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Abstract
The shortcomings of maximum likelihood esti-
mation in the context of model-based reinforce-
ment learning have been highlighted by an in-
creasing number of papers. When the model class
is misspecified or has a limited representational
capacity, model parameters with high likelihood
might not necessarily result in high performance
of the agent on a downstream control task. To
alleviate this problem, we propose an end-to-end
approach for model learning which directly opti-
mizes the expected returns using implicit differ-
entiation. We treat a value function that satisfies
the Bellman optimality operator induced by the
model as an implicit function of model parameters
and show how to differentiate the function. We
provide theoretical and empirical evidence high-
lighting the benefits of our approach in the model
misspecification regime compared to likelihood-
based methods.

1. Introduction
The conceptual separation between model learning and pol-
icy optimization is the basis for much of the work on model-
based reinforcement learning (MBRL) (Grefenstette et al.,
1990; Sutton, 1991; Lin, 1992; Boots et al., 2011; Chua
et al., 2018; Hafner et al., 2019; Janner et al., 2019; Kaiser
et al., 2019). A standard MBRL agent first estimates the
transition parameters and the reward function of a Markov
Decision Process and then uses the approximate model for
planning (Theil, 1957; Kurano, 1972; Mandl, 1974; Georgin,
1978; Borkar & Varaiya, 1979; Hernández-Lerma & Marcus,
1985; Manfred, 1987; Sato et al., 1988). If the estimated
model perfectly captures the actual system, the resulting
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Figure 1. Illustration of the Optimal Model Design approach: we
treat the optimal Q-function as an implicit function of the model
and calculate the gradient with respect to the model parameters via
the implicit function theorem as described in Section 4.1.

policies are not affected by the model approximation error.
However, if the model is imperfect, the inaccuracies can
lead to nuanced effects on the policy performance (Abbad
& Filar, 1992; Manfred, 1987). Several works (Skelton,
1989; Joseph et al., 2013; Lambert et al., 2020) have pointed
out on the objective mismatch in MBRL and demonstrated
that optimization of model likelihood might be unrelated to
optimization of the returns achieved by the agent that uses
the model. For example, accurately predicting individual
pixels of the next state (Kaiser et al., 2019) might be nei-
ther easy nor necessary for decision making. Motivated by
these observations, our paper studies control-oriented model
learning that takes into account how the model is used by
the agent.

While much of the work in control-oriented model learning
has focused on robust or uncertainty-based methods (Lud-
wig & Walters, 1982; Nilim & Ghaoui, 2005; Iyengar, 2005;
Xu & Mannor, 2010; Yu et al., 2020), we propose an al-
gorithm for learning a model that directly optimizes the
expected return using implicit differentiation (Christianson,
1994; Griewank & Walther, 2008). Specifically, we assume
that there exists an implicit function that takes the model as
input and outputs a value function that is a fixed point of the
Bellman optimality operator (Denardo, 1967) induced by
the model. We then calculate the derivatives of the optimal
value function with respect to the model parameters using
the implicit function theorem (IFT), allowing us to form a
differentiable computational graph from model parameters
to the sum of rewards. In reference to (Rust, 1988; Sorg
et al., 2010; Bacon et al., 2019), we call our control-oriented
method optimal model design (OMD).
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Our contributions can be summarized as follows:

• We propose OMD, an end-to-end MBRL method that
optimizes expected returns directly.

• We characterize the set of OMD models in the tabular
case and derive an approximation bound on the optimal
Q-function that is tighter than a likelihood-based one.

• We propose a series of approximations to scale our
approach to non-tabular environments.

• We demonstrate that OMD outperforms likelihood-
based MBRL agents under the model misspecification
in both tabular and non-tabular settings. This finding
suggests that our method should be preferred when we
cannot approximate the true model accurately.

• We empirically demonstrate that models obtained by
OMD can have lower likelihood than a random model
yet generate useful targets for updating the value func-
tion. This finding suggests that likelihood optimization
might be an unnecessary step for MBRL.

2. Related work
Learning control-oriented models. Earlier work in opti-
mal control and econometrics (Skelton, 1989; Rust, 1988)
studied the relation between the model approximation error
and the control performance and noted that true parameter
identification could be suboptimal when the model class is
limited. Joseph et al. (2013) were one of the first to address
the objective mismatch (Lambert et al., 2020) and proposed
an algorithm for training models that maximize the expected
returns using zero-order optimization.

Several papers have proposed model learning approaches
that optimize other return-aware objectives. Farahmand et al.
(2017) train a model to minimize the difference between
values of the real next states and the next states predicted
by the dynamics. Abachi et al. (2020) use the norm of the
difference between policy gradients as the model objective.
D’Oro et al. (2020) use a weighted maximum likelihood
objective where the weights are chosen to minimize the dif-
ference between the true policy gradient and the policy gra-
dient in the MDP induced by the model. Schrittwieser et al.
(2019) use tree search and train models for image-based
states by encoding them into a latent space and predicting
rewards, a policy, and values without reconstruction.

The idea of differentiable planning has also been investi-
gated. Amos et al. (2018) learn a model via differentiating
the KKT conditions in the LQR setting (Dorato et al., 1994).
Tamar et al. (2016) uses a differentiable approximation of
the value iteration algorithm to learn a planner. Amos &
Yarats (2020) optimize the parameters of a sampling distri-
bution in Cross-Entropy Method (Rubinstein, 1997) using a
differentiable approximation of Top-K operation.

Several works have theoretically studied the control-oriented
model learning. Ayoub et al. (2020) derive regret bounds for
models used to predict values. Grimm et al. (2020) introduce
the principle of value equivalence for MBRL defining two
models to be equivalent if they induce the same Bellman
operator.

Our work is closely related to the above papers but proposes
to learn models by directly optimizing the sum of rewards
in an end-to-end manner via gradient-based methods.

Implicit function theorem. Implicit differentiation has
been applied for a variety of bi-level optimization problems.
Lorraine et al. (2020) treat weights of a neural network
as an implicit function of hyperparameters and use IFT to
optimize the hyperparameters. Rajeswaran et al. (2019)
study meta-learning and apply IFT to compute the outer
loop gradient without the need to differentiate through the
inner loop iterations. Instead of treating a neural network
as a sequence of layers that transform an input, Bai et al.
(2019) propose an implicit layer that corresponds to an
infinite depth neural network and find a fixed point of the
layer via IFT. Our method also solves a bi-level problem: in
the inner loop, we train an action-value function compatible
with the model, while in the outer loop we update the model
parameters towards maximizing the expected returns.

3. Preliminaries
Reinforcement Learning (RL) (Sutton & Barto, 2018) meth-
ods follow the Markov Decision Process (MDP) formal-
ism. An MDP is defined asM = (S,A, γ, p, r, ρ0), where
S is a state space, A is an action space, p(s′|s, a) is a
transition probability distribution (often called dynamics),
r(s, a) is a reward function, γ ∈ [0, 1) is a discount fac-
tor, and ρ0(s) is an initial state distribution. The pair (p,
r) is jointly called the true model. The goal of an agent
is to learn a policy π(a|s) that maximizes the expected
discounted sum of rewards J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)].
The performance of the agent following the policy π can also
be quantified using the action value function Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].

Model-based RL algorithms typically train a model (pθ, rθ)
and use it for policy or value learning. Traditional methods
based on Dyna (Sutton, 1991) rely on maximum likelihood
estimation (MLE) of model parameters θ. For example, if
the true model is assumed to be Gaussian with a parameter-
ized mean and a fixed variance, maximizing the likelihood
is equivalent to minimizing the mean squared error of the
prediction, namely, to solving

min
θ

Es,a,s′
[
‖fθ(s, a)− s′‖2

]
,

min
θ

Es,a,r
[
(rθ(s, a)− r)2

]
.

(1)
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4. Optimal Model Design for Tabular MDPs
Consider a modification of the original RL problem state-
ment, which was first proposed by Rust (1988) and revisited
by Bacon et al. (2019). In addition to maximizing the ex-
pected returns J , we introduce a constraint forcing the action
value function Q to satisfy the Bellman equation induced
by the model. The optimization problem becomes

max
Q,θ

J(πQ)

s.t. Q(s, a) = BθQ(s, a) ∀s ∈ S, a ∈ A,

where πQ(a|s) =
expQ(s, a)∑
a′ expQ(s, a′)

.

(2)

Bθ here is the soft Bellman optimality operator with respect
to the model parameters θ:

BθQ(s, a) , rθ(s, a) + γEpθ(s′|s,a) log
∑
a′

expQ(s′, a′).

(3)

We choose the soft Bellman operator with
log
∑
a′ expQ(s′, a′) over the “hard” version with

maxa′ Q(s′, a′) because of the differentiability of log-
sum-exp. We also use a temperature α in softmax and
log-sum-exp but omit it from the expressions for simplicity.
Note that finding a fixed point of the soft Bellman optimality
operator corresponds to solving the MaxEnt RL formulation
(Ziebart et al., 2008), but for a sufficiently small value of α,
the difference is negligible.1

Suppose there exists an implicit function ϕ(θ) = Q∗ that
takes as input a model and outputs a Q-function that satisfies
the constraint in (2). The sequence of transformations from
the model parameters to the agent’s performance can be
described then using the following graph:

θ
ϕ−→ Q∗

exp−−→ πQ∗
act−→ J. (4)

In Section 4.1, we show how ∂ϕ(θ)
∂θ can be calculated using

the implicit function theorem (IFT). Since ∂J(π)
∂π can be

calculated using the policy gradient theorem (Sutton et al.,
1999), we can apply automatic differentiation to calculate
the gradient with respect to θ:

∂J(θ)

∂θ
=
∂J(π)

∂π︸ ︷︷ ︸
PG

· ∂π(Q∗)

∂Q∗︸ ︷︷ ︸
softmax

· ∂ϕ(θ)

∂θ︸ ︷︷ ︸
IFT

. (5)

Given the expression for the gradient of J with respect to
θ, we use an appropriate optimization method to train the

1More details about the soft Bellman operator and MaxEnt RL
could be found in (Levine, 2018).

model. We call the approach optimal model design (OMD).
Note that Dyna-based methods also train the Q-function to
satisfy the constraint in (2) while using the likelihood as the
objective for model parameters θ (Rajeswaran et al., 2020).
In contrast, we train θ to directly optimize the returns.

The optimization problem (2) suggests that OMD is a policy-
based method (Sutton et al., 1999). However, we can turn it
into a value-based approach (Watkins & Dayan, 1992) by
replacing the objective J(πQ) with the Bellman error:

min
Q,θ

Ltrue(Q) ,
∑
s,a

(Q(s, a)−BQ(s, a))
2
,

s.t. Q(s, a) = BθQ(s, a) ∀s ∈ S, a ∈ A,
(6)

where B, similarly to Bθ, is the soft Bellman operator but
induced by the true reward r and dynamics p. We discuss
the relation between the models obtained by solving prob-
lems (2) and (6) in Section 5.1.

While the constraint Q(s, a) = BθQ(s, a) has to be satis-
fied for all state-action pairs limiting the approach to tabular
MDPs, we show an extention to the function approximation
case in Section 6.

4.1. Implicit Differentiation

In this subsection, we state the implicit function theorem
used to calculate ∂ϕ(θ)

∂θ .

Theorem 1. (Cauchy, Implicit Function) Let
f : Θ × W → W be a continuously differentiable
function and (θ̃, w̃) be a point satisfying f(θ̃, w̃) = 0. If
the Jacobian ∂f(θ̃,w̃)

∂w is invertible, then there exists an open
set U ⊆ Θ containing θ̃ and a unique continuously differen-
tiable function ϕ such that ϕ(θ̃) = w̃ and f(θ, ϕ(θ)) = 0
for all θ ∈ U . Moreover,

∂ϕ(θ)

∂θ
= −

(
∂f(θ, w∗)

∂w

)−1

· ∂f(θ, w∗)

∂θ

∣∣∣
w∗=ϕ(θ)

. (7)

We provide a proof in Appendix A. Note that (7) requires
only a final point w∗ satisfying the constraint and does not
require knowledge about ϕ itself. Hence, ϕ can be any
black-box function outputting w∗.

The gradient of the scalar objective J or Ltrue is calculated
using (7). To use backpropagation, we only need to define
the product of a vector and ∂ϕ(θ)

∂θ . We provide an implemen-
tation of a custom vector-Jacobian product for the implicit
function ϕ in Appendix B allowing to use ϕ as a block in
a differentiable computational graph. We provide an im-
plementation of a custom vector-jacobian product for the
implicit function ϕ in Appendix B allowing to use ϕ as a
block in a differentiable computational graph.
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4.2. Benefits under Model Misspecification

In the previous subsection, we showed how to use implicit
differentiation for training a model that aims to maximize
the expected returns. In this subsection, we demonstrate that
such a control-oriented model is preferable over a likelihood-
based in the setting where the true model is not representable
by a chosen parametric class.

Let rθ ∈ R|S|×|A| and pθ(s′|s, a) ∈ R|S|×|S|×|A| be a para-
metric model, where parameters in pθ denote the correspond-
ing logits and each parameter in rθ is a reward for a state-
action pair. We consider a set of parameters {θ : ‖θ‖ ≤ κ}
with the bounded norm and use κ as a measure of the model
misspecification. By decreasing the bound of the norm of
θ, we get a more misspecified model class. To isolate the
model learning aspect, we consider the exact RL setting
without sampling. We take a 2 state, 2 action MDP shown
in Figure 3 with a discount factor γ = 0.9 and a uniform
initial distribution ρ0. For every θ, a function ϕ outputs the
corresponding Q∗ via performing the fixed point iteration
until convergence. Q∗ is transformed into the policy πQ∗ via
softmax with the temperature α = 0.01. We then calculate
J given πQ∗ in a closed form (Sutton & Barto, 2018).

For OMD, we obtain the gradient of J with respect to θ
using the expression (5). We then apply the projected gradi-
ent ascent where after each step we make a projection on a
space of bounded parameters via

θ =

{
κ
‖θ‖θ if ‖θ‖ > κ,

θ if ‖θ‖ ≤ κ
. (8)

Finding an MLE solution corresponds to minimizing the
average KL divergence

DKL(p||pθ) =
1

|S| · |A|
∑
s,a,s′

p(s′|s, a) log
p(s′|s, a)

pθ(s′|s, a)

for optimizing the dynamics pθ and minimizing the squared
error for the reward rθ. We similarly perform the projected
gradient descent and call the agent MLE (even though we
do not use the samples for estimation).

The resulting J as a function of the norm bound κ is shown
in Figure 2. When the true model is not representable by
a chosen class, OMD learns a model that uses its repre-
sentational capacity for helping the agent to maximize the
expected returns, while the MLE agent tries to predict the
next states and rewards accurately while discarding the true
objective function the agent seeks to optimize.

In MDPs with high-dimensional state spaces (Bellemare
et al., 2013; Beattie et al., 2016) where the underlying dy-
namics are complex, having a model that will accurately
predict the next observation might be expensive and unnec-
essary for decision making. Figure 2 reflects the problems
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Figure 2. Expected returns for the tabular MDP under the model
class misspecification. The OMD model optimizes the expected
returns directly, while the MLE agent minimizes the KL divergence
for model learning. OMD outperforms MLE when the model
representational capacity is limited.

an MLE-based model will face for such environments and
provides evidence for using control-oriented models that
leverage the available capacity of the model effectively.

5. Theoretical Analysis
In the previous section, we have empirically demonstrated
that OMD outperforms Dyna-style (Sutton, 1991) MBRL
agents when the model capacity is limited. This section char-
acterizes the set of optimal solutions of OMD and compares
the Q∗ approximation bounds for OMD and MLE agents.

5.1. Optimal Solutions for OMD

We use the principle of value equivalence for
MBRL (Grimm et al., 2020) and argue that value
equivalent models are optimal solutions to (2) and (6).

Definition 1 (Optimal value equivalence). Let Q∗ be an
optimal action-value function for the unconstrained RL
problem. The models with parameters θ and θ′ are Q∗-
equivalent if

BθQ∗(s, a) = Bθ
′
Q∗(s, a) ∀s ∈ S, a ∈ A. (9)

The definition is a slight modification of the value equiv-
alence used in (Grimm et al., 2020): instead of requiring
the Bellman operators to be equal for a set of value func-
tions and policies, we require the equality for a chosen Q∗

only. The subset of models that are Q∗-equivalent forms an
equivalence class ΘQ∗ .

Proposition 1. If we let the soft Bellman operator (3) tem-
perature α → 0 and let θ be any model parameters from
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Figure 3. Two different MDPs with the same optimal Q-function
(a fixed point of the induced Bellman operator). Circles represent
states, tuples are organized as (action, reward, transition probabil-
ity, optimal Q value). Top: the original MDP taken from (Dadashi
et al., 2019). Bottom: an MDP with a trained OMD model.

the equivalence class ΘQ∗ , then (Q∗, θ) is a solution for (2)
and (6).

This property holds by construction. The optimal Q-function
maximizes the objective in the true MDP. As the log-sum-
exp temperature in (3) approaches 0, we recover the “hard”
target in the Bellman optimality operator:

lim
α→0

α log
∑
a′

exp
1

α
Q(s′, a′) = max

a′
Q(s′, a′). (10)

Thus, if we set θ to the true model, Q∗ will satisfy the
Bellman equationQ∗(s, a) = BθQ∗(s, a). But even though
the true model belongs to the equivalence class ΘQ∗ , it
is not identifiable: all models from ΘQ∗ are going to be
indistinguishable for OMD. Seemingly undesirable at first
glance, it allows OMD choosing any model that induces the
same Bellman operator, which is beneficial under the model
misspecification as shown in Section 4.2.

We provide an example of a model that is Q∗-equivalent
with the true model in Figure 3. The model differs sig-
nificantly, demonstrating that the equivalence class ΘQ∗

consists of multiple elements. Moreover, the dynamics
learned by OMD are deterministic, suggesting that OMD
can choose a simpler model that will have the same Q∗ as
the true model. Drawing the connection to the prior work on
state abstractions (Li et al., 2006), the fact that MDPs have
the same optimal action values indicates that the learned
models can be seen as Q∗-irrelevant with respect to a state
abstraction over S.

5.2. Approximation Bound

Our next result relates approximation errors for the optimal
Q-functions under the OMD and MLE models. For sim-
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Figure 4. Q∗ approximation error and tightness of the error bounds
under the model misspecification. Given a limited model represen-
tation capacity, OMD agent approximates Q∗ more accurately and
enjoys a tighter bound.

plicity, we analyze the setting with α→ 0 and the Bellman
error (6) as the objective.
Theorem 2. (Q∗ approximation error) Let Q∗ be the opti-
mal action-value function for the true MDP. Let Q̂OMD and
Q̂MLE be the fixed points of the Bellman optimality opera-
tors for approximate OMD and MLE models respectively.

• If the MLE dynamics p̂ and reward r̂ have the
bounded errors maxs,a ‖p(·|s, a)− p̂(·|s, a)‖1 = εp
and maxs,a |r(s, a)− r̂(s, a)| = εr, and the reward
function is bounded r(s, a) ∈ [0, rmax] ∀s, a, we have

max
s,a

∣∣∣Q∗(s, a)− Q̂MLE(s, a)
∣∣∣ ≤ εr

1− γ
+
γεprmax

2(1− γ)2
;

• If the Bellman optimality operator induced
by the OMD model θ̂ has the bounded error
maxs,a

∣∣∣BQ̂OMD(s, a)−Bθ̂Q̂OMD(s, a)
∣∣∣ = ε, we

have

max
s,a

∣∣∣Q∗(s, a)− Q̂OMD(s, a)
∣∣∣ ≤ ε

1− γ
.

We prove the bounds in Appendix H using similar argu-
ments as the proof of the simulation lemma (Kearns &
Singh, 2002). The MLE bound has a 1

(1−γ)2 term mak-
ing the bound loose compared to the OMD bound with only
the 1

1−γ term. The bound suggests that OMD approxima-
tion error translates into a lower Q∗ approximation error
than for the MLE model. Figure 4 compares empirically the
errors and the tightness of the bounds for a tabular MDP
where Q∗ can be computed exactly. The result provides evi-
dence that OMD indeed achieves a lower Q∗ approximation
error compared to an agent that seeks to estimate p and r
accurately. Motivated by the theoretical findings, the next
section discusses a practical version of OMD.
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6. OMD with Function Approximation
Section 4 describes optimal model design, a non-likelihood-
based method for learning models in tabular MDPs. In this
section, we propose several approximations to make OMD
practically applicable. We analyze the effect of the approxi-
mations and perform an ablation study in Appendix F.

Q-network. We use a neural network with parameters w
to approximate the Q-values. The network is trained to
minimize the Bellman error induced by the model θ:

L(θ, w) , Es,a[Qw(s, a)−BθQw̄(s, a)]2 → min
w
, (11)

where w̄ is a target copy of parameters w updated using
exponential moving average, a standard practice to increase
the stability of deep Q-learning (Mnih et al., 2015). We also
use double Q-learning (Hasselt, 2010; Fujimoto et al., 2018)
but omit it from the equations for simplicity. To estimate
the expectation, we use a replay buffer (Mnih et al., 2015).

Constraint. The constraint in (2) and (6) should be sat-
isfied for all state-action pairs making it impractical for
non-tabular MDPs. We introduce an alternative but similar
constraint, the first-order optimality condition for minimiz-
ing the Bellman error (11):

∂L(θ, w)

∂w
= 0. (12)

We note that the 0 is vector-valued and has the same dimen-
sionality as w.

Implicit differentiation. The process of training θ is bi-
level: in the inner loop, we optimize the Q-function parame-
ters to get optimal w∗ corresponding to a fixed model θ; in
the outer loop, we make a gradient update of θ. We make K
steps of an optimization method to approximate w∗ = ϕ(θ)
where K is a hyperparameter and reuse the weights from
the previous outer loop iterations. We follow Rajeswaran
et al. (2020) and approximate the inverse Jacobian term in
∂ϕ(θ)
∂θ with the identity matrix. Surprisingly, we did not

observe benefits when using the inverse Jacobian term. We
investigate the phenomenon deeper and discuss possible
explanations in Appendix C.

Objective. We consider the problem (6) and use the Bell-
man error as the outer loop objective:

Ltrue(w) , Es,a[Qw(s, a)−BQw̄(s, a)]2, (13)

where B, again, is a soft Bellman operator induced by the
true reward r and dynamics p:

BQw̄(s, a) , r(s, a) + γEp(s′|s,a) log
∑
a′

expQw̄(s′, a′).

Note that the objective (13) is used for estimating the gra-
dient with respect to θ only and w is trained to optimize

Algorithm 1 Model Based RL with OMD
Input: Initial parameters w, θ, empty replay buffer D.
repeat

Set s to be the current state.
Sample an action a using softmax over Qw(s, a).
Apply a to get r = r(s, a), s′ ∼ p(s′|s, a).
Append (s, a, s′, r) to buffer D.
for i = 1 to K do

Sample (s, a) from buffer D.
Apply θ to get r = rθ(s, a), s′ ∼ pθ(s′|s, a).
Update Qw parameters w to minimize L(θ, w).

end for
Update model parameters θ according to (15).

until the maximum number of interactions is reached

L(θ, w). While both Ltrue and J objectives could be used
for training θ, we found that the latter requires more samples
to converge. Note that optimizing the Ltrue still corresponds
to maximizing the (entropy-regularized) expected returns.

Resulting gradient. The changes above in the objective
function and the constraint yield the following optimization
problem:

min
w,θ

Ltrue(w)

s.t.
∂L(θ, w)

∂w
= 0.

(14)

The Q function and IFT approximations and result in the
following gradient with respect to the model parameters:

∂Ltrue(θ)

∂θ
≈ − ∂L

true(w∗)

∂w︸ ︷︷ ︸
grad Bellman

· ∂
2L(θ, w∗)

∂θ∂w︸ ︷︷ ︸
approx IFT

∣∣∣
w∗=ϕ(θ)

(15)

The OMD algorithm is summarised in Algorithm 1. The
only difference between Dyna-based approaches and OMD
(highlighted in blue) is given by the gradient used to train
model parameters θ.

7. Experiments with Function Approximation
This section aims to test the following hypotheses:

• The OMD agent with approximations from Section 6
achieves near-optimal returns.

• The performance of OMD is better compared to MLE
under the model misspecification.

• The parameters θ of the OMD model have low like-
lihood, yet the agent that acts using the Q-function
trained with the model achieves near-optimal returns
in the true MDP.
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Figure 5. The final performance of the agents in CartPole for vary-
ing hidden dimensionality of the model networks. The OMD
model makes useful predictions under the model misspecification.
The error bar is the standard error measured over 10 random seeds.

Setup. We provide full details about the experimental
setup and hyperparameters in Appendix D. We choose Cart-
Pole (Barto et al., 1983) to have controllable experiments
but also include results on MuJoCo HalfCheetah (Todorov
et al., 2012) with similar findings in Appendix G further
supporting our conclusions. Since OMD learns one of the
Q∗-equivalent models as shown in Section 5.1, a close non-
MLE baseline would be the algorithm used in the value
equivalence principle (VEP) paper (Grimm et al., 2020).
The VEP model minimizes the difference between the Bell-
man operators:

`VEP(θ) =
∑
π∈Π

∑
V ∈V

∑
s∈S

(
BπV (s)−BθπV (s)

)2
, (16)

whereBθπV (s) = Ea∼π(a|s),s′∼pθ(s′|s,a) (rθ(s, a) + γV (s′)),
Bπ is the real model counterpart estimated from samples,
and Π and V are predefined sets of policies and value
functions.

Performance under model misspecification. We design
two experiments that allow measuring the misspecification
in isolation. First, we limit the model class representational
capacity by controlling the number of units in hidden layers
of the model. Next, we add distracting states by sampling
noise from a standard gaussian and vary the number of dis-
tractors. Figure 5 and Figure 6 show the returns achieved by
the agents after training in the two regimes. Note that the
Q-function is updated using only the next states and rewards
produced by the model, and even when the hidden dimen-
sionality of the model is 1, the OMD model encodes useful
information for taking optimal actions. Returns achieved by
OMD are also more robust to the distractors indicating that
the MLE focuses on predicting the parts of a state that might
not be relevant for decision making. The relatively poor per-
formance of VEP suggests that learning a model to predict
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Figure 6. The performance when the state space is augmented with
uninformative noise. OMD is more robust as the number of distrac-
tor increases, while VEP fails for any positive number of distrac-
tors. The error bar is the standard error measured over 10 seeds.

values for a fixed set of policies and value functions is not as
effective, especially if some states are non-informative. The
experiments reflect the challenges an MBRL agent will face
in complex domains such as (Bellemare et al., 2013; Beattie
et al., 2016; Kalashnikov et al., 2021): accurately predicting
the next observations can be infeasible because the under-
lying dynamics can be too involved and there might be few
components that are important for taking action. Figures 5
and 6 provide evidence that using control-oriented methods
would allow using the model capacity more effectively.

Likelihood of OMD model. We show the mean squared
error (MSE) of OMD and MLE dynamics predictions in
Figure 7. Quantitatively, the MSE of OMD models is higher
than the MSE of a randomly initialized model, while OMD
achieves higher returns than MLE. This finding suggests
that the dynamics might not need to produce predictions
close to the true states to be useful for planning.

Qualitatively, we visualize individual coordinates of the
predictions under the model misspecification in Figure 8.
We predict the immediate next states given a sequence of
states and actions from an optimal trajectory. We use one
of the runs of the OMD agent with the hidden size 1 that
achieves optimal returns of 500 and observe that Cart Ve-
locity predictions are nearly constant. On the other hand,
an MLE model with the hidden size 1 spends its limited
capacity to predict the fluctuations in Cart Velocity leading
to a significant deterioration in obtained returns.

Overall, these findings suggest that the OMD agent achieves
near-optimal returns, performs better than the MLE-based
MBRL agent as well as VEP under model misspecification,
and learns a model that is useful for control despite having
low likelihood.
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Figure 7. Mean squared error (MSE) of the next state prediction
of OMD and MLE models in CartPole under model misspecifica-
tion (number of hidden units 1 and 3). The shaded region is the
standard error over 10 runs. The corresponding plot with returns
can be found in Appendix E.

8. Discussion and Future Work
An exciting direction for future work is the extension
of OMD to environments with image-based observations
where model misspecification naturally arises. We expect
that for complex visual domains, learning a control-oriented
model should be more effective compared to model-based
methods that rely on reconstruction (Kaiser et al., 2019;
Hafner et al., 2020). Based on Figure 8, we also conjecture
that OMD can learn an abstract model that can ignore parts
of the original state space that are irrelevant for control. This
might allow applying OMD in a zero-shot manner for trans-
fer learning tasks where the underlying dynamics remain
unchanged.

Implicit differentiation is not the only way to solve the
described constrained optimization problems. Other alter-
natives include using Lagrangian methods as proposed for
the tabular case in (Bacon et al., 2019). Since extending the
approach to non-tabular MDPs would require an additional
approximator for Lagrange multipliers, we conjecture that
finding a saddle point is going to be less stable than using
the IFT.

Finally, it is worth theoretically studying the sensitivity
of the IFT to the approximations to the inverse Jacobian
term and the inner loop solutions. Our findings, as well as
findings of (Rajeswaran et al., 2019; 2020; Lorraine et al.,
2020) suggest that there is a gap between the assumptions
of the IFT and its applicability in practice.

9. Conclusion
The paper proposes optimal model design (OMD), a method
for learning control-oriented models that addresses the short-
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Figure 8. Next state predictions of OMD and MLE models with
hidden size 1. The OMD agent discards Cart Velocity and predicts
unrealistic Cart Position but achieves the optimal returns of 500.

comings of likelihood-based MBRL approaches. OMD op-
timizes the expected returns in an end-to-end manner and
alleviates the objective mismatch of standard MBRL meth-
ods that train models using a proxy of the true RL objective.
Theoretically, we characterize the set of optimal solutions to
OMD and illustrate the efficacy of OMD over MLE agents
for approximating optimal value functions. Empirically,
we introduce approximations to apply OMD to non-tabular
environments and demonstrate the improved performance
of OMD in settings with limited model capacity. Perhaps
surprisingly, we find that the OMD model can have low like-
lihood, yet the model is useful for maximizing returns. Over-
all, OMD sheds light on the potential of control-oriented
models for model-based reinforcement learning.
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A. Proof of IFT
The implicit function theorem is a well known result dis-
cussed in, for example, (Krantz & Parks, 2012).
Theorem 1. (Cauchy, Implicit Function) Let
f : Θ × W → W be a continuously differentiable
function and (θ̃, w̃) be a point satisfying f(θ̃, w̃) = 0. If
the Jacobian ∂f(θ̃,w̃)

∂w is invertible, then there exists an open
set U ⊆ Θ containing θ̃ and a unique continuously differen-
tiable function ϕ such that ϕ(θ̃) = w̃ and f(θ, ϕ(θ)) = 0
for all θ ∈ U . Moreover,

∂ϕ(θ)

∂θ
= −

(
∂f(θ, w∗)

∂w

)−1

· ∂f(θ, w∗)

∂θ

∣∣∣
w∗=ϕ(θ)

. (7)

Proof. By the assumption, we have

f(θ, ϕ(θ)) = 0 ∀θ ∈ U.

Taking the total derivative of f with respect to θ, we have

∂f(θ, w∗)

∂θ
+
∂f(θ, w∗)

∂w

∂ϕ(θ)

∂θ

∣∣∣
w∗=ϕ(θ)

= 0.

Rearranging the terms and using the invertibility of the
Jacobian, we get

∂ϕ(θ)

∂θ
= −

(
∂f(θ, w∗)

∂w

)−1

· ∂f(θ, w∗)

∂θ

∣∣∣
w∗=ϕ(θ)

.

The implicit function theorem (IFT) allows differentiating
outputs of black-box functions ϕ(θ) that do not have a
closed (differentiable) form. For example, in Section 4.2,
function ϕ takes as input the parameters of the model and
applies fixed-point iteration until convergence to find the op-
timal value function for the given parameters. This contrasts
implicit differentiation to other meta-learning algorithms
like MAML (Finn et al., 2017) that differentiate through the
iterations of the inner loop procedure.

B. Implicit Differentiation in JAX
We provide an implementation of implicit differentiation in
JAX (Babuschkin et al., 2020; Heek et al., 2020) by adapting
the code from the library for finding fixed points (Gehring
et al., 2019). The implementation requires a solver that takes
parameters θ and an initial w0 as input and outputs ϕ(θ) =
w∗ such that f(θ, w∗) = 0. Then, we define a custom
vector-Jacobian product that allows using ϕ(θ) as a block
in a differentiable computational graph. We highlight the
importance of having an implementation without explicitly
forming the matrices in (7) which is crucial for large-scale
applications. The implementation allows using both the
version with the inverse Jacobian term as well as with the
identity approximation as discussed in Section 6.

import jax.numpy as jnp
from jax import custom_vjp, vjp
from functools import partial
from jax.scipy.sparse.linalg import cg

@partial(custom_vjp, nondiff_argnums=(0, 3))
def root_solve(f, w0, p, solver):

return solver(f, w0, p)

def fwd(f, w0, p, solver):
sol = root_solve(f, w0, p, solver)
return sol, (sol, p)

def rev(f, solver, res, g):
sol, p = res
_, dp_vjp = vjp(lambda y: f(y, sol), p)
if USE_IDENTITY_INVERSE:

vdp = dp_vjp(-g)[0]
else:

_, dsol_vjp = vjp(lambda w: f(p, w), sol)
vdsoli = cg(lambda v: dsol_vjp(v)[0], g)
vdp = dp_vjp(-vdsoli[0])[0]

return jnp.zeros_like(sol), vdp

root_solve.defvjp(fwd, rev)
sol = root_solve(f, w0, p, solver)
# solver returns sol: f(p, sol) = 0
# sol is differentiable w.r.t. p

C. Sensitivity to IFT Approximations
The IFT provides a way to calculate the derivatives of a
black-box function ϕ. The expression (7) is valid under the
assumptions that

1. the inner loop solution w∗ satisfies the equation
f(θ, w∗) = 0 exactly;

2. the Jacobian term ∂f(θ,w∗)
∂w is inverted accurately.

Ensuring both of the conditions can be challenging for large-
scale applications. This appendix analyzes the sensitivity to
the conditions in a controlled manner for the 2-state MDP
from Figure 3, while Appendix F studies the sensitivity
for the function approximation case. At every outer loop
iteration, we calculate the exact w∗, add gaussian noise with
standard deviation σ, and observe the effect on the expected
returns J after the convergence of θ. Figure 9 demonstrates
the results for the exact outer loop gradient ∂ϕ(θ)

∂θ as well as
the gradient using the identity approximation of the inverse
Jacobian term. Surprisingly, we did not observe significant
benefits of using the Jacobian ∂f(θ,w∗)

∂w . We conjecture
that the inverse Jacobian acts like a preconditioner (Boyd
et al., 2004) on ∂ϕ(θ)

∂θ and the preconditioner is useful in
our setting only near the exact inner loop solutions w∗. We
leave the theoretical investigation of the IFT sensitivity as
future work and refer the reader to Lorraine et al. (2020) for
a discussion about approximations of the Jacobian term.
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Figure 9. The expected returns as a function of the inner loop solu-
tions noise magnitude σ. OMD with the true and the approximate
ϕ(θ)
θ

has the same resulting returns as σ increases. The shaded
region is the standard error over 10 runs.

D. Experimental Details
In Section 7, we use CartPole (Barto et al., 1983), an en-
vironment with 2 actions, 4-dimensional continuous state
space, and optimal returns of 500. We train the agents for
200000 environment steps. The temperature α is 0.01. We
sample from the replay buffer with a mini-batch size of 256.
The discount factor γ is 0.99. At each time step during
training, the agent chooses a random action with a proba-
bility of 0.1 for exploration. We have a separate copy of
the environment where we evaluate the agent and take the
average over 10 runs to estimate the returns. We run each
experiment using 10 random seeds.

We set the number of Q-function updates K equal to 1.
For the results with K = 3 and K = 10, see Figure 11.
We highlight that after each outer loop step, weights w are
warm-started using the last iterate of the previous inner
loop (instead of randomly initializing w and training from
scratch). We use Adam optimizer with the learning rate
10−3 for updating θ and perform a hyperparameter sweep
over the learning rate for w in {3 · 10−4, 10−3, 3 · 10−3}.
We make a sweep over the moving average coefficient τ for
the target network w̄ in {0.005, 0.01}. Both of the parame-
ters control how fast the Q-network parameters are updated
relatively to the model parameters. Since the CartPole envi-
ronment is non-stochastic, we use a deterministic dynamics
model. All networks have two hidden layers and ReLU acti-
vations (Nair & Hinton, 2010). For both hidden layers in all
networks, we set the dimensionality to 32. In the experiment
with the limited model class capacity, we vary the hidden
dimensionality in {1, 2, 3, 4, 6, 12} for the dynamics and
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Figure 10. The evaluation returns of OMD and MLE agents in
CartPole under the model misspecification (number of hidden
units 1 and 3). OMD returns are larger than the returns of MLE
even though MLE predicts the next states more accurately. The
shaded region is the standard error over 10 runs.

reward networks to measure how the limitation affects the
agent’s performance. In the experiment with the distractors,
we vary the number of gaussians in {24, 25, 26, 27, 28, 29}
to measure how the uninformative state components affect
the returns.

For the value equivalence principle (VEP) baseline, we
have followed the experimental setup from the original pa-
per (Grimm et al., 2020). Perhaps surprisingly, the authors
find that it suffices to use a set of all deterministic state-
independent policies as Π and 5 random value functions
as V for CartPole (see Appendix A.2.3 in (Grimm et al.,
2020)).

We have used CPU-only nodes of the internal cluster. Each
experiment requires 10 seeds × 3 algorithms × 2 τ ’s × 6
hidden sizes / 6 numbers of distractors × 3 LRs resulting in
2160 total jobs.

E. Returns under Model Misspecification
In Section 7, we demonstrate that OMD models have a
higher mean squared error (MSE) than predictions of a ran-
domly initialized model (Figure 7). We provide the corre-
sponding returns of the OMD and MLE agents in Figure 10.
While the MLE model has more accurate predictions, OMD
achieves higher returns using the next states significantly
deviating from the real next states. The result suggests
that likelihood optimization may be an unnecessary step for
MBRL algorithms.
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Figure 11. The evaluation returns of OMD agents for the varying
number of inner loop stepsK per an outer loop step. The difference
between 1, 3, and 10 is insignificant. The shaded region is the
standard error over 10 runs.

F. Ablation Study
Section 6 introduces a series of approximations to scale the
OMD algorithm to non-tabular environments. We analyze
the effect of the approximations by varying the number
of inner loop steps K, using the inverse Jacobian term,
and using a single Q-function estimator (without double
Q-learning).

Figure 11 shows the (undiscounted) returns for K varying
in {1, 3, 10}. We did not observe significant changes in
performance for different values of K for CartPole. The
result suggests that as long as the Q-network update speed
(which is also controlled by the target update coefficient
τ and learning rates) stays aligned with the model update
speed, adding more inner loop steps is not necessary.

Figure 12 demonstrates the returns without using double Q
learning and without using the identity approximation of the

inverse jacobian term
(
∂f(θ,w∗)

∂w

)−1

. We observed that Q-
functions trained with OMD can be prone to overestimation
of Q-values showing that double Q-learning is important for
OMD. We conjecture that training a model that maximizes
the returns can amplify the overestimation bias (Hasselt,
2010) caused by using (soft) maximized sampled targets.

Surprisingly, we did not observe significant benefits from

using the inverse Jacobian
(
∂f(θ,w∗)

∂w

)−1

. We conjecture
that there are two reasons explaining the phenomenon. First,
the modified constraint in (14) forces the gradient of L(θ, w)
to be zero, implying that the Jacobian is in fact the Hessian
matrix ∂2L(θ,w∗)

∂w2 . Dauphin et al. (2014); Sagun et al. (2017)
observed that Hessians of neural networks tend to be sin-
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Figure 12. The evaluation returns of OMD agents for the default
agent, the agent without double Q learning, and the agent without
the identity approximation of the inverse jacobian. Using two Q
networks increases the returns, while using the inverse jacobian
does not change the performance significantly. The shaded region
is the standard error over 10 runs.

gular. Since a system of linear equations with a singular
matrix has multiple solutions, it is up to a linear algebra
solver to choose the solution. One of the alternatives would
be a min-norm solution corresponding to the Moore-Penrose
pseudoinverse and the solution might not be providing a use-
ful inductive bias for the learning process of θ. Second,
the Jacobian term could be useful only in proximity to the
exact inner loop solution w∗. Since the practical algorithm
performs only K inner loop steps and does not reach the ex-
act w∗, the curvature information provided by the Jacobian
might not be beneficial for training θ.

Finally, we tried to use the gradient constraint in (14) in the
tabular setting. We got similar results as with the constraint
on Q-values in (2) suggesting that the two constraints have
similar effects on the learning process. Overall, the ablation
study provides evidence that OMD is robust to the choice of
the number of inner loop steps and the IFT approximations,
while double Q-learning is the only important algorithmic
modification.

G. Results on HalfCheetah
We provide an additional comparison of OMD and MLE
agents under the model misspecification on MuJoCo
HalfCheetah (Todorov et al., 2012). For both agents, the
inner optimizer is Soft Actor-Critic (SAC) (Haarnoja et al.,
2018a;b) with the default configuration. OMD trains the
model using 15. The MLE agent trains the model with MSE
effectively becoming the MBPO algorithm (Janner et al.,
2019) without having an ensemble of models and learning
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Figure 13. Returns for varying representational capacity of the
OMD and MLE agents on HalfCheetah-v2. Given limited capac-
ity, the OMD model makes more useful predictions. The std is
measured over 5 runs.

the variance of the predictions.

We perform a hyperparameter sweep over the model learn-
ing rate in {10−4, 3·10−4}, over the SAC networks learning
rate in {10−4, 3·10−4}, and overK in {1, 3}. Model hidden
size is 64 for the experiment with distractors.

Figures 13 and 14 summarize the results. Similarly to the
observations on the tabular and CartPole environments, the
experiments provide evidence that OMD should be preferred
over the likelihood-based agent in the model misspecifica-
tion setup.

H. Proof of OMD Bounds
Section 5.2 discusses the bounds on Q∗ approximation error
obtained by the MLE and OMD agents. We first prove a
lemma relating the error of the model approximation and the
Bellman operator approximation. We then prove a theorem
giving a bound on Q∗ error. For simplicity, we focus on
the case with the Bellman error in the true MDP (6) as
the objective function and “hard” versions of the Bellman
optimality operators which are obtained by taking the limit
of the log-sum-exp temperature α → 0. Note that results
for MLE hold for any agent that approximates the reward
and dynamics functions, but we call the agent MLE since it
is a common choice for model parameters estimation.

Notation. We denote p(·|s, a) and Q(·, a) as vectors of
transition probabilities and Q-values for all states in S.
The MLE model is given by (p̂, r̂) and the corresponding
Bellman optimality operator is denoted as B̂Q. To have
a distinction between OMD and MLE, we denote OMD
parameters as θ̂ and the corresponding operator as Bθ̂Q.
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Figure 14. Returns when the state space is augmented with uninfor-
mative noise on HalfCheetah-v2. The OMD agent is more robust
to the distractors. The std is measured over 5 runs.

‖f‖∞ = supx |f(x)| is the infinity norm of a function f . 1
is a vector of an appropriate size with ones as entries.

Lemma 1. (Bellman operator error bound) Let Q be an
action-value function. If the dynamics p̂ and the reward r̂
have the bounded errors maxs,a ‖p(·|s, a)− p̂(·|s, a)‖1 =
εp and maxs,a |r(s, a)− r̂(s, a)| = εr, and the reward func-
tion is bounded r(s, a) ∈ [0, rmax] ∀s, a, we have

∥∥∥BQ− B̂Q∥∥∥
∞
≤ εr +

γεprmax

2(1− γ)
. (17)

Proof. Using the derivations similar to the proof of the
simulation lemma (Jiang, 2018), we obtain for any (s, a)

∣∣∣BQ(s, a)− B̂Q(s, a)
∣∣∣

=

∣∣∣∣∣
(
r(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Q(s′, a′)

)
−(

r̂(s, a) + γ
∑
s′

p̂(s′|s, a) max
a′

Q(s′, a′)

)∣∣∣∣∣
≤ |r(s, a)− r̂(s, a)|+

γ

∣∣∣∣∣∑
s′

(p(s′|s, a)− p̂(s′|s, a)) max
a′

Q(s′, a′)

∣∣∣∣∣
= εr + ∵ p and p̂ are distributions

γ

∣∣∣∣∣∑
s′

(p(s′|s, a)− p̂(s′|s, a))

(
max
a′

Q(s′, a′)− rmax

2(1− γ)

)∣∣∣∣∣
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≤ εr + ∵ Hölder’s inequality

γ ‖p(·|s, a)− p̂(·|s, a))‖1 ·
∥∥∥∥max

a′
Q(·, a′)− rmax

2(1− γ)
1

∥∥∥∥
∞

≤ εr + γεp

∥∥∥∥max
a′

Q(·, a′)− rmax

2(1− γ)
1

∥∥∥∥
∞

≤ εr +
γεprmax

2(1− γ)
∵ 0 ≤ Q(s′, a′) ≤ rmax

1− γ
.

Since the inequalities hold for all state-action pairs, we can
take the maximum over (s, a) and obtain

max
s,a

∣∣∣BQ(s, a)− B̂Q(s, a)
∣∣∣ ≤ εr +

γεprmax

2(1− γ)
.

Theorem 2. (Q∗ approximation error) Let Q∗ be the opti-
mal action-value function for the true MDP. Let Q̂OMD and
Q̂MLE be the fixed points of the Bellman optimality opera-
tors for approximate OMD and MLE models respectively.

• If the MLE dynamics p̂ and reward r̂ have the
bounded errors maxs,a ‖p(·|s, a)− p̂(·|s, a)‖1 = εp
and maxs,a |r(s, a)− r̂(s, a)| = εr, and the reward
function is bounded r(s, a) ∈ [0, rmax] ∀s, a, we have

max
s,a

∣∣∣Q∗(s, a)− Q̂MLE(s, a)
∣∣∣ ≤ εr

1− γ
+
γεprmax

2(1− γ)2
;

• If the Bellman optimality operator induced
by the OMD model θ̂ has the bounded error
maxs,a

∣∣∣BQ̂OMD(s, a)−Bθ̂Q̂OMD(s, a)
∣∣∣ = ε, we

have

max
s,a

∣∣∣Q∗(s, a)− Q̂OMD(s, a)
∣∣∣ ≤ ε

1− γ
.

Proof. (OMD) For all state-action pairs (s, a) we get∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣

=
∣∣∣BQ∗(s, a)−Bθ̂Q̂(s, a)

∣∣∣ ∵ Fixed point

=
∣∣∣BQ∗(s, a)−BQ̂(s, a) +BQ̂(s, a)−Bθ̂Q̂(s, a)

∣∣∣
≤
∣∣∣BQ∗(s, a)−BQ̂(s, a)

∣∣∣+
∣∣∣BQ̂(s, a)−Bθ̂Q̂(s, a)

∣∣∣
≤ ε+

∣∣∣BQ∗(s, a)−BQ̂(s, a)
∣∣∣

= ε+

∣∣∣∣∣
(
r(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Q∗(s′, a′)

)
−(

r(s, a) + γ
∑
s′

p(s′|s, a) max
a′

Q̂(s′, a′)

)∣∣∣∣∣

= ε+ γ

∣∣∣∣∣∑
s′

p(s′|s, a)
(

max
a′

Q∗(s′, a′)−max
a′

Q̂(s′, a′)
)∣∣∣∣∣

≤ ε+ γ ‖p(·|s, a)‖1 ·
∥∥∥max

a′
Q∗(·, a′)−max

a′
Q̂(·, a′)

∥∥∥
∞

≤ ε+ γ
∥∥∥max

a′
Q∗(·, a′)−max

a′
Q̂(·, a′)

∥∥∥
∞

≤ ε+ γmax
a′

∥∥∥Q∗(·, a′)− Q̂(·, a′)
∥∥∥
∞

+

= ε+ γmax
s′,a′

∣∣∣Q∗(s′, a′)− Q̂(s′, a′)
∣∣∣ .

Taking the maximum over (s, a), we get the recursion:

max
s,a

∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣ ≤ ε+ γmax

s,a

∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣

max
s,a

∣∣∣Q∗(s, a)− Q̂(s, a)
∣∣∣ ≤ ε

(1− γ)
.

(MLE) The proof for MLE can be obtained using the same
derivations and additionally using the result of the lemma
bounding the difference between the Bellman operators:

ε = max
s,a

∣∣∣BQ̂MLE(s, a)− B̂Q̂MLE(s, a)
∣∣∣ ≤ εr+ γεprmax

2(1− γ)
.

The last inequality demonstrates that the OMD
bound is tighter. OMD model directly optimizes∣∣∣BQ̂(s, a)− Q̂(s, a)

∣∣∣ =
∣∣∣BQ̂(s, a)−Bθ̂Q̂(s, a)

∣∣∣, while
MLE minimizes εr and εp that only upper bound∣∣∣BQ̂(s, a)− B̂Q̂(s, a)

∣∣∣ as suggested by the lemma. Hence,
given the same budget of representational capacity, OMD
will learn a model that is more helpful for approximating the
optimal Q-function. Finally, Figure 4 empirically supports
our theory showing that both the Q∗ approximation error
and the error-bound gap are smaller for OMD.


