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ABSTRACT

Matrix factorization is a fundamental method in statistics and machine learning
for inferring and summarizing structure in multivariate data. Modern data sets of-
ten come with “side information” of various forms (images, text, graphs) that can
be leveraged to improve estimation of the underlying structure. However, existing
methods that leverage side information are limited in the types of data they can
incorporate, and they assume specific parametric models. Here, we introduce a
novel method for this problem, covariate-moderated empirical Bayes matrix fac-
torization (cEBMF). cEBMF is a modular framework that accepts any type of
side information that is processable by a probabilistic model or neural network.
The cEBMF framework can accommodate different assumptions and constraints
on the factors through the use of different priors, and it adapts these priors to the
data. We demonstrate the benefits of cEBMF in simulations and in analyses of
spatial transcriptomics and MovieLens data.

1 INTRODUCTION

Matrix factorization methods, which include principal component analysis (PCA), factor analysis,
and non-negative matrix factorization (NMF) (Lee and Seung, 1999), are very widely used methods
for inferring latent structure from data, performing exploratory data analyses and visualizing large
data sets (e.g., Alexander et al. 2023; Novembre and Stephens 2008; Sainburg et al. 2020). Matrix
factorization methods are also instrumental in other statistical analyses such as adjusting for unob-
served confounding (Leek and Storey, 2007). Recent innovations in matrix factorization methods
include the development of sparse matrix factorizations such as sparse PCA (Zou et al., 2006) and
sparse factor analysis (Engelhardt and Stephens, 2010; Lan et al., 2014). In these works, sparsity is
generally induced through a penalty or a prior distribution; however, as in many penalized regression
problems (e.g., Tibshirani 1996), selecting the “right” amount of regularization, or the “best” prior,
is an unresolved question, or may be reliant on cross-validation techniques that are inconvenient and
computationally burdensome

When factorizing a matrix, say Z, the matrix may be accompanied with additional row or column
data—“side information”—that may be able to “guide” the matrix factorization algorithm toward
a more accurate or interpretable factorization. A recent prominent example of this in genomics
research is spatial transcriptomics data (Marx, 2021), which is expression profiled in many genes at
many spatial locations (“pixels”) (Vandereyken et al., 2023). For a variety of reasons, one typically
seeks to factorize Z, which is the matrix of gene expression profiles, but the 2-d coordinates of the
pixels also provide important information about the biological context of the cells; for example, we
might expect nearby pixels to belong to the same cell type or tissue region. Therefore, “spatially
aware” matrix factorization methods have recently been proposed for spatial transcriptomics data
(Shang and Zhou, 2022; Townes and Engelhardt, 2023; Velten et al., 2022).

In this paper, we describe a novel matrix factorization framework that allows high-dimensional row
and column data to guide the factorizations without having to make specific assumptions about
how these data inform the factorization. For example, although our framework can be applied to
data that exhibit spatial properties, it does not assume or require that the data be spatial. (Further,
there are sometimes benefits to not making strong assumptions about the spatial organization of the
data even when we know the data are spatial.) Our framework is also flexible in that it includes
many existing approaches, including unconstrained matrix factorization (Wang and Stephens, 2021;
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Figure 1: Toy simulation illustrating cEBMF for learning a matrix factorization, Z ≈ LFT . In this
example, Z is a 1,000 × 200 matrix, and each of the N = 1,000 data points is assigned to one of
three clusters (orange, light blue, dark blue). Points near each other tend to be assigned to the same
cluster, except near boundaries (A). Without the side information (the 2-d coordinates in A), PCA,
NMF and EBMF with K = 3 factors cluster some points accurately, but not others (B, D, E). By
contrast, Spatial PCA (Shang and Zhou, 2022) and cEBMF, by incorporating the side information
into the prior, more accurately cluster the points (C, F). (For visualization purposes, the L matrix
from NMF, EBMF and cEBMF is projected onto the top 2 PCs in D, E, F.) Whereas Spatial PCA
assumes the data points are spatial, cEBMF does not, and instead has a flexible prior that is adapted
to the data; G visualizes this prior (specifically, the color of the points depicts πik := π(xi,θk),
k = 1, 2, 3, the prior probability that element i in column k of L is nonzero, red = high probability,
blue = low probability). See Sections 3 and 4 for model definitions and details of the simulation.

Zhong et al., 2022), non-negative matrix factorization (Lin and Boutros, 2020), semi-non-negative
matrix factorization (Ding et al., 2010), and more recent methods that incorporate side information
Wang et al. (2024), all as special cases.. These features are achieved by taking an empirical Bayes
approach, building on recent work on empirical Bayes matrix factorization (EBMF) (Wang and
Stephens, 2021; Zhong et al., 2022). In particular, we extend the EBMF approach of Wang and
Stephens (2021) to allow for adaptive priors that are modified by the side information. We call this
approach “covariate-moderated empirical Bayes matrix factorization”, or “cEBMF” for short. See
Fig. 1 for a toy example that illustrates the key features of cEBMF.

2 RELATED WORK

The literature on matrix factorization methods that incorporate side information is quite extensive.
The different methods make different modeling assumptions, and are typically motivated by certain
types of data. Although it is infeasible to review all relevant literature here, we mention a few of the
more important methods, and highlight the methods that are most closely related to cEBMF.

Several variants of the topic model—which can be viewed as a matrix factorizations with “sum-to-
one” constraints on L and F (Carbonetto et al., 2021)—incorporate side information in different
ways; for example, the correlated topic model (Lafferty and Blei, 2005) and the structural topic
model (Roberts et al., 2016) incorporate document-level side information into the priors on L.

Collective matrix factorization (CMF) (Bouchard et al., 2013; Lee and Choi, 2009; Singh and Gor-
don, 2008) has gained considerable interest, but is based on ideas that are quite different from
cEBMF: like cEBMF, CMF assumes that the side information is the form of a matrix; but unlike
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cEBMF, CMF assumes that the side information factorizes in a similar way to Z. Clearly, the CMF
assumpion will not make sense for some applications.

Another prominent theme in matrix factorization with side information is incorporating group-level
or categorical side information (including ontologies). Among the several methods in this area
include CTPF Gopalan et al. (2014) and the method of Hu et al. (2016).

The method most closely related to cEBMF is MFAI (Wang et al., 2024) (see also Porteous et al.
2010 for related ideas). MFAI is in fact a special case of cEBMF in which the priors on F are
normal and the prior means are informed by the covariates. Similar to cEBMF, MFAI allows these
priors to be adapted separately for each factor k. However, it is not nearly as general as cEBMF;
it implements only a single model, a single prior family of a specific parametric form, a specific
procedure for fitting these priors (using gradient boosted tree methods; Friedman 2001), and it only
accommodates row-wise side information.

For spatial transcriptomics data (which we consider in Sec. 4.3), Spatial PCA (Shang and Zhou,
2022) models the spatial similarity among the rows of Z using Gaussian process priors. (Spatial
PCA is closely related to GP-LVM; Lawrence and Moore 2007, see also Zhou et al. 2012.) An NMF
version of this approach generates “parts-based representations” guided by the spatial context of
the data points (Townes and Engelhardt, 2023). IRIS (Ma and Zhou, 2024), regularizes the factors
through a penalty function that encodes the spatial information in a graph (see also Cai et al. 2011).

3 COVARIATE-MODERATED EMPIRICAL BAYES MATRIX FACTORIZATION

3.1 BACKGROUND: EMPIRICAL BAYES MATRIX FACTORIZATION

Empirical Bayes matrix factorization (EBMF) (Wang and Stephens, 2021; Willwersheid, 2021) is a
flexible framework for matrix factorization: it approximates a matrix Z ∈ Rn×p as the product of
two low-rank matrices,

Z ≈ LFT , (1)
where L ∈ Rn×K , F ∈ Rp×K , and K ≥ 1. (Typically, K ≪ n, p.) EBMF assumes a normal model
of the data,

Z = LFT +E, eij ∼ N (0, τ−1
ij ), (2)

in which N (µ, σ2) denotes the normal distribution with mean µ and variance σ2, and the residual
variances τ−1

ij may vary by row (i) or column (j) or both. (EBMF, and by extention cEBMF, also
allows Z to contain missing values, which is important for some applications of matrix factorization,
including collaborative filtering; see Sec. 4.2.) EBMF assumes prior distributions for elements of L
and F, which are themselves estimated among prespecified prior families Gℓ,k and Gf,k:

ℓik ∼ g
(ℓ)
k , g

(ℓ)
k ∈ Gℓ,k, k = 1, . . . ,K

fjk ∼ g
(f)
k , g

(f)
k ∈ Gf,k, k = 1, . . . ,K.

(3)

The flexibility of EBMF comes from the wide range of different possible prior families (including
non-parametric families). Different choices of prior family correspond to different existing matrix
factorization methods. For example, if all families Gℓ,k and Gℓ,k are the family of zero-mean nor-
mal priors, then LFT is similar to a truncated singular value decomposition (SVD) (Nakajima and
Sugiyama, 2011). When the prior families are all point-normal (mixtures of a point mass at zero
and a zero-centered normal), one obtains empirical Bayes versions of sparse SVD or sparse factor
analysis (Engelhardt and Stephens, 2010; Witten et al., 2009; Yang et al., 2014). The prior families
can also constrain L and F; for example, families that only contain distributions with non-negative
support result in empirical Bayes versions of non-negative matrix factorization (NMF) (Gillis, 2021;
Lee and Seung, 1999). In summary, EBMF (2–3) is a highly flexible modeling framework for matrix
factorization that includes important previous methods as special cases, but also many new combi-
nations (e.g., Liu et al. 2023).

3.2 THE CEBMF MODEL

In covariate-moderated EBMF (cEBMF), we assume that we have some “side information” (covari-
ates) for rows and/or columns of Z (Adams et al., 2010; Virshup et al., 2024). Let xi denote the
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available information for the i-th row of Z, and let yj denote the available information for the j-th
column of Z. In principle, xi and yj can be any information processable by a neural net (text,
graph, image, or other structured data), but for simplicity we assume that this information is stored
in matrix form. Let X ∈ Rn×pX be a matrix containing information on the rows of Z, with xi cor-
responding to the i-th row of X (e.g., xi might contain the 2-d coordinate of the cell i). Similarly,
let Y ∈ Rp×pY contain information on the columns of Z, with yj corresponding to the j-th row of
Y. In cEBMF, we incorporate this side information into the model through parameterized priors:

ℓik ∼ g
(ℓ)
k (xi), g

(ℓ)
k (xi) ∈ Gℓ,k, k = 1, . . . ,K

fjk ∼ g
(f)
k (yj), g

(f)
k (yi) ∈ Gf,k, k = 1, . . . ,K,

(4)

where g(ℓ)k (xi) is a probability distribution within the family Gℓ,k, parameterized by xi and g
(f)
k (yj)

is a probability distribution within the family Gf,k parameterized by yi.

A key limitation of many existing approaches is that they integrate the side information using re-
strictive parametric models. Additionally, the chosen priors may make strong or perhaps unrealistic
assumptions about the structure underlying the data; for example, Gaussian process priors, which
have been used in this setting (e.g., Lawrence 2005; Lawrence and Moore 2007; Shang and Zhou
2022), typically assume that the factors vary smoothly in space, which makes it difficult to accurately
capture sharp changes at boundaries (Hyoung-Moon Kim and Holmes, 2005). Existing methods also
usually rely on hyperparameters that need to be tuned or selected (e.g., using cross-validation).

To address these issues, we propose cEBMF, a method that:

1. Can leverage a large variety of models (e.g., multinomial regression, multilayer perceptron,
graphical neural nets, convolutional neural nets) to integrate the side information into the prior.

2. Can use families of priors that are flexible in form and thus do not make strong assumptions.
3. Allows automatic selection of the hyperparameters in (3) using an empirical Bayes approach.

More formally, we fit a model for each column k of L (and similarly for each column k of F) that
maps each vector of covariates xi to a given element g(ℓ)k ∈ Gℓ,k. In Sec. 3.3 we describe a simple
yet general algorithm that simultaneously learns the factors L,F and priors g(ℓ)k (xi), g

(f)
k (yj).

3.2.1 AN ILLUSTRATION: CEBMF WITH SIDE INFORMATION ON FACTOR SPARSITY

Here we illustrate the implementation of the cEBMF framework using a prior family that is simple
yet broadly applicable. This prior family assumes that the covariates X,Y only inform the pattern
of sparsity—that is, the placement of zeros—in L,F. This type of prior is of particular interest in
the matrix factorization setting because matrix factorizations typically have the hidden complication
that they are invariant to rescaling; therefore, priors that inform the magnitude of ℓik, fjk are difficult
to design. (By “invariant to rescaling,” we mean that the likelihood or objective does not change if
we replace LFT by L̃F̃T , where L̃ = LD, F̃ = FD−1, and D is an invertible diagonal matrix.)

We define the prior family Gss as

Gss := {g : g(u) = (1− π(x,θ))δ0(u) + π(x,θ)g1(u;ω)}, (5)

in which δ0(u) denotes the point-mass at zero, g1(u,ω) denotes the density of a probability distri-
bution g1(ω) on u ∈ R, and x ∈ Rm denotes the covariate. When g1 is the normal distribution,
(5) is the family of “spike-and-slab” priors (Mitchell and Beauchamp, 1988), and cEBMF with
Gℓ,k = Gss,Gf,k = Gss implements a version of sparse factor analysis (Engelhardt and Stephens,
2010; Witten et al., 2009; Yang et al., 2014) in which the sparsity of the factors is informed by the
covariates. (The “ss” subscript in Gss is short for “spike-and-slab.”) Alternatively, if g1 is a distri-
bution with support on u ∈ R+, such as an exponential distribution, then cEBMF implements a
version of sparse NMF.

The free parameters are θ, which controls the weight on the “spike” δ0, and ω, which controls the
shape of the “slab” g1. A straightforward parameterization is with a logistic regression model,

π(x,θ) = ϕ
(
θ0 +

∑T
t=1 xtθt

)
, (6)

where ϕ(x) := 1/(1 + e−x) denotes the sigmoid function, and θ ∈ RT+1.
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3.3 THE CEBMF LEARNING ALGORITHM

A key feature of the cEBMF modeling framework is that the algorithm for fitting the priors and
estimating the factors is simple to describe and often straightforward to implement. In brief, the
cEBMF learning algorithm reduces to a series of covariate-moderated empirical Bayes normal
means (cEBNM) problems (Willwerscheid et al., 2024) so that any methods that solves the cEBNM
problem can be “plugged in” to the generic cEBMF algorithm. Thus, the cEBMF framework natu-
rally lends itself to modular algorithm design and software implementation.

3.3.1 BACKGROUND: EMPIRICAL BAYES NORMAL MEANS

Given n observations β̂i ∈ R with known standard deviations si > 0, i = 1, . . . , n, the normal
means model (Efron and Morris, 1972; Robbins, 1951; Stephens, 2017) is

β̂i
ind.∼ N(βi, s

2
i ), (7)

where the “true” means βi ∈ R are unknown. We further assume that

βi
i.i.d.∼ g ∈ G, (8)

where G is some prespecified family of probability distributions. The empirical Bayes (EB) approach
to fitting this model exploits the fact that the noisy observations β̂i, contain not only information
about the underlying means βi but also about how the means are collectively distributed (i.e., g). EB
approaches “borrow information” across the observations to estimate g, typically by maximizing the
marginal log-likelihood. The unknown means βi are generally estimated by their posterior mean.

To adapt EBNM (7–8) to the cEBMF framework, we allow the prior for the i-th unknown mean to
depend on additional data di,

βi
ind.∼ g(di,θ) ∈ G, (9)

so that each combination of θ and di maps to an element of G. We refer to this modified EBNM
model as “covariate-moderated EBNM” (cEBNM).

Solving the cEBNM problem therefore involves two key computations:

1. Estimate the model parameters. Compute

θ̂ := argmax
θ∈Rm

L(θ), (10)

where L(θ) denotes the marginal likelihood,

L(θ) := p(β̂ | s,θ,D) =

n∏
i=1

∫
N (β̂i;βi, s

2
i ) g(βi;di,θ) dβi, (11)

in which β̂ = (β̂1, . . . , β̂n), s = (s1, . . . , sn), D is a matrix storing d1, . . . ,dn, N (β̂i;βi, s
2
i )

denotes the density of N (βi, s
2
i ) at β̂i, and g(βi;di,θ) denotes the density of g(di,θ) at βi.

2. Compute posterior summaries. Compute summaries from the posterior distributions, such as
the posterior means β̄i := E[βi | β̂i, si, θ̂,D], using the estimated prior,

p(βi | β̂i, si, θ̂,D) ∝ N (β̂i;βi, s
2
i ) g(βi;di, θ̂). (12)

For many classical prior families, such as the prior family in Sec. 3.2.1, the integrals in (11) and
(12) can be computed analytically. More generally, standard numerical techniques such as Gauss-
Hermite quadrature may provide reasonably fast and accurate solutions for prior families that do not
result in closed-form integrals since the integrals are all one-dimensional. As a result, θ̂ can often
be computed efficiently using off-the-shelf optimization algorithms.

In summary, solving the cEBNM problem consists in finding a mapping from known quantities
(β̂, s,D) to a tuple (θ̂, q), where each (di, θ̂) maps to an element g(di,θ) ∈ G, and q is the
posterior distribution of the unobserved β given (β̂, s,D). We denote this mapping as

cEBNM(β̂, s,D) = (θ̂, q). (13)

5
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In practice, the full posterior q is not needed; the first and second posterior moments are sufficient
(see Sec. 3.3.2). Any prior family is admissible under the cEBMF framework so long as 13 is
computable.

3.3.2 ALGORITHM

Given a method for solving the cEBNM problem (Sec. 3.3.1), the cEBMF model can be fitted
using a simple coordinate ascent algorithm. In brief, the cEBMF algorithm maximizes an objective
function—the evidence lower bound (ELBO) (Blei et al., 2017) under a variational approximation
with conditional independence assumptions on L and F—by iterating over the following updates
for each factor k = 1, . . . ,K until some stopping criterion is met:

1. Remove the effect of the k-th factor from the n× p matrix R̄ of expected residuals:

R̄k = R̄− ℓ̄kf̄
T
k . (14)

2. For each i = 1, . . . , n, compute the least-squares estimates of ℓik, denoted ℓ̂ik, and the
standard deviations sℓik of these estimates,

ℓ̂ik =
∑p

j=1 τijr
k
ij f̄jk/(s

ℓ
ik)

2 (15)

sℓik = (
∑p

j=1 τij f̄
2
jk)

−1/2, (16)

where f̄jk and f̄2
jk denote, respectively, the first and second posterior moment of fjk.

3. Update the parameter θ that maps each individual vector of covariates xi to a prior
g
(ℓ)
k (xi,θ) ∈ Gℓ,k by solving (10), in which we make the following substitutions:

β̂i ← ℓ̂ik, si ← sℓik, i = 1, . . . , n, D← X, G ← Gℓ,k. (17)

4. Making the same substitutions in (12), update the posterior means ℓ̄k and posterior second
moments ℓ̄2k.

5. Perform updates similar to those in Steps 2–4 to update f̄k, f̄2
k and g

(f)
k ∈ Gf,k.

6. Update the matrix of expected residuals by adding back the effect of the k-th factor:

R̄ = R̄k + ℓ̄kf̄
T
k . (18)

Also, given initial estimates of L̄, F̄, the expected residuals are initialized as R̄ = Z − L̄F̄T . To
simplify the presentation, we have omitted some details here, such as how to update the residual
variances τ−1

ij . See the Appendix for a fuller description and derivation.

Computational complexity. Since cEBMF is a framework, not a specific method, we cannot give
the exact computational complexity of this algorithm, but we can provide some guidelines. Steps
1, 2 and 6 involve preparing the inputs to the cEBNM solver (13). Since these steps do not depend
on the prior families Gℓ,k,Gf,k, we can give their computational complexity: when Z is a “dense”
(non-sparse) matrix, the time complexity is O(np); when Z is sparse, the complexity is O(S) (with
careful implementation), where S is the number of nonzero entries in Z. Steps 3–5 will depend on
the particular cEBNM solver and the type of side information. However, when the priors on L,F
are simple and involve low-dimensional covariates, Steps 1, 2 and 6 will dominate, and so cEBMF
should be able to handle large data sets in this setting.

4 EXPERIMENTS

4.1 SIMULATIONS

First we compared cEBMF with other matrix factorization methods in simulated data sets. We com-
pared cEBMF to two methods that do not use the side information—EBMF (flashier R package;
Wang and Stephens 2021) and the penalized matrix decomposition, “PMD” (PMA R package; Wit-
ten et al. 2009)—and three methods that use side information: MFAI (mfair R package; Wang et al.
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2024), collective matrix factorization, “CMF” (cfmrec R package; Singh and Gordon 2008), and
Spatial PCA (SpatialPCA R package; Shang and Zhou 2022). Spatial PCA accepts only a specific
type of side information, the 2-d coordinates of the data points. For all methods, we set the rank
of the matrix factorization to the K that was used to simulate the data. The penalty parameters in
PMD were tuned via cross-validation as recommended by the authors. For EBMF and cEBMF, we
assumed homogeneous noise, τij = τ , and we chose prior families appropriate for each simulation
setting (except for the “mis-specified prior” simulation; see below). These prior families were all
slightly more flexible versions of the “spike and slab” priors in Sec. 3.2.1. The parameterized priors
in cEBMF were either single-layer neural networks with softmax activation function (multinomial
regression) or a multi-layer perceptron. The parameters of the neural network were learned using
the Keras R interface for TensorFlow (Abadi et al., 2016). (More details are given in the Appendix.)

We simulated data sets under the following settings.

Sparsity-driven covariate. This simulation was intended to illustrate the behaviour of cEBMF
when provided with simple row- and column-covariates that inform only the sparsity of L and F
(and not the magnitudes of their elements). The side information was stored in 1,000 × 10 and
200 × 10 matrices X and Y, and the 1,000 × 200 matrix Z was simulated using a simple cEBMF
model with K = 2, τij = 0.25, and with spike-and-slab priors chosen to ensure that 90% of the
elements of the “denoised” matrix, LFT , were zero. For EBMF, we assigned scale mixtures of
normals with a fixed grid of scales (Stephens, 2017) as the prior family to all rows and columns of L
and F. For cEBMF, we used a prior family of the same form, except that the weights in the mixture
were determined by covariates, g(di, θ) = π0(di,θ)δ0 +

∑M
m=1 πm(di,θ)N (0, σ2

m).

Uninformative covariate. To verify that cEBMF was robust to situations in which the side infor-
mation was not helpful, we considered an “uninformative covariate” setting in which the covariates
were just noise. The data sets were simulated in the same way as the sparsity-driven covariate sim-
ulation, except that τij = 1 and the true factors were simulated as ℓik ∼ (1 − πℓ)δ0 + πℓN (0, 1),
fjk ∼ (1−πf )δ0+πfN (0, 1), with the weights πℓ, πf chosen to achieve a target sparsity of 90% ze-
ros in the “denoised” matrix. EBMF and cEBMF were run in the same way as in the sparsity-driven
covariate simulations.

Tiled-clustering model. In this setting, we simulated matrix factorizations in which L (but not
F) depended on the 2-d locations of the data points. Specifically, we generated a periodic tiling of
[0, 1]×[0, 1], randomly labeling each tile 1, 2 or 3. (One of these simulations is shown in Fig. 1.) For
each data point i, we set ℓik = 1 if i was in the tile with label k, otherwise ℓik = 0. The F matrix,
by contrast, was simulated from a simple scale mixture of normals, fjk ∼ π0δ0+

∑M
m=1 N(0, σ2

m).
We simulated homoskedastic noise with τij = 0.1. Notice that L in this simulation was always
non-negative. Therefore, we chose the prior families in EBMF to produce semi-non-negative matrix
factorizations (Ding et al., 2010); specifically, point-exponential priors for L—flexible priors similar
to the spike-and-slab prior (Sec. 3.2.1) but with support for non-negative numbers only (Willwer-
scheid et al., 2024)—and scale mixtures of normal priors, the same as above, for F. Analogously,
the prior families for columns of L in cEBMF were scale mixtures of exponentials modulated by the
row covariate, g(di,θ) = π0(di,θ)δ0 +

∑M
m=1 πm(di,θ) exp(λm), where exp(λ) is the exponen-

tial distribution with scale parameter λ, and λm−1 < λm, m = 2, . . . ,M . The prior families for F
were the same as in EBMF.

Mis-specified prior—“shifted tiled-clustering” model. To further asses robustness of the methods,
we performed an additional set of simulations to assess how well cEBMF (and EBMF) would deal
with situations in which the prior was mis-specified; that is, when no prior within the chosen prior
family could recover the true data generation process. These simulations were similar to the tiled-
clustering model except that we generated the i-th row of L as follows: (1, 2, 3) if data point was i
in the tile with label 1; (3, 1, 2) if data point was in the tile with label 2, and (2, 3, 1) if data point
was in the tile with label 3. We then ran the methods in the same way as in the tiled-clustering
simulations.

We simulated 100 data sets in each of these settings. To evaluate the matrix factorizations, we
computed the root mean squared error (RMSE) between the true factorization LFT and the estimated
factorization L̂F̂T .
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Figure 2: Performance of different matrix factorizations in the simulated data sets. The boxplots
summarize the error (RMSE) in the matrix factorizations across 100 simulations (lower RMSEs are
better). See Figures 5–8 in the Appendix for additional simulation results. Note that Fig. 1 shows
results from one of the tiled-clustering simulations in greater detail.
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Figure 3: Prediction performance of different matrix factorization methods in the MovieLens 100K
data (Harper and Konstan, 2015), with varying degrees of the movie ratings available for training.
Training ratio = R% means that R% of the movie ratings were used in training, and the remaining
(100 − R)% movie ratings were used to evaluate accuracy of the matrix factorization (measured
using RMSE). The results at each training ratio are from 30 randomly generated training/test sets.

The results of these simulations are summarized in Fig. 2. (Additional results, including compar-
isons with other methods, including CMF, are given in the Appendix.) In the first three simulation
settings, cEBMF produced matrix factorizations that were more accurate than, or at least as accu-
rate as, the other methods. Reassuringly, cEBMF was no worse than EBMF in the uninformative
covariate and shifted tiled-clustering settings. (Although we caution that cEBMF may “overfit” the
prior when the covariates are mostly noise; see Sec. 5 for a brief discussion of this point.) cEBMF
achieved the greatest gains over EBMF in the tiled-clustering setting where the covariates were also
the most informative. The poor performance of Spatial PCA in this setting illustrates a key point:
although Spatial PCA leveraged the side information to improve accuracy, it is not ideally suited to
this setting due to the “PCA-like” (orthogonality) constraints imposed on the matrix factorization
(Shang and Zhou, 2022). A more flexible framework with priors that can be tailored to a partic-
ular setting will generally have an advantage. (To be fair, Spatial PCA is perhaps better suited to
spatial transcriptomics data sets than these simulated data sets.) The siulations generally did not
conform well to MFAI’s modeling assumptions, and indeed MFAI performed much worse than both
cEBMF and EBMF. The one exception was the shifted tiled-clustering setting where the modeling
assumptions of all methods were wrong—but MFAI’s appeared to be the least wrong.

4.2 COLLABORATIVE FILTERING

To provide a quantitative comparison of the matrix factorization methods on real data, we ran EBMF,
cEBMF and MFAI on the on the MovieLens 100K data (Harper and Konstan, 2015). In the Movie-
Lens data, Z is a 1,682×943 matrix, with rows corresponding to movies and columns corresponding
to users. Since most movie trainings are missing, this data set also serves illustrate the ability of
cEBMF (as well as EBMF and MFAI) to seemlessly handle missing data. The side information X
used by cEBMF and MFAI was a 1,682 × 19 binary matrix with columns corresponding to movie
genres. We randomly hid different proportions of movie ratings from the training set, then we as-
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Figure 4: Results on slides 4 (A) and 10 (B) of the DLPFC spatial transcriptomics data (Pardo et al.,
2022). For the NMF, EBMF and cEBMF results, each pixel i is shown as a pie chart using the
relative values of i-th row of L (after performing an “LDA-style” post-processing of L,F; Townes
and Engelhardt 2023). Higher-resolution versions of these images are included in the supplementary
ZIP file. CMF results and additional results on all 12 slices are given in the Appendix.

sessed how well the estimated matrix factorization L̂F̂T recovered the hidden ratings. (Note that
although several larger MovieLens data sets exist, and we successfully applied EBMF and cEBMF
to larger MovieLens data sets, we could not get MFAI to run on the larger data sets.)

We ran EBMF and cEBMF so as to produce non-negative matrix factorizations, which is common
in collaborative filtering (e.g., Singh and Gordon 2008). (Therefore, in the results we labeled these
methods as “EBNMF” and “cEBNMF”.) To enforce non-negativity in L and F, we used the same
scale mixtures of exponentials that were used for L in the tiled-clustering simulations. The mixture
weights in the cEBNMF prior were implemented as a multi-layer perceptron. (Note that MFAI
cannot produce non-negative matrix factorizations.) Rather than fix the number of factors, K, like
we did in the simulations, we let all methods choose K; the idea is that the methods should adapt K
automatically to the complexity of the data. We upper bounded K at 7 for EBNMF and cEBNMF,
and 12 for MFAI.

Figure 3 summarizes the results of running the different matrix factorization methods on the Movie-
Lens 100K data sets with different fractions of the movie ratings available for training. Both MFAI
and cEBNMF were able to use the side information (the movie genres) to provide improvements
over EBNMF, and cEBNMF tended to produce the largest improvements in accuracy.

4.3 SPATIAL TRANSCRIPTOMICS

Although cEBMF was not specifically designed with spatial data in mind, here we show that cEBMF
also yields compelling results from spatial transcriptomics data (Marx, 2021). We illustrate this
using a data set (Pardo et al., 2022) that has been annotated by domain experts (Maynard et al.,
2021) and has been used in several papers to benchmark methods for spatial transcriptomics (e.g.,
Shang and Zhou 2022; Zhao et al. 2021; Zhu et al. 2023). The data were collected from 12 slices
of the human dorsolateral prefrontal cortex (DLPFC) tissue. After data preprocessing, each slice
contained about 4,000 pixels and expression measured in about 5,000 genes (n ≈ 4000, p ≈ 5,000).

Our aim was to generate a “parts-based” representation of the data, with the hopes that the “parts”
would resolve to biologically meaningful units (e.g., cell types, tissue regions) (Townes and Engel-
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hardt, 2023). With this aim in mind, we ran cEBMF so as to produce non-negative matrix factoriza-
tions (“cEBNMF”) using the same priors as in the MovieLens data set. We compared cEBNMF to
CMF, MFAI and Spatial PCA, and two other non-negative matrix factorizations that did not exploit
the spatial data—NMF (implemented in the R package NNLM; Lin and Boutros 2020) and EBMF
with point-exponential priors (“EBNMF”). Although Spatial PCA cannot be directly compared to
NMF, the Spatial PCA software also clusters the data points after projection onto the principal com-
ponents (PCs), and this clustering can be compared to the non-negative matrix factorizations. Fol-
lowing Shang and Zhou (2022), we computed the top 20 PCs, then we ran the walk-trap clustering
algorithm (Pons and Latapy, 2005) on the PCs. Since MFAI also does not produce a non-negative
matrix factorization, we clustered the MFAI output in a similar way to Spatial PCA. Additional
details are given in the Appendix.

Figure 4 shows the results on two of the slices, with results on all 12 slices given in the Appendix.
Qualitatively, some of the factors from NMF and EBMF seem to correspond to the expert-labeled
regions, but several other factors appear to be capturing other substructures that have no obvious
spatial quality. Comparatively, the cEBNMF results in slices 4 and 9 capture the expert labeling
much more closely, with most factors showing a clear spatial quality. The clusters obtained from
the Spatial PCA and MFAI factorizations also capture spatial structure and expert labeling well,
with some exceptions, e.g., Spatial PCA cluster 7 in slices 4 and 9. (The Spatial PCA software
performed an additional post-processing step on the clusters which is why these clusters look less
noisy.) The CMF results were very poor, reflecting the inappropriateness of the CMF assumptions in
this setting (Fig. 9 in the Appendix). Note that the NMF methods can capture continuous variation
in expression within and across cell types or regions—as well as the expectation that some pixels
might be combinations of cell types—whereas the clustering cannot.

5 LIMITATIONS

Overfitting. Empirical Bayes methods are known to be prone to overfitting; this is of particular
concern for more complex priors with many free parameters. Following Tansey et al. (2020), we
found that adding a simple L2-penalty term on the hyperparameters helped, but this is an area where
our methods can be improved.

Priors for more complex covariates. The demonstrations of cEBMF in this paper all incorporated
relatively simple types of side information, so it remains to be seen how well cEBMF can work with
more complex covariates. In the spatial transcriptomics application, we tried using the histologi-
cal images included in the DLPFC experiment as side information, but it seemed that the images
provided in the spatialLIBD format (Pardo et al., 2022) were of too poor quality to be useful for
inferring cell types or tissue regions.

6 CONCLUSIONS

We have introduced cEBMF, a general framework for matrix factorization in which (i) side informa-
tion is incorporated via flexible priors, and (ii) the priors are learned from the data using empirical
Bayes ideas. We have put considerable effort into optimizing the software implementation, in part
by leveraging previous work in this area (Wang and Stephens, 2021; Willwerscheid et al., 2024;
Willwersheid, 2021), so that we expect these methods to scale well to even larger data sets with, say,
hundreds of thousands of rows and/or columns.

Our experiments underscored the importance of having a matrix factorization framework in which
the model assumptions are appropriate for the target data set or sufficiently flexible that they can
adapt to a variety of settings. The priors in cEBMF can be virtually any probabilistic model that can
be optimized via (10–11). Our framework may suggest new ways to integrate other more complex
types of side information such as images or graphs. Further, we envision that cEBMF could be used
in conjunction with pre-trained models (e.g., convolutional neural networks for cell classification;
Zhang et al. 2017) to reduce training time and improve accuracy in complex data sets.

Note: R code implementing the methods as well as the experiments is included in a supplementary
ZIP file accompanying the manuscript.
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A DETAILED METHODS AND DERIVATIONS

For convenience, we give the full cEBMF model here:

Z = LFT +E (19)

=

K∑
k=1

ℓkf
T
k +E (20)

ℓik ∼ g
(ℓ)
k ( · ;xi), g

(ℓ)
k (·;xi) ∈ Gℓ,k (21)

fjk ∼ g
(f)
k (·;yj), g

(f)
k (·;yj) ∈ Gf,k (22)

eij ∼ N(0, τ−1
ij ), (23)

where the matrices L (n × K) and F (p × K) are both unknown and fk ∈ Rp, ℓk ∈ Rn for
k = 1, . . . ,K. E is an n × p matrix of errors where the precision parameters τ are unknown. xi

denotes the information available for the i-th row of Z and yj denotes the information available for
the j-th column of Z. We assume, for simplicity, that it is possible to store this information in matrix
form, so that X is a n × pX matrix that contains information on the rows of Z and Y is a p × pY
matrix that contains information on the columns of Z. g(ℓ)k (.;xi) is a probability distribution within
the family Gℓ,k parameterized by xi, with g

(ℓ)
k (l;xi) denoting the density of g

(ℓ)
k (·;xi) at point

l. Our derivation essentially follows the seminal work of Wang and Stephens (2021). Our main
contribution lies in incorporating covariates into the model (19)–(23) and in showing that a fitting
procedure similar to the one proposed by Wang and Stephens (2021) can be used to fit a model that
is substantially more complex than EBMF.

A.1 LEMMA ON THE CEBNM MODEL

Before formally demonstrating that we can fit the cEBMF model using the cEBNM model, we
introduce a simple lemma on the cEBNM model. We first recall the cEBNM model:

β̂i = βi + ei (24)
βi ∼ g(·;xi) (25)

ei ∼ N (0, s2i ). (26)

To lighten the derivation below, we abuse notation slightly and denote g(·;xi,θ) by g(·;xi) and
g(·, θ̂) by ĝ(·). Solving the cEBNM problem involves

1. Estimating g by maximum likelihood,

ĝ = argmax
g
L(g), (27)

where L(g) =
∫ ∏

i p(β̂i|βi, si)g(βi;xi)dβi, with g(βi;xi) corresponding to the density
g(·;xi) computed at the point βi.

2. Computing the posterior distributions

p(βi|β̂i, ĝ,xi) ∝
∏
i

p(β̂i|βi, si)g(βi;xi). (28)

In brief, solving the cEBNM problem consists in finding a mapping from known quantities (β̂, s,X)

to estimated quantities (θ̂, q), where θ̂ maps a set of covariates xi to a prior g(·;xi) and q is the
posterior distribution of the unobserved β given (β̂, s,X). We denote this mapping as cEBNM,

cEBNM(β̂, s,X) = (ĝ, q). (29)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma A.1. Solving the cEBNM problem also maximizes FcNM(qβ, g,X) over (qβ, g), where

FcNM(qβ, g,X) = Eqβ

[
1

2

∑
i

(Aiβ
2
i − 2Biβi)

]
+ Eqβ

[
log

p(β|g,X)

qβ(β)

]
, (30)

with Ai = 1/s2i , Bi = β̂i/s
2
i and qβ(β) =

∏
i qβi

(βi).

Proof. The cEBNM log-likelihood can be written as

L(g, β̂,X) = log p(β̂|g,X) (31)

= log
[
p(β̂,β|g,X)/p(β|β̂, g,X)

]
(32)

=

∫
qβ(β) log

p(β̂,β|g,X)

p(β|β̂, g,X)
dβ (33)

=

∫
qβ(β) log

p(β̂,β|g,X)

qβ(β)
dβ +

∫
qβ(β) log

qβ(β)

p(β|β̂, g,X)
dβ (34)

= FcNM(qβ, g,X) +DKL

(
qβ||p(β|β̂, g,X)

)
, (35)

where

FcNM(qβ, g,X) =

∫
qβ(β) log

p(β̂,β|g,X)

qβ(β)
dβ (36)

and DKL(q||p) denotes the Kullback-Leibler (KL) divergence from distribution p to distribution q.

By rearranging (31) and (35) we can write FcNM as the difference between the log-likelihood and
the KL divergence,

FcNM(qβ, g,X) = L(g, β̂,X)−DKL

(
qβ(β)||p(β|β̂, g,X)

)
. (37)

Since DKL(q||p) ≥ 0 with equality when p = q, FcNM(qβ, g,X) is maximized over qβ by setting
qβ(β) = p(β|β̂, g,X); further,

max
qβ
FcNM(qβ, g,X) = L(g, β̂,X). (38)

To complete the proof, notice that

log p(β̂,β|g,X) =
1

2

∑
i

s−2
i (β̂i − βi)

2 + log(p(βi|g,xi)) + const., (39)

so that

FcNM(qβ, g,X) = Eqβ

[
1

2

∑
i

s−2
i (β̂i − βi)

2

]
+
∑
i

Eqβ

[
log

p(βi|g,xi)

qβi(βi)

]
+ const. (40)

A.2 VARIATIONAL APPROXIMATION AND ELBO

Letting qL and qF be the variational distribution on the K factors, we assume the following factor-
izations:

qL =
∏
k

∏
i

qℓik(ℓik) (41)

qF =
∏
k

∏
j

qfjk(fjk) (42)
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Then the objective function of the cEBMF model (19)–(23) is a function of qL = (qℓ1 , . . . , qℓK ),
qF = (qf1

, . . . , qfK
), gF = (g

(f)
1 , . . . , g

(f)
K ) , gL = (g

(ℓ)
1 , . . . , g

(ℓ)
K ) and τ :

ELBO(qL, qF , gF , gL, τ ) =

∫ ∏
k

qℓk(ℓk)qfk
(fk) log

(
p(Z,L,F |g(ℓ)k , g

(f)
k , τ ,X,Y)

qℓk(ℓk)qfk(fk)

)
dℓkdfk

(43)

= EqL,qF [log(p(Z|L,F , τ )] +
∑
k

Eqℓk

[
log

p(ℓk|g(ℓ)k ,X)

qℓk(ℓk)

]
+
∑
k

Eqfk

[
log

p(fk|g(f)k ,Y)

qfk
(fk)

]
(44)

A.2.1 CONNECTING THE K -FACTOR CEBMF MODEL TO THE CEBNM PROBLEM

Proposition A.2. For the K-factor cEBMF model, the maximization problem over qℓk , gℓk and
gfk

, qfk
of the ELBO can be solved using a cEBNM mapping. More precisely,

argmax
qℓk ,gℓk

(ELBO) = cEBNM(ℓ̂(Rk, f̄k, f̄2
k, τ ), sℓ(f̄

2
k, τ ),X), (45)

and similarly

argmax
qfk ,gfk

(ELBO) = cEBNM(f̂(Rk, ℓ̄k, ℓ̄2k, τ ), sf (ℓ̄2k, τ ),Y), (46)

where l̂ and f̂ are defined as

ℓ̂(Z,ν,ω, τ )i =

∑
j τijzijνj∑
j τijωj

and f̂(Z,ν,ω, τ )j =

∑
i τijzijνi∑
i τijωi

(47)

and sℓ and sf are defined as

sℓ(ω, τ )i =

∑
j

τijωj

−0.5

and sf (ω, τ )j =

(∑
i

τijωi

)−0.5

. (48)

f̄k, f̄2
k correspond to the first and second moment under qfk

(resp ℓ̄k, ℓ̄2k), and Rk is the partial
residual matrix defined as

rkij = zij −
∑
k′ ̸=k

l̄ik′ f̄jk′ . (49)

Proof. Using (44), we write the objective function of the full model relative to row factor ℓk as

ELBO(qℓk , g
(ℓ)
k ) = Eqℓk

[
−1

2

∑
i

(Aikl
2
ik − 2Biklik)

]
+ Eqℓk

[
log

p(ℓk|g(ℓ)k ,X)

qℓk(ℓk)

]
+ const.,

(50)

where const. is constant with respect to qℓk , gℓk and

Aik =
∑
j

τijEqfk

[
f2
jk

]
(51)

Bik =
∑
j

τij

(
Rk

ijEqfk
[fjk]

)
. (52)

Equation (45) thus follows from Lemma A.1, with (46) proved similarly.
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A.3 UPDATES FOR RESIDUAL PRECISION PARAMETERS

Denoting the full variational approximation as q(·) and focusing on the part of ELBO that depend
on τ , we have

ELBO(τ ) = Eq

∑
i,j

(
0.5 log(τij)− 0.5τij(zij −

∑
k

likfjk)
2

)
+ const (53)

= 0.5
∑
i,j

[
log(τij) + τij r̄

2
ij

]
+ const., (54)

where we define r̄2ij as

r̄2ij = Eq[(zij −
∑
k

likfjk)
2] (55)

=

(
zij −

∑
k

Eq(lik)Eq(fjk)

)2

−
∑
k

Eq(lik)
2Eq(fjk)

2 +
∑
k

Eq(l
2
ik)Eq(f

2
jk) (56)

= (zij −
∑
k

l̄ikf̄jk)
2 −

∑
k

(l̄ik)
2(f̄jk)

2 +
∑
k

l̄2ikf̄2
jk. (57)

Given the first and second posterior moments of L and F , τ can thus be estimated as

τ̂ = argmax
∑
i,j

[
log(τij) + τij r̄

2
ij

]
.

If the variance is assumed to be column-specific (i.e., τij = τj for j = 1, . . . , p), this leads to

τ̂j =
n∑
i r̄

2
ij

.

A.4 CHOICE OF K

A noteworthy aspect of empirical Bayes methods for matrix factorization, highlighted in Bishop
(1999), is their inherent ability to automatically determine K Bishop (1999); Stegle et al. (2012);
Wang and Stephens (2021). This feature comes from the fact that the maximum-likelihood estimates
for g

(ℓ)
k and g

(f)
k can converge to a point-mass at zero (assuming that the families Gℓ,k and Gf,k

include a point-mass at zero). Thus, if K is initially set to a large value, certain row or column factors
will converge to zero, which effectively “zeroes out” the corresponding component k. Alternatively,
in a stepwise or “greedy” approach where factors are introduced sequentially, the process halts upon
introducing a factor that optimizes to zero. These two algorithms for fitting cEBMF with unknown
K (“backfitting” with K taken larger than necessary and “greedily” attempting to add additional
factors until failure) are summarized in Algorithms 2 and 3.

B ALGORITHMS

B.1 SINGLE-FACTOR UPDATE FOR CEBMF

The cEBMF algorithm outlined in Sec. 3.3.2 is described more formally in Algorithm 1.
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Algorithm 1 Single-factor update for rank-K cEBMF model
Require A (n× p) data matrix Z
Require Two matrices of covariates X (n× pX) and Y (p× pY)

Require A function cEBNM(β̂, s,x) that solves the cEBNM problem (29)
Require Initial values for first moments L̄ := (ℓ̄1, . . . , ℓ̄K), and F̄ := (f̄1, . . . , f̄K)
Require Initial values for second moments L̄2 := (ℓ̄21, . . . , ℓ̄

2
K), and F̄ 2 := (f̄2

1 , . . . , f̄
2
K)

Require An index k indicating which factor to compute updated values for
1: Compute matrix of expected squared residuals R̄2 using (57)
2: τj ← n∑

i r̄
2
ij

(for column-specific variances; can be modified to make other assumptions)

3: Compute partial residual matrix Rk = Z−
∑

k′ ̸=k ℓ̄k′ f̄T
k′

4: Compute ℓ̂(Rk, f̄k, f̄2
k, τ) and its standard error sℓ(f̄2

k, τ )

5: (ℓ̄k, ℓ̄
2
k)← cEBNM(ℓ̂, sℓ,X)

6: Compute f̂(Rk, ℓ̄, ℓ̄2, τ ) and its standard error sf (ℓ̄2, τ )
7: (f̄k, f̄

2
k )← cEBNM(f̂ , sf ,Y)

8: return updated values (ℓ̄k, ℓ̄2k, f̄k, f̄
2
k , τ )

B.2 GREEDY ALGORITHM

Algorithm 2 Greedy Algorithm for cEBMF
Require A (n× p) data matrix Z
Require Two matrices of covariates X (n× pX) and Y (p× pY)
Require A function, init(Z) → (ℓ,f) that provides initial estimates for row factors and column
factors (e.g., SVD)
Require A function cEBNM(β̂, s,x) that solves the cEBNM problem (29)
Require A function single update (Z, ℓ̄k, ℓ̄

2
k, f̄k, f̄2

k, τ ,X,Y)→ (ℓ̄, ℓ̄2k, f̄k, f̄
2
k , τ )

1: Initialize K ← 0
2: repeat
3: K ← K + 1
4: Compute matrix of expected residuals R = Z−

∑K−1
k=1 ℓ̄kf̄

T
k

5: Initialize first moments (ℓ̄K , f̄K)← init(R)
6: Initialize second moments by squaring first moments: ℓ̄2K ← (ℓ̄K)2; f̄2

K ← (f̄K)2

7: repeat
8: (ℓ̄K , ℓ̄2K , f̄K , f̄2

K , τ )← single update (Z, ℓ̄K , ℓ̄2K , f̄K , f̄2
K , τ ,X,Y)

9: until converged
10: until f̄K or ℓK is 0
11: return (ℓ̄, ℓ̄2, f̄ , f̄2, τ )

B.3 BACKFITTING ALGORITHM

18
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Algorithm 3 Backfitting algorithm for cEBMF
Require A (n× p) data matrix Z
Require Two matrices of covariates X (n× pX) and Y (p× pY)
Require A function, init(Z)→ (L,F) that provides initial estimates for row factors and column
factors (e.g., SVD)
Require A function cEBNM(β̂, s,x) that solves the cEBNM problem (29)
Require A function single update (Z, ℓ̄k, ℓ̄

2
k, f̄k, f̄2

k, τ ,X,Y)→ (ℓ̄, ℓ̄2k, f̄k, f̄
2
k , τ )

1: Initialize first moments (ℓ̄1, . . . , ℓ̄K ; f̄1, . . . , f̄K)← init(Z)
2: Initialize second moments by squaring first moments: ℓ̄2k ← (ℓ̄k)

2; f̄2
k ← (f̄k)

2 for k =
1, . . . ,K

3: repeat
4: for k = 1, . . . ,K do
5: (ℓ̄k, ℓ̄

2
k, f̄k, f̄

2
k , τ )← single update (Z, ℓ̄k, ℓ̄2k, f̄k, f̄2

k, τ ,X,Y)
6: end for
7: until converged
8: return (L̄, L̄2, F̄ , F̄ 2, τ )

C DETAILS OF THE EXPERIMENTS

C.1 ADDITIONAL METHODS COMPARISON

As mentioned in section 4 we comparde cEBMF with regular EBMF Wang and Stephens (2021),
Penalized Matrix Decomposition Witten et al. (2009) (PMD, implemented in R package PMA) and
when applicable, we also use Spatial PCA (SpaPCA) Shang and Zhou (2022). We also conducted
comparison with Sparse SVD Yang et al. (2014) (SSVD, implemented in R package ssvd) and with
standard PCA (implemented via truncated SVD). Below we detail the these experiments. We display
the results of these numerical experiments in section D.

C.2 METHODS PARAMETRIZATION

As mentioned in section 4, for all methods, we set the rank of the matrix factorization to the K that
was used to simulate the data. The penalty parameters in PMD were tuned via cross-validation as
recommended by the authors. cEBMF, EBMF, and SpaPCA are ‘self-tuning’ methodologies and
don’t require fixing many hyperparameters beforehand. Following the comments of Yang et al.
(2014), SSVD is robust to the choice of tuning parameters, so we ran SSVD with its default val-
ues. All the experiments were run using the R implementation of Keras, which is a wrapper for
TensorFlow Abadi et al. (2016) functions.

C.3 SPARSITY-DRIVEN COVARIATE SIMULATIONS

Simulation procedure In this simulation setting, we generate rank 2 covariate moderated factor
model (K = 2 in 19) as follows. First, we simulate two sets of covariates X,Y with 10 columns
each. We simulate the entry of X by sampling iid realizations ofN (0, 1) and similarly for the entries
of Y. Each of the columns of X and Y affect the sparsity of the row factor (resp column factor) via
a a logistic model regression model

ℓik ∼ π0(xi,θk)δ0 + (1− π0(xi,θk))N(0, 1) (58)
fjk ∼ π0(yj ,ωk)δ0 + (1− π0(yj ,ωk))N(0, 1) (59)

log

(
π0(xi,θk)

1− π0(xi,θk)

)
= θT

k xi (60)

log

(
π0(yj ,ωk)

1− π0(yj ,ωk)

)
= ωT

k yj (61)

The noise level σ2
ij = 1/τij of E varies from 0.1 to 2. We select θk and ωk such that the sparsity of∑K

k=1 ℓkf
T
k is equal to 90%.
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We run cEBMF using priors of the form π0(.,θ)δ0 +
∑M

m=1 πm(.,θ)N(0, σ2
m) for both row and

column factors, where π(.,θ) = (π0(.,θ), . . . , πM (.,θ)) is a multinomial regression model. We
use a mixture of Gaussian prior for EBMF Stephens (2017). We fit cEBMF and EBMF using
a homogeneous noise parameter σ2

ij = σ2. We perform 400 simulations under each simulation
configuration. The results are presented in Figure 2.

Description of the cEBMF prior model the row and column factors. We model the functions
g
(ℓ)
k (.; .), g

(f)
k (.; .) using a single layer model with softmax activation function using 50 epoch per

loop in Algorithm 2 and a batch size of 500 for the row factors and a batch size of 400 for the column
factors.

C.4 TILED-CLUSTERING MODEL

Simulation procedure In this simulation setting we generated a rank 3 covariate moderated factor
model matrix for (K = 3) as follow. First, we generate a periodic tilling of [0, 1]2. We use a simple
periodic tiling of [0, 1]2 that divides the regions in nine square of width 1

3 .At each iteration we label
at random three tiles with label 1, three other tiles with label 2 and the remaining tile with label 3.

We then sample uniformly some 1000 2d coordinates on (xi, yi) ∈ [0, 1]
2. Then for each set of

coordinate we set ℓik = 1(xi,yi)∈{tile, label (tile)=k} if (xi, yi) in a tile with label k. The factors are
sample under a Gaussian mixture fjk ∼ π0δ0 +

∑M
m=1 N(0, σ2

m). The noise level σ2
ij = 1/τij

of E varied from 1 to 5. We model the row factor prior in cEBMF using a model of the form
π0(.,θ)δ0 +

∑M
m=1 πm(.,θ) exp(λm) where π(.,θ) = (π0(.,θ), . . . , πM (.,θ)) is a multi-layer

perceptron (MLP), and exp(λ) is the density of the exponential distribution with parameter λ and
λm < λm+1 for all m. We model the column factors using a mixture of centered Gaussian as a prior
for the column factor (with no covariate).

Description of the cEBMF prior model the row factors. We use a sequential model with a dense
layer with 64 units and ReLU activation. We use two subsequent dense layers, each with 64 units,
and ReLU activation followed using an L2 regularization coefficient of 0.001 to prevent overfitting
by penalizing large weights. Each of these regularized layers is followed by a dropout layer with
a dropout rate of 0.5. The final Layer is a dense layer with a softmax activation. These model are
trained using 50 epochs per loop in Algorithm 2 and a batch size of 500

The column factor parameters were estimated using the mixsqp R package which implements a se-
quential quadratic programming method for fast maximum-likelihood estimation of mixture propor-
tions Kim et al. (2020). We fit cEBMF and EBMF using a homogeneous noise parameter σ2

ij = σ2.

C.5 SPATIAL TRANSCRIPTOMICS EXPERIMENTS

The spatial transcriptomic data were processed in the spatial PCA manuscript Shang and
Zhou (2022) following the protocol proposed by the authors, which is available at https:
//lulushang.org/SpatialPCA_Tutorial/DLPFC.html. After processing the data us-
ing the normalization steps proposed by Shang and Zhou (2022), we ran cEBMF on each spa-
tial transcript, parametrized as a covariate-moderated empirical Bayes non-negative factorization
(cEBNMF). We parametrized cEBNMF model as follows. We use priors of the form π0(·,θ)δ0 +∑M

m=1 πm(·,θ) exp(λm) for the row factors and a mixture of exponentials for the column factors.
The location of each spot was used as a covariate for the row factors, modeled with an MLP ( i.e.,
π(.,θ) = (π0(.,θ), . . . , πM (.,θ)) is a MLP which we describe below) and set K to the number of
manually annotated clusters. We compared cEBNMF to EBNMF (using a mixture of point mass at
zero and exponential components) and standard NMF (using the NNLM package Lin and Boutros
(2020)) each run using K=5 as it results in better fit then for other K.

Description of the cEBMF prior model the row factors. We use a sequential model with a
dense layer with 64 units and ReLU activation. We use two subsequent dense layers, each with 64
units, and ReLU activation using an L2 regularization coefficient of 0.001 to prevent overfitting by
penalizing large weights. These regularized layers are followed by a dropout layer with a dropout
rate of 0.5. The subsequent layers are four dense layers, each with 64 units, and ReLU activation
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using an L2 regularization coefficient of 0.001 The final Layer is a dense layer with a softmax
activation. These model are trained using 300 epochs per loop in Algorithm 2 and a batch size of
1500.

The column factor parameters were estimated using the mixsqp package for fast maximum-
likelihood estimation of mixture proportionsKim et al. (2020). We fit cEBMF and EBMF using
a row-wise homogeneous noise parameter σ2

ij = σ2
j .

C.6 COMPUTING AND SOFTWARE NOTES

All the experiments were run using a high-performance computing cluster. The jobs were run using
10 CPUs and 15 GB of memory. We used 23 hours as a wall time for the spatial transcriptomics ex-
periments; on average, analyzing one slice using cEBMF takes about 3 hours. For the sparsity-driven
covariate simulations and the tiled-clustering model simulations, we used the same computational
resources but let the simulation run for 72 h.
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Figure 5: Comparative analysis of matrix factorization under various noise levels for the sparsity
driven covariate simulations. The panel on the left-hand side displays the mean RMSE and their cor-
responding 95% confidence interval for each method. The y-axis represents the root mean squared
error (RMSE). The y-axis is in the log scale for visualization purposes. The panel on the right-hand
side displays the boxplot of the simulation results. The noise standard deviation for each simulation
scenario is displayed in the facet title. The confidence intervals are computed assuming Normally
distributed errors using standard closed-form formula.
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Figure 6: Comparative analysis of matrix factorization under various noise levels for the tiled clus-
tering simulations. The panel on the left-hand side displays the mean RMSE and their correspond-
ing 95% confidence interval for each method. The y-axis represents the root mean squared error
(RMSE). The y-axis is in the log scale for visualization purposes. The panel on the right-hand side
displays the boxplot of the simulation results. The noise standard deviation for each simulation
scenario is displayed in the facet title. The confidence intervals are computed assuming Normally
distributed errors using standard closed-form formula.
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Figure 7: Comparative analysis of matrix factorization under various noise levels when the side
information is not informative of the prior distribution. The panel on the left-hand side displays
the mean RMSE and their corresponding 95% confidence interval for each method. The y-axis
represents the root mean squared error (RMSE). The y-axis is in the log scale for visualization
purposes. The panel on the right-hand side displays the boxplot of the simulation results. The
noise standard deviation for each simulation scenario is displayed in the facet title. The confidence
intervals are computed assuming Normally distributed errors using standard closed-form formula.
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Figure 8: Comparative analysis of matrix factorization under various noise levels for the shifted
tiled clustering simulations. The panel on the left-hand side displays the mean RMSE and their cor-
responding 95% confidence interval for each method. The y-axis represents the root mean squared
error (RMSE). The y-axis is in the log scale for visualization purposes. The panel on the right-hand
side displays the boxplot of the simulation results. The noise standard deviation for each simulation
scenario is displayed in the facet title. The confidence intervals are computed assuming Normally
distributed errors using standard closed-form formula.
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Figure 9: Results on slides 4 (A) and 10 (B) of the DLPFC spatial transcriptomics data (Pardo et al.,
2022) as in the main text. In the NMF, EBMF and cEBMF results, each pixel i is shown as a pie
chart using the relative values of i-th row of L (after performing an “LDA-style” post-processing of
L,F; Townes and Engelhardt 2023). Note that we only ran CMF and MFAi in this two examples,
because CMF results are not informative and because MFAI is particularly long to run on this data.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Slices 1 (top row) through 6 (bottom row).
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Figure 11: Slices 7 (top row) through 12 (bottom row).
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