ \t\f\r\n]«/
_BEGIN_OBJ: /T ANENENTANT*\N{ [ \ENEf\r\n]+/
_END_ARR: /0 NENENEANT*\T [ \ENEf\r\nl«/
_END_OBJ: /1 \NENEN\n] «\} [ \t\f\r\n]x/
_NAME_SEP: /[ \t\f\r\n]x:[ \t\f\r\n]x/
_VALUE_SEP: /[ \t\f\r\nlx, [ \t\f\r\n]=*/

?value: object

| array

| STRING

| number

| "true" -> true
| "false" -> false
| "null" -> null

object: _BEGIN_OB [member (_VALUE_SEP member)x] _END_OBJ
member: STRING _NAME_SEP value
array : _BEGIN_ARR [value (_VALUE_SEP value)x] _END_ARR

number: MINUS? INT FRAC? EXP?

MINUS: "-"

INT: "O"™ | ("1".."9") DIGIT«
DIGIT: "O".."9"

FRAC: "." DIGIT+
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EXP: ("e"|"E") ["+"|"-"] DIGIT+

STRING: /" ([""\\\x00-\x19] [\\["\\\/bfnrt] [\\u[0-9A-Fa-f]{4})*"/

B.4 AN EXAMPLE OF CONTEXT-FREE GRAMMAR

For example, we consider the following CFG representing nested numbers list:

N = {{Expr), (Val), (Tail)}, ¥ = {Num, [, 1,;}

(Expr) — [ (Expr) (Tail) ]
R= { (Expr) — [ (Expr) 1, (Expr) —  Num (8)
(Tail) —  ; (Expr)(Tail),  (Tail) » ; (Expr)
S = (Expr)
Note that this definition is equivalent to the following Backus-Naur Form (BNF):
<Expr> = "[" <Expr> <Tail> "]"
| n [" <Expr> "] n
| <Num>
<Tail> = ";" <Expr> <Tail>
| ";" <Expr>
For example, this CFG accepts a terminal sequence [Num; [Num] ] because there is a derivation
process described below.
(Expr) — [(Expr)(Tail)] — [Num(Tail)] — [Num; (Expr)] ©)
— [Num; [(Expr)]] — [Num; [Num] ]

We can visualize this derivation process as a derivation tree in Figure 3]

<Expr>

<Expr> <Tail>

<Expr>

Figure 5: The derivation tree that represents the process in Equation El
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B.5 OUR ALGORITHMS IN DETAIL

Algorithm 1 Estimate shortest token length acceptable by a terminal’s DFA

Inputs: (Qq, %, 04, Gao, o ): DFA that accepts a terminal a, ij”e: a set of live states, V: vocabulary
Output: the terminal’s lexical acceptance cost Cy[q] € Z>o U {o0}

1: Fill C,[g] with oo for all ¢ € Q,

2: for each ¢’ € Qli*¢ do

3:  Fill D[q] with co for all ¢ € Q,

4. D[]+ 0

3: Qsearch — Qfli'ue

6:  while Q°?"" £ () do

7: U = argmin, e gsearen D{u]

8: Qsearch — Qsearch _ {’LL}

9: for ecacht € V do

10: v+ 05 (u,t)

11: Dv] + min(D[v], D[u] + 1)
12: end for

13:  end while
14:  Cylq] < minger, Dq]
15: end for

Algorithm 2 Approximate shortest token length derivable from a nonterminal
Inputs: (A, 27, R, S): LL(1) grammar, A: nonterminal,
C,: acceptance cost provided by Algorithm|[I]for each a € Xp
Output: the length of approximately shortest token sequence derivable from A
Notation: A, B € N, 0,7 € ¥*, a, ™" 3,7;,0 € (N UXr)*

1: Initialize D as a map with default value co

2: Qsearch p {A}

3: D[A]+0

4: while true do

5: < argmingggsearen D]

6: Qsearch — Qsearch, _ {Oé}

7. if o is empty or all symbols in « are terminals then
8: return D[c]

9: endif

10:  // Expand the leftmost nonterminal
11: o, Bf < Split «v into the leading terminals and the others
12:  for eachrule B — ~; in R do

13: a™®v — o,

14: /I Add costs of newly introduced leading terminals

15: 7,8 < Split y; 8 into the leading terminals and the others
16: d™" + D|a]

17: for each terminal a in 7 do

18: dnew ¢ drew Ca [an]

19: end for

20: D[a™e™] « d™ev

21: Qsearch — Qsearch U {anew}

22:  end for

23: end while

B.6 HALTING PROBLEM OF ALGORITHM 2]

Lemma B.1. Algorithm[2|always halts when the given grammar is LL(1).
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Proof. Let G = (N, X7, R, S) be the given LL(1) grammar and A be a nonterminal in A/. Assume
there is a sentence w € X7, such that A —* w, and there is no terminal which allows an empty
string, i.e. Cy[qa0] > 0 for all a € Y. With this assumption, when the number of leading terminals
in a sequence ¥ increases, the cost D[a""] increases monotonically. On the other hand, in
some finite derivation steps, the number of leading terminals increases monotonically because LL(1)
grammars don’t accept the left-recursion B —* B/ (Lemma 8.3 in|Aho & Ullman| (1972)) and a
set of nonterminals is finite. Therefore, for any cost d, the number of the possible derivation a from
A with D]a] < d is finite. This means the algorithm finds w with D[w] and halts in some finite
iterations of the while-loop. O

B.7 GUARANTEE OF TRUNCPROOF

Lemma B.2. Our constraint mask guarantees grammatically correct output shorter than the speci-
fied limit Ny, qz.

Proof. Assume that we have selected the token ¢; based on the constraint mask in iteration 4, and the
intermediate output becomes t;.t;. At that time ¢; is divided into the terminal sequence 7 € X7,
and the reminder r, and there is an accept sequence (a, b) that holds:

1 + Ca+b[5z+b(qa+b03 th)] + dcost (T-a“b) < Nmaz (10)

and there are three possibilities.

(A) When Cy 1 4[0; 1, (qa+b0, 7-ti)] = deost(T.a.b) = 0, the intermediate output completes the gram-
matically correct string, so we can stop generation or optionally output EOS. The generated result is
grammatically correct and meets the token limit because ¢ < Ny, qz.-

(B) When Cy 1[0, ,(qa+b0,7-ti)] > 0, there is a token ¢ that holds:

Catb[0515(qa+b0,7-ti-1)] < Cotd[0544(datbo, 7)) — 1 (11)
Based on Equation

P41+ Cosd[0514(datv0, 7tit)] + deost (T.0.0) < Nypao (12)
This means mﬁ“’b) = true in iteration ¢ + 1.

(C) When Cyy [0, (qa+b0,7-ti)] = 0 and deos¢(7.a.b) > 0, the intermediate output ¢;.t; is
divided into 7.a.b and there is a sequence of terminals 0. - - - o) where T.a.b.01.- -0} € L(G) and
Z§:1 Cs,140,0] = deost(7.a.b). Note that & > 1 because Cy, [qs;0] > O for all j. Therefore, it
holds:

7+ Cgl [qglo] + dwst(T.a.b.al) < Nz (13)
Because Cy, [¢s,0] > 0, there is a token ¢ that holds:
i+ 1+ Cy,[0;,(45,0,1)] + deost (T.a.b.01) < Nppag (14)

This means mﬁ”” = true in iteration ¢ + 1.

Therefore, we can continue to build valid constraint masks throughout text generation and can stop
the generation once condition (A) holds. ]
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B.8 EXPERIMENTS ON JSON-MODE-EVAL UNDER THE TOKEN LIMIT PROVIDED BY |UGARE
ET AL.[(2024)

Table 2: Accuracy of JSON-Mode-Eval under the original token limit 400.

Accuracy (%)
Model Method Decoding Syntax Schema Exact-match
No constraint ~ Greedy 38 38 29
Outlines Greedy 100 96 72
SynCode Greedy 99 97 73
XGrammar Greedy 99 99 74
Gemma?2-2B Ours Greedy 100 95 72
No constraint ~ Greedy 6 5 0
Outlines Greedy 100 67 45
SynCode Greedy 98 61 40
XGrammar Greedy 98 44 26
Llama2-7B-Chat-HF  Ours Greedy 100 63 40
B.9 C GRAMMAR SPECIFIED IN FIGURE]
start: declarationx
declaration: data_type NAME " (" parameters? ")" "{" statementx "}"
statement: data_type NAME "=" expression ";"
| NAME "=" expression ";"
| NAME " (" arg_list? ")" ";"
| "return" expression ";"
| "while"™ " (" condition ")"™ "{" statementx "}"
| "for"™ "(" for_init ";" condition ";" for_update ")" "{" statementx "}"
[ "if"™ " (" condition ")" "{" statementx "}" ("else" "{" statementx "}")?
data_type: "int" | "float" | "char" | "void"
NAME: /[a—-zA-Z_][a—2zA-Z_0-9]«/
parameters: parameter ("," parameter)x
parameter: data_type NAME
for_init: data_type NAME "=" expression | NAME "=" expression
for_update: NAME "=" expression
condition: expression relation_operator expression
relation_operator: ("<=" | "<" | Me=nm | mi_w | mws_w | wym)
expression: term (("+" | "-") term)x
term: factor (("«" | "/") factor)*
factor: NAME | number | unary_term | NAME " (" arg_list? ")" | paren_expr
unary_term: "-" factor
paren_expr: " (" expression ")"
arg_list: expression ("," expression)x

number: /[0-9]+/

WS : /[ \t\nl+/
%$ignore WS

B.10 RANGING EXPANSION RATIOS

Figure |§| presents the results with different expansion ratios, i.e., e € [1.0,1.5]. We observe that
our method consistently adheres to the instructed schema, even under strict maximum token lim-
its. Moreover, when combined with BS or MCTS, our approach preserves the correctness of the
generated content across various expansion settings. These results experimentally validate the ef-
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fectiveness of TruncProof in generating grammatically correct outputs, as well as its compatibility
with various decoding strategies, which leads to improved semantic quality of the generated texts.

Accuracy of SynCode (Greedy,BS,MCTS) and Proposed (Greedy,BS,MCTS)

100 B syntax

mm schema

80 Bl exact

60

40

Accuracy (%)

20

1.0 1.1 1.2 1.3 1.4 1.5
Token limit ratio

Figure 6: Accuracy of Gemma2-2B with respect to the expansion ratio e € [1.0,1.5]. Six bars
drawn in each ratio are the results of SynCode with Greedy decoding, SynCode with Beam Search,
SynCode with Monte Carlo Tree Search, ours with Greedy decoding, ours with Beam Search and
ours with Monte Carlo Tree Search.

B.11 ACCURACY OF JSON-MODE-EVAL WITH PROMPT ENGINEERING

To compare the shortening effect of prompt engineering with TruncProof’s capabilities, we add the
prompt “Only output JSON. Eliminate white spaces and keep the output as compact as possible.”
to the original prompt provided by JSON-Mode-Eval. Results are shown as +prompt in Table [3|and
Table ] This additional prompt improves the performance slightly in several settings. As a side
effect, unnecessary text such as * * *json is less frequent, leading to a certain degree of gains in
the absence of grammar constraints (“No Constraint” rows). However, it was challenging to ensure
LLMs adhere to the maximum token limit when relying solely on prompts.

Table 3: Accuracy of JSON-Mode-Eval under the token limit 400.

Accuracy (%)

Model Method Decoding Syntax Schema Exact-match
No constraint Greedy 38 38 29
No constraint +prompt  Greedy 79 78 59
SynCode Greedy 99 97 73
SynCode +prompt Greedy 100 98 72
Ours Greedy 100 95 72

Gemma2-2B Ours +prompt Greedy 100 99 72
No constraint Greedy 6 5 0
No constraint +prompt  Greedy 6 6 2
SynCode Greedy 98 61 40
SynCode +prompt Greedy 95 73 49
Ours Greedy 100 63 40

Llama2-7B-Chat-HF  Ours +prompt Greedy 100 76 48
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Table 4: Accuracy of JSON-mode-eval with e = 1.1.

Accuracy (%)
Model Method Decoding Syntax Schema Exact-match
No constraint Greedy 1 1 0
No constraint +prompt  Greedy 8 8 4
SynCode Greedy 4 3 0
SynCode +prompt Greedy 6 6 1
SynCode BS 1 1 0
SynCode +prompt BS 2 2 0
Ours Greedy 100 62 21
Ours +prompt Greedy 100 68 12
Ours BS 100 85 37
Ours +prompt BS 100 84 45
Ours MCTS 100 86 58
Gemma2-2B  Ours +prompt MCTS 100 90 65
No constraint Greedy 2 2 0
No constraint +prompt  Greedy 2 2 0
SynCode Greedy 11 10 4
SynCode +prompt Greedy 16 14 5
SynCode BS 6 6 4
SynCode +prompt BS 13 12 5
Ours Greedy 100 51 2
Ours +prompt Greedy 100 57 2
Ours BS 100 67 29
Ours +prompt BS 100 68 32
Llama2-7B Ours MCTS 100 70 41
-Chat-HF Ours +prompt MCTS 100 70 41
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