
Offline Model-based Adaptable Policy Learning

Xiong-Hui Chen1, Yang Yu1,3,∗, Qingyang Li2, Fan-Ming Luo1, Zhiwei Qin2,
Wenjie Shang2, Jieping Ye2

1 National Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
2 AI Labs, Didi Chuxing

3 Polixir.ai
chenxh@lamda.nju.edu.cn, yuy@nju.edu.cn, qingyangli@didiglobal.com

luofm@lamda.nju.edu.cn
{qinzhiwei,shangwenjie,yejieping}@didiglobal.com

Abstract

In reinforcement learning, a promising direction to avoid online trial-and-error
costs is learning from an offline dataset. Current offline reinforcement learning
methods commonly learn in the policy space constrained to in-support regions
by the offline dataset, in order to ensure the robustness of the outcome policies.
Such constraints, however, also limit the potential of the outcome policies. In
this paper, to release the potential of offline policy learning, we investigate the
decision-making problems in out-of-support regions directly and propose offline
Model-based Adaptable Policy LEarning (MAPLE). By this approach, instead
of learning in in-support regions, we learn an adaptable policy that can adapt its
behavior in out-of-support regions when deployed. We conduct experiments on
MuJoCo controlling tasks with offline datasets. The results show that the proposed
method can make robust decisions in out-of-support regions and achieve better
performance than SOTA algorithms.

1 Introduction

Recent studies have shown that reinforcement learning (RL) is a promising approach for real-world
applications, e.g., sequential recommendation systems [1, 2, 3, 4] and robotic locomotion skill
learning [5, 6]. However, the trial-and-error of RL in the real world [7] obstructs further applications
in cost-sensitive scenarios [8].

Offline (batch) RL learns a policy within a static dataset collected by a behavior policy without
additional interactions with the environment [8, 9, 10, 11]. Since it avoids costly trial-and-error in
real-world environments, offline RL is a promising way to handle the challenge in cost-sensitive
applications. A significant challenge of offline RL is in answering counterfactual queries, which
asks about how the performance (e.g., Q value) would have been if the agent were to execute an
unseen action sequence, then learning to make optimal decisions based on the performance [8].
Fujimoto et al. [10] have shown that the distributional shift of states and actions, which comes from
the discrepancy between evaluated policies and behavior policies, often leads to large extrapolation
error in value function estimation. In traditional model-free algorithms, the extrapolation error in
value function estimation hurts the generalization performance of the learned policies. Since the
additional samples, which can correct value estimation errors, are unavailable in the offline setting,
the performance of learned policies based on value function is unstable [10].

On the other hand, model-based RL techniques, which learn dynamics models from collected datasets
and learn the value function and policies based on the dynamics models, do not need to estimate

∗Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

the value functions rely on the collected datasets. However, similar challenges occur in dynamics
model approximation. The dynamics model might overfit the limited dataset and suffer extrapolation
errors in regions that behavior policies have not visited, which causes instability of the learned policy
when deployment [12]. Here we call it out-of-support regions. Moreover, in model inference, the
compounding error, that is, the accumulated prediction errors between simulation trajectories and
reality, would be large even if the one-step prediction error is small [13, 14]. Recent studies in offline
model-based RL [12, 15] have made significant progress in MuJoCo tasks [16]. These methods
constrain policy sampling in dynamics models for robust policy learning. By using large penalty [12]
or trajectory truncation [15, 12] in the regions with large prediction uncertainty (uncertainty is a
designed metric to evaluate the confidence of prediction correctness) or compounding error, policy
exploration is constrained in the regions of dynamics models where the predictions are corrected with
high confidence, so as to avoid exploiting regions with risks of large extrapolation error. However,
the constraints on dynamics models lead to a conservative policy learning process, which limits the
potential of leveraging dynamics models: The visits on states and actions in out-of-support regions
are more likely to be inhibited by the constraints, making the learned policy restrict the agent to be in
similar regions as the behavior policy.

From the perspectives of counterfactual queries, we consider that model-based RL is promising
to handle offline RL — ideal reconstructed dynamics models can simulate the transition dataset
without the distributional-shift problem given any policy, and the value function can be estimated
via the “simulated” transition dataset directly. The bottleneck of offline model-based RL comes
from the policy learning in the approximated dynamics model with extrapolation error. In this paper,
instead of learning by tightly constraining policy exploration in in-support regions, we investigate
decision-making in out-of-support regions directly. Finally, we propose a new offline policy learning
framework, offline Model-based Adaptable Policy LEarning (MAPLE), to address the aforementioned
issues. Ideally, MAPLE tries to model all possible transition dynamics in the out-of-support regions.
Then an Adaptable policy is learned to be aware of each case to adapt its behavior to reach optimal
performance. In the practical version of MAPLE, we use an ensemble technique to construct ensemble
dynamics models. To be aware of each case of the transition dynamics and learn an adaptable policy,
we use a meta-learning technique that introduces an extra environment-context extractor structure to
represent dynamics patterns, and the policy adjusts itself according to the environment contexts.

We conduct experiments on the MuJoCo tasks. The results show that the sampling regions for robust
offline policy learning can be extended via constructing transition patterns in out-of-support regions
to cover the real case. The output adaptable policy yields better performance than SOTA algorithms
when deployed. MAPLE gives a new direction to handle the offline policy learning problem in
the dynamics models: Besides constraining on sampling and training dynamics models with better
generalization, we can also model out-of-distribution regions by constructing all possible transition
patterns.

2 Related Work

Reinforcement learning (RL) has shown to be a promising approach to complex real-world decision-
making problems [1, 2, 3, 4]. However, unconstrained online trial-and-error in the training of RL
agents prevents further applications of RL in safety-critical scenarios since it might result in large
economic losses [8, 17, 18, 19]. Many studies propose to overcome the problem by offline (batch)
RL algorithms [20]. Prior works on offline RL are based on model-free algorithms. To overcome
the extrapolation error, which is introduced by the discrepancy between the offline dataset and true
state-action distribution of learned target policies [10], these methods are designed to constrain target
policies to be close to the behavior policies [10, 11, 21], to apply ensemble methods for robust value
function estimation [22], or to re-weight samples in datasets with importance sampling [23]. Most
recent studies have shown that policy learning with an approximated dynamics model has good
potential to take robust actions outside the action distribution of behavior policies [15, 12]. The
challenge comes from the extrapolation error of the dynamics models in out-of-support regions. To
address the issues, these methods learn policies from dynamics models with uncertainty constraints.
Uncertainty is a measure of prediction confidence on next states. The uncertainty is often computed
by the inconsistency in the ensemble dynamics model predictions for each state-action pair. Kidambi
et al. [15] construct terminating states based on a hard threshold on uncertainty, while Yu et al. [12]
use a soft reward penalty to incorporate uncertainty. The penalty constrains policy exploration and

2

In-support region
Learned policies

(a) learn to adapt (MAPLE) (b) learn by constraining

Figure 1: Illustration of MAPLE compared with learning by constraining. The pointed lines represent
the optimal trajectories of the learned policies. There are several policies in MAPLE since the method
learns to adapt to multiple dynamics models. The gray oval represents the in-support region.

optimization to the regions with high consistency for better worst-case performance in the deployment
environment [15, 12].

The difference between the aforementioned model-based methods and MAPLE is shown in Figure 1.
Compared with previous methods [15, 12] learned by constraining (in Figure 1(b)), we learn to adapt
to all possible dynamics transitions in the states in out-of-support regions (in Figure 1(a)).

3 Background and Notation

In the standard RL framework, an agent interacts with an environment governed by a Markov Decision
Process (MDP) [24]. The agent learns a policy π(at|st), which chooses an action at ∈ A given a
particular state st ∈ S , at each time-step t ∈ {0, 1, ..., T}, where T is the trajectory length. S and A
denote the state and action spaces, respectively. The reward function rt = r(st, at) ∈ R evaluates the
immediate performance of the action at given the state st. The goal of RL is to find an optimal policy
π∗ which maximizes the multi-step cumulative discounted reward (i.e., long-term performance).
The objective of RL is maxπ Jρ(π) := Eτ∼p(τ |π,ρ)

[∑T
k=0 γ

krk

]
, where γ is the discount factor,

and p(τ |π, ρ) is the probability of generating a trajectory τ := [s0, a0, ..., aT−1, sT] under the
policy π and a dynamics model ρ(st+1|st, at). In particular, p(τ | π) := d0(s0)

∏T−1
t=0 ρ(st+1 |

st, at)π(at|st), where d0(s0) is the initial state distribution. A common way to find an optimal policy
π∗ is to optimize the policy with gradient ascent along∇Jρ(π) [24, 25].

In the offline RL setting, we are given only a static dataset D = {(si, ai, ri, si+1)} collected by some
unknown policy. The goal is to obtain a policy that maximizes Jρ by only using the static dataset.

4 Method

We argue that in current offline model-based methods, the constraints of sampling to in-support
regions of the dynamics model lead to a conservative policy learning process, limiting the potential
of leveraging dynamics models. In this paper, to relax the constraints on the dynamics model, we
investigate decision-making in out-of-support regions directly.

In this section, we first give a motivating example to show our ideal solution to out-of-support region
decision-making (in Section 4.1). Then, we introduce a practical algorithm of the proposed solution
for complex tasks, based on meta-learning techniques (in Section 4.2 and Section 4.3).

4.1 Decision-Making in Out-of-Support Regions

By rethinking the scheme of offline model-based RL, without loss of generality, we first formulate
the problem as decision-making with a partially known dynamics model (Pak-DM) in a surrogate
objective. In this problem, we have two dynamics models: a target dynamics model ρ and a
partially known dynamics model ρ′, where ρ is the deployment environment in the offline RL setting,
and ρ′ is used to approximate ρ. Due to the bias of data sampling in the offline setting and the

3

limitation on the capacity of the function approximator, only in part of state-action space, we have
ρ′(s′|s, a) = ρ(s′|s, a), while the transitions in other parts of space are uncertain. We call the satisfied
space “accessible space” (a.k.a., in-support regions) and its complement “inaccessible space” (a.k.a.,
out-of-support regions). In this problem, we assume the two subspaces have been predefined in some
ways as in the offline setting (e.g., we can define the space in which an uncertainty quantification is
larger than a threshold as the inaccessible space) and then discuss the decision-making problem in
this setting. Formally, given an accessible space Xa and an inaccessible space Xi, the partially known
dynamics model is defined as:

ρ′(s′|s, a) =

{
ρ(s′|s, a) [s, a] ∈ Xa
Unknown [s, a] ∈ Xi

,

where X denotes the state-action concatenated space for brevity and [s, a] denote a vector concate-
nating s and a. Our objective is to find a policy π∗ to maximize Jρ by only querying the partially
known dynamics model ρ′. If Xi = ∅, that is ρ′(s′|s, a) = ρ(s′|s, a),∀s ∈ S, a ∈ A, the problem
is reduced to a vanilla model-based policy learning problem with an oracle dynamics model. For
simplification, we assume the oracle reward function r is given, but it can also be formulated as a
partially known reward function in a similar way. Now we give an example of a Pak-DM in Figure 2.

A

r(A) = 1

B

α

β

C2

C1

r(C1) = 100

r(C2) = −20

D

Figure 2: An example of a Pak-DM. Each node denotes a state. Here we consider an MDP with finite
state space, including A, B, C1, C2 and D. The directed edges denote the transition process. Here
we consider a one-action transition in all states except for state B. On state B, we have action α and
β, which are denoted as square nodes. By taking α on state B, the state will change to A. However,
the transition after taking β in B is unknown. We use dashed directed edges to denote the possible
transitions. In our formulation, edges to any node are valid. But we just consider the edges from B to
C1 and C2 and omit the edges to A, B, and D for better readability. The reward function r(s) will
give a reward when the agent reaches A, C1 or C2.

In this setting, the model-based policy learning algorithms with constraints ([12, 15]) can be summa-
rized as: finding the optimal policy without reaching inaccessible space. It might output a conservative
policy since it avoids making decisions that might lead agents to out-of-support regions. Taking
Figure 2 as an example, the output policy would be run in the loop of A → B → α → A. It will
avoid taking β on state B. If the real transition is ρ(B, β) = C2, the policy can avoid the penalty
−20 since C2 will not be reached. On the other hand, while ρ(B, β) = C1, the policy would miss
the large bonus 100 in C1.

Our question is, how should we make good decisions in out-of-support regions directly so that we
can make better use of the approximated ρ′ for better performance? We give a new paradigm to solve
the problem which is the ideal implementation version of MAPLE:

1. (Training) Construct a dynamics model set {ρ̂i} via modeling all possible transitions in Xi.
(It is impractical to do that with infinite state space. We will give a practical solution in
Section 4.3);

2. (Training) Learn the optimal policy from each model ρ̂i to form the optimal policy set
{π∗ρ̂i};

3. (Deployment) Initialize a state s0 from the deployment environment ρ;

4. (Deployment) Probe the environment ρ by selecting an action a such that [s, a] ∈ Xi. After
getting the next state s′ = ρ(s′|s, a), store the tuple (s, a, s′) in a memory (e.g., a replay

4

buffer) D. If there is no action a that allows [s, a] ∈ Xi, randomly select a policy from the
policy set to take an action.

5. (Deployment) Reduce the policy set by only keeping the policies whose corresponding
transition model ρ̂i can explain the experiences in the memory: {ρ̂i} ← {ρ | ρ(s′|s, a) =
s′,∀(s, a, s′) ∈ D,∀ρ ∈ {ρ̂i}} and {π∗ρ̂i} ← {π

∗
ρ|ρ ∈ {ρ̂i}};

6. (Deployment) Repeat Step 4 and 5 until the policy set is reduced to a single policy.

In this paradigm, we solve the decision-making problem in out-of-support regions by probing the
uncertainty part of the deployment environment and adapting the policy for the environment. In
Figure 2, the ideal MAPLE solution would construct two dynamics models: ρ̂1 where ρ̂1(B, β) = C1,
and ρ̂2 where ρ̂2(B, β) = C2. Then we learn two optimal policies {π∗ρ1

, π∗ρ2
} for each dynamics

model. At deployment, we first randomly select a policy from the policy set to make decisions. Upon
reaching B for the first time, where the transition on action β is uncertain, we take action β and get
the next state. If the next state is C1, the policy will reduce to π∗ρ̂1

, otherwise to π∗ρ̂2
. Therefore, if

ρ(B, β) = C2, the policy would initially run A → B → β → C2 → D → A and then run in the
loop of A → B → α → A because the latter yields higher rewards. If ρ(B, β) = C1, the policy
would always run in the loop of A→ B → β → C1 → D → A.

We then dive into the performance difference of the two paradigms for decision-making. Formally,
we give Theorem 1 to describe it. The full proof can be found in Appendix A.

Theorem 1 Given a target dynamics model ρ, a policy πa learned by adapting, a policy πc learned
by constraints, and the maximum step Nm taken by πa to probe and reduce the policy set to a single
policy, the performance gap between πa and πc satisfies:

Jρ(πa)− Jρ(πc) ≥ ∆c −∆p − γNm+1Jρ∆
(π∗),

where ∆c denotes the performance gap of the optimal policy π∗ and πc, while ∆p denotes the
performance degradation of MAPLE compared with π∗ because of the phase of probing. Jρ∆(π∗)
denotes the performance degradation of π∗ on the dynamics model ρ caused by different initial state
distribution: Jρ∆(π∗) = Edπ?Nm+1(s)

[V ?(s)] − EdπaNm+1(s)
[V ?(s)], where dπ

?

Nm+1(s) and dπaNm+1(s)

denote the state distribution induced by π? and πa at theNm+1 step and V ∗(s) denotes the expected
long-term rewards of π∗ at state s.

We can see that the performance gain of πa is that it can automatically converge to the optimal policy
after the loop of probing and reducing (i.e., ∆c), while the cost of πa comes from additional probing
on inaccessible space, including less reward getting when probing (i.e., ∆p) and a worse initial state
distribution after probing (i.e., Jρ∆

(π∗)).

Based on Theorem 1, we give the principles for choosing between the paradigms: Firstly, with a
larger performance gap of ∆c, πa can reach a better performance than πc. On the other hand, the
tasks with large penalties on undesired behavior might make ∆p larger, which reduces the overall
performance of πa. Besides, the tasks where sub-optimal behaviors easily lead agents to states with
low value, e.g., unsafe states which are prone to terminate the trajectory, might make Jρ∆

(π∗) large,
which also reduces the overall performance of πa.

4.2 Efficient Decision-Making in Out-of-Support Regions with Meta-learning Techniques

It is computationally inefficient to learn optimal policies independently for each dynamics model
since the policies’ behaviors would be similar in in-support regions. For better efficiency, we introduce
a context-aware adaptable policy, inspired by meta-learning techniques, to represent the set of learned
policies. Here, we first introduce a new notation: the environment-context vector z ∈ Z , where Z
denotes the space of the context vectors. Given a set of dynamics models T := {ρ̂i}, each ρ̂i can
be represented by a vector z. Formally, there is a mapping φ : T → Z . We call φ an environment-
context extractor. The context-aware policy π(a|s, z) takes actions based on the current state s and
the vector of environment-context z of a given environment z = φ(ρ̂), where ρ̂ ∈ T . We define the
optimal environment-context extractor φ∗ to satisfy: ∃πφ∗ ∈ Π,∀ρ̂ ∈ T , Jρ̂(πφ∗) = maxπ Jρ̂(π),
where πφ := π(at|φ(zt|ρt), st) is an adaptable policy and Π denotes the policy class. We discuss
the input of φ later. In addition, we define the optimal adaptable policy π∗φ∗ to be one that satisfies
∀ρ̂ ∈ T , Jρ̂(π∗φ∗) = maxπ Jρ̂(π). With the optimal φ∗ and π∗φ∗ , and given any ρ̂ in T , the adaptable

5

policy can make the best decisions with the output of environment-context z. To achieve this, given a
dynamics model set T , we optimize φ and πφ by the following objective function:

φ∗, π∗φ∗ = arg max
φ,πφ

Eρ∼T [Jρ(πφ)] , (1)

where ∼ denotes a sample strategy to draw dynamics models ρ̂ from the dynamics model set T s.t.
P [ρ̂] > 0,∀ρ̂ ∈ T . We take a uniform sampling strategy in the following analysis.

To learn the context z by φ(z|ρ̂), the main question is: What are suitable inputs to φ for context
learning? In the robotics domain, similar environment contexts have been proposed recently [26, 27,
28]. The policy incorporates an online system identification module φ(zt|st, τ0:t), which utilizes
the history of past states and actions τ0:t = [s0, a0, ..., st−1, at−1, st] to predict the parameters of
the dynamics in simulators. For example, τ could be a trajectory of robot interactions with varying
friction coefficients, and z is the value of the coefficient. In practice, a recurrent neural network (RNN)
is used to embed the sequential information into environment-context vectors zt = φ(st, at−1, zt−1).
In MAPLE, we follow the same structure to model the extractor but the trajectories are rollout in
the constructed dynamics models. If the reward function is also partially known, rt−1 should be
considered, that is zt = φ(st, at−1, rt−1, zt−1).

With an RNN-based environment-context extractor φ optimized with Equation (1), the context-aware
policy π can automatically probe environments and reduce the policy set. Considering a given i-step
partial trajectory τ0:i and a subset of deterministic dynamics models T ′ ⊂ T where the dynamics
model ρ̂ ∈ T ′ is consistent with τ0:i, the objective from i + 1 to T on given τ0:i can be rewritten
as Eρ̂∼T ′ [Eτ∼p(π,ρ̂)[

∑T
k=i+1 γ

krk]]. Since the dynamics models in T ′ are indistinguishable at step
i + 1, the optimal policy at this step would converge to a stochastic policy if the optimal actions
are different among the dynamics models. If ρ̂ is sampled uniformly from T ′ and the optimal
cumulative rewards

∑T
k=i+1 γ

kr∗k are the same for each dynamics model, the optimal policy at i+ 1
is to uniformly-sampled actions from the optimal actions of each dynamics model. If the optimal
cumulative rewards are different, the action probabilities are weighted by the cumulative rewards
of each dynamics model. On the other hand, partial trajectories from different dynamics models
might predict the same z. If the optimal actions in the same state are conflicting, to increase the
performance of objective Equation (1), the policy gradient has to backpropagate from π to φ. If the
partial trajectories τ0:i are different, the contexts in these partial trajectories would be distinctive.
Finally, the output action distribution of the context-aware policy would be optimized in a subset of
the dynamics models in which the partial trajectories τ0:i are consistent.

4.3 Practical Implementation of Offline Model-based Adaptable Policy Learning

From the decision-making problem with Pak-DM to the real offline setting, the additional thing we
should consider is the recognition of the inaccessible space and the construction of the dynamics
model set. Especially in tasks with infinite state-action space, it is impractical to find the exact
inaccessible space and recover all possible transitions in it. As a practical implementation, we use
the ensemble technique to learn the dynamics model set, which would predict similar transitions
in the accessible space and tend to predict different transitions in inaccessible space. With large
ensemble models with different initialized weights, we can construct a large number of transition
cases in the inaccessible space. If the real transition pattern falls into the variant of the ensemble
dynamics model set, relying on the interpolation ability of the environment-context extractor φ, the
adaptable policy π can take appropriate actions. However, only relying on the randomness of the
initialization, to cover real cases in all out-of-support region need sufficiently enough dynamics model
set, which would be highly expensive. In order to trade off the cost of model construction and better
adaptivity, in the practical implementation, we use several tricks to constrain the policy exploration in
the ensemble dynamics model set: 1) We add some mild constraints to the exploration region. To
mitigate the compounding error of the model, we constrain the maximum rollout length to a fixed
number. Besides, at each step, a penalty is calculated according to the model uncertainty U(st, at),
which measures the prediction uncertainty of the learned transition models at (st, at). As a result, a
reward provided to agents consists of two parts: a reward given by a reward function and a penalty
calculated by U(st, at). The constraints are the same as MOPO [12], but the coefficients are more
relaxed; 2) As we increase the rollout length, the large compounding error might lead the agent to
reach entirely unreal regions in which the states would never appear in the deployment environment.
These samples are useless for adaptable policy learning and might make the training process unstable.

6

Algorithm 1 Offline model-based adaptable policy learning

Input: φϕ as an environment-context extractor, parameterized by ϕ; Adaptable policy network πθ
parameterized by θ; Offline dataset Doff; Trajectory termination rule f ; Rollout horizon H;
Process:

Generate an ensemble of m dynamics models {ρ̂i} via supervised learning
Initialize an empty buffer Drollout; Add hidden states z to each tuple in Drollout and initialize with 0
for 1, 2, 3, ... do

Randomly select the dynamics model ρ̂i in {ρ̂i} and sample s1, a0, z0 from Doff
for t=1, 2 , ..., H do

Sample zt from φϕ(z|st, at−1, zt−1) and then sample at from πθ(a|st, zt)
Rollout one step st+1 ∼ ρ̂i(s|st, at) and rt+1 = r(st, at)
Compute the terminal state dt+1 = f(st+1)
Compute the reward penalty: rt+1 ← rt+1 − λU(st, at)
Add (st+1, rt+1, dt+1, st, at, zt) to Drollout
Break the rollout if dt+1 is True

end for
Update the stored hidden states z in Doff with φϕ
Use SAC [29] to update ϕ and θ via Equation (1) with Drollout and Doff

end for

Given a task, we can construct some simple rules to discriminate the entirely unreal regions and
terminate the trajectory rollout (i.e., set the “done” flag to True) when reaching these regions. In
our implementation, we terminate trajectories when the predicted next states are out of range of
(−smin, smax), where smin and smax are two hyper-parameters to define a reasonable range of state
space.

Based on the above techniques, we propose the practical implementation of offline model-based
adaptable policy learning in Algorithm 1. More details can be found in the Appendix D.

5 Experiments

We evaluate MAPLE on multiple offline MuJoCo tasks [16]. All the details of MAPLE’s training and
evaluation are given in Appendix E and Appendix F. We release our code at Github 2.

5.1 Comparative Evaluation on Benchmark Tasks

Table 1: Results on MuJoCo tasks. Each number is the normalized score proposed by Fu et al. [30]
of the policy at the last iteration of training, ± standard deviation. Among the offline RL methods,
we bold the highest mean for each task.

Environment Dataset MAPLE MOPO MOPO-loose SAC BEAR BC BRAC-v CQL

Walker2d random 21.7 ± 0.3 13.6 ± 2.6 8.0 ± 5.4 4.1 6.7 9.8 0.5 7.0
Walker2d medium 56.3 ± 10.6 11.8 ± 19.3 32.6 ± 18.0 0.9 33.2 6.6 81.3 79.2
Walker2d mixed 76.7 ± 3.8 39.0 ± 9.6 35.7 ± 2.2 3.5 25.3 11.3 0.4 26.7
Walker2d med-expert 73.8 ± 8.0 44.6 ± 12.9 66.7 ± 14.8 -0.1 26.0 6.4 66.6 111.0
HalfCheetah random 38.4 ± 1.3 35.4 ± 1.5 35.4 ± 2.1 30.5 25.5 2.1 28.1 35.4
HalfCheetah medium 50.4 ± 1.9 42.3 ± 1.6 44.0 ± 1.6 -4.3 38.6 36.1 45.5 44.4
HalfCheetah mixed 59.0 ± 0.6 53.1 ± 2.0 36.9 ± 15.0 -2.4 36.2 38.4 45.9 46.2
HalfCheetah med-expert 63.5 ± 6.5 63.3 ± 38.0 15.0 ± 6.0 1.8 51.7 35.8 45.3 62.4
Hopper random 10.6 ± 0.1 11.7 ± 0.4 10.6 ± 0.6 11.3 9.5 1.6 12.0 10.8
Hopper medium 21.1 ± 1.2 28.0 ± 12.4 16.9 ± 2.4 0.8 47.6 29.0 32.3 58.0
Hopper mixed 87.5 ± 10.8 67.5 ± 24.7 83.1 ± 6.5 1.9 10.8 11.8 0.9 48.6
Hopper med-expert 42.5 ± 4.1 23.7 ± 6.0 25.1 ± 1.8 1.6 4.0 111.9 0.8 98.7

We test MAPLE in standard offline RL tasks with D4RL datasets [30]. The ensemble dynamics
model set is trained via supervised learning. We repeat each task with three random seeds. In the

2https://github.com/xionghuichen/MAPLE

7

https://github.com/xionghuichen/MAPLE

model learning stage, we train 20 models for each task and select 14 of them as the ensemble model
for policy learning. The horizon H is set to 10 in these tasks. The policy is trained for 1000 iterations
in the policy learning stage.

We compare MAPLE with: (1) MOPO: Learn an ensemble model via supervised learning and learn a
policy in the ensemble models with uncertainty penalty [12]; (2) MOPO-loose: MOPO algorithm
with the same hyperparameter as MAPLE for constraints, which is looser than MOPO; (3) BEAR:
Learn a policy via off-policy RL while constraining the maximum mean discrepancy of the current
policy to the behavior policy [11]; (4) BC: Imitate the behavior policy via supervised learning; (5)
SAC: Perform typical SAC updates with the static dataset [29]; (6) BRAC-v: A behavior-regularized
actor-critic proposed by Wu et al. [21]; (7) CQL: Learn an action-value function with regularization
to obtain a conservative policy [31]. Results of (3-7) and (1) are taken from the work of [30] and [12].

Table 1 has shown the performance of 12 tasks. In summary, the performance of MAPLE on 7 tasks
is better than other SOTA algorithms. Besides, MAPLE reaches the best performance among the
SOTA model-based conservative policy learning algorithms in 10 out of the 12 tasks. These results
demonstrate the superior generalization ability of MAPLE.

We can also find that the performance of MAPLE and MOPO are higher than other model-free
baseline algorithms in most of the tasks, which reveals that model-based methods can find better
policies by taking actions outside of the action distribution of the behavior policies. However, in
Hopper experiments, model-free methods BC, CQL, and BRAC-v often reach better performance. We
consider that it is because the environment is unstable, more diverse collected data is needed for robust
dynamics model learning. Even in MAPLE, a finite number of ensemble dynamics models might not
cover the real case so that to make a robust adaptation. Therefore, only in the “Hopper-mixed” task,
which has diverse collected data, MOPO and MAPLE can improve the deployment performance.

We also conduct MOPO-loose for each task, which shares the same hyper-parameters with MAPLE,
including the ensemble model size, rollout length, and penalty coefficient. The results show that
for some cases (e.g., Walker2d-med-expert and Hopper-mixed), MOPO-loose can also enhance the
performance. We consider the improvement coming from the constraints in original implementations
to be too tight. However, in most of the tasks, the improvement is not as significant as MAPLE. This
phenomenon indicates that the improvement of MAPLE does not come from parameter tuning but
our self-adaptation mechanism.

The implementation of MAPLE shares the cross-domain idea with meta-RL, particularly domain
randomization and sim2real. In the current implementation, the online system identification (OSI)
method in meta RL is employed [26, 27, 28]. Other techniques, e.g., VariBAD [32], can also be
integrated into MAPLE. We construct another variant of MAPLE, i.e., VariBAD-MAPLE, as another
implementation. VariBAD-MAPLE can also reach a significantly better performance than MOPO.
Compared with the original implementation of MAPLE, VariBAD-MAPLE can do better than
MAPLE in Walker2d-medium and HalfCheetah-random but worse than MAPLE in Walker2d-mixed
and HalfCheetah-mixed. The detailed results can be found in Appendix F.6.

5.2 Analysis of MAPLE

0 200 400 600 800 1000
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

no
rm

al
ize

d
re

tu
rn

m=100 H=10
m=200 H=10
m=50 H=10
m=7 H=10
MOPO

(a) H=10

0 200 400 600 800 1000
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

no
rm

al
ize

d
re

tu
rn

m=100 H=20
m=200 H=20
m=50 H=20
m=7 H=20
MOPO

(b) H=20

0 200 400 600 800 1000
epochs

0.0

0.2

0.4

0.6

0.8

no
rm

al
ize

d
re

tu
rn

m=100 H=40
m=200 H=40
m=50 H=40
m=7 H=40
MOPO

(c) H=40

Figure 3: The learning curves of MAPLE with different hyper-parameters m and H . The solid curves
are the mean of normalized return and the shadow is the standard error.

8

10 15 20 25 30 35 40
horizon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
in

ed
 o

ne
-s

te
p

re
w

trained one-step rew

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

de
pl

oy
ed

 n
or

m
al

ize
d

re
w

deployed normalized rew

Figure 4: A Comparison of
trained and deployed rewards at
the 1000th epoch based on m =
50 and among different H .

The ultimate target of MAPLE is handling the decision-making
challenge in out-of-support regions. By constructing all possible
transitions in out-of-support regions, the probing-reducing loop
can find the optimal policy finally. However, it is impractical to
construct a dynamics model set that covers all possible transitions
in out-of-support regions. In practice, we construct an ensemble
dynamics model set and use loose constraints on policy sam-
pling to expand the exploration boundary for better asymptotic
performance. Therefore, with a larger size of the model set, the
dynamics models can cover more real transitions in out-of-support
regions, then MAPLE is expected to have better performances by
relaxing the constraints. In this section, to verify the argument,
we analyze the relationship among constraint degree, the size of
ensemble models, and the asymptotic performance.

In MAPLE, the constraint degree can be evaluated by the rollout
length (H) or the reward penalty coefficient (λ); The size of ensemble models is m; The asymptotic
performance is evaluated by the cumulative rewards at the 1000th iteration. We select Walker2d-
medium to verify the argument. With the fixed λ, we compare the asymptotic performance of different
H and m.

We give the results in Figure 3. Firstly, for all H , by increasing the size of m, the performance of
the converged policies is improved. On the other hand, without enough ensemble models, too loose
constraints will result in worse performance. In particular, for the setting of m = 50, when H = 10,
the final normalized return is near 0.7. However, as H increases, the asymptotic performance drops
gradually. When H = 40, the asymptotic performance is even worse than MOPO. As can be seen
in Figure 4, the trained one-step reward is similar among different horizons. It means that the
performance of policies in dynamics models is similar. The worse performance indicates that the
adaptable policy overfits the finite dynamics models and φ fails to infer a correct environment-context
to the adaptable policy when deployed. The issue can be remedied by constructing more dynamics
models. As depicted in Figure 3(c), by increasing the model size to 200, the asymptotic performance
recovers around 80%.

We also conducted additional experiments in Walker2d-mixed and HalfCheetah-mixed to visualize
the z. The result reveals that different dynamics models are distinguished by z and are approximated
divided into several groups. Besides, we sample trajectories for 1000 time-step in the deployment
environment. we found that the value of Z oscillated within a region. The detailed results can be
found in Appendix F.5.

5.3 MAPLE with large dynamics model set

Table 2: Results on MuJoCo tasks with MAPLE-200.

Environment Dataset MAPLE-200 MAPLE

Walker2d random 22.1 ± 0.1 21.7 ± 0.3
Walker2d medium 81.3 ± 0.1 56.3 ± 10.6
Walker2d mixed 75.4 ± 0.9 76.7 ± 3.8
Walker2d med-expert 107.0 ± 0.8 73.8 ± 8.0
HalfCheetah random 41.5 ± 3.6 38.4 ± 1.3
HalfCheetah medium 48.5 ± 1.4 50.4 ± 1.9
HalfCheetah mixed 69.5 ± 0.2 59.0 ± 0.6
HalfCheetah med-expert 55.4 ± 3.2 63.5 ± 6.5
Hopper random 10.7 ± 0.2 10.6 ± 0.1
Hopper medium 44.1 ± 2.6 21.1 ± 1.2
Hopper mixed 85.0 ± 1.0 87.5 ± 10.8
Hopper med-expert 95.3 ± 7.3 42.5 ± 4.1

Based on the above analysis, we can
get an empirical conclusion that in-
creasing the model size is signifi-
cantly helpful to find a better and
robust adaptable policy via expand-
ing the exploration boundary. There-
fore, we conduct another variant of
the MAPLE algorithm, MAPLE-200,
which uses 200 ensemble dynamics
models for policy learning and ex-
pands the rollout horizon to 20.

The results of MAPLE-200 can be
found in Table 2. We can see that
the empirical conclusions not only suit
the Walker2d-medium but also other
tasks. In all of the tasks, MAPLE-200
reaches at least similar performance to

MAPLE. In the tasks like Walker2d-med-expert, HalfCheetah-mixed, Hopper-medium, and Hopper-
med-expert, the performance improvement of MAPLE-200 is significant. Besides, in the tasks of

9

Hopper-medium and Hopper-med-expert, where MAPLE and MOPO fail to reach a comparable
performance to model-free offline methods, MAPLE-200 can reach similar or much better results.

MAPLE-200 demonstrates a powerful adaptation ability. However, we point out that, by increasing
the 10x size of ensemble dynamics models, the time overhead for MAPLE-200 training is also larger.
For example, by using NVIDIA Tesla P40 and Xeon(R) E5-2630 to train the algorithms, the time
overhead of MAPLE-200 is 10 times longer than MAPLE. Besides, to obtain dynamics models that
covered more real cases in out-of-support regions than MAPLE-200, the size of ensemble models
becomes much larger, which is one of the limitations for current MAPLE implementation.

6 Discussion and Future Work

Prior work has demonstrated the feasibility of model-based policy learning in the offline setting
by using the conservative policy learning paradigm [12, 15]. It is an important breakthrough from
zero to one in the offline setting, but it is far from the end of offline model-based policy learning.
In this work, we investigate the decision-making problems in out-of-support regions directly. We
first formulate the problem as decision-making in Pak-DM and propose MAPLE, a learn-to-adapt
paradigm to solve the problem. We also give a theorem to describe the pros and cons of the paradigms
to give us principles for the paradigm selection. We verified MAPLE in the MuJoCo tasks, and get
our empirical conclusion: by increasing the size of the model set, we can expand the exploration
boundary in the approximated dynamics models by using adaptable policy to make better and robust
decisions in deployment environments.

MAPLE gives another direction to handle the offline model-based learning problem: Besides con-
straining on sampling and training dynamics models with better generalization, we can model
out-of-distribution regions by constructing all possible transition patterns. The current limitation lies
in the implementation: (1) The extractor’s generalization ability depends on the neural network itself,
which is uncontrollable to some degree. Adding some auxiliary tasks might handle this issue; (2)
Ensemble is the direct way to cover real transitions in out-of-support regions. However, as the size
of the model set becomes large, it is hard to generate new different dynamics models to cover the
real cases only by increasing the size of the model. More efficient ways to increase the cover real
transitions of the dynamics model set should be further explored.

Acknowledgements

This work is supported by the National Key Research and Development Program of China
(2020AAA0107200) and the NSFC (61876077). We thank Zheng-Mao Zhu, Shengyi Jiang, Rong-Jun
Qin, Yu-Ren Liu, and the anonymous reviewers for their useful suggestions on the papers.

References
[1] Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A reinforcement

learning framework for explainable recommendation. In 2018 IEEE International Conference
on Data Mining, pages 587–596. IEEE, 2018.

[2] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin. Recom-
mendations with negative feedback via pairwise deep reinforcement learning. In Proceedings of
the 24th. ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1040–1048, London, UK, 2018.

[3] Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiaobing Liu, Xiwang Yang, and Jiliang
Tang. Deep reinforcement learning for online advertising in recommender systems. CoRR,
abs/1909.03602, 2019.

[4] Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and Defeng Guo.
Real-time bidding by reinforcement learning in display advertising. In Proceedings of the 10th.
ACM International Conference on Web Search and Data Mining, Cambridge, United Kingdom,
2017.

10

[5] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey
Levine. Learning agile robotic locomotion skills by imitating animals. CoRR, abs/2004.00784,
2020.

[6] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic
algorithms and applications. CoRR, abs/1812.05905, 2018.

[7] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research, 37(4-5):421–436, 2018.

[8] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

[9] Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin A. Riedmiller. Keep doing
what worked: Behavior modelling priors for offline reinforcement learning. In Proceeding of
the 8th. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.

[10] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In Proceedings of the 36th. International Conference on Machine Learning,
Long Beach, CA, 2019.

[11] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, Vancouver, Canada, 2019.

[12] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: model-based offline policy optimization. CoRR, abs/2005.13239,
2020.

[13] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 12498–12509, 2019.

[14] Stéphane Ross and Drew Bagnell. Agnostic system identification for model-based reinforcement
learning. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh,
UK, 2012.

[15] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL :
Model-based offline reinforcement learning. CoRR, abs/2005.05951, 2020.

[16] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In Proceedings of the 24th. IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033, Vilamoura, Portugal, 2012.

[17] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon
Dollé. Offline A/B testing for recommender systems. In Yi Chang, Chengxiang Zhai, Yan Liu,
and Yoelle Maarek, editors, Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 198–206. ACM, 2018.

[18] Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh. Personalized ad
recommendation systems for life-time value optimization with guarantees. In Proceedings of
the 25th. International Joint Conference on Artificial Intelligence, pages 1806–1812, Buenos
Aires, Argentina, 2015. AAAI Press.

11

[19] Philip S. Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Durugkar, and
Emma Brunskill. Predictive off-policy policy evaluation for nonstationary decision problems,
with applications to digital marketing. In Satinder P. Singh and Shaul Markovitch, editors,
Proceedings of the 31st. AAAI Conference on Artificial Intelligence, pages 4740–4745, CA,
USA, 2017. AAAI Press.

[20] Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In
Marco A. Wiering and Martijn van Otterlo, editors, Reinforcement Learning, volume 12 of
Adaptation, Learning, and Optimization, pages 45–73. Springer, 2012.

[21] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. CoRR, abs/1911.11361, 2019.

[22] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. International Conference on Machine Learning, 2020.

[23] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. CoRR, abs/1904.08473, 2019.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018.

[25] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems 12, pages 1057–1063, Denver, Colorado, 1999.

[26] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real
transfer of robotic control with dynamics randomization. In Proceedings of the 35th. IEEE
International Conference on Robotics and Automation, pages 1–8, Brisbane, Australia, 2018.

[27] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.

[28] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a univer-
sal policy with online system identification. In Nancy M. Amato, Siddhartha S. Srinivasa, Nora
Ayanian, and Scott Kuindersma, editors, Robotics: Science and Systems XIII, Massachusetts
Institute of Technology, , July 12-16, 2017, Cambridge, MA, 2017.

[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th. International Conference on Machine Learning, pages 1856–1865, Stockholmsmässan,
Sweden, 2018.

[30] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for
deep data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

[31] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for
offline reinforcement learning. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems, 2020.

[32] Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja
Hofmann, and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL
via meta-learning. In 8th International Conference on Learning Representations, Addis Ababa,
Ethiopia, 2020.

12

	Introduction
	Related Work
	Background and Notation
	Method
	Decision-Making in Out-of-Support Regions
	Efficient Decision-Making in Out-of-Support Regions with Meta-learning Techniques
	Practical Implementation of Offline Model-based Adaptable Policy Learning

	Experiments
	Comparative Evaluation on Benchmark Tasks
	Analysis of MAPLE
	MAPLE with large dynamics model set

	Discussion and Future Work

