
Learning Sequence Attractors in Hopfield Networks
with Hidden Neurons

Yao Lu Si Wu
Peking University

{yao.lu,siwu}@pku.edu.cn

Abstract

The brain is targeted for processing temporal sequence information. It remains
largely unclear how the brain learns to store and retrieve sequence memories.
Here, we study how networks of Hopfield type learn sequence attractors to store
predefined pattern sequences and retrieve them robustly. We show that to store
arbitrary pattern sequences, it is necessary for the network to include hidden
neurons even though their role in displaying sequence memories is indirect. We
develop a local learning algorithm to learn sequence attractors in the networks
with hidden neurons. The algorithm is proven to converge and lead to sequence
attractors. We demonstrate that our model can store and retrieve sequences robustly
on synthetic and real-world datasets. We hope that this study provides new insights
in understanding sequence memory and temporal information processing in the
brain.

1 Introduction

The brain is targeted for processing temporal sequence information but computational modeling
study on this issue lags far behind that on static information processing. Attractor neural networks
are promising computational models for elucidating the mechanisms of the brain representing,
memorizing and processing information [Amari, 1972; Hopfield, 1982; Amit, 1989]. By considering
simplified neuron model and threshold dynamics, the classical Hopfield network has successfully
elucidated how a recurrent neural network learns to store static memory patterns [Hopfield, 1982].
However, the classical Hopfield network and related works typically only consider static attractors,
which can not explain the sequential neural activities widely observed in the brain (e.g., in memory
retrieval in the hippocampus). In this paper, we follow and extend the standard form of the Hopfield
model by considering binary neurons and threshold dynamics, as this enables us to pursue theoretical
analysis, and we investigate how a recurrent neural network learns to store sequence attractors.

2 Limitation of Classical Hopfield Networks

We first consider the classical Hopfield networks of N visible binary neurons [Amari, 1972; Hopfield,
1982]. All the neurons are bidirectionally connected and their weight matrix is W of which Wij

denotes the synaptic weight from the j-th neuron to the i-th neuron. Let ξ(t) = (ξ1(t), ..., ξN (t)) ∈
{−1, 1}N be the states of the neurons at time t. These states are synchronously updated according to
the threshold dynamics, for i = 1, ..., N ,

ξi(t+ 1) = sign
(N∑

j=1

Wijξj(t)− θi
)

= sign
(N∑

j=0

Wijξj(t)
)
, (1)

where sign(x) = 1 if x > 0 and sign(x) = 0 otherwise. Hereafter, the threshold parameter θi is
omitted as it can be absorbed by adding an extra neuron ξ0(t) = 1 and Wi0 = −θi. Given a pair of

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

successive network states ξ(t) and ξ(t+ 1), the dynamics of the recurrent network can be unfolded in
time and viewed as a feedforward network, in which each output neuron is a perceptron of the inputs.

Given a sequence in the form of x(1), ...,x(T) ∈ {−1, 1}N , one can use a learning algorithm to
adjust W such that the evolving of the network state matches the pattern sequence. Although recurrent
networks without hidden neurons can generate some sequences of maximal length 2N [Muscinelli
et al., 2017], they are fundamentally limited in the class of sequences that can be generated. Since
each neuron can be regarded as a perceptron, the condition that sequence x(1), ...,x(T) can be
generated by the network is, for each i, the dataset {(x(t), xi(t + 1))}T−1t=1 is linearly separable
[LeCun, 1986; Bressloff & Taylor, 1992; Brea et al., 2013; Muscinelli et al., 2017].

3 Hopfield Networks with Hidden Neurons

To overcome the limitation of the classical Hopfield networks, we consider a group of hidden neurons
in the network, in addition to visible ones. The visible and hidden neurons are bidirectionally
connected, and there is no intra-connection within visible neurons or hidden neurons. Let U be the
weight matrix from visible neurons to hidden neurons, of which Uij denotes the synaptic weight
from the j-th visible neuron to the i-th hidden neuron, and V be the weight matrix from hidden
neurons to visible neurons, of which Vji denotes the synaptic weight from the i-th hidden neuron
to the j-th visible neuron. Let ξ(t) = (ξ1(t), ..., ξN (t)) ∈ {−1, 1}N be the states of visible neurons
and ζ(t) = (ζ1(t), ..., ζM (t)) ∈ {−1, 1}M be the states of hidden neurons at time t. These states are
synchronously updated according to, for i = 1, ...,M and j = 1, ..., N ,

ζi(t) = sign
(N∑

k=1

Uikξk(t)
)
, (2)

ξj(t+ 1) = sign
(M∑

k=1

Vjkζk(t)
)
, (3)

where we omit the threshold parameters as they can be absorbed into the equations. As illustrated in
Figure 1, given a pair of successive network states ξ(t) and ξ(t+ 1), the dynamics of the network
can be unfolded in time and viewed as a feedforward network with a hidden layer of neurons.

The networks of M hidden neurons can generate arbitrary sequences with Markov property and of
length at least M , as stated in Theorem 1. We provide a constructive proof based on one-hot encoding
by the hidden neurons in the Appendix.

Theorem 1 Let x(1), ...,x(T) ∈ {−1, 1}N such that x(i) 6= x(j) for i 6= j except that x(1) =
x(T). Then x(1), ...,x(T) can be generated by the network defined in (2)(3) for M = T − 1.

Unfolding in time

ξ(t)

ξ(t+ 1)

ζ(t)

U

V

Figure 1: A recurrent network with hidden neurons. The red circles denote visible neurons and the
white circles denote hidden neurons.

4 Learning

To learn the weight matrices, one can first unfold the Hopfield network with hidden neurons in time
such that it becomes a feedforward network with a hidden layer, and the pairs of successive patterns
in the sequence constitute the training examples. However, learning in the unfolded feedforward
network is difficult since the backpropagation algorithm cannot be applied as the neurons are not
differentiable.

2

We propose a new learning algorithm to learn the weight matrices in the unfolded feedforward
networks, which draws inspirations from three ideas: feedback alignment [Lillicrap et al., 2016], target
propagation [LeCun, 1987; Bengio, 2014; Litwin-Kumar et al., 2017] and three-factor rules [Frémaux
& Gerstner, 2016; Kuśmierz et al., 2017]. As in feedback alignment, it requires a random matrix
P, which is fixed during the learning process, to backpropagate signals. As in target propagation, it
does not propagate errors but targets to create surrogate targets for the hidden neurons. Each weight
parameter is updated by a three-factor rule, in which the presynaptic activation, the postsynaptic
activation and an error term as neuromodulation are multiplied. The three-factor rule is similar to the
one for the classical Hopfield networks [Bressloff & Taylor, 1992] and known as margin perceptron
in the machine learning literature [Collobert & Bengio, 2004].

The algorithm works as follows. Given a pair of successive patterns x(t) and x(t+1), for i = 1, ...,M
and j = 1, ..., N in parallel,

1. Update U by

zi(t+ 1) = sign
(N∑

k=1

Pikxk(t+ 1)
)
, (4)

µi(t) = H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)
)
, (5)

Uij ← Uij + ηµi(t)zi(t+ 1)xj(t). (6)

2. Update V by

yi(t) = sign
(N∑

k=1

Uikxk(t)
)
, (7)

νj(t) = H
(
κ− xj(t+ 1)

M∑
k=1

Vjkyk(t)
)
, (8)

Vji ← Vji + ηνj(t)xj(t+ 1)yi(t), (9)

where Pik denotes the (i, k) entry of the fixed random matrix P, H(·) is the Heaviside function
(H(x) = 1 if x > 0 and H(x) = 0 otherwise), κ > 0 is the robustness hyperparameter and η > 0
is the learning rate hyperparameter. µi(t) and νj(t) can be interpreted as the error terms for the
hidden and the visible neurons, respectively. zi(t+ 1) can be interpreted as the synaptic input from
an external neuron. The above procedure is then repeated for each t.

4.1 Analysis

In this section, we provide theoretical analysis of the algorithm. The proofs are left to the Appendix.
First, we provide convergence guarantee of the algorithm.

Theorem 2 Given the definitions in (4)(5)(7)(8), for all i, j and t, if a solution exists such that
µi(t) = 0 and νj(t) = 0 , then the algorithm (4)-(9) converges in finite steps given Uij and Vji are
initialized to zero.

Next, we show the algorithm can reduce error µi(t) for a single step of updating U. The theorem can
be trivially extended for νj(t) and V by a similar proof.

Theorem 3 Given the definitions in (4)(5), let

U ′ik = Uik + ηµi(t)zi(t+ 1)xk(t), (10)

µ′i(t) = H
(
κ− zi(t+ 1)

N∑
k=1

U ′ikxk(t)
)
. (11)

Then µ′i(t) = 0 for sufficiently large η > 0.

3

To understand why reducing the errors µi(t) and νj(t) leads to sequence attractors, we present the
following result.

Theorem 4 Given the definitions in (7)(8), let ŷ(t) = (ŷ1(t), ..., ŷM (t)) ∈ {−1, 1}M such that∑
k |ŷk(t)− yk(t)| < ε. If νj(t) = 0 and

ε ·max
k
|Vjk| < κ, (12)

then

xj(t+ 1) = sign
(M∑

k=1

Vjkŷk(t)
)
. (13)

Theorem 4 shows that when the errors are zero, given perturbed hidden neuron states ŷ(t), we have
x(t+ 1) = sign(Vŷ(t)). The result can be trivially extended to show that given perturbed visible
neuron states x̂(t) we have y(t) = sign(Ux̂(t)) by a similar proof. Therefore, the network can
generate sequence x(1), ...,x(T) as an attractor. From Theorem 4, we can also see that κ acts as the
robustness hyperparameter as it controls the level of perturbation ε for inequality (12) to hold.

We show experiments in the Appendix.

References
Shun-ichi Amari. Learning patterns and pattern sequences by self-organizing nets of threshold

elements. IEEE Transactions on Computers, 1972.
Daniel J Amit. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge

University Press, 1989.
Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target

propagation. arXiv preprint arXiv:1407.7906, 2014.
Johanni Brea, Walter Senn, and Jean-Pascal Pfister. Matching recall and storage in sequence learning

with spiking neural networks. Journal of Neuroscience, 2013.
Paul C Bressloff and John G Taylor. Perceptron-like learning in time-summating neural networks.

Journal of Physics A: Mathematical and General, 1992.
Ronan Collobert and Samy Bengio. Links between perceptrons, mlps and svms. International

Conference on Machine learning, 2004.
Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and

theory of three-factor learning rules. Frontiers in Neural Circuits, 2016.
Elizabeth Gardner. The space of interactions in neural network models. Journal of Physics A:

Mathematical and General, 1988.
John J Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences, 1982.
Haruyuki Iwama, Mayu Okumura, Yasushi Makihara, and Yasushi Yagi. The ou-isir gait database

comprising the large population dataset and performance evaluation of gait recognition. IEEE
Transactions on Information Forensics and Security, 2012.

Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulating
hebbian plasticity with errors. Current Opinion in Neurobiology, 2017.

Yann LeCun. Learning process in an asymmetric threshold network. Disordered Systems and
Biological Organization, 1986.

Yann LeCun. Modeles connexionnistes de lapprentissage. PhD thesis, These de Doctorat, Universite
Paris, 1987.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications,
2016.

Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and LF Abbott.
Optimal degrees of synaptic connectivity. Neuron, 2017.

4

Marvin Minsky and A Papert Seymour. Perceptrons. MIT Press, 1969.

Samuel P Muscinelli, Wulfram Gerstner, and Johanni Brea. Exponentially long orbits in hopfield
neural networks. Neural Computation, 2017.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. International Conference on Machine Learning, 2015.

A Experiments

We run experiments on synthetic and real-world sequence datasets for Hopfield networks with hidden
neurons by the algorithm proposed in the previous section to learn sequence attractors. All the
experiments are carried out in MATLAB and PyTorch. In all the experiments, each weight parameter
of U, V and P is sampled i.i.d. from Gaussian distribution with mean zero and variance 1× 10−6,
learning rate η = 1 × 10−3 and robustness κ = 1. In each experiment, we run the algorithm for
500 epochs. In each epoch, the algorithm runs on (x(t),x(t+ 1)) from the start to the end of each
sequence. No noise is added during learning. Noise is added only at retrieval.

A.1 Toy Examples

In Figure 2, we show examples of sequences that cannot be generated by the network. The sequences
are synthetically constructed. We then test if the perceptron learning algorithm can learn the sequences.
Since the algorithm converges if the linear separability condition is met [Minsky & Seymour, 1969],
the divergence of the algorithm implies that the sequences cannot be generated by the networks.

To show Hopfield networks with hidden neurons can overcome the limitation of classical Hopfield
networks, we conduct experiments on the examples in Figure 2. We construct a network of visible
neuronsN = 10 and hidden neuronsM = 50 for each example. After learning, we test the robustness
of the networks in retrieval by adding two salt-and-pepper noises (flipping the states of two out of
ten neurons) to the first pattern of a sequence and set it to be the initial network state. The results
are shown in Figure 3, from which we can see that the networks with hidden neurons can generate
sequences which cannot be generated by the classical Hopfield networks and retrieve them robustly
under moderate level of noise.

Figure 2: Two example sequences which cannot be generated by the classical Hopfield networks.
White squares denote positive ones and black squares denote negative ones.

Figure 3: Hopfield networks with hidden neurons can generate the two sequences in Figure 2, which
cannot be generated without hidden neurons, despite noisy initial states. Note that in the first column
of each diagram two salt-and-pepper noises are added to test the robustness of the retrieval.

5

A.2 Random Sequences

We generate periodic sequences of random patterns x(1), ...,x(T) ∈ {−1, 1}N . In each sequence,
x(i) 6= x(j) for i 6= j except that x(1) = x(T) for the periodicity. We set N = 100 and vary
period length T . We sample each x(t) independently from the uniform distribution of {−1, 1}N
for t = 1, ..., T − 1 and then resample it if it is identical to a previous pattern. Finally, we set
x(T) = x(1). For each random sequence, we construct a network with hidden neurons and apply the
proposed learning algorithm. To evaluate the effectiveness of the learning algorithm, we compare
learning only V (with U fixed during learning) and learning both U and V. Once the learning is done,
we test if the network can retrieve the sequence robustly given perturbed x(1) with 10 salt-and-pepper
noises as the initial network state ξ(1). We define that the retrieval is successful if ξ(τ + t) = x(t)
for some τ and all t = 1, ..., T . We run 100 trials for each T or M setting and count the successful
retrievals.

In Figure 4, we show the visualization of a result. In Figure 5, we show the results with various
period lengths T for M = 500. In Figure 6, we show the results with various numbers of hidden
neurons M for T = 70. We can see learning both U and V is more effective than learning only V.
However, in both cases, the algorithm fails for large T , even if we increase the number of hidden
neurons, which might be due to the suboptimality of the algorithm.

(a) Ground truth (b) Network states

Figure 4: Learning random periodic sequences in Hopfield networks with hidden neurons. Only the
first 20 neurons of 100 visible neurons are selected for visualization due to space limitation. Note
that in the first column of (b) salt-and-pepper noises are added to test the robustness of the retrieval.

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

0

20

40

60

80

100

Figure 5: Successful retrievals out of 100 trials with different sequence period lengths.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Figure 6: Successful retrievals out of 100 trials with different numbers of hidden neurons.

6

A.3 Real-World Sequences

We test Hopfield networks with hidden neurons by our algorithm in learning real-world sequences
on a silhouette sequence dataset (OU-ISIR gait database large population [Iwama et al., 2012])
and a handwriting sequence dataset (Moving MNIST [Srivastava et al., 2015]). The patterns in the
sequences are rather correlated since adjacent image frames are similar. To adopt the datasets for the
networks to learn, we convert the image intensity values to ±1. For the silhouette dataset, we use a
network with hidden neuron number M = 200 to learn a single image sequence of length 103, in
which each image has size 88× 128. The images are flatten to vectors of size 88× 128 = 11264. For
the handwriting dataset, we use a network with hidden neuron number M = 1000 to learn 20 image
sequences of length 20, in which each image has size 64× 64. The images are flatten to vectors of
size 64× 64 = 4096. In Figure 7 and 8, we show the visualization results of the learned networks for
robust retrieval, in which the first image of a sequence is corrupted and set to be the initial state of a
network. In Figure 9, we show the average errors 1

M

∑
t

∑
i µi(t) and 1

N

∑
t

∑
j νj(t) during the

learning process, from which we can see that both errors reduce to zero.

(a) Ground truth x(t)

(b) Network states ξ(t)

Figure 7: Retrieval of sequences under noise on the silhouette sequence dataset. An image sequence
of length 136 is learned. Each image has size 88 × 128. In (a) and (b), x(t) and ξ(t) are shown
respectively for t = 1, ..., 10. In (b), 2000 salt-and-pepper noises are added to the first image. The
corrupted image is set to be the initial state of the network.

(a) Ground truth x(t)

(b) Network states ξ(t)

Figure 8: Retrieval of sequences under noise on the handwriting sequence dataset. 20 image sequences
of length 20 are learned. Due to space limitation, only one image sequence is displayed in here. Each
image has size 64× 64. In (a) and (b), x(t) and ξ(t) are shown respectively for t = 1, ..., 8. In (b),
300 salt-and-pepper noises are added to the first image. The corrupted image is set to be the initial
state of the network.

7

0 50 100
0

10

20

30

40

(a) Silhouette

0 50 100
0

50

100

(b) Handwriting

Figure 9: Errors during learning. 1
M

∑
t

∑
i µi(t) is the average error for the hidden neurons.

1
N

∑
t

∑
j νj(t) is the average error for the visible neurons.

B Proof of Theorem 1

We construct a network such that, given ξ(t) = x(i) for i = 1, ..., T − 1, the hidden neurons provide
an one-hot encoding of the successive pattern x(i+ 1), which is then decoded to be ξ(t+ 1).

To store x(1), ...,x(T) ∈ {−1, 1}N in (2)(3), assuming x(i) 6= x(j) for i 6= j except that x(1) =
x(T), let M = T − 1 and construct weight matrix U as

U = (x(1),x(2), ...,x(T − 1))> (14)

and hidden neurons ζ(t) = (ζ1(t), ..., ζM (t)) as

ζi(t) = sign
(N∑

k=1

Uikξk(t)−N
)

(15)

= sign
(
x(i)>ξ(t)−N

)
(16)

such that given ξ(t) = x(i) for i = 1, ..., T − 1, we have

ζj(t) =

{
+1, if j = i,

−1, otherwise.
(17)

Next, we construct the weight matrix V as

V = (x(2),x(3), ...,x(T)) (18)

and visible neurons ξ(t+ 1) = (ξ1(t+ 1), ..., ξN (t+ 1)) as

ξ(t+ 1) = sign(Vζ(t) + θ) (19)

where θ =
∑T

j=2 x(j) such that given the one-hot vector ζ(t) we have

ξ(t+ 1) = sign
(
x(i+ 1)−

∑
j 6=i+1

x(j) +

T∑
j=2

x(j)
)

(20)

= sign(2 · x(i+ 1)) (21)
= x(i+ 1) (22)

C Proof of Theorem 2

Note that the update of U (4)(5)(6) in Section 5 does not depend on V. Therefore, we first prove the
convergence of updating U for η > 0 and κ > 0. The proof follows from [Gardner, 1988]. Assume
U∗ exists such that, for all t and i,

zi(t+ 1)
∑
k

U∗ikxk(t) ≥ κ. (23)

8

Define the p-th update of U with µi(tp) = 1 by

U
(p+1)
ij = U

(p)
ij + ηzi(tp + 1)xj(tp) (24)

for some tp ∈ {1, ..., T − 1} and all j in parallel. We assume zero-initialization, that is, U (1)
ij = 0 for

simplicity but the result holds if |U (1)
ij | is sufficiently small. Let

X
(p+1)
i =

∑
j U

(p+1)
ij U∗ij√∑

j

(
U

(p+1)
ij

)2√∑
j

(
U∗ij
)2 . (25)

The Cauchy-Schwarz inequality, we have X(p+1)
i ≤ 1. Now we prove the convergence of updating

U by contradiction. Assuming the update of U does not converge, we will show that X(p+1)
i > 1 as

p→∞. First, we have∑
j

U
(p+1)
ij U∗ij −

∑
j

U
(p)
ij U∗ij = η

∑
j

zi(tp + 1)U∗ijxj(tp) ≥ ηκ (26)

due to (1) and therefore∑
j

U
(p+1)
ij U∗ij =

∑
j

U
(p+1)
ij U∗ij −

∑
j

U
(p)
ij U∗ij + ...+

∑
j

U
(2)
ij U

∗
ij −

∑
j

U
(1)
ij U

∗
ij +

∑
j

U
(1)
ij U

∗
ij

(27)
≥ ηκp (28)

since we assumed U (1)
ij = 0. Next, we have∑

j

(
U

(p+1)
ij

)2 −∑
j

(
U

(p)
ij

)2
=
∑
j

(
U

(p)
ij + ηzi(tp + 1)xj(tp)

)2 −∑
j

(
U

(p)
ij

)2
(29)

= 2η
∑
j

U
(p)
ij zi(tp + 1)xj(tp) +Nη2 (30)

= 2ηzi(tp + 1)
∑
j

U
(p)
ij xj(tp) +Nη2 (31)

< 2ηκ+Nη2 (32)

since we assumed µi(tp) = 1 and therefore zi(tp + 1)
∑

j U
(p)
ij xj(tp) < κ. Then, we have√∑

j

(U
(p+1)
ij)2 −

√∑
j

(U
(p)
ij)2 (33)

=
(∑

j

(
U

(p+1)
ij

)2 −∑
j

(
U

(p)
ij

)2)/(√∑
j

(
U

(p+1)
ij

)2
+

√∑
j

(
U

(p)
ij

)2)
(34)

<(2ηκ+Nη2)
/(√∑

j

(
U

(p+1)
ij

)2
+

√∑
j

(
U

(p)
ij

)2)
. (35)

By Cauchy-Schwarz inequality, we have√∑
j

(U
(p+1)
ij)2

√∑
j

(U∗ij)
2 ≥

∑
j

U
(p+1)
ij U∗ij ≥ ηκp (36)

and therefore √∑
j

(U
(p+1)
ij)2 ≥ ηκp√∑

j(U
∗
ij)

2
. (37)

9

Also,√∑
j

(U
(p+1)
ij)2 =

√∑
j

(U
(p+1)
ij)2 −

√∑
j

(U
(p)
ij)2 + ...+

√∑
j

(U
(2)
ij)2 −

√∑
j

(U
(1)
ij)2 (38)

+

√∑
j

(U
(1)
ij)2 (39)

<

p∑
q=1

(2ηκ+Nη2)
/(√∑

j

(
U

(q+1)
ij

)2
+

√∑
j

(
U

(q)
ij

)2)
(40)

<

p∑
q=1

(2ηκ+Nη2)

√∑
j

(U∗ij)
2

1

ηκ(2q − 1)
(41)

=
ηκ+Nη2/2

ηκ

√∑
j

(U∗ij)
2

p∑
q=1

1

q − 1/2
(42)

Note that for q > 1

1

q − 1/2
≤
∫ q−1/2

q−3/2

1

x
dx = log(q − 1/2)− log(q − 3/2) (43)

and
p∑

q=1

1

q − 1/2
=

1

2
+

p∑
q=2

1

q − 1/2
≤ 1

2
+

∫ p−1/2

1/2

1

x
dx = 2 + log(p− 1/2)− log(1/2). (44)

Therefore, √∑
j

(U
(p+1)
ij)2 = O(log(p)) (45)

and ∑
j

U
(p+1)
ij U∗ij = Ω(p) (46)

as p→∞. We have,

X
(p+1)
i =

∑
j U

(p+1)
ij U∗ij√∑

j(U
(p+1)
ij)2

√∑
j(U

∗
ij)

2

> 1 (47)

for some p. This contradicts that X(p+1)
i ≤ 1. Thus, the updating U converges.

Upon the convergence of updating U, we can prove the convergence of V if there exists V∗ such
that for all t and i,

xi(t+ 1)
∑
k

V ∗ikyk(t) ≥ κ (48)

by a similar proof.

D Proof of Theorem 3

If µi(t) = 0, then U ′ik = Uik and µ′i(t) = µi(t) = 0. If µi(t) = 1, then

µ′i(t) = H
(
κ− zi(t+ 1)

N∑
k=1

(
Uik + ηzi(t+ 1)xk(t)

)
xk(t)

)
(49)

= H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)− η
(
zi(t+ 1)

)2 N∑
k=1

(
xk(t)

)2)
(50)

= H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)− ηN
)

= 0 (51)

10

for sufficiently large η > 0 given xk(t) = ±1, zi(t+1) = ±1 and the property of Heaviside function.

E Proof of Theorem 4

If νj(t) = 0, then we have

xj(t+ 1)

M∑
k=1

Vjkyk(t) ≥ κ. (52)

Next,

xj(t+ 1)

M∑
k=1

Vjkŷk(t) = xj(t+ 1)

M∑
k=1

Vjk
(
yk(t) + ŷk(t)− yk(t)

)
(53)

= xj(t+ 1)

M∑
k=1

Vjkyk(t) + xj(t+ 1)

M∑
k=1

Vjk
(
ŷk(t)− yk(t)

)
(54)

≥ κ+ xj(t+ 1)

M∑
k=1

Vjk
(
ŷk(t)− yk(t)

)
(55)

≥ κ−
∣∣∣ M∑
k=1

Vjk
(
ŷk(t)− yk(t)

)∣∣∣ (56)

≥ κ−max
k
|Vjk|

M∑
k=1

|ŷk(t)− yk(t)| (57)

> κ−max
k
|Vjk| · ε > 0 (58)

since xj(t+ 1) = ±1, which implies

xj(t+ 1) = sign
(M∑

k=1

Vjkŷk(t)
)
. (59)

11

	Introduction
	Limitation of Classical Hopfield Networks
	Hopfield Networks with Hidden Neurons
	Learning
	Analysis

	Experiments
	Toy Examples
	Random Sequences
	Real-World Sequences

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

