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Abstract

Nonstationary phenomena, such as satiation effects in recommendations, have
mostly been modeled using bandits with finitely many arms. However, the richer
action space provided by linear bandits is often preferred in practice. In this work,
we introduce a novel nonstationary linear bandit model, where current rewards are
influenced by the learner’s past actions in a fixed-size window. Our model, which
recovers stationary linear bandits as a special case, leverages two parameters: the
window size m ≥ 0, and an exponent γ that captures the rotting (γ < 0) or rising
(γ > 0) nature of the phenomenon. When both m and γ are known, we propose
and analyze a variant of OFUL which minimizes regret against cyclic policies.
By choosing the cycle length so as to trade-off approximation and estimation
errors, we then prove a bound of order

√
d (m + 1)

1
2+max{γ,0} T 3/4 (ignoring

log factors) on the regret against the optimal sequence of actions, where T is the
horizon and d is the dimension of the linear action space. Through a bandit model
selection approach, our results are then extended to the case where both m and
γ are unknown. Finally, we complement our theoretical results with experiments
comparing our approach to natural baselines.

1 Introduction

Many real-world problems are naturally modeled by stochastic linear bandits, where actions belong to
a linear space, and the learner obtains rewards whose expectations are linear functions of the chosen
action (see e.g., Lattimore and Szepesvári [2020]). Formally, at each time step t the expected reward
is rt = ⟨at, θ∗⟩, where at ∈ Rd is the chosen action and θ∗ ∈ Rd is a fixed and unknown parameter to
be estimated. In a song recommendation problem, for instance, the possible actions are the songs from
the catalogue, usually represented by their feature vectors [Deshpande and Montanari, 2012, Korkut
and Li, 2021, Ghoorchian and Maghsudi, 2022]. The linear reward rt (i.e., the user satisfaction)
measures how well the song at picked by the learner matches the (unknown) preferences of the user,
represented by θ∗. However, this model fails to capture the nonstationarity of the users’ preferences.
For example, user satiation with respect to the recommended items is a typical phenomenon in this
context [Kapoor et al., 2015, Kunaver and Požrl, 2017], as studied in rotting bandits [Bouneffouf
and Féraud, 2016]. Indeed, identifying the favorite song of a user (i.e., the vector a in the action
set that maximizes ⟨a, θ∗⟩) only partly solves the recommendation problem, as suggesting this song
repeatedly is not meaningful in the long run [Kovacs et al., 2018, Schedl et al., 2018]. But satiation is
not the only nonstationary phenomenon observed in practice. In algorithmic selection for instance,
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one must choose among a pool of algorithms the one that is going to get the next chunk of resources
(e.g., CPU time or samples). In this case, we expect the quality of the solution found by each
algorithm to increase as the algorithm gets selected. This model, known as rising bandits, has been
studied in deterministic [Heidari et al., 2016, Li et al., 2020] and stochastic [Metelli et al., 2022]
settings.

Nonstationarity in bandits, which has been mostly studied in the case of finitely many arms, appears
to be significantly more intricate to analyze in a linear bandit framework due to the structure of the
action space. For instance, rotting bandits [Bouneffouf and Féraud, 2016] or rested rising bandits
[Metelli et al., 2022] assume that the expected reward of an arm is fully determined by the number
of times this arm has been pulled in the past. In the linear case, on the contrary, one would expect
nontrivial cross-arm effects. Listening to rock songs should affect the future interest in rock songs,
but also to a minor extent that in folk music, as the two genres are related. On the other side, it also
seems reasonable that a folk rock song does not increase rock satiation as much as a pure rock song.
Hence, a principled way to model nonstationarity in linear environments is needed.

In this work, we introduce a novel linear bandit framework that allows to model complex nonstationary
behaviors in an infinite and structured space of actions. More specifically, the nonstationarity is
captured by a matrix, determined by the past actions of the learner and affecting the expected
reward of future actions. Formally, the expected reward at time step t becomes rt = ⟨at, At−1θ

∗⟩,
where At−1 = A(at−1, . . . , at−m) =

(
A0 +

∑m
s=1 at−sa

⊤
t−s

)γ ∈ Rd×d. Here, A0 is some initial
symmetric and positive semidefinite matrix. Typically, A0 is chosen to be the identity Id, which we
refer to as the isotropic initialization. The memory size m ≥ 0 controls the range of past actions
having an influence, while the exponent γ ∈ R quantifies their impact. A positive γ corresponds
to a rising behavior, and a negative γ to a rotting one — two established scenarios in the bandit
literature. In the rotting setting, playing action a at time t decreases the expected reward of a at time
t+ 1. Hence, solving this problem requires long-term planning, and playing repeatedly θ∗ may not
be optimal. Instead, in a rising scenario with isotropic initialization, an optimal action played (and
thus boosted) at time t remains optimal at time t + 1. Although optimal policies are stationary in
this case, note that such problems are intrinsically difficult as the learner is penalized twice: for not
choosing a good action at the present time, but also at future time steps, for not having boosted the
right action. We highlight that our approach is able to cope simultaneously with these two different
scenarios. Finally, note that our model recovers stationary linear bandits as a special case when γ = 0
(or m = 0 and A0 = Id).

We start by focusing on cyclic policies, and show that they provide a reasonable approximation to
the optimal policy (which may not be cyclic) while being easier to learn. When m and γ are known,
estimating the best block of fixed length reduces to a stationary problem, that we solve using a block
variant of OFUL [Abbasi-Yadkori et al., 2011]. When m = 0, our variant recovers the regret bound
O
(
d
√
T
)

of OFUL up to log factors. We then optimize the block length in order to balance the
approximation and estimation errors, and obtain a bound on the regret against the optimal sequence
of actions in hindsight of order

√
d (m+1)

1
2+max{γ,0}T 3/4 (ignoring log factors) for all T ≥ (md)2.

Finally, we extend our analysis to the case when m and γ are both unknown. For this case, we prove
regret bounds via an extension of the bandit model selection approach of Cutkosky et al. [2020].
Empirically, our approach is shown to outperform natural baselines, such as the oracle greedy strategy
(playing the action with the best instantaneous expected reward) and a naive block learning approach.
Our experimental results also include misspecified settings, where we learn θ∗ and simultaneously
either m or γ.

Contributions.

• We introduce a new bandit framework to model nonstationary effects in linear action spaces.
Our model generalizes stationary linear bandits, whose bound we recover as a special case.

• We propose an OFUL-based algorithm achieving sublinear regret against the best sequence
of actions by learning cyclic policies and balancing estimation and approximation errors.

• We use a bandit model selection approach to learn the system’s parameters m and γ.
• Empirically, our algorithm outperforms natural baselines in both rotting and rising settings.

Related works. Stochastic linear bandits, which were introduced two decades ago [Abe and Long,
1999, Auer, 2002], are typically addressed using algorithms based on ellipsoidal confidence sets [Dani
et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011]. Nonstationary
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bandits have been mainly studied in the case of finitely many arms. Among the most studied models,
there are rested [Gittins, 1979, Gittins et al., 2011] and restless [Whittle, 1988, Ortner et al., 2012,
Tekin and Liu, 2012] bandits, rotting bandits [Bouneffouf and Féraud, 2016, Heidari et al., 2016,
Cortes et al., 2017, Levine et al., 2017, Seznec et al., 2019], bandits with rewards depending on arm
delays [Kleinberg and Immorlica, 2018, Cella and Cesa-Bianchi, 2020, Simchi-Levi et al., 2021,
Laforgue et al., 2022], blocking and rebounding bandits [Basu et al., 2019, Leqi et al., 2021], and
rising bandits [Li et al., 2020, Metelli et al., 2022].

The d-step lookahead regret of Pike-Burke and Grunewalder [2019] is similar to our regret against
the best cyclic policy. However, while the lookahead oracle selects the best block based on the
learner’s current state, our oracle is defined independently of the learner’s action. In this respect, our
work investigates a policy regret version of the lookahead regret. Some works have also considered
nonstationary bandit frameworks, where the unknown parameter θ∗ is then replaced by a sequence of
vectors θ∗t that evolves over time. Standard assumptions then stipulate that θ∗t is piecewise stationary,
with a fixed number of change points [Bouneffouf et al., 2017, Wu et al., 2018, Auer et al., 2019,
Chen et al., 2019, Di Benedetto et al., 2020, Xu et al., 2020, Li et al., 2021], or that the variation
budget

∑
t≤T ∥θ∗t − θ∗t−1∥ is bounded [Besbes et al., 2014, Karnin and Anava, 2016, Luo et al., 2018,

Cheung et al., 2019, Russac et al., 2019, 2020, Kim and Tewari, 2020, Zhao et al., 2020]. See also
Mueller et al. [2019] for an application of linear bandits to nonstationary dynamic pricing. In addition
to these assumptions, we highlight that the above works are fundamentally different from ours, as the
evolution of θ∗t is oblivious to the actions taken by the learner. This removes any need for long-term
planning and puts the focus on the dynamic regret, where the algorithm’s performance is compared to
the rewards which one could obtain by picking at according to θ∗t . Finally, note that nonstationarity
in linear bandit environments may also be tackled using Gaussian Processes [Faury et al., 2021, Deng
et al., 2022].

We note that the idea of combining linear and rotting bandits was already discussed in Seznec [2020,
Section 4.7], where the author provides some evidences on the intrinsic difficulty to do so. There,
the author proposes an extension of rotting bandits to linear spaces of actions by summing along the
different dimensions the projections of the past actions. It is however proved that such a model cannot
be learned. Indeed, it is possible to exhibit an instance of this linear rotting problem for which any
policy suffers linear regret. On the contrary, our analysis in Section 3 shows that our model (based
instead on the covariance matrix of the past actions) is learnable. The price we pay for ensuring
learnability is that our model does not capture the K-armed rotting bandit setting in its full generality,
see Example 2 for more details.

Notation. Bd denotes the Euclidean unit ball, 0d and (ek)k≤d the zero and standard basis in Rd,
Id ∈ Rd×d the identity matrix, ∥M∥∗ the operator norm of M , and γ+ = max(γ, 0) for any γ ∈ R.
Bold characters refer to block objects, and Õ is used when neglecting logarithmic factors.

2 Model

In this section, we introduce our model of linear bandits with memory (LBM in short). LBMs strictly
generalize stationary linear bandits, and also recover some nonstationary bandit models with finitely
many arms as special cases. The learning setup is as follows. At each time step t = 1, 2, . . . the
learner picks an action at from a (possibly infinite) set of actions A ⊂ Bd, and receives a stochastic
reward yt. Similarly to linear models, we assume that the expected reward is a linear function of
some unknown vector θ∗ ∈ Bd. In contrast to stationary models, however, the expected reward at
time t is also influenced by the choice of previous actions of the learner. Mathematically, this is
captured by the correlation matrix

∑m
s=1 at−sa

⊤
t−s, where m measures how far in the past actions

can influence the current reward.1 Finally, in order to model the type (rising or rotting) of behavior
and its strength, we use a positive or negative exponent γ. This results in the following formula for
the reward at time t,

yt =
〈
at, A(at−m, . . . , at−1) θ

∗〉+ ηt , (1)

1Using a different analysis, one could replace our fixed-size window with exponentially decaying discount
factors. However, while these factors are typically treated as fixed model parameters, our analysis shows how to
learn the best m (see Section 3.3).
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Figure 1: In the top pane, we plot the effect of the memory matrix (2) on the action space for d = 2,
m = 1, and γ ∈ {−6, 0, 2}. The red arrow is θ∗ and the black arrow is action at−1. The color level
indicates the value of the instantaneous expected reward of any action at (point on the disk). When
γ = −6, the rotting effect is so powerful that the optimal action at is orthogonal to at−1. When
γ = 0, the optimal action remains θ∗, independently of at−1. For γ = 2, the optimal action is shifted
between θ∗ and at−1. However, the top plot does not show that playing constantly θ∗ is not the
optimal policy. In the bottom pane, we consider horizon T = 2, with the same choices of parameters.
For a given action a1, since T = 2, it is possible to determine the best possible next action a2. The
color now indicates the sum of expected rewards as a function of the initial action a1 (point on the
disk). For γ = −6, we clearly see that playing θ∗ is not optimal anymore. On the other side, it shows
that not playing θ∗ is more harmful when γ = 2 than when γ = 0.

where ηt is a 1-sub-Gaussian random variable independent of the actions of the learner, and

A(a1, . . . , am) =

(
A0 +

m∑
s=1

asa
⊤
s

)γ

. (2)

Equations (1) and (2) define a model which strictly generalizes standard linear bandits, recovered for
γ = 0. The choice of the covariance matrix for (2) is intuitive, as it stores the previously played actions
and thus naturally encodes the directions where satiation or excitation occurs through its eigenvectors.
For simplicity, in the rest of the paper we use the abbreviation At−1 = A(at−m, . . . , at−1) and refer
to it as the memory matrix. Conventionally, we set a1−m = a2−m = . . . = a0 = 0d and choose
A0 = Id unless otherwise stated. Note that parameters m and γ have the twofold advantage of
making the model general enough to account for both rotting (γ < 0) and rising (γ > 0) scenarios
while being simple enough to be learned simultaneously with θ∗, see Section 3.3. Note also that at
any time step t the expected reward rt = E[yt] satisfies |rt| ≤ ∥At−1∥∗. Given a horizon T ∈ N, the
learner aims at maximizing the expected sum of rewards obtained over the T interaction rounds. The
performance is measured against the best sequence of actions over the T rounds, i.e., through the
regret ∑T

t=1
r∗t − E

[∑T

t=1
yt

]
,

where r∗t =
〈
a∗t , A(a

∗
t−m, . . . , a

∗
t−1) θ

∗〉 and (a∗t )t≥1 is the optimal sequence of actions, i.e., the
sequence maximizing the expected sum of rewards obtained over the horizon T

a∗1, . . . , a
∗
T = argmax

a1,...,aT∈A

T∑
t=1

〈
at, A(at−m, . . . , at−1) θ

∗〉 . (3)

Throughout the paper, we use OPT to denote
∑

t r
∗
t whenever the horizon T is understood from the

context. Note that a LBM is fully characterized by: the action set A, the parameter θ∗, the memory
size m, and the exponent γ. As shown in the following examples, LBMs fully generalize (stationary)
linear bandits, contextual bandits, and allow to partially recover rotting/rising rested bandits in the
limit m→∞, see Appendix A.1 and Figure 1.
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A naive approach to learning LBM is to neglect nonstationarity. Assuming that θ∗ is known, one may
then play at time t the action agreedyt = argmaxa∈A⟨a,At−1θ

∗⟩. Although this strategy, which we
refer to as oracle greedy, may be optimal in some cases (e.g., in rising isotropic settings, see Heidari
et al. [2016, Section 3.1] and Metelli et al. [2022, Theorem 4.1] for discussions in the K-armed case),
we highlight that it may also be arbitrarily bad, as stated in the next proposition.

Proposition 1 The oracle greedy strategy, which plays agreedyt = argmaxa∈A⟨a,At−1θ
∗⟩ at time

step t, can suffer linear regret, both in rotting or rising scenarios.

We defer the proof of Proposition 1 to the Appendix A.2, where we present two LBM instances, one
for the rotting and one for the rising setting, showing how oracle greedy can suffer linear regret due
to the absence of long-term planning. Hence, one must resort to more sophisticated strategies.

3 Regret Analysis

In this section, we introduce and analyze OFUL-memory (Algorithm 1) for learning LBMs. We first
observe that for every block length there exists a cyclic policy providing a reasonable approximation
to the optimal policy (Proposition 2) that cannot be improved in general, see Proposition 3. Learning
the optimal block in the cyclic policy then reduces to a stationary linear bandit problem that can be
solved by running the OFUL algorithm (Proposition 4). This approach is however wasteful, as it
estimates a concatenated model whose dimension scales with the block length. We thus propose
a refined algorithm leveraging the structure of the concatenated model, and show that it enjoys a
better regret bound. We then tune the block length to trade-off estimation and approximation errors
(Theorem 1). Since the optimal block length depends on the memory size m, which may be unknown
in practice, we finally wrap our algorithm with a bandit model selection algorithm that is shown to
preserve regret guarantees (Corollary 1). Throughout the analysis, we assume for simplicity that the
horizon T is always divisible by the block length considered. Finally, note that all technical proofs
are relegated to the Appendix (Proposition 4 and Theorem 1 being proved with high probability while
stated in expectation in the main body for simplicity of exposition).

3.1 Approximation

In LBMs, finding a block of actions maximizing the sum of expected rewards is not a well-defined
problem. Indeed, the rewards also depend on the initial conditions, determined by the m actions
preceding the current block. To bypass this issue, we introduce the following proxy reward function.
For any m,L ≥ 1 and any block a = a1 . . . am+L of m+ L actions, let

r̃(a) =

m+L∑
t=m+1

〈
at, At−1θ

∗〉 = m+L∑
t=m+1

〈
At−1at, θ

∗〉 . (4)

In words, we only consider the expected rewards obtained from the index m+ 1 onward. Note that
actions a1 . . . am still do play a role in r̃, as they influence Am, . . . , A2m−1. The key is that r̃ is
now independent from the initial state, so that

ã = argmax
a∈Bm+L

d

r̃(a) (5)

is well-defined. The next proposition quantifies the approximation error incurred when playing
cyclically ã instead of the optimal sequence of actions (a∗t )t≤T defined in (3). A critical quantity
to establish this result is the maximal (and minimal) instantaneous reward one can obtain. To this
end, we introduce the notation R = supa1,...,am+1∈A

∣∣⟨am+1, A(a1, . . . , am)θ∗⟩
∣∣. Note that in (8)

we provide a bound on R in terms of m and γ. We now state our approximation result, and show that
it is tight up to constant.

Proposition 2 For any m,L ≥ 1, let ã be the block of m+ L actions defined in (5) and (r̃t)
T
t=1 be

the expected rewards collected when playing cyclically ã. We have

OPT−
T∑

t=1

r̃t ≤
2mR

m+ L
T . (6)

5



The dependence on the cycle length L of the right-hand side of (6) is as expected: by increasing L,
the expected reward of the cyclic policy gets closer to OPT. In addition, note that for m = 0 we
recover the stationary behaviour. In this case, there are no long-term effects and the performance is
oblivious to the block length, so that we recover

∑
t r̃t = OPT independently of L. Next, we show

that Proposition 2 is tight up to constants.

Proposition 3 (Tight approximation) For any m,L ≥ 1 and γ ≤ 0, let ã be the block of m + L
actions defined in (5) and (r̃t)

T
t=1 be the expected rewards collected when playing cyclically ã. Then,

there exists a choice of A and θ∗ such that

OPT−
T∑

t=1

r̃t ≥
mR

m+ L
T . (7)

Upper bounds on R are easy to obtain. Let a1, . . . , am+1 ∈ A, and Am = A(a1, . . . , am), we have

|rm| =
∣∣⟨am+1, Amθ

∗⟩
∣∣ ≤ ∥am+1∥2 ∥Amθ

∗∥2 ≤ ∥Am∥∗ ∥θ∗∥2 ≤ (m+ 1)γ
+

, (8)

such that one can take R = (m+ 1)γ
+

. Note that any other choice of dual norms could have been
used to upper bound

∣∣⟨am+1, Amθ
∗⟩
∣∣, as done in Proposition 3. For simplicity, we restrict ourselves

to the Euclidean norm from now on, and use R = (m+ 1)γ
+

.

Remark 1 (On the necessity of optimizing over the first actions.) We highlight that optimizing
over the first m actions in Equation (5) is necessary, as there exists no such “pre-sequence” which is
universally optimal. Indeed, let At and A′

t be the memory matrices generated by a1 . . . am+L and
a′1 . . . a

′
m am+1 . . . am+L respectively. It is immediate to check that if the pre-sequence a1 . . . am is

better than a′1 . . . a
′
m with respect to some model θ ∈ Rd, i.e., if we have

∑m+L
t=m+1⟨at, At−1θ⟩ ≥∑m+L

t=m+1⟨at, A′
t−1θ⟩, then the opposite holds true for −θ. Hence, one cannot determine a priori a

good pre-sequence and has to optimize for it.

3.2 Estimation

The next step now consists in building a sequence of blocks with small regret against ã. As detailed
below, this reduces to a stationary linear bandit problem, with a specific action set. After showing
an initial naive solution, we provide a refined approach which exploits the structure of the latent
parameter and enjoys improved regret guarantees.

A naive approach. We introduce some notation first. Let θ∗ = (0d, . . . , 0d, θ
∗, . . . , θ∗) ∈

Rd(m+L) be the vector concatenating m times 0d and L times θ∗. Inspired by the right-hand
side in (4), we introduce the subset of Rd(m+L) composed of the blocks b = b1 . . . bm+L whose
actions are of the form bi = Ai−1ai for some block a ∈ Am+L. Formally, let

B =

{
b ∈ Rd(m+L) : ∃a ∈ Am+L such that

{
bi = ai 1 ≤ i ≤ m
bi = Ai−1ai m+ 1 ≤ i ≤ m+ L

}
,

where the (Ai)
m+L−1
i=m+1 are the memory matrices generated from a. Equipped with this notation,

it is easy to see that for any a ∈ Am+L and the corresponding b ∈ B we have r̃(a) = ⟨b,θ∗⟩.
Therefore, estimating b̃ (the block in B associated to ã) reduces to a standard stationary linear bandit
problem in Rd(m+L), with parameter θ∗ and feasible set B. In other words, we have transformed the
nonstationarity of the rewards into a constraint on the action set. Running OFUL [Abbasi-Yadkori
et al., 2011] then amounts to playing at time step t = τ(m + L), the block aτ ∈ Am+L, whose
associated block bτ in B satisfies

bτ = argmax
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (9)

where Cτ =
{
θ ∈ Rd(m+L) :

∥∥θ̂τ − θ
∥∥
Vτ
≤ βτ (δ)

}
, with βτ (δ) defined in Equation (16), Vτ =∑τ

τ ′=1 bτ ′b⊤τ ′ + λId(m+L) , yτ =
∑m+L

i=m+1 yτ,i , using yτ,i to denote the reward obtained by the ith

action of block τ , and θ̂τ = V −1
τ

(∑τ
τ ′=1 yτ ′bτ ′

)
. Noticing that ∥θ∗∥22 ≤ L, that for any block

b ∈ B we have ∥b∥22 ≤ m + L(m + 1)2γ
+

and ⟨θ∗, b⟩ ≤ L(m + 1)γ
+

, and adapting the OFUL’s
analysis, we get the following regret bound.
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Proposition 4 Let λ ∈ [1, d], L ≥ m, and aτ be the blocks of actions in Rd(m+L) associated to the
bτ defined in (9). Then we have

E

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ )

 = Õ
(
dL3/2(m+ 1)γ

+√
T
)
.

In the stationary case, i.e., when m = 0 and L = 1, the block approach coincide with OFUL and
we do recover (up to log factors) the O(d

√
T ) bound for standard linear bandits. Note that in

Proposition 5 in the Supplementary Material we prove a more general high-probability bound, which
also specializes to known results for linear bandits in the stationary case.

A refined approach. Note however that the approach presented above is wasteful. Indeed, while the
relevant model to estimate is θ∗ ∈ Rd, the θ̂τ are estimators of the concatenated vector θ∗ ∈ Rd(m+L),
with degraded accuracy due to the increased dimension. Similarly, this method only uses the sum of
rewards obtained by a block, while finer-grained information is available, namely the rewards obtained
by each individual action in the block. Driven by these considerations, let aτ = aτ,1 . . . aτ,m+L be the
block of actions played at block time step τ , Aτ,i−1 = A(aτ,i−m, . . . , aτ,i−1), and bτ,i = Aτ,i−1aτ,i
for i ≥ m. We propose to compute instead

θ̂τ = V −1
τ

(
τ∑

τ ′=1

m+L∑
i=m+1

yτ ′,i bτ ′,i

)
, (10)

where Vτ =
∑τ

τ ′=1

∑m+L
i=m+1 bτ ′,ib

⊤
τ ′,i + λId. In words, θ̂τ is the standard regularized least square

estimator of θ∗ when only the last L rewards of each block of size m + L are considered. Note
however that the θ̂τ are only computed every m+ L rounds. Indeed, recall that regret is computed
here at the block level, such that at each block time step τ the learner chooses upfront an entire
block to play, preventing from updating the estimates between the individual actions of the block.
Following the principle of optimism in the face of uncertainty, a natural strategy then consists in
playing

aτ = argmax
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θ⟩ , (11)

where Cτ =
{
θ ∈ Rd :

∥∥θ̂τ − θ∥∥Vτ
≤ βτ (δ)

}
, for some βτ (δ) defined in (17). Expressed in terms of

bτ , the estimate (11) corresponds to

bτ = argmax
b∈B

sup
θ∈Dτ−1

⟨b,θ⟩ , (12)

where Dτ =
{
θ ∈ Rd(m+L) : ∃θ ∈ Cτ such that θ = (0d, . . . , 0d, θ, . . . , θ)

}
. In words, this

estimate is similar to (9), except that we use the improved confidence set Dτ that leverages the
structure of θ∗. A dedicated analysis to deal with the fact that the estimates θ̂τ are not “up to date”
for actions inside the block then allows to bound the regret of the sequence aτ against the optimal ã.
Setting the block size L in order to balance this bound with the approximation error of Proposition 2
yields the final regret bound.

Theorem 1 Let λ ∈ [1, d], and aτ be the blocks of actions in Rd(m+L) defined in (11). Then we
have

E
[∑T/(m+L)

τ=1
r̃(ã)− r̃(aτ )

]
= Õ

(
dL(m+ 1)γ

+√
T
)
.

Suppose that m ≥ 1, T ≥ d2m2 + 1, and set L =
⌈√

m/d T 1/4
⌉
− m. Let yt be the rewards

collected when playing aτ as defined in (11). Then we have

OPT− E
[∑T

t=1
yt

]
= Õ

(√
d (m+ 1)

1
2+γ+

T 3/4
)
.

When m = 0 (i.e., in the stationary case), setting L = 1 recovers the OFUL bound.
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When comparing the first claim of Theorem 1 to Proposition 4, we note that the dependence in L has
been reduced from L3/2 to L, thanks to the improved confidence sets. Solving the approximation-
estimation tradeoff using Proposition 4 would have yielded an overall regret bound of order d2/5(m+

1)
3
5+γ+

T 4/5, worse than the bound provided by the second claim of Theorem 1. In the stationary
case (i.e., for m = 0) Theorem 1 recovers the OFUL regret bound and matches the lower bound for
stationary linear bandits [Lattimore and Szepesvári, 2020, Theorems 24.1 and 24.2, e.g.], such that our
analysis is tight in general (recall that Proposition 3 shows that the control of the approximation error
provided by Proposition 2 is optimal up to constants). Finding a lower bound matching Theorem 1 for
arbitrary values of m and γ remains however an open problem. We highlight that lower bounds for
nonstationary bandits are particularly hard to obtain and that most papers on this topic do not prove
any, see e.g., Levine et al. [2017], Kleinberg and Immorlica [2018], Pike-Burke and Grunewalder
[2019], Cella and Cesa-Bianchi [2020], Metelli et al. [2022].

As we can see from the optimal choice of L in Theorem 1, OFUL-memory requires the knowledge of
the horizon T , the memory size m, and the exponent γ, which might all be unknown in practice. If
adaptation to T can be achieved by using the doubling trick, adaptation to m and γ is more involved.
In the next section, we show that OFUL-memory can be wrapped by a model selection algorithm to
learn m and γ. Before turning to this problem, we state a few remarks.

Remark 2 (An over-optimistic variant) Note that Dτ =
{
θ ∈ Rd(m+L) : ∃θ ∈ Cτ such that θ =

(0d, . . . , 0d, θ, . . . , θ)
}

is not the only improved confidence set that one can build from Cτ . Indeed,
it is immediate to check that our proof remains unchanged if one uses instead Dopt

τ =
{
θ ∈

Rd(m+L) : ∃ θ1, . . . , θL ∈ Cτ such that θ = (0d, . . . , 0d, θ1, . . . , θL)
}

. Optimizing (12) over Dopt
τ−1

and not Dτ−1 creates an over-optimistic block version of the UCB, composed of the sum of the
UCBs of the single-actions in the block, although the latter might be attained at different models θi,
while we know that θ∗ is the same model θ∗ repeated L times. Still, since each θi is estimated in the
confidence set Cτ−1 of reduced dimension, the guarantees are unchanged. In the rest of the paper, we
refer to this variant as the over-optimistic version of OFUL-memory, denoted by O3M. Empirically,
O3M outperforms the vanilla approach. We attribute these better performances to the fact that the
confidence set it is built upon is more optimistic.

We delegate to Remark 5 the discussion on how we can extend our model to a generic matrix mapping
and on solving LBM with a general Reinforcement Learning (RL) approach.

3.3 Model Selection

In the absence of prior knowledge on the nature of the nonstationary mechanism at work, a natural
idea consists in instantiating several LBMs with different values of γ and running a model selection
algorithm for bandits [Foster et al., 2019, Cutkosky et al., 2020, Pacchiano et al., 2020]. In bandit
model selection, where a master algorithm runs the different LBMs, the adaptation to the memory
size m becomes more complex. Indeed, the different putative values for m induce different block
sizes (see Theorem 1) which perturb the time and reward scales of the master algorithm. For instance,
bandits with larger block lengths will collect more rewards per block, although they might not be
more efficient on average. Our solution consists in feeding the master algorithm with averaged
rewards. One may then control the true regret (i.e., not averaged) of the output sequence, against a
scaled version of the optimal sequence through Lemma 1 presented in the Appendix A.8, which links
the normalized regret of a block meta-algorithm to the true regret of the corresponding sequence of
blocks. Combining this result with Theorem 1 and [Cutkosky et al., 2020, Corollary 2] yields the
following result.

Corollary 1 Consider an instance of LBM with unknown parameters (m⋆, γ⋆). Assume a bandit
combiner is run on N ≤ d

√
m⋆ instances of OFUL-memory (Algorithm 2), each using a different

pair of parameters (mi, γi) from a set S =
{
(m1, γ1), . . . , (mN , γN )

}
such that (m⋆, γ⋆) ∈ S . Let

M = (maxj mj)/(minj mj). Then, for all T ≥ (m⋆+1)2γ
+
⋆ /m⋆d

4, the expected rewards
(
rbc
t

)T
t=1

of the bandit combiner satisfy

OPT√
M
− E

[
T∑

t=1

rbc
t

]
= Õ

(
M d (m⋆ + 1)1+

3
2γ

+
⋆ T 3/4

)
.
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Algorithm 1 OFUL-memory (OM, O3M)

input : action space A ⊂ Rd, memory size m, exponent γ, regularization parameter λ, horizon T .

init : set L =
√
m/4 d T 1/4 −m, θ̂0 = 0d, V0 = λId, β0 = 0.

for τ = 1, . . . , T/(m+ L) do

// OM // O3M

aτ = argmax
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θ⟩ or aτ = argmax
aτ,i∈A

sup
θi∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θi⟩

// Play and update confidence set
Play aτ , collect yτ,1, . . . , yτ,m+L

Compute Cτ , i.e., θ̂τ , Vτ , and βτ via (10) and (17).

4 Algorithms

In this section, we discuss the practical implementation of our approach: OFUL-memory (OM) and its
over-optimistic variant (O3M, see Remark 2), both summarized in Algorithm 1. We also instantiate
the Bandit Combiner from Cutkosky et al. [2020] to our specific setting with average rewards and
O3M as base algorithm, see Algorithm 2.
Maximizing the UCBs. We start by making explicit the UCBs used in OM and O3M, see (12),
optimized over Dτ or Dopt

τ . Using the formula for Cτ one can check that they are given by
UCBτ (a) =

∑m+L
j=m+1

〈
aj , Aj−1θ̂τ−1

〉
+ B(a), where B(a) = βτ−1

∥∥∑m+L
j=m+1A

⊤
j−1aj

∥∥
V −1
τ−1

for OM and B(a) = βτ−1

∑m+L
j=m+1

∥∥A⊤
j−1aj

∥∥
V −1
τ−1

for O3M. The two UCBs only differ in their ex-

ploration bonuses. Note that by the triangle inequality, we have UCBOM
τ (a) ≤ UCBO3M

τ (a) for
any a. Thanks to this closed form in terms of a, it is possible to approximate argmaxa UCBτ (a)
using gradient ascent. Note however that maximizing the UCBs is a hard problem when the action
space is infinite, which might be non-convex in general. In that respect, the theoretical guarantees we
provide in Theorem 1 hold whenever the learner has access to some oracle that returns the exact UCB
maximizer, as traditionally assumed in the literature, see e.g., Kveton et al. [2015]. Conversely, note
that the practical implementation of O3M still satisfies Theorem 1, but for a slightly weaker version of
the regret where the “best block” is understood as the one returned by the approximated oracle used
in O3M (i.e., our gradient ascent solver). See [Kveton et al., 2015, Section 9] for a similar discussion.
Computational Complexity. Due to space constraints, we delegated the discussion about computa-
tional complexity to Appendix A.7.
Bandit combiner. Due to space constraints, we deferred the description of the Bandit Combiner to
Appendix B. We present a version specifically instantiated for O3M.

5 Experiments

We perform experiments to validate the theoretical performance of OM and O3M (Algorithm 1).
Similarly to [Warlop et al., 2018], we work with synthetic data because of the counterfactual nature
of the learning problem in bandits. Unless stated otherwise, we set d = 3 while θ∗ ∈ Rd is generated
uniformly at random with unit norm. The rewards are generated according to (1) and (2), and
perturbed by Gaussian noise with standard deviation σ = 1/10.

Rotting with Bandit Combiner. We start by analyzing the rotting scenario with m = 2 and
γ = −3. We measure the performance in terms of the cumulative reward averaged over 5 runs
(this is enough because the variance is small). In Figure 2 (left pane) we compare the performance
of O3M against oracle greedy, vanilla OFUL, and two instances of Bandit Combiner (Algorithm 2).
The first instance, Combiner γ, works in the setting where the misspecified parameter is γ and the
algorithm is run over the set {−4,−3,−2,−1, 0} of possible values for γ with the true value being
−3. The second instance, Combiner m, tests the setting where the misspecified parameter is m.
In this case the algorithm is run over the set {0, 2, 3} of possible values for m with the true value
being 2. The results—see Figure 2 (left pane)—show that O3M is able to plan the actions in the block
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Figure 2: Cumulative rewards in rotting (left) and rising with non-isotropic initialization (right) cases.

ensuring that a good arm is not played right away if a higher reward can be obtained later on in
the block. Although learning m proves to be more difficult, which is consistent with the impact of
M = (maxj mj)

/
(minj mj) in Corollary 1, Combiner m run on instances of O3M is competitive

with O3M run with the true parameters.

Rising with non-isotropic initialization. When γ > 0 (rising setting) and A0 ̸= Id (non-isotropic
initialization), there are instances for which oracle greedy is suboptimal. Let d = 2, m = 2, γ = 1,
A0 = e1e

⊤
1 , and θ∗ = (

√
ϵ,
√
1− ϵ). Here, oracle greedy starts to pull action e1 = (1, 0) and will

always play it, obtaining a cumulative reward of T (1 +m)
√
ϵ. Instead, a better strategy would be to

play e2 = (0, 1) all the time, collecting a cumulative reward of Tm
√
1− ϵ. We call this strategy π2

and in Figure 2 (right pane) we compare the performance of O3M with oracle greedy, π2, and OFUL.
Here OFUL performs well because the optimal action is stationary and, unlike oracle greedy, OFUL
can use exploration to discover that e2 is better than e1.

6 Conclusions

We introduced and analyzed a nonstationary generalization of linear bandits that uses a fixed-size
memory. Specifically, the current rewards in this model are affected by the learner’s last m actions,
and by an exponent γ which controls the nature of the phenomenon, i.e., whether it is a rotting or
a rising setting. We showed how we can recover stationary linear bandits, as well as rested rotting
and rested rising bandits as special cases. We proposed a solution based on OFUL for the case where
m and γ are known, showing a regret of

√
d (m+ 1)

1
2+max{γ,0} T 3/4 (ignoring log factors) against

the optimal sequence of actions, where T is the horizon, and d the dimension of the action space.
Furthermore, we also studied the misspecified setting where these two parameters need to be learned.
For this scenario, we presented an algorithm for bandit model selection, together with a bound on
its regret. Finally, we supported our theoretical guarantees with experiments. Some interesting future
research directions may include the derivation of a matching lower bound or quantifying the UCB
optimization error to better tradeoff the block length L.
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A Technical Proofs and

We gather in this section the proofs omitted in the core text.

A.1 Recovering stationary linear bandits, rotting and rising rested bandits, and contextual
bandits

Example 1 (Stationary linear bandits) Consider a linear bandit model, defined by an action set
A ⊂ Bd and θ∗ ∈ Bd. This is equivalent to a LBM with the same A and θ∗, and memory matrix A
such that A(a1, . . . , am) = Id for any a1, . . . , am ∈ Am, i.e., when m = 0 or γ = 0.

Example 2 (Rotting and rising rested bandits) In rotting [Levine et al., 2017, Seznec et al., 2019]
or rising [Metelli et al., 2022] rested bandits, the expected reward of an arm k at time step t is fully
determined by the number nk(t) of times arm k has been played before time t. Formally, each arm
is equipped with a function µk such that the expected reward at time t is given by µk(nk(t)). In
particular, requiring all the µk to be nonincreasing corresponds to the rotting bandits model, and
requiring all the µk to be nondecreasing corresponds to the rested rising bandits model. Now, let
d = K, A = (ek)1≤k≤K , θ∗ = (1/

√
K, . . . , 1/

√
K), and m→∞2. By the definition of A, see (2),

and the orthogonality of the actions, it is easy to check that the expected reward of playing action ek
at time step t is given by (1 + nk(t))

γ/
√
K. When γ ≤ 0, this is a nonincreasing function of nk(t),

and we recover rotting rested bandits. Conversely, when γ ≥ 0, we recover rising rested bandits.
We note however that the class of decreasing (respectively increasing) functions we can consider is
restricted to the set of monomials of the form n 7→ (1 + n)γ/

√
K, for γ ≤ 0 (respectively γ ≥ 0).

Extending it to generic polynomials is clearly possible, although it requires more computations in the
model selection phase, see Remark 4 and Section 3.3.

After presenting Example 2, we explain the motivation for considering a finite memory m. Although
rotting and rising bandits require infinite memory, we argue on both practical and theoretical grounds
that in our setting a finite value of m is preferable. First, in many applications it is reasonable to
assume that the effect of past actions will vanish at some point. For example, listening to a song now
does not affect how much we will enjoy the same song in a distant enough future. Second, permanent
effects may trivialize the problem on the theoretical side: consider m→∞ and γ ≤ −1/2, then for
any sequence of actions (at)t≥1 we have∑T

t=1⟨at, At−1θ
∗⟩ ≤

∑T
t=1

∥∥At−1at
∥∥
2
≤
√
T
∑T

t=1

∥∥At−1at
∥∥2
2
≤
√

2dT log(1 + T/d) := BT ,

where we have used the elliptical potential lemma [Lattimore and Szepesvári, 2020, Lemma 19.4].
Hence, as soon as γ ≤ −1/2, we have OPT ≤ BT , and the trivial strategy consistently playing
0 enjoys a small regret BT . Conversely, consider γ ≥ 0. The strategy consistently playing θ∗
achieves, after t rounds, an instantaneous reward of (1 + t)γ , which is diverging for γ ≥ 1. This is
not realistic in most application and, incidentally, violates the concave payoffs assumption [Metelli
et al., 2022, Assumption 3.2]. Therefore, although considering m = +∞ may look attractive at first
sight, it actually fails to adequately model song satiation, and restricts the range of relevant γ from
R to (−1/2, 1). Instead, focusing on finite memory m yields more interesting problems, although
it prevents a full generalization of rotting bandits with finitely many arms. We note however that
when m <∞, the spirit of rotting (resp., rising) bandits is still preserved, as playing an action does
decrease (resp., increase) its efficiency for the next pulls (within the time window).

We conclude this exposition by highlighting that LBMs may also be generalized to contextual bandits
[Lattimore and Szepesvári, 2020].

Remark 3 (Contextual bandits) In contextual bandits, at each time step t the learner is provided
a context ct (e.g., data about a user). The learner then picks an action at ∈ A (based on ct), and
receives a reward whose expectation depends linearly on the vector ψ(ct, at) ∈ Rd, where ψ is a
known feature map. Note that it is equivalent to have the learner playing actions at ∈ Rd that belong
to a subset At = {ψ(ct, a) ∈ Rd : a ∈ A}. The analysis developed in Section 3 still holds true when
At depends on t, and can thus be generalized to contextual bandits with memory.

2In the next paragraph, however, we explain why a bounded memory m is preferable within our model.
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A.2 Proof of Proposition 1

Proposition 1 The oracle greedy strategy, which plays agreedyt = argmaxa∈A⟨a,At−1θ
∗⟩ at time

step t, can suffer linear regret, both in rotting or rising scenarios.

Proof We build two instances of LBM, one rotting, one rising, in which the oracle greedy strategy
suffers linear regret. We highlight that the other strategy exhibited, which performs better than oracle
greedy, may not be optimal.

Rotting instance. Let A = Bd, θ∗ = e1, m = d− 1, and A such that

A(a1, . . . , am) =

(
Id +

m∑
s=1

asa
⊤
s

)−γ

,

for some γ > 0 to be specified later. Oracle greedy, which plays at each time step agreedyt =
argmaxa∈A⟨a,At−1θ

∗⟩, constantly plays e1. After the first m pulls, it collects a reward of 1/dγ
at every time step. On the other side, the strategy that plays cyclically the block e1 . . . ed collects a
reward of 1 every d = m+ 1 time steps, i.e., an average reward of 1/d per step. Hence, up to the
transitive first m pulls, the cumulative reward of oracle greedy after T rounds is T/dγ , and that of
the cyclic policy is T/d. The regret of oracle greedy is thus at least

T

(
1

d
− 1

dγ

)
,

which is linear for γ > 1.

Rising instance. Let m ≥ 1, d = 2, A = B2, θ∗ = (ε, 1) where ε > 0 is to be specified later, and A
such that

A(a1, . . . , am) =

(
1 0
0 0

)
+

m∑
s=1

asa
⊤
s .

Oracle greedy constantly plays e1 collecting a reward of (m+1)θ∗1 from roundm+1 onward. On the
other side, the strategy that plays constantly e2 collects a reward of mθ∗2 from round m+ 1 onward.
Hence, the regret of oracle greedy from round m + 1 onward is at least (T −m)[m − (m + 1)ε],
which is linear for ε < m/(m+ 1). □

A.3 Proof of Proposition 2

Proposition 2 For any m,L ≥ 1, let ã be the block of m+ L actions defined in (5) and (r̃t)
T
t=1 be

the expected rewards collected when playing cyclically ã. We have

OPT−
T∑

t=1

r̃t ≤
2mR

m+ L
T . (6)

Proof Recall that the optimal sequence is denoted (a∗t )
T
t=1 and collects rewards (r∗t )

T
t=1. Let L > 0;

by definition, there exists a block of actions of length L in (a∗t )
T
t=1 with average expected reward

higher that OPT/T . Let t∗ be the first index of this block, we thus have (1/L)
∑t∗+L−1

t=t∗ r∗t ≥
OPT/T . However, this average expected reward is realized only using the initial matrix At∗−1,
generated from a∗t∗−1, . . . , a

∗
t∗−m. Let a∗ = a∗t∗−m, . . . , a

∗
t∗+L−1 of length m + L. Note that, by

definition, we have that r̃(ã) ≥ r̃(a∗) =
∑t∗+L−1

t=t∗ r∗t ≥ L OPT/T . Furthermore, by (8), when
playing cyclically ã one obtains at least a reward of −R in each one of the first m pulls of the block.
Collecting all the pieces, we obtain

T∑
t=1

r̃t ≥
T

m+ L

(
−mR+ r̃(ã)

)
≥ T

m+ L

(
−mR+ r̃(a∗)

)
≥ T

m+ L

(
−mR+ L

OPT

T

)
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=
L

m+ L
OPT− mR

m+ L
T

≥ L

m+ L
OPT+

m

m+ L
OPT− mR

m+ L
T − mR

m+ L
T (13)

= OPT− 2mR

m+ L
T ,

where (13) derives from OPT ≤ RT . □

A.4 Proof of Proposition 4

We prove the (stronger) high probability version of Proposition 4.

Proposition 5 Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in Rd(m+L) associated to the
bτ defined in (9). Then, with probability at least 1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ ) ≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

)

·

(
√
λL+

√
ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))
.

Proof The proof essentially follows that of [Abbasi-Yadkori et al., 2011, Theorem 3]. The main
difference is that our version of OFUL operates at the block level. This implies a smaller time horizon,
but also and increased dimension and an instantaneous regret ⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩ upper bounded by
2L(m + 1)γ

+

instead of 1. We detail the main steps of the proof for completeness. Recall that
running OFUL in our case amounts to compute at every block time step τ

θ̂τ = V −1
τ

(
τ∑

τ ′=1

yτ ′ bτ ′

)
,

where

Vτ =

τ∑
τ ′=1

bτ ′b⊤τ ′ + λId(m+L) , and yτ =

m+L∑
i=m+1

yτ,i ,

since we associate with a block of actions the sum of rewards obtained after time step m. Note that
by the determinant-trace inequality, see e.g., [Abbasi-Yadkori et al., 2011, Lemma 10], with actions
bτ that satisfy ∥bτ∥22 ≤ m+ L(m+ 1)2γ

+

we have

|Vτ |
|λId(m+L)|

≤

(
1 +

τ(m+ L(m+ 1)2γ
+

)

d(m+ L)λ

)d(m+L)

≤

(
1 +

τ(m+ 1)2γ
+

dλ

)d(m+L)

. (14)

The action played at block time step τ is the block aτ ∈ Bm+L
d associated with

bτ = argmax
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (15)

where
Cτ =

{
θ ∈ Rd(m+L) :

∥∥θ̂τ − θ
∥∥
Vτ
≤ βτ (δ)

}
,

with

βτ (δ) =

√
2 ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

τ(m+ 1)2γ+

dλ

)
+
√
λL . (16)

Applying [Abbasi-Yadkori et al., 2011, Theorem 2] to θ∗ ∈ Rd(m+L) which satisfies ∥θ∗∥2 ≤
√
L

we have that θ∗ ∈ Cτ for every τ with probability at least 1 − δ. Denoting by θ̃τ the model that
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maximizes (15), we thus have that with probability at least 1− δ, the inequality ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩
holds for every τ , and consequently

T/(m+L)∑
τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

, ⟨bτ , θ̃τ − θ∗⟩
}

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

,
∥∥θ̃τ − θ∗∥∥

Vτ−1
∥bτ∥V −1

τ−1

}

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

, 2βτ (δ) ∥bτ∥V −1
τ−1

}

≤ 2L(m+ 1)γ
+

βT/(m+L)(δ)

T/(m+L)∑
τ=1

min
{
1 , ∥bτ∥V −1

τ−1

}

≤ 2L(m+ 1)γ
+

βT/(m+L)(δ)

√√√√ T

m+ L

T/(m+L)∑
τ=1

min

{
1 , ∥bτ∥2V −1

τ−1

}

≤ 2
√
2L(m+ 1)γ

+

βT/(m+L)(δ)

√
T

m+ L
ln
|VT/(m+L)|
|λId(m+L)|

≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

)

·

(
√
λL+

√
ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

) )
,

where we have used [Abbasi-Yadkori et al., 2011, Lemma 11], as well as (14) and (16). Note that in
the stationary case, i.e., when m = 0 and L = 1, we exactly recover [Abbasi-Yadkori et al., 2011,
Theorem 3]. Proposition 4 is obtained by setting λ ∈ [1, d], L ≥ m, and δ = 1/T . □

A.5 Proof of Proposition 3

Proof Let d = m+ 1, A = {0d} ∪ (ek)k≤d, θ∗ = (1/
√
d, . . . , 1/

√
d), and γ ≤ 0. For simplicity,

we note the basis modulo d, i.e., ek+d = ek for any k ∈ N. Note that for any a1, . . . , am+1 ∈ A we
have

∣∣⟨am+1, Amθ
∗⟩
∣∣ ≤ ∥am+1∥1 ∥Amθ

∗∥∞ ≤ 1/
√
d, such that one can take R = 1/

√
d. Observe

now that the strategy which plays cyclically e1, . . . , ed collects a reward of 1/
√
d at each time step,

which is optimal, such that OPT = T/
√
d. Further, it is easy to check that block ã, composed of

m pulls of 0d followed by e1, . . . , eL satisfies r̃(ã) = L/
√
d, which is optimal for similar reasons.

Playing cyclically ã, one gets a reward of L/
√
d every m+ L pulls. In other terms, we have

OPT−
T∑

t=1

r̃t =
T√
d
− L

m+ L

T√
d
=

m

m+ L

T√
d
=

mR

m+ L
T .

□

A.6 Proof of Theorem 1

We prove the high probability version of Theorem 1, obtained by setting λ ∈ [1, d], and δ = 1/T .
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Theorem 2 Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in Rd(m+L) defined in (11). Then,
with probability at least 1− δ we have
T/(m+L)∑

τ=1

r̃(ã)− r̃(aτ ) ≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

) )
.

Let m ≥ 1, T ≥ m2d2 + 1, and set L =
⌈√

m/d T 1/4
⌉
−m. Let rt be the rewards collected when

playing aτ as defined in (11). Then, with probability at least 1− δ we have

OPT−
T∑

t=1

rt ≤ 4
√
d (m+ 1)

1
2+γ+

T 3/4

[
1 + 2

√
ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

(√
λ

d
+

√
ln(1/δ)

d
+ ln

(
1 +

T (m+ 1)2γ+

dλ

) )]
.

Proof The proof is along the lines of OFUL’s analysis. The main difficulty is that we cannot use
the elliptical potential lemma, see e.g., [Lattimore and Szepesvári, 2020, Lemma 19.4] due to the
delay accumulated by Vτ , which is computed every m+ L round only. Let

βτ (δ) =

√
2 ln

(
1

δ

)
+ d ln

(
1 +

τ(m+ 1)2γ+

dλ

)
+
√
λ . (17)

By [Abbasi-Yadkori et al., 2011, Theorem 2], we have with probability at least 1− δ that θ∗ ∈ Cτ
for every τ . It follows directly that θ∗ ∈ Dτ for any τ , such that ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩, where
θ̃τ = (0d, . . . , 0d, θ̃τ , . . . , θ̃τ ) with θ̃τ ∈ Rd that maximizes (11) over Cτ−1. It can be shown that the
regret is upper bounded by

∑
τ

∑m+L
i=m+1⟨bτ,i, θ̃τ − θ∗⟩. Following the standard analysis, one could

then use 〈
bτ,i, θ̃τ − θ∗

〉
≤ ∥bτ,i∥V −1

τ−1

∥∥θ̃t − θ∗∥∥Vτ−1
.

While the confidence set gives
∥∥θ̃t−θ∗∥∥Vτ−1

≤ 2βτ−1(δ), the quantity
∑m+L

i=m+1 ∥bτ,i∥V −1
τ−1

is much

more complex to bound. Indeed, the elliptical potential lemma allows to bound
∑

t ∥at∥2V −1
t−1

when

Vt =
∑

s≤t asa
⊤
s +λId. However, recall that in our case we have Vτ =

∑τ
τ ′=1

∑m+L
i=m+1 bτ ′,ib

⊤
τ ′,i+

λId, which is only computed every m+ L rounds. As a consequence, there exists a “delay” between
Vτ−1 and the action bτ,i for i ≥ m+ 2, preventing from using the lemma. Therefore, we propose to
use instead〈

bτ,i, θ̃τ − θ∗
〉
≤ ∥bτ,i∥V −1

τ,i−1

∥∥θ̃t − θ∗∥∥Vτ,i−1
, where Vτ,i = Vτ−1 +

i∑
j=m+1

bτ,jb
⊤
τ,j . (18)

By doing so, the elliptical potential lemma applies. On the other hand, one has to control
∥∥θ̃t −

θ∗
∥∥
Vτ,i−1

, which is not anymore bounded by 2βτ−1(δ) since the subscript matrix is Vτ,i−1 instead of
Vτ−1. Still, one can show that for any i ≤ m+ L we have∥∥θ̃t − θ∗∥∥2Vτ,i−1

= Tr
(
Vτ,i−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤)
= Tr

(Vτ−1 +

i−1∑
j=m+1

bτ,jb
⊤
τ,j

) (
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
= Tr

(Id + i−1∑
j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤)
V

1/2
τ−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
V

1/2
τ−1
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≤
∥∥∥∥Id + i−1∑

j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤∥∥∥∥
∗
Tr
(
V

1/2
τ−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
V

1/2
τ−1

)

≤
(
1 +

i−1∑
j=m+1

∥∥V −1/2
τ−1 bτ,j

∥∥2
2

)∥∥θ̃t − θ∗∥∥2Vτ−1

≤
(
1 + (L− 1)(m+ 1)2γ

+
) ∥∥θ̃t − θ∗∥∥2Vτ−1

≤ L(m+ 1)2γ
+ ∥∥θ̃t − θ∗∥∥2Vτ−1

. (19)

Recalling also that ⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩ ≤ 2L(m+ 1)γ
+

, we have with probability at least 1− δ

T/(m+L)∑
τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

, ⟨bτ , θ̃τ − θ∗⟩
}

=

T/(m+L)∑
τ=1

min

{
2L(m+ 1)γ

+

,

m+L∑
i=m+1

⟨bτ,i, θ̃τ − θ∗⟩

}

≤
T/(m+L)∑

τ=1

min

{
2L(m+ 1)γ

+

,

m+L∑
i=m+1

∥bτ,i∥V −1
τ,i−1

∥∥θ̃t − θ∗∥∥Vτ,i−1

}

≤
T/(m+L)∑

τ=1

min

{
2L(m+ 1)γ

+

, 2
√
L(m+ 1)γ

+

βτ−1(δ)

m+L∑
i=m+1

∥bτ,i∥V −1
τ,i−1

}

≤ 2L(m+ 1)γ
+

βT/(m+L)(δ)

T/(m+L)∑
τ=1

m+L∑
i=m+1

min
{
1 , ∥bτ,i∥V −1

τ,i−1

}

≤ 2L(m+ 1)γ
+

βT/(m+L)(δ)

√√√√ T L

m+ L

T/(m+L)∑
τ=1

m+L∑
i=m+1

min

{
1 , ∥bτ,i∥2V −1

τ,i−1

}

≤ 2
√
2L(m+ 1)γ

+

βT/(m+L)(δ)

√
T ln

|VT/(m+L)|
|λId|

≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

) )
, (20)

where we have used (17), (18), and (19). Similarly to Proposition 5, note that in the stationary case,
i.e., when m = 0 and L = 1, we exactly recover [Abbasi-Yadkori et al., 2011, Theorem 3]. The first
claim of Theorem 1 is obtained by setting λ ∈ [1, d], and δ = 1/T .

LetRT denote the right-hand side of (20). Combining this bound with the arguments of Proposition 2,
we have with probability 1− δ

T∑
t=1

rt ≥
T/(m+L)∑

τ=1

r̃(aτ )−
m(m+ 1)γ

+

m+ L
T (21)

=

T/(m+L)∑
τ=1

⟨bτ ,θ∗⟩ − m(m+ 1)γ
+

m+ L
T
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≥
T/(m+L)∑

τ=1

⟨b̃,θ∗⟩ −RT −
m(m+ 1)γ

+

m+ L
T (22)

=

T/(m+L)∑
τ=1

r̃(ã)−RT −
m(m+ 1)γ

+

m+ L
T

≥
T∑

t=1

r̃t −RT −
2m(m+ 1)γ

+

m+ L
T (23)

≥ OPT−RT −
4m(m+ 1)γ

+

m+ L
T (24)

≥ OPT− 4(m+ 1)γ
+

[
mT

m+ L
+ (m+ L)

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

(
√
λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

) )]
,

where (21) and (23) come from the fact that any instantaneous reward is bounded by (m+ 1)γ
+

, see
(8), (22) from (20), and (24) from Proposition 2.

Now, assume that m ≥ 1, T ≥ d2m2 + 1, and let L =
⌈√

m/d T 1/4
⌉
−m. By the condition on T ,

we have
√
m/d T 1/4 > m ≥ 1, such that L ≥ 1 and√

m

d
T 1/4 ≤

⌈√
m

d
T 1/4

⌉
= L+m ≤

√
m

d
T 1/4 + 1 ≤ 2

√
m

d
T 1/4 .

Substituting in the above bound, we have with probability 1− δ

OPT−
T∑

t=1

rt ≤ 4
√
d (m+ 1)

1
2+γ+

T 3/4

[
1 + 2

√
ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

(√
λ

d
+

√
ln(1/δ)

d
+ ln

(
1 +

T (m+ 1)2γ+

dλ

) )]
.

The second claim of Theorem 1 is obtained by setting λ ∈ [1, d], and δ = 1/T . □

Remark 4 (Generic matrix mapping A) Note that our analysis naturally extends to any matrix
mapping A, as long as it is known. The term (m + 1)γ

+

in Theorem 1 is then replaced with
supa1...am

∥A(a1, . . . , am)∥∗. We highlight however that having access to such knowledge is unlikely
in practice. This is why we focus on the simpler parametric family (2), which encompasses many
rotting and rising scenarios while allowing us to learn simultaneously m and γ, as shown in the next
section. It is of course possible to extend the family of monomials (2) to a family of polynomials, but
this requires tracking more parameters (namely, the different coefficients of the polynomial), thus
degrading the final regret bound.

Remark 5 (Solving LBM with a general Reinforcement Learning (RL) approach) Our setting
may be seen as an MDP with a d-dimensional continuous space of actions, a (md)-dimensional
continuous state space (for the past m actions), a deterministic transition function parameterized by
an unknown scalar γ, and a stochastic reward function with a linear dependence on an additional
d-dimensional latent parameter θ∗. The optimal policy in this MDP is generally nonstationary, and
we are not aware of RL algorithms whose regret can be bounded without relying on more specific
assumptions on the MDP. By exploiting the structure of the MDP, and restricting to cyclic policies,
we show instead that the original problem can be solved using stationary bandit techniques.

A.7 Computational complexity of LBM

As described in Algorithm 1, our approach consists of two steps: updating the confidence region Cτ ,
i.e., θ̂τ and βτ according to (10) and (17), and computing the block aτ that maximizes the UCB index.
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The first step is performed by online Ridge regression, and has a computational cost of O(Ld2). We
note here the advantage of our refined algorithm over the naive concatenated approach, whose Ridge
regression update has cost O(L2d2). The maximization of the UCB indices, performed through
gradient ascent has time complexity per iteration of O

(
(m+ L)d2

)
. Hence, the overall complexity

of an epoch of Algorithm 1 is O
(
(m+ L)d2 · nit

)
, where nit is the number of iterations performed

by gradient ascent. Recall that the epochs of Algorithm 1 correspond to blocks of m + L actions,
such that the actual per-round complexity is O(d2 · nit).

A.8 Proof of Corollary 1

Lemma 1 Suppose that a block-based bandit algorithm (in our case the bandit combiner) produces
a sequence of Tbc blocks aτ , with possibly different cardinalities |aτ |, such that

Tbc∑
τ=1

r̃(ã)

|ã|
−

Tbc∑
τ=1

r̃(aτ )

|aτ |
≤ F (Tbc) ,

for some sublinear function F . Then, we have

minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

Tbc∑
τ=1

r̃(aτ ) ≤ min
τ
|aτ |F (Tbc) .

In particular, if all blocks have the same cardinality the last bound is just the block regret bound
scaled by |aτ |.

Proof We have
Tbc∑
τ=1

r̃(aτ ) ≥ min
τ
|aτ |

Tbc∑
τ=1

r̃(aτ )

|aτ |

≥ min
τ
|aτ |

(
Tbc∑
τ=1

r̃(ã)

|ã|
− F (Tbc)

)

=
minτ |aτ |
maxτ |aτ |

r̃(ã)

|ã|
max

τ
|aτ | Tbc −min

τ
|aτ |F (Tbc)

≥ minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−min

τ
|aτ |F (Tbc) .

□

Corollary 1 Consider an instance of LBM with unknown parameters (m⋆, γ⋆). Assume a bandit
combiner is run on N ≤ d

√
m⋆ instances of OFUL-memory (Algorithm 2), each using a different

pair of parameters (mi, γi) from a set S =
{
(m1, γ1), . . . , (mN , γN )

}
such that (m⋆, γ⋆) ∈ S . Let

M = (maxj mj)/(minj mj). Then, for all T ≥ (m⋆+1)2γ
+
⋆ /m⋆d

4, the expected rewards
(
rbc
t

)T
t=1

of the bandit combiner satisfy

OPT√
M
− E

[
T∑

t=1

rbc
t

]
= Õ

(
M d (m⋆ + 1)1+

3
2γ

+
⋆ T 3/4

)
.

Proof Let m⋆ be the true memory size, and L⋆ = L(m⋆) the corresponding (partial) block length.
Throughout the proof, ã denotes the block defined in (5) with length m⋆+L⋆. First observe that only
one of the OFUL-memory instances we test is well-specified, i.e., has the true parameters (m⋆, γ⋆).
We can thus rewrite the regret bound for the Bandit Combiner [Cutkosky et al., 2020, Corollary 2],
generalized to rewards bounded in [−R,R] as follows

Regretbc = Õ

C⋆T
α⋆

bc + C
1

α⋆
⋆ Tbcη

1−α⋆
α⋆

⋆ +R2Tbcη⋆ +
∑
j ̸=⋆

1

ηj

 , (25)
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where Tbc = T/(m⋆ + L⋆) is the bandit combiner horizon, C⋆ and α⋆ are the constants in the
regret bound of the well-specified instance (see below how we determine them), and the ηj are free
parameters to be tuned. We now derive C⋆ and α⋆. To that end, we must establish the regret bound of
the well-specified instance, and identify C⋆ and α⋆ such that this bound is equal to C⋆T

α⋆

bc , where C⋆

may contain logarithmic factors. For the well-specified instance, the first claim of Theorem 2 gives
that, with probability at least 1− δ, we have

T/(m⋆+L⋆)∑
τ=1

r̃(ã)− r̃(aτ ) ≤ 4(m⋆ + L⋆)(m⋆ + 1)γ
+
⋆

√√√√Td ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

dλ

)
√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

d(m⋆ + L⋆)λ

)
T/(m⋆+L⋆)∑

τ=1

r̃(ã)

|ã|
− r̃(aτ )

|aτ |
≤ T 1/2 4(m⋆ + 1)γ

+
⋆

√√√√d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

dλ

)
(26)

√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

d(m⋆ + L⋆)λ

) ,

where we have used that |aτ | = |ã| = m⋆ + L⋆ for every τ . Note that the right-hand side of (26) is
expressed in terms of T , which is not the correct horizon, T/(m⋆ + L⋆). However, recall that we
have

m⋆ + L⋆ ≤ 2

√
m⋆

d
T 1/4

(m⋆ + L⋆)
4 ≤

(
4m⋆

d

)2

T

T 3 ≤
(
4m⋆

d

)2(
T

m⋆ + L⋆

)4

T 1/2 ≤
(
4m⋆

d

)1/3(
T

m⋆ + L⋆

)2/3

,

such that by substituting in (26) and identifying we have α⋆ = 2/3, and

C⋆ = 4

(
4m⋆

d

)1/3

(m⋆ + 1)γ
+
⋆

√√√√d ln

(
1 +

Tbc(m⋆ + L⋆)(m⋆ + 1)2γ
+
⋆

dλ

)
√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

Tbc(m⋆ + 1)2γ
+
⋆

dλ

) .

Setting ηj = T
−2/3
bc , and substituting in (25) withR = (m⋆+1)γ

+
⋆ , we have that with high probability

Tbc∑
τ=1

r̃(ã)

|ã|
− r̃(abc

τ )

|abc
τ |

= Õ
((
C

3/2
⋆ +N

)
T

2/3
bc + (m⋆ + 1)2γ

+
⋆ T

1/3
bc

)
.

Now, recall that Tbc = O
(√

d/m⋆ T
3/4
)
, and that C⋆ = Õ

(
(m⋆ + 1)

1
3+γ+

⋆ d2/3
)
. Hence,

N ≤ d
√
m⋆ implies N = O

(
C

3/2
j

)
, and (m⋆ + 1)γ

+
⋆ ≤ d2

√
m⋆T implies (m⋆ + 1)γ

+
⋆ T

1/3
bc =

O
(
C

3/2
⋆ T

2/3
bc

)
. Setting λ ∈ [1, d], δ = 1/T , we obtain

E

[
Tbc∑
τ=1

r̃(ã)

|ã|
− r̃(abc

τ )

|abc
τ |

]
= Õ

(
d
√
m⋆ (m⋆ + 1)

3
2γ

+
⋆ T

2/3
bc

)
. (27)
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Let mτ be the memory size associated to the bandit played at block time step τ by Algorithm 2.
Let mmin = minj mj and mmax = maxj mj . Finally, let Lmin and Lmax the (partial) block length
associated with mmin and mmax. We have

T∑
t=1

rbc
t ≥

Tbc∑
τ=1

(
r̃(abc

τ )−mτ (m⋆ + 1)γ
+
⋆

)
≥

Tbc∑
τ=1

r̃(abc
τ )−mmax (m⋆ + 1)γ

+
⋆ Tbc ,

such that by Lemma 1 and (27) we obtain

E

[
minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

T∑
t=1

rbc
t

]
≤ mmax (m⋆ + 1)γ

+
⋆ Tbc +min

τ
|aτ | Õ

(
d
√
m⋆ (m⋆ + 1)

3
2γ

+
⋆ T

2/3
bc

)
,

E

[
mmin + Lmin

mmax + Lmax

(
L⋆ OPT

T

T

m⋆ + L⋆

)
−

T∑
t=1

rbc
t

]

≤ mmax (m⋆ + 1)γ
+
⋆ T

mmin + Lmin
+ (mmin + Lmin)

1/3 Õ
(
d
√
m⋆ (m⋆ + 1)

3
2γ

+
⋆ T 2/3

)
,

E

[√
mmin

mmax
OPT−

T∑
t=1

rbc
t

]
≤ mmax

mmin

√
dm⋆ (m⋆ + 1)γ

+
⋆ T 3/4 + Õ

(
dm⋆ (m⋆ + 1)

3
2γ

+
⋆ T 3/4

)
=
mmax

mmin
Õ
(
dm⋆ (m⋆ + 1)

3
2γ

+
⋆ T 3/4

)
,

where we have used the fact thatmmin+Lmin =
√
mmin/d T

1/4, andmmax+Lmax =
√
mmax/d T

1/4.
Corollary 1 is obtained by setting M = mmax/mmin. □

B Bandit Combiner

In this section we provide more details on the algorithmic implementation of Bandit Combiner.

As mentioned in the main body of the paper,Our bandit combiner, see Algorithm 2 in Appendix B,
builds upon the approach developed by Cutkosky et al. [2020] and works as follows. The meta-
algorithm is fed with different bandit algorithms (in our case, instances of O3M with different choices
of parameters mj and γj) and at each round plays a block according to one of the algorithms. We
relegate the explanation and details of this algorithmic solution to Appendix B. Each O3M instance
comes with a putative regret bound CjT

αj , which is the regret bound satisfied by the algorithm
should it be well-specified, i.e., if the rewards are indeed generated through a memory matrix with
memory mj and exponent γj . Note that in order to be comparable across the different instances,
the putative regrets apply to the average rewards. The values of Cj and αj can be computed using
Theorem 1, see the proof of Corollary 1 for details. The putative regrets are then used to successively
discard the instances that are not well specified, and eventually identify the instance using parameters
(m⋆, γ⋆). Knowing Cj and αj , we can compute for any j the target regret

Rj = Cj T
2/3
bc +

5
√
30

18
C

3/2
j T

2/3
bc + 1152(mj + 1)2γ

+
j T 1/3 log(T 3

bcN/δ) + (N − 1)T 2/3 , (28)

where Tbc is the number of blocks the Bandit Combiner is called on, see Appendix B for details. Here,
we note how the presence of (mj + 1)2γ

+
j is impacting differently the rising and rotting scenarios.

Using [Cutkosky et al., 2020, Corollary 2], the regret of Algorithm 2 is finally given by 3Rj⋆ , where
j⋆ is the index such that (mj⋆ , γj⋆) = (m⋆, γ⋆).

In this section we show our adaptation of the numbers Cj and target regrets Rj for the Bandit
Combiner algorithm Algorithm 2 which builds on Cutkosky et al. [2020]. For O3M(mj , γj), j =
1, . . . , N , the numbers Cj and target regrets Rj are defined as

Cj = 4

(
4mj

d

)1/3

(mj + 1)γ
+
j

√√√√d ln

(
1 +

Tbc(mj + Lj)(mj + 1)2γ
+
j

dλ

)
(29)
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Algorithm 2 Bandit Combiner on O3M
input :Instances O3M(m1, γ1), . . . , O3M(mN , γN ), horizon Tbc

numbers C1, . . . , CN > 0, target regrets R1, . . . , RN .

Set T (i) = 0,Si = 0,∆i = 0 for i = 1, . . . , N , and set I0 = {1, . . . , N}
for t = 1, . . . , Tbc do

if there is some i ∈ It with T (i) = 0 then
it = i

else
For each i ∈ It, compute the UCB index:

UCB(i) = min

{
(mi + 1)2γ

+
i ,

Ci√
T (i)

+ 4(mi + 1)2γ
+
i

√
2 log(T 3N/δ)

T (i)

}
− Ri

Tbc

Set it = argmaxi∈It
Si

T (i) +UCB(i)

Obtain from instance O3M(mit , γit) a block of size mit + Lit and play it

Return the total reward rit collected in the last Lit time steps of the block to O3M(mit , γit)

Compute the average reward r̂it =
rit
Lit

Update ∆it ← ∆it + Sit/T (it)− r̂it (where we set 0/0 = 0) and Sit ← Sit + r̂it

Update the number of plays T (it)← T (it) + 1

if ∆it ≥ CitT (it)
γit + 12 (mit + 1)2γ

+
it

√
2 log(T 3N/δ)T (it) then

It = It−1 \ {it}
else

It = It−1

√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

Tbc(mj + 1)2γ
+
j

dλ

) ,

Rj = CjT
αj

bc +
(1− αj)

1−αj
αj (1 + αj)

1
αj

α

1−αj
αj

j

C
1
αj

j Tbcη

1−αj
αj

j

+ 1152(mj + 1)2γ
+
j log(T 3

bcN/δ)Tbcηj +
∑
k ̸=j

1

ηk
.

Note that the form of the target regret Rj slightly differs from the one presented in [Cutkosky et al.,
2020, Corollary 2] due to the different range of the rewards. The algorithm, which is an adaptation of
Bandit Combiner in Cutkosky et al. [2020], is summarized in Algorithm 2.

C Additional Experiments

We provide an additional experiment comparing the regrets of O3M and OM-Block. In order to
be able to plot the regret, we must know OPT which is hard to compute in general. Since in the
rising scenario with an isotropic initialization OPT is oracle greedy, which is easy to compute, we
present this experiment in a rising setting with m = 1 and γ = 2. We plot the regret of O3M and
OM-Block against the number of time steps, measuring the performance at different time horizons
and for different sizes of L (where L depends on T , see at the end of Section 3.2). Specifically,
we instantiated O3M and OM-Block for increasing values of L, setting the horizon of each instance
based on the equations in Theorem 1 and Proposition 4. Figure 3 shows how the dimension of θ̂,
which is d for O3M and d × L for OM-Block, has an actual impact on the performance since O3M
outperforms OM-Block. The code is written in Python and it is publicly available at the following
GitHub repository: Linear Bandits with Memory.
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Figure 3: The regret of O3M and OM-Block. Each dot is a separate run where the value of L is tuned
to the corresponding horizon.
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