Influence Functions for Preference Dataset Pruning

Daniel Fein Gabriela Aranguiz-Dias
Stanford University Stanford University
drfein@stanford.edu gadias@stanford.edu
Abstract

Language models are commonly fine-tuned via reinforcement learning to alter
their behavior or elicit new capabilities. Datasets used for these purposes, and
particularly human preference datasets, are often noisy. The relatively small size
post-training datasets, combined with parameter-efficient fine-tuning methods,
enable the use of influence functions approximations to detect and prune training
examples that are harmful to performance on a validation set. In this work, we
adapt the TL;DR dataset for reward model training to demonstrate how conjugate-
gradient approximated influence functions can be used to filter datasets. In our
experiments, influence function filtering yields a small retraining accuracy uplift
of 1.5% after removing 10% of training examples. We also show that gradient
similarity outperforms influence functions for detecting helpful training examples.
This suggests that local curvature is important for detecting harmful training
examples, but less so for identifying helpful examples.

1 Introduction

Influence functions are powerful tools for understanding how specific data affect the behavior of
neural networks trained via gradient descent [Koh and Liang, 2017]. However, their practicality
for language models is encumbered by their reliance on the inverse-hessian with respect to model
parameters. The large scale of language models, both in terms of parameter count and training
data, thus poses a challenge for influence-function based data attribution on the scale of pre-training.
Despite this, approximations of the inverse hessian used at scale have demonstrated the power of
influence functions to reveal insights into how language models make use of their training data Grosse
et al. [2023].

Recently, the post-training paradigm has proven crucial for controlling the behavior of language
models both with respect to helpfulness and harmlessness as well as math and coding abilities [Bai
et al., 2022b, Zelikman et al., 2022]. Meanwhile, techniques for parameter-efficient fine-tuning such
as Low-Rank Adaptation enable this post-training to be done via training of relatively few model
parameters Hu et al. [2022]. The outsized effectiveness of this much less computationally-expensive
training warrants a new investigation into influence functions for understanding the relationship
between data and model behavior.

Turning specifically to the task of human preference modeling, it is estimated that 20-40% of training
data used to align language models with human preferences is noisy [Gao et al., 2024]. Influence
functions have been used to reduce the size of training sets for computer vision tasks [Yang et al.,
2023], but have not yet been applied to language model data curation.

In this work, we demonstrate how influence functions approximated via the conjugate gradient
method may help create stronger reward models via filtering out of noisy examples.

2 Related Works

Influence Function Approximation Martens et al. [2010] first approximated the hessian of deep
networks using the conjugate gradient method,and Koh and Liang [2017] applied this to influence
functions. Kwon et al. [2023] and Grosse et al. [2023] propose algorithms that efficiently approximate
the conjugate gradient method, and apply them to LoR A-finetuned and pretrained language models,
respectively. They do not evaluate the conjugate gradient method for data curation, nor do they
consider the task of preference modeling.

RLHF and Data Curation Stiennon et al. [2020] showed that a language model could be taught to
generate better summaries using human feedback in the form of pairwise preferences. We use the
TL;DR dataset they provide. Bai et al. [2022a] post-trained a language model to align it’s behavior
to be helpful and harmless. Morimura et al. [2024] and Gao et al. [2024] point out and attempt to
address low data quality for preference data. The former does this by proposing a framework for data
collection, the latter by proposing filtering based on trained reward-model logits.

3 Methods

3.1 Task and Data

We study the human—preference reward—modeling task introduced by Bai et al. [2022b] on the public
TL;DR dataset released by OpenAlL' Each training example is a chosen and a rejected summary of
the same news article, labeled by crowd workers. Following common practice, we cast the task as a
Bradley-Terry pairwise—ranking problem: the reward model fy should assign a higher scalar reward
to the chosen summary than to its rejected counterpart.

Dataset modification. In order to make the problem tractable under a very tight computation budget,
we filter out all examples for which both summaries are longer than 24 tokens Llama3 tokens, and
discard the original post text, using only summary preferences and summaries themselves. This leaves
us with roughly 8.5k examples total. For influence estimation we sample |Dy,| = 100 validation
pairs uniformly at random from the held-out validation set. All remaining validation data serve as an
untouched test set for final evaluation.

3.2 Base Model and Fine-tuning Setup

Our base model is LLaMA-3.2-1B. We apply Low-Rank Adaptation (LORA; Hu et al., 2022) with
rank r=8, a=16 and dropout 0.05 to the projection matrices {q, k,v,0}. Fine-tuning uses the
AdamW optimiser (8;=0.9, £,=0.98, e=10"") for three epochs, batch size 124 and learning rate
1 x 1075 with cosine decay. Only LoRA parameters (=~ 0.12% of total weights) are updated.

3.3 Influence-Function Approximation

The goal is to estimate, for every training example z; and validation example z;, the classical influence
value Zip(2;, 25) = —VgL(zj)TH51V9L(zi), where Hy is the Hessian of the total training loss.
Instead of inverting a billion-dimensional Hessian, we study only the LoRA adapter weights. These
account for 0.12% of all parameters yet dominate post-training behavior.

Computing H,, 'V L(z;) is equivalent to solving the linear system (Hy + \) z = g; with g; :=
VoL(z;), where we add Tikhonov damping A=10"2 to guarantee positive definiteness. This linear
system is the first-order optimality condition of the strictly convex quadratic min,cga % T (Hy +

Az — gJTx To computing an HVP without forming Hy, we use the double-back-prop trick
[Pearlmutter, 1994]. We average the operation over a mini-batch of || = 20 training examples.

3.4 Evaluation

Let Z(z;) = ﬁ szepva] Ti(2;, z;) denote the mean influence of a training example across

validation points. We rank all z; € Dy, by I (z;) and drop the worst 2% examples. After pruning,

'https://github.com/openai/summarize-from-feedback

https://github.com/openai/summarize-from-feedback

Algorithm 1 Influence computation in the LoORA parameter space

Require: LoRA-tuned model fy; training set Dy.in; validation set Dy, ; damping A; batch size B;
CG iteration budget K

1: for all z; € Dy, do

2 gj — V()L(Z])

3 Tj =0 é—gppr

4 for k =1to K do

5: B + sample B elements from Dy,
6: h ‘—}3'2%63 V2L(z)p+ Ap
7 o< <<p:h>>

8: T; < x; +ap

9: Thew < T — ah

10: if || 7new|| < € then

11: break

12: end if

13: B Lo Toe)

14: P Thew + Bp

15: T 4= Thew

16: end for

17: x; < detach(z;)

18: for all z; € local_shard(Dy;,) do
19: gi < V@L(zi)
20: I(Ziazj) < _<‘Tj7 gz)
21: end for
22: end for

23: return Z collected on rank 0

Excluding Most Helpful Examples Excluding Most Harmful Examples
07 - I I I I ﬂ [I I I
R S 2 W o7
Q) ¢ ® Q °
s .] o g 0.68| ? -
= s SO ? T O S,
3 0.6 - . 3 0.66 - 3 . |
<t ° < . A)
g 5 0.641 3
= 0.5 - (H
| | | | | | 062 L [[[[[]
0) 10 15 20 25 30 0) 10 15 20 25 30
Percentage Excluded Percentage Excluded
------- No Exclusion (Baseline) —e— Influence —— Gradient Similarity Random ‘

Figure 1: Test accuracy after excluding training examples. Left: removing the most helpful examples.
Right: removing the most harmful ones. Vertical bars show 95% Wald Interval.

we retrain the reward model from the original checkpoint under the identical hyper-parameter
schedule. We report pairwise accuracy on the untouched test split. We use two baselines. The first is
random removal of x% of training examples. The second is gradient similarity, a first-order influence
approximation that presumes the Hessian to be the identity Dhaliwal and Shintre [2018].

4 Results

Figure 1 shows that influence-based filtering improves performance by 1.5% above finetuning on the
entire dataset when 10% of examples are pruned. Accuracy gains are not statistically significant, but
influence-pruning does outperform other pruning techniques at 10% exclusion. Gradient similarity
performs similarly to random pruning for harmful examples.

Detailed Ranking Correlation Analysis Top-K vs Bottom-K Ranking Agreement

! %3 03[m@m Top-K ("Worst" Agreement) .
7000 ‘L ot yor BotiomK (" reement) /
Pearson t 5,
/// 07 Random .
6000 o /
? .
~ ol 06 -—

o 5000 %5 B
H 3 05 !
2 .’ H
2 4000 oF g
2 os @ ° o, /
z p 5, 04 —)
£ J E o)
7 5
2 3000 v H /
5 7% 03 * |
& R p
S -3 Y,

2000) /

02 /
X "’
-7 P
£ x
1000 Ay o1 -
- "
-
20 et
0 = 0.0 " - - -

0 1000 2000 3000 4000 5000 6000 7000 1 ()‘ 10° : IU’
Influence Ranking K Examples

Figure 2: Left: Rank correlation between Influence and Gradient Similarity Rankings (lower ranks
represent worse examples). Right: Ranking agreement between gradient similarity and influence
function approaches for top/bottom k examples.

Interestingly, gradient similarity outperforms influence function approximation for finding the most
helpful examples. Removing 30% of the best training examples identified by gradient similarity
reduces performance of the trained reward model to random chance, while influence-based pruning
only reduces performance to roughly 56%. Figure 2 shows that there is strong agreement among what
are deemed to be the worst examples, but only near random chance agreement in what is deemed to
be the best examples.

5 Discussion

We hypothesize that the failure of gradient similarity on finding harmful examples has to do with
the more pronounced local curvature around these harmful examples. Helpful examples are those
which give the model new information about a particular context. This corresponds to relatively a
flat part of parameter space where not much has been learned, and therefore gradient similarity and
influence functions both work well. Harmful examples, on the other hand, are likely those which sit
on steep inclines in the direction that go against the consensus found in the training data. Though the
gradient similarity approach can determine when a given training data is poorly suited for a given
validation example, it cannot determine the extent to which this error is surprising, or merely noise.
This finding suggests further work that might be done to more efficiently find harmful examples to
advance data curation at scale.

6 Conclusion

Influence function approximations offer a promising approach to filtering noisy human preference
data for reward model training. First-degree approximation via gradient similarity appears more
effective at finding helpful training examples, but less effective at finding harmful ones. Future work
may attempt to use the insight that training data that disagrees with validation data in a way that is
surprising are most likely to be harming test performance to devise more efficient methods of data
curation.

7 Limitations

Calculating influence function approximations is computationally expensive, even at smaller scales.
Thus, we are constrained to using a single small dataset. Datasets are often generated in vastly
different ways, and likely have highly variable noise. This limits the generalization of these results
beyond the context of crowd-sourced human preference data.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022a.
URL https://arxiv.org/abs/2204.05862.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022b.

Jasjeet Dhaliwal and Saurabh Shintre. Gradient similarity: An explainable approach to detect
adversarial attacks against deep learning, 2018. URL https://arxiv.org/abs/1806.
10707.

Yang Gao, Dana Alon, and Donald Metzler. Impact of preference noise on the alignment performance
of generative language models, 2024. URL https://arxiv.org/abs/2404.09824.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilé Lukosiiité, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large
language model generalization with influence functions, 2023. URL https://arxiv.org/
abs/2308.03296.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885-1894. PMLR, 2017.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned 1lms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pages 735-742,
2010.

Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Kenshi Abe, and Kaito Ariu. Filtered direct
preference optimization, 2024. URL https://arxiv.org/abs/2404.13846.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In NeurIPS,
2020.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence, 2023. URL https://arxiv.org/abs/
2205.09329.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

A Compute Requirements

We used an internal node containing 4 1.40 GPUs for 20 hours total. Most of the compute went into
calculating influence function approximations and LoRA retraining.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/1806.10707
https://arxiv.org/abs/1806.10707
https://arxiv.org/abs/2404.09824
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2404.13846
https://arxiv.org/abs/2205.09329
https://arxiv.org/abs/2205.09329

	Introduction
	Related Works
	Methods
	Task and Data
	Base Model and Fine-tuning Setup
	Influence–Function Approximation
	Evaluation

	Results
	Discussion
	Conclusion
	Limitations
	Compute Requirements

