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Abstract001

Retrieval-Augmented Generation (RAG) plays002
a critical role in mitigating hallucinations and003
improving factual accuracy for Large Language004
Models (LLMs). While dynamic retrieval tech-005
niques aim to determine retrieval timing and006
content based on model intrinsic needs, existing007
approaches struggle to generalize effectively in008
black-box model scenarios. To address this lim-009
itation, we propose the Semantic Contribution-010
Aware Adaptive Retrieval (SCAAR) frame-011
work. SCAAR iteratively leverages the seman-012
tic importance of words in upcoming sentences013
to dynamically adjust retrieval thresholds and014
filter information, retaining the top-α% most015
semantically significant words for constructing016
retrieval queries. We comprehensively evalu-017
ate SCAAR against baseline methods across018
four long-form, knowledge-intensive genera-019
tion datasets using four models. Our method020
achieved the highest score on each dataset021
with GPT-4o. Extensive experiments also an-022
alyze the impact of various hyperparameters023
within the framework. Our results demon-024
strate SCAAR’s superior or competitive per-025
formance, showcasing its ability to effectively026
detect model retrieval needs and construct effi-027
cient retrieval queries for relevant knowledge028
about problem-solving in black-box scenarios.029
Our code is publicly available on GitHub.030

1 Introduction031

Large Language Models (LLMs) demonstrate im-032

pressive capabilities in various natural language033

processing tasks such as question-answering (QA),034

abstractive summarization, and machine translation035

(Zhao et al., 2023). The emergence of prompt tun-036

ing and in-context learning (Brown et al., 2020;037

Zhou et al., 2022; Chan et al., 2022) facilitates038

LLMs to generate convincing and human-like re-039

sponses, enabling LLMs to be integrated into AI-040

powered intelligent assistants to support human041

reasoning and decision-making processes (OpenAI,042

2022; Achiam et al., 2023). However, when con- 043

fronting time-dependent and complex reasoning 044

tasks, LLMs demonstrate reasoning inconsisten- 045

cies and factual inaccuracies during response gen- 046

eration, which is referred to as the hallucination of 047

LLMs (Huang et al., 2023). 048

Retrieval-Augmented Generation (RAG) (Guu 049

et al., 2020; Lewis et al., 2020) alleviates the hallu- 050

cination issue by incorporating relevant knowledge 051

into the context during the reasoning, enhancing 052

the model’s reasoning ability (Ram et al., 2023). 053

The conventional RAG framework implements a 054

single retrieval operation upon a question and lever- 055

ages the retrieved knowledge to assist the response 056

generation (Izacard et al., 2022; Luo et al., 2023). 057

However it shows limited performance in long- 058

form generation and tasks requiring multi-step rea- 059

soning. This limitation stems from single-step re- 060

trieval, which only retrieves knowledge relevant to 061

the initial question, neglecting the potential need 062

during the iterative generation process. 063

Recent work focuses on the problem of when 064

and what to retrieve during the generation process 065

of LLMs. IRCoT (Trivedi et al., 2022) triggers 066

retrieval at the end of each sentence, and Tool- 067

former (Schick et al., 2023) triggers retrieval when 068

seeing named entities. Meanwhile, adaptive re- 069

trieval has received increasing attention. The ad- 070

vantage of the adaptive retrieval lies in its ability to 071

decide whether to trigger retrieval and determine 072

the query for retrieval in accordance with status 073

of the model. Adaptive retrieval avoids unneces- 074

sary retrieval overhead and reduces the interference 075

caused by wrong retrievals, improving the quality 076

of the query and the retrieved content. Recent work 077

has explored different implementations of adap- 078

tive retrieval. FLARE (Jiang et al., 2023) uses the 079

probability of the generated tokens to determine 080

whether to retrieve and uses the model’s current 081

generation as the query, treating low-confidence 082

tokens as hallucinations. DRAGIN (Su et al., 2024) 083
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proposes an attention-based dynamic retrieval de-084

termination criterion assigns different significance085

values to content words and stopwords when build-086

ing the query for retrieval. SeaKR (Yao et al., 2024)087

proposes a retrieval determination criterion based088

on self-aware uncertainty. These methods effec-089

tively enhance RAG, but they rely on models’ hid-090

den states and can’t work with black-box models.091

Moreover, the query formulation schemes of these092

methods revolve around the entire sentence or part093

of speech, which lacks dynamism.094

In this work, we focus on threshold adaptive095

weighting schemes that work in black-box sce-096

narios and retrieval problem construction schemes097

based on these weights. Following the definition in098

previous works (Cífka and Liutkus, 2023; Kuang099

et al., 2024; Shi et al., 2023), in a black-box sce-100

nario, we can only obtain the probabilities infor-101

mation corresponding to the tokens returned by102

the model, and cannot obtain other content. We103

propose Semantic Contribution-Aware Adaptive104

Retrieval (SCAAR) as shown in Figure 1, which105

adopts an encoder model to compute the semantic106

contribution value of each token. The semantic107

contribution values are then leveraged to dynam-108

ically adjust the retrieval threshold and filter low-109

importance words in the query for retrieval.110

We compared our SCAAR against white-box111

adaptive retrieval approaches and static retrieval112

approaches on four knowledge-intensive datasets.113

Experimental results show that SCAAR achieves114

a performance comparable to adaptive white-box115

retrieval approaches, indicating that SCAAR can116

effectively capture the value of each token and de-117

termine ’when to retrieve’ in black-box settings.118

Additionally, the construction of contribution-119

based queries in SCAAR outperforms existing ap-120

proaches, indicating that SCAAR can better deter-121

mine ’what to retrieve’.122

The contributions of our paper are as follows:123

• We present a semantic contribution-based124

adaptive weighting (SCW) method, which ac-125

curately captures the model’s inherent need of126

retrieval under black-box settings.127

• We propose a Percentile-Filtered Query (PFQ)128

construction based on semantic contribution,129

filtering unimportant information in upcoming130

sentences for better retrieval.131

• We empirically demonstrate that our SCAAR132

framework composed of SCW and PFQ133

achieves superior performance compared 134

to baselines on four knowledge-intensive 135

datasets. 136

2 Related Work 137

2.1 Adaptive Retrieval 138

Conventional RAG frameworks generally deter- 139

mine to perform retrieval at a fixed time or based on 140

simple rules, for example, every question (Khandel- 141

wal et al., 2019), every N tokens (Borgeaud et al., 142

2022; Ram et al., 2023) or every N sentences (Shi 143

et al., 2023). Such mechanisms frequently fail to 144

match the knowledge need of models, and even 145

weaken final performance with unrelated retrieved 146

contents (Mallen et al., 2022). 147

Adaptive retrieval methods dynamically deter- 148

mine whether to retrieve by sensing the potential 149

quality issues during model generation. Existing 150

adaptive retrieval approaches can be based on ques- 151

tion difficulty assessment (Mallen et al., 2022; Li 152

et al., 2023; Asai et al., 2023), uncertainty qual- 153

ification (Su et al., 2024; Yao et al., 2024; Jiang 154

et al., 2023), and retrieval result postprocessing 155

(Wang et al., 2023; Xu et al., 2023; Yao et al., 2024), 156

among which the approaches based on uncertainty 157

qualification are most relevant to our work. 158

FLARE (Jiang et al., 2023) is the fundamental 159

work that applies uncertainty qualification to RAG. 160

If the confidence of any token is lower than a preset 161

threshold, FLARE triggers retrieval and uses the 162

remaining tokens to compose a query for retrieval. 163

FLARE effectively explores the model generation 164

intention and requirement, but lacks flexibility due 165

to the fixed threshold. 166

DRAGIN (Su et al., 2024) dynamically sets a 167

threshold for each token based on its attention 168

score, where tokens with higher attention scores are 169

regarded as more significant so they are assigned 170

higher thresholds. However, this approach cannot 171

be generalized to black-box models. 172

Our mechanism assigns dynamic thresholds to 173

different tokens by incorporating a lightweight lan- 174

guage model to quantify token semantic signifi- 175

cance as weighting factors of thresholds, introduc- 176

ing minimal computational overhead but enhancing 177

performance metrics in both white-box and black- 178

box scenarios. 179

2.2 Retrieval for Black-Box Models 180

Adaptive retrieval works generally focus on white- 181

box models since the LLMs’ internal states are 182
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Figure 1: SCAAR dynamically adjust thresholds for words based on semantic contribution score and keep top-α
words to construct query.

Table 1: Comparison of different methods.

Method Adaptive Dynamic Scenario
white-box black-box

FS-RAG (2022) × × ✓ ✓
FLARE (2023) ✓ × ✓ ✓
DRAGIN (2024) ✓ ✓ ✓ ×
SCAAR(Ours) ✓ ✓ ✓ ✓

considered to be significant in hallucination detec-183

tion (Chen et al., 2024). However, some powerful184

models such as GPT-4 do not provide any infor-185

mation of the internal states, posing a challenge186

to perform RAG based on these models. Existing187

black-box approaches focus on the consistency be-188

tween multiple responses for the question to assist189

retrieval determination. The more consistent an-190

swers are, the more likely the model is to know191

the correct answer. Otherwise, the model tend to192

give hallucinated responses with high semantic di-193

versity. Fomicheva et al. (Fomicheva et al., 2020)194

employ Meteor score to quantify the consistency195

of multiple responses. Lin et al. (Lin et al., 2023)196

propose to use semantic sets and graph Laplacian197

eigenvalues to estimate the uncertainty and confi-198

dence from the Jaccard similarities over multiple199

generations. Manakul et al. (Manakul et al., 2023)200

consider the similarities adopted in the above two201

approaches. Farquhar et al. (Farquhar et al., 2024)202

construct different queries for the specific idea gen-203

erated by the LLM and determine the factuality204

of the idea by the consistency of the final results205

over different queries. These approaches facilitate206

hallucination detection in black-box models and207

achieve effective performances, but still introduces208

much computational complexity due to the need209

for a large amount of extra generations.210

The comparison of the characteristics of differ-211

ent methods is shown in the Table 1.212

3 Methodology 213

3.1 Formulation of Adaptive Retrieval 214

Given a language model M and a user question q, 215

the generated response of the language model can 216

be denoted as y = M(q). Here, the response y 217

can be regarded as a sequence of sentences, i.e., 218

y = [s1, s2, · · · , sn], where each sentence si can 219

be regarded as a sequence of words, i.e., si = 220

[wi,1, wi,2, · · · , wi,m]. 221

A knowledge base in an RAG framework can 222

be denoted as a set of general Wikipedia or cus- 223

tomized documents D = {di}|D|
i=1, where di is a 224

single document. The RAG framework is able to 225

retrieve the k documents most relevant to the user 226

question q from the knowledge base D. The set of 227

the retrieved k documents is referred to as the con- 228

text knowledge, denoted as C = {c1, c2, · · · , ck}, 229

where ci ∈ D. The model M then performs aug- 230

mented generation y′ = M(C,q) using the context 231

knowledge C and the original user question q. Gen- 232

erally, when given relevant retrieved context, the 233

quality of output y′ is superior to that of y. 234

Adaptive retrieval approaches perform retrieval 235

determination and query construction based on the 236

information generated by the model itself. Given 237

a question, the model needs additional knowledge 238

to answer if it is not confident, which can be deter- 239

mined by comparing the probability of the currently 240

generated token yt with a threshold θ. If yt < θ, the 241

RAG framework will trigger retrieval at timestep 242

t for more knowledge. Query construction is the 243

problem of determining what to retrieve, i.e., a 244

query qr should be constructed to retrieve the most 245

relevant knowledge from the knowledge base. The 246

query is generally constructed based on the origi- 247

nal question q and the already generated response 248

y<t = [y1, y2, · · · , yt−1] through a query construc- 249
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tion function qry, denoted as qr = qry(q,y<t).250

3.2 Semantic Contribution-Aware Retrieval251

Determination252

We propose a novel semantic contribution-aware253

retrieval determination method to address the prob-254

lem “when to retrieve” in an RAG framework. It255

consists of 3 steps: (1) compute the word contri-256

bution, (2) scale the preset threshold based on the257

contribution, (3) compare the word probability with258

the threshold to determine whether to retrieve.259

Word Contribution. As words differ in semantic260

contribution, their importance should be evaluated261

accordingly(Duan et al., 2024). We compute the262

contribution of a specific word using the leave-one-263

out method, which involves comparing the seman-264

tic change before and after removing the word.265

SAR(Duan et al., 2024) estimated sentence un-266

certainty while we studied the feasibility of assign-267

ing threshold weights to individual tokens. Besides,268

we consider word-level instead of token-level con-269

tributions. Specifically, given a question q and270

a specific sentence st from response y, we first271

remove word wt,i from st, obtaining a corrupted re-272

sponse sentence st\wt,i. We then compute the simi-273

larity between [q, st] and [q, st\wt,i] through an ex-274

ternal cross-encoder model fx-enc (e.g., RoBERTa275

(Liu, 2019)), as shown in Eq. 1:276

r(wt,i;q, st) = 1− fx-enc ([q, st], [q, st\wt,i]) .
(1)

277

We treat it as the semantic contribution of wt,i.278

Threshold Scaling. The contribution279

r(wt,i;q, st) falls between 0 and 1. We need280

to normalize the overall sum of the weights281

to the length of sentence, so we normalize the282

contribution value along sentence st, as shown in283

Eq. 2, which we denote it as semantic-contribution-284

weighting (SCW). A value lower or greater than285

1 indicates that the contribution of the word is286

under or above average. Then, we scale the287

threshold for the specific word by the exponential288

of the contribution value, as shown in Eq. 3,289

where θ(wt,i;q, st) denotes the original threshold290

(generally a constant value) of wt,i.291

r′(wt,i;q, st) =
|st| · r(wt,i;q, st)∑
wt,i∈st r(wt,i;q, st)

(2)292

θscaar(wt,i;q, st) = er(wt,i) · θ(wt,i;q, st) (3)293

Retrieval Determination. During generation, 294

the probability of a word is computed as the prod- 295

uct of the probabilities of all its tokens in Eq. 4: 296

P (wt,i|C,W,wt,<i) =
n∏

k=m

P (Tt,k|C,W,Tt,<k),

(4)

297

where Tt,k denotes the corresponding tokens that 298

make up wt,i, m, n are the beginning and end in- 299

dexes of a word, W is composed of question q and 300

content generated previously s<t. For the descrip- 301

tion of how to identify words from tokens,please 302

refer to the Appendix B. 303

However, this computation results in lower prob- 304

ability values for words with more tokens. There- 305

fore, we perform length normalization as shown in 306

Eq. 5: 307

P ′(wt,i|C,W,wt,<i) = P (wt,i|C,W,wt,<i)
1

|wt,i| ,
(5)

308

Then, the normalized word probability is compared 309

with the scaled word threshold. If the normalized 310

probability of any word wt,i in the response sen- 311

tence st is lower than the corresponding scaled 312

threshold θscaar(wt,i;q, st), the response sentence 313

st should trigger retrieval. 314

By introducing an external cross-encoder model 315

for word contribution computation, our retrieval de- 316

termination approach can be generalized to black- 317

box LLMs. The additional overhead introduced by 318

the cross-encoder model is slight since it is gen- 319

erally a lightweight model compared to the LLM. 320

For more details, please refer to Appendix G 321

3.3 Semantic Contribution-Aware Query 322

Construction 323

To address the problem “what to retrieve”, we pro- 324

pose a novel query construction approach based 325

on the computed word contribution through α- 326

percentile filtering policy, which we name it 327

Percentile-Filtered Query (PFQ). Given the ques- 328

tion q, we say st is a hallucination sentence if 329

retrieval is triggered at time step t. Given the hal- 330

lucination sentence st = [wt,1, wt,2, · · · , wt,n], we 331

sort the words in st by their semantic contribution 332

decendingly and only keep the words with top α% 333

contribution values. The remaining words after α- 334

percentile filtering may still contain hallucination 335

words whose probabilities are below their thresh- 336

olds. Therefore, we further remove the hallucina- 337

tion words and concatenate the question q with the 338

remaining words to obtain the final query qr. The 339
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complete algorithm of semantic contribution-aware340

query construction is shown in Algorithm 1. We341

denote the query as a function of the question and342

the response sentence, i.e., qr = qryscaar(q, st).

Algorithm 1: Query construction
Data: Question q, hallucination response sentence st
Input: Percentage to keep α
Result: a constructed query qr

1 Sort st as s′t descendingly of word contributions;
2 Let rα be the α-percentile of contributions in s′t;
3 Initialize the query as the question: qr ← q;
4 for wt,i ∈ s′t do
5 rt,i ← r′(wt,i;q, st);
6 θt,i ← θscaar(wt,i;q, st);
7 if rt,i > θt,i and rt,i > rα then
8 qr ← concat(qr, wt,i);
9 end

10 end
11 return qr

343
The α-percentile filtering policy provides a rela-344

tive criterion to remove low-semantic-contributory345

words that may interfere with qualities of retrieval346

results. Intuitively, when confronted with unevenly347

distributed word semantics, the criterion based on348

α-percentile can better control the query length349

and quality compared to absolute filtering crite-350

ria. Like retrieval determination, the remaining351

high-semantic-contributory words are determined352

as hallucinated or not by comparing their gener-353

ation probabilities with their adaptive thresholds,354

where higher-contributory words are assigned with355

higher thresholds, as shown in Eq. 3. This effec-356

tively addresses cases where the semantic contribu-357

tion distribution of the remains has a large variance.358

3.4 Generation Refinement359

The SCAAR framework adopts a refinement idea360

of generating refinement with retrieved knowledge.361

Given the response sentence st generated from M ,362

if st does not trigger retrieval, we use it as the out-363

put of timestep t. Otherwise, we perform query364

construction given question q and response sen-365

tence st to obtain the query qryscaar(q, st). Then,366

we retrieve the context knowledge Ct from knowl-367

edge base D, denoted by Eq. 6. Finally, model368

M regenerate for a better response s′t based on the369

context knowledge Ct, the original question q, and370

the outputs of previous timesteps s′<t, denoted by371

Eq. 7. Note that we only use the knowledge Ct372

retrieved at the current timestep t. The refined re-373

sponse sentence s′t will replace the hallucination374

sentence st.375

Ct ∼ D|query=qryscaar(q,st)
(6) 376

s′t = M(Ct,q, s′<t) (7) 377

4 Experiment 378

In this section, we first demonstrated and com- 379

pared the performance of the SCAAR method with 380

other baselines on the evaluation data, and then 381

analyzed the effectiveness of different components 382

in SCAAR through ablation studies. 383

4.1 Experiment Setup 384

Baselines. We compared SCAAR with methods 385

including non-retrieval method (w/o RAG), fix- 386

sentence RAG (FS-RAG) (Trivedi et al., 2022), 387

which retrieves every sentence, alongside the adap- 388

tive retrieval methods FLARE (Jiang et al., 2023) 389

and DRAGIN (Su et al., 2024). The original 390

FLARE perform retrieval determination based on 391

token-level probabilities. We adapted it to word- 392

level by computing a geometric mean probability 393

of all tokens in a word, in line with other methods. 394

Datasets. We tested on four open-source datasets: 395

2WikiMultiHopQA (Ho et al., 2020), HotpotQA 396

(Yang et al., 2018), IIRC (Ferguson et al., 2020), 397

and StrategyQA (Geva et al., 2021). 398

Evaluation Metrics. We randomly selected 300 399

samples from each dataset for evaluation. We in- 400

corporated Chain-of-Thought (Wei et al., 2022) 401

and few-shot prompting (Brown et al., 2020) into 402

the prompt to guide the model’s reasoning pro- 403

cess and generate correct answers for evaluation. 404

The prompt we used is shown in Appendix A. 405

For StrategyQA, we evaluated the exact match 406

(EM) score since the answer is in “yes/no” for- 407

mat. For the other three datasets, we adopted both 408

EM and F1 scores as evaluation metrics since the 409

answers are phrases. Moreover, to evaluate the 410

retrieval efficiency, we measured the average im- 411

provement brought by each retrieval. Given the 412

average number of retrievals NR and the improve- 413

ment in F1 or EM score ∆S compared to the non- 414

RAG baseline, the retrieval efficiency is computed 415

as Seff = ∆S/NR. We evaluated the efficiency in 416

EM score improvement for StrategyQA and evalu- 417

ated in F1 score improvement for other three. 418

Models. We utilized the instruct version of open- 419

source Llama-2-7B, Llama-2-13B (Touvron et al., 420

2023), and Llama-3.1-8B (Dubey et al., 2024) for 421

white-box evaluation. For SCAAR, these models 422
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Table 2: Overall results on four datasets with the highest values of each model highlighted in bold are shown. The
best performance of each method across all experimental settings is reported.

2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff EM NR Seff

Llama-2-13B
w/o RAG 0.1658 0.2779 - - 0.1623 0.2736 - - 0.1111 0.1454 - - 0.6710 - -
FS-RAG 0.3389 0.4701 3.48 5.52 0.2500 0.3724 2.73 3.62 0.2291 0.2813 4.03 3.38 0.6667 4.22 -0.10
FLARE 0.3910 0.4912 2.71 7.88 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
DRAGIN 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.61 0.7069 4.59 0.78
SCAAR (Ours) 0.3918 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090 5.56 0.68

Llama-2-7B
w/o RAG 0.2367 0.3099 - - 0.2033 0.3158 - - 0.1367 0.1665 - - 0.6455 - -
FS-RAG 0.2214 0.3106 2.48 0.03 0.1979 0.3014 1.74 -0.83 0.1483 0.1937 1.85 1.47 0.5933 3.49 -1.49
FLARE 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000 0.2358 1.82 3.81 0.6651 4.50 0.44
DRAGIN 0.2761 0.3751 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92 0.6888 3.44 1.26
SCAAR (Ours) 0.2778 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361 1.92 3.63 0.6944 3.78 1.29
Llama-3-8B
w/o RAG 0.3211 0.3907 - - 0.2238 0.3354 - - 0.2089 0.2500 - - 0.7615 - -
FS-RAG 0.4034 0.4950 4.05 2.57 0.3581 0.4661 3.25 4.02 0.2734 0.3223 3.92 1.84 0.7912 4.86 0.61
FLARE 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.78
DRAGIN 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048 1.38 3.14
SCAAR (Ours) 0.5246 0.6026 2.70 7.84 0.4460 0.5570 3.40 6.52 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.42

GPT-4o
w/o RAG 0.5452 0.6811 - - 0.4407 0.5798 - - 0.2972 0.3743 - - 0.8490 - -
FLARE 0.5556 0.6846 1.95 0.17 0.5272 0.6640 2.43 3.46 0.4000 0.4678 3.69 4.85 0.8941 2.57 1.70
SCAAR(Ours) 0.5784 0.6980 1.88 0.89 0.5551 0.6794 2.40 4.15 0.4183 0.4965 1.83 6.67 0.8978 2.58 1.89

were encapsulated into an API designed to simulate423

a black-box scenario. We also conducted a black-424

box method comparison of the GPT-4o (OpenAI,425

2024) model with FLARE and SCAAR. We used426

the RoBERTa-large as our semantic encoder.427

Knowledge Base and Retriever. We used428

Wikipedia (Karpukhin et al., 2020) as the exter-429

nal knowledge base, splitting the text into blocks430

of length 100 for retrieval. Each retrieval returned431

the top 3 documents most relevant to the question,432

using BM25 (Robertson et al., 2009).433

For more details, refer to the Appendix A.434

4.2 Overall Result Analysis435

We compared SCAAR with baselines on evaluation436

data, as shown in Table 2, we found that: (1) Our437

SCAAR approach outperforms FLARE, and DRA-438

GIN in most cases without models’ internal states.439

It proves that our retrieval determiniation and query440

construction approach based on semantic contribu-441

tion, effectively perceive the model’s behavioral442

intentions and knowledge gaps, resulting in rele-443

vant retrievals. Experiments on GPT-4o demon-444

strate that SCAAR outperforms the static threshold445

black-box method FLARE by introducing dynamic446

thresholds. (2)FS-RAG underperforms adaptive447

retrieval methods and sometimes even underper-448

forms the non-retrieval approach. This is because449

when retrieved content is similar to but irrelevant450

to the question, even if the model could inher-451

ently derive the correct answer, its over-reliance 452

on context leads it to use incorrect information in 453

reasoning and response. (3)DRAGIN fails to sur- 454

pass FS-RAG with Llama-3.1-8B. We contribute 455

it to the fact that model assigns higher probabili- 456

ties to tokens, leading to fewer triggered retrievals 457

compared to other models and the degraded per- 458

formance. (4)Adaptive retrieval methods demon- 459

strates significantly higher performance and re- 460

trieval efficiency compared to static methods, in- 461

dicating that the adaptive retrieval determination 462

based on model confidence works effectively. 463

Results of more methods and different granulari- 464

ties are in Appendix C, D. 465

For ablation, we combined the threshold weight- 466

ing pipeline and query construction pipeline (three 467

methods for each) of adaptive methods and evalu- 468

ated over 3 models and 3 thresholds (0.9, 0.8, 0.7) 469

on 4 datasets, resulting in 108 settings in total. 470

4.3 Initial Threshold Ablation 471

As shown in Equation 3, the variation of the initial 472

threshold will alter the dynamic threshold, thereby 473

affecting the final performance. Existing works 474

only report best results over a range of initial thresh- 475

olds of corresponding approaches, ignoring com- 476

parisons under a common initial threshold. We 477

evaluate the performance of FLARE, DRAGIN, 478

and SCAAR at initial threshold of 0.9, 0.8, and 479

0.7, 108 settings for each respectively. We believe 480
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Figure 2: Comparison under same initial thresholds and
Win count of adaptive weighting methods and query
formulation methods.

that an excessively low initial threshold has little481

practical significance. We reported the mean perfor-482

mance of different methods at different thresholds483

in Figure 2a and 2b. Different thresholds result in484

different generation performance (F1 score) and re-485

trieval efficiencies (Seff), but SCAAR consistently486

outperforms FLARE and DRAGIN in both genera-487

tion performance and retrieval efficiency under all488

threshold configurations.489

4.4 Adpative Weight and Query Formulation490

In SCAAR, the SCW method determines the thresh-491

olds for each words, and the PFQ formulation492

method constructs queries for retrieval. We evalu-493

ated these two pipelines on four datasets using the494

Llama-2-7B model. We replaced SCW with ORI-495

GIN and ATTN, where ORIGIN assigns a weight496

of "1" to all words and ATTN computes weights497

of words based on attention scores. As for the lat-498

ter, we replace it with Curr-Sent and Real-Words,499

where Curr-Sent directly uses the high-confidence500

words in current sentence as the query and Real-501

Words uses real words. As shown in Table 3, Under502

various weighting methods, our PFQ achieves the503

best performance compared to Curr-Sent and Real-504

Words in most cases. However, we cannot infer505

which combination of adaptive weighting method506

and query formulation method achieves best per-507

formance (i.e., having the most underlined scores)508

from Table 3, since 4 out of 9 combinations achieve509

the best performance on at least one task.510

Figure 3: Visualization of word significance for answer
of "Were Scott Derrickson and Ed Wood of the same
nationality?" in ATTN and SCW.
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Figure 4: F1 scores of PFQ with different α against
Curr-Sent pipeline. We set threshold to be 0.9.

Different from experiments in Table 3, we 511

counted the number of times each weighting 512

method achieves the best performance and effi- 513

ciency given the specific query formulation method 514

across 108 configurations and reported results in 515

Figure 2c. SCW achieves the highest win count in 516

F1 and Seff scores. Besides, results of query formu- 517

lations in Figure 2d show PFQ achieves the highest 518

win count in F1 and Seff scores. 519

To more intuitively analyze the difference be- 520

tween ATTN and SCW, we visualize the word sig- 521

nificance computed by the two methods. Given a 522

specific question, the first sentence of the response 523

is “Scott Derrickson is an American film director.” 524

with 7 words. Figure 3 demonstrates the signifi- 525

cance score of each word computed by ATTN and 526

SCW, where SCW effectively captures “American” 527

and “film”, the two words that contributes most to 528

the semantics of the sentence. These two words are 529

indeed potential hallucinations since they describe 530

some factual and knowledgeable content, therefore 531

need to be assigned with a stricter threshold. 532

4.5 Percentile Ablation 533

In PFQ, we keep words with top α% contribution 534

values. To clarify the influence of α, we perform 535

ablation experiment on Llama-2-7B model with 536
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Table 3: Best results of Llama-2-7B across various thresholds. The bold values indicates the best query formulation
method, and the underlined values indicates the best combination of weighting method and query formulation
methods. Note that we only controlled the pipeline variable and did not control any other variables.

Weighting Query 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 Seff EM F1 Seff EM F1 Seff EM Seff

ORIGIN Curr-Sent 0.2644 0.3509 1.78 0.2510 0.3628 2.01 0.2000 0.2358 3.81 0.6651 0.44
ORIGIN Real-Words 0.2534 0.3434 1.44 0.2696 0.3693 2.93 0.1952 0.2432 3.08 0.6632 0.43
ORIGIN PFQ (Ours) 0.2838 0.3707 2.48 0.2625 0.3544 1.73 0.2218 0.2576 4.35 0.6986 1.22
ATTN Curr-Sent 0.2795 0.3675 2.02 0.2198 0.3357 1.19 0.1918 0.2370 3.26 0.6429 -0.07
ATTN Real-Words 0.2761 0.3751 2.28 0.2258 0.3310 0.90 0.1937 0.2431 3.92 0.6118 -0.93
ATTN PFQ (Ours) 0.3014 0.3787 2.41 0.2313 0.3471 1.86 0.2082 0.2520 4.48 0.6485 0.08
SCW (Ours) Curr-Sent 0.2664 0.3562 1.93 0.2556 0.3505 2.05 0.1906 0.2234 3.11 0.6844 0.96
SCW (Ours) Real-Words 0.2525 0.3425 1.58 0.2609 0.3532 2.09 0.1713 0.2239 2.57 0.6655 0.41
SCW (Ours) PFQ (Ours) 0.2778 0.3677 2.45 0.2680 0.3762 3.57 0.1964 0.2361 3.63 0.6944 1.29

Table 4: EM score of Llama-2-7B-chat on 2Wikimulti-
hopQA with different amounts of documents.

Method Number of Documents
2 3 4 5

FLARE 0.2391 0.2644 0.2383 0.2375
DRAGIN 0.2742 0.2761 0.2341 0.2609
SCAAR 0.2755 0.2778 0.2508 0.2752

different α values and the same weighting method.537

Results in Figure 4 show that for HotpotQA and538

IIRC, mostly α values outperform the Curr-Sent539

approach with SCW. Even with small α values, the540

filter effectively eliminates extraneous information541

from current generations while maintaining focus542

on important information. We find that for different543

datasets, the optimal α varies, and the results on544

either side of the peak decay as the distance from545

the peak increases.546

4.6 Impact of Encoder547

We replaced RoBERTa with DeBERTa (He et al.)548

to analyze the impact of the encoder on the frame-549

work’s performance. Results of Llama-3-8B on550

2WikimultihopQA and HotpotQA are shown in the551

Appendix H. DeBERTa outperforms RoBERTa, we552

attributed it to its better performance in semantic553

similarity calculation.554

4.7 Impact of Num of Documents555

To compare performance as the number of docu-556

ments changes, we vary the number from 2 to 5557

(performance remains stable when it exceeds 5).558

Results of Llama-2-7B on the 2WikimultihopQA559

are presented in Table 4. The best performance is560

achieved when the number is set to 3. Across all561

experiments, our SCAAR outperform FLARE and562

DRAGIN, demonstrating the effectiveness. Addi-563

tional results are provided in the Appendix F.564

Table 5: Performance on Llama2-7B-chat over datasets
with DPR.

Dataset Method EM F1 Seff

HotpotQA
FLARE 0.2068 0.2695 -2.94
DRAGIN 0.1773 0.2678 -3.15
SCAAR 0.2162 0.3245 0.56

IIRC
FLARE 0.1204 0.1373 -1.36
DRAGIN 0.1313 0.1663 -0.01
SCAAR 0.1370 0.1689 0.13

StrategyQA
FLARE 0.6469 0.6469 0.03
DRAGIN 0.6566 0.6566 0.31
SCAAR 0.6763 0.6763 0.65

4.8 Impact of Retriever 565

There are two types retrieval: lexical matching 566

and dense retrieval. We also employed the DPR 567

model (Karpukhin et al., 2020) as dense retriever 568

and conducted tests on the Llama2-7B model. For 569

more detail, please refer to Appendix E. Results as 570

shown in Table 5, indicate that the SCAAR scheme 571

outperforms the FLARE and DRAGIN across test 572

datasets with the DPR model. However, the perfor- 573

mance of three methods is lower than that of the 574

BM25-based retriever and baseline methods even 575

underperform the non-retrieval method on the Hot- 576

potQA and IIRC. We assume that this is due to the 577

lack of semantics brought by the short length of the 578

following sentence. 579

5 Conclusion 580

In this paper, we propose an adaptive RAG frame- 581

work incorporating a dynamic weight adjustment 582

mechanism based on semantic contribution and 583

a percentile-filtered query construction method 584

for black-box scenarios. Extensive experiments 585

demonstrate the effectiveness of our framework. 586

Furthermore, ablation study results show the con- 587

tributions of individual pipeline components to the 588

enhanced performance. 589
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6 Limitations590

We acknowledge that there remains significant591

room for enhancement on the following directions:592

• Enhancing Semantic Weight Representa-593

tiveness. As SCAAR with DeBERTa-base594

surpasses that with RoBERTa-large, domain-595

specific fine-tuning of the encoder during ap-596

plication may strengthen the representative-597

ness of the weight coefficients598

• Learnable Quantile Filtering. Our per-599

centile filtering method relies on heuristic con-600

stants. We argue that training a classifier for601

percentile prediction is a necessary step602

• Optimizing Dense Passage Retrieval. Exper-603

iment results indicate that dpr still has substan-604

tial potential for improvement. A key chal-605

lenge in adaptive retrieval scenarios is cap-606

turing the semantics of up-coming sentences607

with limited word counts608

• LLM-based metrics. We ensured the feasibil-609

ity of using EM and F1 as evaluation metrics610

by controlling the output format of the model.611

However, it would be valuable to include ex-612

perimental results using LLM-based metrics613

to assess retrieval accuracy more comprehen-614

sively.615

7 Ethics Statement616

In our research and experimental endeavors, we617

adhere strictly to ethical guidelines to ensure that618

our development and application of artificial in-619

telligence technology are conducted responsibly.620

Throughout our research process, we have refrained621

from utilizing data that relies on personal informa-622

tion or manual annotations. Moreover, we have623

employed open-source models for our experiments624

without any additional training, thereby ensuring625

that we do not introduce bias or other harmful626

knowledge into them. In addition, we have made627

our code and data publicly available on the GitHub628

community. This allows the community to verify629

the performance of our proposed method and to630

further enhance and optimize it.631
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A More Details about Experiment Setup 872

Datasets. We test on four knowledge-intensive 873

datasets: 2WikiMultiHopQA (Ho et al., 2020), Hot- 874

potQA (Yang et al., 2018), IIRC (Ferguson et al., 875

2020), and StrategyQA (Geva et al., 2021). 876

2WikimultihopQA. A multi-hop question answer- 877

ing dataset designed to advance complex reasoning 878

tasks, especially multi-step reasoning tasks. The 879

dataset contains about 20,000 questions that in- 880

volve a large number of reasoning steps and infor- 881

mation synthesis tasks. Each question has multiple 882

candidate answers, and the model needs to select 883

the correct answer from them. 884

HotpotQA. A large multi-hop question answering 885

dataset designed to advance the ability of machines 886

to understand complex questions. The dataset con- 887

tains 113,000 questions, which are characterized 888

by the fact that it contains questions that require 889

multi-step reasoning and information across mul- 890

tiple documents to answer, requiring the model to 891

not only extract information from a single article, 892

but also conduct comprehensive analysis across 893

multiple documents. The answer to a question in 894

HotpotQA is usually a short entity (such as a per- 895

son’s name, a place name, etc.) or a concise fact. 896

IIRC. The IIRC dataset is a collection of incom- 897

plete information reading comprehension questions. 898

It comprises 13,441 questions based on 5,698 para- 899

graphs sourced from English Wikipedia. These 900

questions were crafted by crowdworkers who had 901

no access to any linked documents. As a result, the 902

contexts in which the questions and answers ap- 903

pear exhibit minimal lexical overlap. This unique 904

approach not only makes the dataset more reflec- 905

tive of real-world information-seeking scenarios 906

but also significantly increases the complexity of 907

the task. Many questions in the dataset are either 908
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unanswerable or require discrete reasoning, pos-909

ing substantial challenges for models attempting910

to navigate and retrieve information from multiple911

sources.912

StrategyQA. A dataset comprises 2,780 meticu-913

lously crafted samples, each encompassing a strate-914

gic policy question, its detailed decomposition915

steps, and a corresponding evidence paragraph. Uti-916

lizing a robust crowdsourcing pipeline, the dataset917

employs terminology guidance to inspire anno-918

tators, enforces strict control over the annotator919

group, and implements adversarial filtering to elim-920

inate reasoning shortcuts. This comprehensive ap-921

proach ensures the questions are both creative and922

challenging, demanding implicit reasoning steps923

that are not explicitly stated within the questions924

themselves.925

HotpotQA and 2WikiMultihopQA are multi-hop926

reasoning datasets where models need to extract927

information from multiple documents to answer928

questions through basic analysis. IIRC is a con-929

versational dataset that presents greater challenges930

than HotpotQA and 2WikiMultihopQA, as models931

must not only acquire document information but932

also understand and execute instruction-based inter-933

actions. StrategyQA aims to evaluate and enhance934

models’ ability to solve problems requiring strate-935

gic thinking and reasoning, where models must936

combine textual information with common sense937

and logical inference.938

Prompt Settings. The few-shots COT prompt we939

use in experiments are as shown:940

[1] Context 1941
[2] Context 2942
...943
[N] Context N944
Answer the question by reasoning step-by-step and response945
result with "So the answer is " format.946
Question: Q1947
Answer: A1948
...949
Question: Qn950
Answer: An951
Question: <<<the question to be evaluated>>>952
Answer:953

Knowledge Base and Retriever. We use954

Wikipedia (Karpukhin et al., 2020) as the exter-955

nal knowledge base, which contains various topics956

and information to support us to obtain the context957

knowledge relevant to test questions. There are958

21,015,324 passages in the database which is suffi-959

cient for assisting models to answer questions. We960

employ BM25 (Robertson et al., 2009), which as961

the retriever following FLARE and most existing962

works.963

Table 6: Average performance of word-level and token-
level thresholding with different models.

Model Word-Level Token-Level
EM F1 Seff EM F1 Seff

Llama-2-13B 0.3890 0.4599 3.54 0.3886 0.4579 3.65
Llama-2-7B 0.3242 0.3840 1.20 0.3203 0.3787 1.02
Llama-3-8B 0.4874 0.5559 3.47 0.4845 0.5539 3.41
Overall 0.4002 0.4666 2.73 0.3978 0.4635 2.69

B Tokens identification 964

Our token-to-word alignment process operates as 965

follows: First, we decode the full token sequence 966

to obtain a complete word list. We then employ 967

an adaptive window sizing mechanism to progres- 968

sively expand a sliding window over the token 969

sequence. When the decoded result of substring 970

matches any lexical item in the remaining list, we 971

register the corresponding token span, reset the 972

window and move the beginning to the end of span. 973

This iterative process continues until full sequence 974

coverage is achieved. The pseudocode below for- 975

malizes this procedure:

Algorithm 2: Word Alignment Algorithm

1 Initialize two empty lists:A: temporary
token buffer, WL: word alignment list

2 Initialize index i1 = 0, i2 = 0
3 Initialize list W = Decode(T ) where T is

the output token sequence
4 Initialize L1 = len(W ), L2 = len(T )
5 while i2 < L2 do
6 Append Ti2 to list A if

Decode(A) == Wi1 then
7 Append [A[0], A[−1]] to WL
8 Reset A to empty list
9 Update i2 = i2 + 1

10 end
11 Update i1 = i1 + 1

12 end
13 After loop, append [A[0], A[−1]] to WL

976

C Comparison of single-round RAG and 977

fix-length RAG 978

In the experiment section, limited by page length, 979

we mainly compare our method with other adap- 980

tive methods, so we show all comparison results 981

between adaptive methods and static methods here, 982

including single-round RAG (Lewis et al., 2020) 983

and fix-length RAG (Ram et al., 2023). 984
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Table 7: Overall results of SCAAR and baselines on four datasets.

2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff EM NR Seff

Llama-2-13B
w/o RAG 0.1658 0.2779 - - 0.1623 0.2736 - - 0.1111 0.1454 - - 0.6710 - -
SR-RAG 0.1971 0.3451 1.00 6.72 0.2838 0.4016 1.00 12.80 0.1711 0.2173 1.00 7.19 0.6750 1.00 0.40
FL-RAG 0.2535 0.3674 2.06 4.35 0.2947 0.4151 3.42 4.14 0.1711 0.2314 2.81 3.06 0.6643 5.34 -0.13
FS-RAG 0.3389 0.4701 3.48 5.52 0.2500 0.3724 2.73 3.62 0.2291 0.2813 4.03 3.38 0.6667 4.22 -0.10
FLARE 0.3910 0.4912 2.71 7.88 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
DRAGIN 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.61 0.7069 4.59 0.78
SCAAR (Ours) 0.3918 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090 5.56 0.68

Llama-2-7B
w/o RAG 0.2367 0.3099 - - 0.2033 0.3158 - - 0.1367 0.1665 - - 0.6455 - -
SR-RAG 0.1945 0.2920 1.00 -1.79 0.1466 0.2427 1.00 -7.31 0.1672 0.2250 1.00 5.85 0.6230 1.00 -2.25
FL-RAG 0.1620 0.2608 1.56 -3.15 0.1554 0.2573 1.18 -4.95 0.1418 0.1865 1.06 1.89 0.6421 1.61 -0.21
FS-RAG 0.2214 0.3106 2.48 0.03 0.1979 0.3014 1.74 -0.83 0.1483 0.1937 1.85 1.47 0.5933 3.49 -1.49
FLARE 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000 0.2358 1.82 3.81 0.6651 4.50 0.44
DRAGIN 0.2761 0.3751 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92 0.6888 3.44 1.26
SCAAR (Ours) 0.2778 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361 1.92 3.63 0.6944 3.78 1.29
Llama-3-8B
w/o RAG 0.3211 0.3907 - - 0.2238 0.3354 - - 0.2089 0.2500 - - 0.7615 - -
SR-RAG 0.3115 0.4193 1.00 2.86 0.3345 0.4640 1.00 12.86 0.2641 0.3377 1.00 8.77 0.7249 1.00 -3.66
FL-RAG 0.3684 0.4679 1.94 3.97 0.3825 0.4903 1.95 7.94 0.2918 0.3337 2.20 3.81 0.7181 2.19 -1.98
FS-RAG 0.4034 0.4950 4.05 2.57 0.3581 0.4661 3.25 4.02 0.2734 0.3223 3.92 1.84 0.7912 4.86 0.61
FLARE 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.78
DRAGIN 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048 1.38 3.14
SCAAR (Ours) 0.5246 0.6026 2.70 7.84 0.4460 0.5570 3.40 6.52 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.42

In all cases, the static retrieval schemes’ final985

performance falls short of ours, and in most in-986

stances, it also lags behind the dynamic schemes’.987

It is noteworthy that, in some scenarios, the single-988

round scheme boasts the highest retrieval efficiency989

among all schemes. For example, on the HotpotQA990

dataset, the Llama2-13B-chat and Llama3.1-8B-991

chat models exhibit superior efficiency. We posit992

that this finding underscores the strong correlation993

between retrieval efficiency and both the model and994

the question scenario. Therefore, it is imperative995

to integrate an adaptive scheme that leverages the996

model’s internal knowledge with external knowl-997

edge, such as question difficulty and type, as the998

basis for triggering retrieval. Additionally, we ob-999

serve that our retrieval efficiency index declines1000

as the reasoning length increases. Hence, devel-1001

oping a more comprehensive retrieval efficiency1002

evaluation index represents a promising direction1003

for future research.1004

D Comparison of Different Granularity1005

We analyze the impact of different configurations1006

in the SCAAR framework on performance through1007

ablation studies. SCAAR computes the semantic-1008

based adaptive weights at word level to ensure se-1009

mentic integrity and generation efficiency. Intu-1010

itively, using the word-level probability may hinder1011

the distinctness of the token probability to a certain1012

extent. Specifically, if the initial threshold is 0.8, 1013

and the probabilities of the two tokens that make 1014

up the word are 0.7 and 1.0 respectively. At token- 1015

level, it will trigger retrieval since the probability 1016

of the first token 0.7 is lower than the threshold 0.8. 1017

However, at word-level, it will not trigger retrieval 1018

since the word probability is the geometric mean 1019

of 0.8 and 1.0, i.e., 0.83, which is greater than the 1020

threshold 0.8. To clarify the impact of different 1021

thresholding granularities, we evaluate the perfor- 1022

mance of using token-level and word-level thresh- 1023

olding under the vanilla RAG framework with a 1024

fixed threshold. The average performance over the 1025

aforementioned four datasets on different models is 1026

shown in Table 6, where overall indicates the aver- 1027

age scores over all three models. The results shows 1028

that word-level thresholding slightly outperforms 1029

token-level thresholding in EM and F1 scores overl 1030

all model configurations. 1031

E DPR Model Settings 1032

In order to test our method in a dense passage re- 1033

trieval senarior, we choose the encoder released by 1034

Karpukhin et al.(Karpukhin et al., 2020). The ques- 1035

tion encoder and text encoder used in our experi- 1036

ments use the BERT-base (Kenton and Toutanova, 1037

2019) as backbones and are further trained on 1038

Natural Questions (NQ) dataset (Lee et al., 2019; 1039

Kwiatkowski et al., 2019). For a question, we ob- 1040

13



tain a dense embedding of the special token [CLS]1041

which is obtained by applying a linear transfor-1042

mation followed by a tanh activation function to1043

the hidden state of the [CLS] token from the last1044

layer. We used Faiss, a vector database, to load pre-1045

encoded external knowledge. Then, we utilized1046

full-precision indexing based on L2 (Euclidean dis-1047

tance) for matching. This approach is faster than1048

using cosine similarity for calculations, though it1049

may result in a slight loss of accuracy.1050

F Comparison of Different Num of1051

Documents1052

We conduct experiments on baseline methods and1053

SCAAR methods using different num of retrieved1054

documents. We pick [3, 5, 7] for Llama-3.1-8B and1055

Llama-2-13B, and pick [2,3,4,5,7] for Llama-2-7B.1056

Results are shown in Table 10, 11, 12 respectively.1057

We can draw several conclusions: (1)In all exper-1058

iments, the setting of doc_num=3 yields the best1059

results in most cases. Having too many or too few1060

retrieved documents may interfere with the model’s1061

reasoning ability and cause errors. (2)There is no1062

consistently obvious relationship between the num-1063

ber of documents and performance across all mod-1064

els. We believe this is due to the fixed retrieval1065

number scheme lacking post-retrieval assessment1066

of the quality of retrieved documents. This inspires1067

us to further verify the quality of retrieved doc-1068

uments or the answers generated before and af-1069

ter model retrieval. (3)In most experimental set-1070

tings, our SCAAR scheme can surpass DRAGIN1071

to achieve the best performance, further proving1072

that our scheme is not only suitable for black-box1073

scenarios but also has performance advantages in1074

white-box scenarios.1075

Table 8: The actual time required for SCAAR and DRA-
GIN methods to complete reasoning on 300 2Wikimul-
tihopQA questions on Llama3-8B and Llama2-13B.

model DRAGIN SCAAR

Llama3-8B 40min 60min
Llama2-13B 150min 200min

G Additional overhead1076

We estimated the contribution of each word be-1077

fore we adjusted the thresholds of every words,1078

therefore it is important to consider the compu-1079

tational efficiency of our method. Our method1080

Table 9: Comparisons of using different cross-encoders.
The bold results are the best among experiments. R for
RoBERTa, and D for DeBERTa

Encoder 2WikimultihopQA HotpotQA StrategyQA
EM F1 EM F1 F1

RoBERTa 0.5246 0.6026 0.4460 0.5570 0.7799
DeBERTa 0.5387 0.6083 0.4484 0.5589 0.7989

does not involve model fine-tuning, so we only 1081

compare with self-consistency-based methods and 1082

probability-based methods. 1083

G.1 Compare with self-consistency-based 1084

method 1085

Assuming that we have a reasoning model of size N 1086

B and an cross-encoder model of size M B, and that 1087

the average length of the answer to question Q is L. 1088

For a self-consistency scheme on this model with 1089

n samples, the total overhead can be considered as 1090

N ∗ L ∗ n. In contrast, our approach involves an 1091

overhead of N ∗L∗1+M ∗L∗1. The ratio of the 1092

overheads is N ∗ n : N +M . Since M < N and 1093

n ≥ 2, our approach has less overhead compared 1094

to the multi-sampling black-box scheme. 1095

G.2 Compare with Dragin 1096

In our experiments, we used a RoBERTa-large 1097

model of size 340M to complete the calculation 1098

of semantic contribution. 1099

The resource overhead ratio of DRA- 1100

GIN:SCAAR is: 2 ∗ N : 2 ∗ N + 0.7 if all 1101

models are loaded in bf16. 1102

The actual running time (in minutes) of the 1103

DRAGIN and SCAAR schemes on the 2Wikimul- 1104

tihopQA dataset is shown in Table 8. 1105

The additional time overhead is about 1/2 of 1106

DRAGIN’s for the 8B model and about 1/3 for the 1107

13B model. Notably, as the inference model be- 1108

comes larger, the relative overhead of our auxiliary 1109

model diminishes. 1110

H Impact of Semantic Encoder 1111

We evaluated the impact on performance when us- 1112

ing other pre-trained cross-encoders for semantic 1113

contribution calculation. We used deberta-v3-base 1114

as model as the encoder and the Llama-3-8B chat 1115

model as the reasoning model, conducting exper- 1116

iments on 2WikimultihopQA and HotpotQA. Re- 1117

sults are shown in Table 9. Using two different 1118

Encoders can both achieve performance surpassing 1119

the baseline on the test set, which demonstrates 1120
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Table 10: Ablation results of doc_num for comparison of different methods on Llama-2-13B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o RAG 0 0.1658 0.2779 0 0.00 0.1623 0.2736 0 0.00 0.1111 0.1454 0 0.00 0.6710 0 0.00

FLARE
3 0.3910 0.4912 2.71 7.88* 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
5 0.3664 0.4835 2.90 7.10 0.2984 0.4172 3.85 3.73 0.2744* 0.3356 4.25 4.47 0.6846 4.92 0.28
7 0.3664 0.4835 2.90 7.10 0.2984 0.4172 3.85 3.73 0.2744 0.3356 4.25 4.47 0.6846 4.92 0.28

DRAGIN
3 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.74 0.7069 4.59 0.78*
5 0.3200 0.4384 2.24 7.17 0.3088 0.4187 2.37 6.12* 0.2586 0.3131 3.73 4.50* 0.6937 5.12 0.44
7 0.3200 0.4384 2.24 7.17 0.3088 0.4187 2.37 6.12 0.2586 0.3131 3.73 4.50 0.6937 5.12 0.44

SCAAR
3 0.3918* 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090* 5.56 0.68
5 0.3870 0.5037* 3.20 7.07 0.3674* 0.4639* 3.33 5.71 0.2612 0.3276 4.19 4.34 0.7024 5.04 0.62
7 0.3870 0.5037 3.20 7.07 0.3674 0.4639 3.33 5.71 0.2612 0.3276 4.19 4.34 0.7024 5.04 0.62

Table 11: Ablation results of doc_num for comparison of different methods on Llama-2-7B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o RAG 0 0.2367 0.3099 0 0.00 0.2033 0.3158 0 0.00 0.1367 0.1665 0 0.00 0.6455 0 0.00

FLARE

2 0.2391 0.3280 2.33 0.78 0.2730 0.3736 1.94 2.98 0.1690 0.1979 2.29 1.37 0.6421 5.59 0.00
3 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000* 0.2358 1.82 3.05 0.6651 4.50 0.44
4 0.2383 0.3166 1.55 0.43 0.2886* 0.3780 1.53 4.07 0.1831 0.2193 1.80 2.94 0.6678 3.59 0.62
5 0.2375 0.3326 1.64 1.38 0.2635 0.3767 1.47 4.15 0.1684 0.2056 1.91 2.05 0.6531 4.83 0.16
7 0.2375 0.3326 1.56 1.46 0.2685 0.3709 1.34 4.12 0.1684 0.2056 1.91 2.05 0.6531 4.83 0.16

DRAGIN

2 0.2742 0.3657 2.40 2.33 0.2575 0.3603 1.75 2.54 0.1800 0.2185 2.46 2.11 0.6296 3.88 -0.04
3 0.2761 0.3751* 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92* 0.6888 3.44 0.13
4 0.2341 0.3387 1.77 1.63 0.2609 0.3489 1.38 2.40 0.1911 0.2379 2.13 3.35 0.6576 4.01 0.03
5 0.2609 0.3505 1.56 2.61 0.2676 0.3545 1.37 2.82 0.1886 0.2375 2.38 2.99 0.6712 3.32 0.08
7 0.2609 0.3505 1.56 2.61 0.2676 0.3545 1.37 2.82 0.1886 0.2375 2.38 2.99 0.6712 3.32 0.08

SCAAR

2 0.2755 0.3627 2.48 2.12 0.2709 0.3652 1.76 2.81 0.1706 0.2066 2.19 1.83 0.6679 5.29 0.04
3 0.2778* 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361* 1.92 3.63 0.6944* 3.78 1.3*
4 0.2508 0.3239 1.54 0.91 0.2727 0.3814 1.40 4.68 0.1757 0.2246 1.91 3.05 0.6713 4.55 0.06
5 0.2752 0.3626 1.41 3.75* 0.2635 0.3525 1.38 2.66 0.1741 0.2126 1.89 2.43 0.6761 4.49 0.07
7 0.2752 0.3626 1.41 3.75 0.2852 0.3828* 1.23 5.43* 0.1741 0.2126 1.89 2.43 0.6761 4.49 0.07

Table 12: Ablation results of doc_num for comparison of different methods on Llama-3.1-8B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o rag 0 0.3211 0.3907 0 0.00 0.2238 0.3354 0 0.00 0.2089 0.2500 0 0.00 0.7615 0 0.00

FLARE
3 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.08
5 0.4680 0.5693 3.34 5.35 0.4225 0.5344 3.60 5.53 0.3536 0.3940 3.93 3.67 0.7951 5.06 0.07
7 0.4680 0.5693 3.34 5.35 0.4225 0.5344 1.78 11.19 0.3536 0.3940 3.93 3.67 0.7951 5.06 0.07

DRAGIN
3 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048* 1.38 0.31
5 0.3311 0.4062 0.87 1.78 0.2571 0.3667 1.78 1.76 0.2359 0.2593 2.05 0.45 0.7759 2.08 0.69*
7 0.3311 0.4062 0.87 1.78 0.2571 0.3667 3.60 0.87 0.2359 0.2593 2.05 0.45 0.7759 2.08 0.69

SCAAR
3 0.5246* 0.6026* 2.70 7.84* 0.4460* 0.5570* 3.40 6.52* 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.04
5 0.4880 0.5729 3.27 5.58 0.4240 0.5412 3.35 6.14 0.3759* 0.4279* 3.57 4.99* 0.7705 4.73 0.02
7 0.4880 0.5729 3.27 5.58 0.4456 0.5632 3.53 6.45 0.3759 0.4279 3.57 4.99 0.7705 4.73 0.02
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the effectiveness of the dynamic weighting strategy1121

based on semantic contribution. Since DeBERTa1122

outperforms RoBERTa in semantic similarity cal-1123

culation, the experimental results using DeBERTa1124

are also superior to those using RoBERTa.1125
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