

000 001 002 003 004 005 SUBGRAPH GENERATION FOR GENERALIZING ON OUT- 006 OF-DISTRIBUTION LINKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Graphs Neural Networks (GNNs) demonstrate high-performance on link prediction
026 (LP) datasets, especially when the distribution of testing samples falls within the
027 dataset's training distribution. However, GNNs suffer decreased performance
028 when evaluated on samples from outside their training distribution. In addition,
029 graph generative models (GGMs) show a pronounced ability to generate novel
030 output graphs. Despite this, the application of GGMs remains largely limited to
031 domain-specific tasks. To bridge this gap, we propose leveraging GGMs to produce
032 synthetic samples which extrapolate between training and testing distributions.
033 These synthetic samples are then used for fine-tuning GNNs to improve link
034 prediction performance in out-of-distribution (OOD) scenarios. We introduce a
035 theoretical perspective on this phenomena which is further verified empirically via
036 increased performance across synthetic and real-world OOD settings. We conduct
037 further analysis to investigate how inducing structural change within training
038 samples improves OOD performance, indicating promising new developments in
039 graph data augmentation on link structures.
040

1 INTRODUCTION

041 Graph Neural Networks (GNNs) demonstrate the ability to learn on graph data and have been used on
042 a number of different downstream tasks that rely on understanding graph structure (Kipf & Welling,
043 2017). Link Prediction (LP)(Liben-Nowell & Kleinberg, 2003; Li et al., 2024), which attempts to
044 predict unseen links in a graph, serves as one such example. For the task of LP, GNNs are used to
045 learn node representations, which are then used to determine whether two nodes will form a link (Kipf
046 & Welling, 2016). In recent years, advanced architectures have further enhanced state-of-the-art link
047 prediction performance. To achieve this, the models often leverage structural features directly within
048 their neural architecture, enabling the model's more effective understanding of link formation(Wang
049 et al., 2023; Yun et al., 2021; Shomer et al., 2024).
050

051 However, recent studies indicate that GNNs struggle to generalize to out-of-distribution (OOD)
052 samples. This can arise when the underlying dataset properties differ between training and testing (Gui
053 et al., 2022). Additionally, the distribution shift in graph data is not well-aided by generalization
054 techniques from other machine learning domains, such as CV and NLP (Li et al., 2022a; Gao et al.,
055 2023). Therefore, the study of the OOD problem has flourished for graph- and node-classification
056 (Ji et al., 2022; Koh et al., 2021). However, little direct attention has been paid to designing link
057 prediction models which better withstand shifts in the underlying data distribution (Zhou et al., 2022;
058 Bevilacqua et al., 2021). This is an issue, as recent work (Revolinsky et al., 2024) has shown that
059 current link prediction models (even when augmented with OOD-generalization techniques) struggle
060 to generalize to shifts in the underlying structural distribution. Given the success of out-of-distribution
061 (OOD) generalization techniques in various graph-related tasks beyond link prediction (Arjovsky
062 et al., 2019; Krueger et al., 2021; Wu et al., 2024; Wang et al., 2020), a question arises regarding the
063 relatively limited success of these methods within the OOD link prediction problem. How can we
064 improve out-of-distribution performance in link prediction?
065

066 Intrinsically, out-of-distribution problems are difficult to manage; the simplest solution is to retrain
067 or tune the model on new samples within distribution of the testing set (Bai et al., 2023). Before
068 retraining can occur, the samples must be acquired, or even detected that they fall out-of-distribution
069 (Wu et al., 2023b;a). A promising example of this application occurs within both CV and NLP, where
070

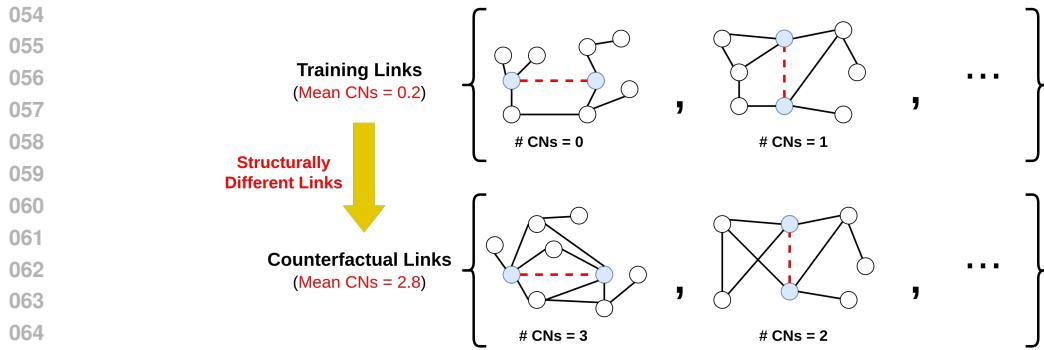


Figure 1: Example of counterfactual links that differ in terms of their structural properties such as Common Neighbors (CNs). In this example, the average training link typically contains very few CNs (0.2), thus we may want to generate counterfactuals with more CNs (2.8).

the training data is augmented with **counterfactual samples**. Such counterfactual samples have been shown to be helpful for OOD tasks by improving the diversity of the training data problem (Sun et al., 2022). This uplift is possible because counterfactual samples operate under the same causal rules as the original samples, even if the counterfactual sample was not originally contained within the training dataset (Ma et al., 2022). An example of how this may work for link prediction is shown in Figure 1, where the counterfactual links are meant to be structurally different from the training samples. As shown, the training samples have none or few common neighbors (i.e., shared 1-hop neighbors), the counterfactual samples have multiple. The counterfactual links thus demonstrate an *alternative reason* for why some links may form. Within link prediction, counterfactuals have demonstrated the ability to enhance baseline model performance (Zhao et al., 2022). However, these methods are often reliant on expensive pre-processing to generate counterfactuals, also requiring prior knowledge of the dataset’s distribution shift, limiting real-world use (Zhao et al., 2022; Sun et al., 2022).

Thus, an important question is, *how can we learn to efficiently generate new but meaningfully different samples to improve LP generalization?* To address this issue, we apply graph generation as a data augmentation method to generate samples which are *counterfactual* to the training distribution. The underlying principle behind this approach is to determine if it is possible to augment our training distribution to increase generalization and potentially improve LP performance. In order to achieve this, we design a new framework called **FLEX** which leverages a generative graph model (GGM) co-trained with a GNN to produce subgraphs that are conditioned on a specific training link. The goal of the GGM is to take a single potential link (that is positive or negative) as input, and learn how to generate a new link that is counterfactual in structure to the input. To ensure that the GGM learns to generate counterfactual links, we maximize the Kullback-Leibler (KL) divergence with a quadratic penalty between posterior and prior sampling distributions to maximize structural diversity, but ensure we don’t deviate too far from the original distribution. Furthermore, to avoid generating the entire adjacency for each new link, we instead propose to work with subgraphs, thus overcoming issues with efficiency.

Our contributions can be summarized as the following:

1. Overall, we introduce **FLEX**: a *simple yet effective* graph-generative framework that learns to generate counterfactual examples for improved link prediction performance.
2. We demonstrate the effect of structural shifts through targeted analysis on link prediction model performance.
3. We also conduct numerous experiments to show how FLEX can improve model generalization across multiple datasets and methods.

108 **2 BACKGROUND AND RELATED WORK**
109110 We denote a graph as $\mathbf{G}(\mathbf{X}, \mathbf{A})$, abbreviated to \mathbf{G} , where $\mathbf{X} \in \mathbb{R}^{n \times d}$ represents the node features in
111 real space with n nodes and feature dimensions d . $\mathbf{A} \in \{0, 1\}^{n \times n}$ represents the adjacency matrix,
112 within which nodes connect with one another to form edges, $e = (u, v)$. The k -hop subgraph of a
113 node v is denoted by $\mathbf{A}_v^{(k)}$. Consequently, the k -hop subgraph enclosed around an edge e is defined
114 as $\mathbf{A}_e^{(k)} = \mathbf{A}_u^{(k)} \cup \mathbf{A}_v^{(k)}$.
115116 **Link Prediction:** Graph Neural Networks (GNNs) (Kipf & Welling, 2017) are a common tool for
117 modeling link prediction. GNNs learn representations relevant to graph structure as embeddings,
118 $\mathbf{H} = \text{GNN}(\mathbf{X}, \mathbf{A})$ which are then passed to link predictors to estimate whether a link will form or
119 not. However, several studies (Zhang et al., 2021; Srinivasan & Ribeiro, 2019) have shown that
120 standard GNNs are not enough for link prediction, as the models ignore the pairwise information
121 between two nodes. To account for this, recent methods either inject or augment pairwise information
122 within GNNs to elevate their link prediction capabilities. We include more discussion link-prediction
123 models within Appendix A.124 **Graph Generative Models:** We treat graph generation as output of a scoring function $s : \mathbb{R}^d \times \mathbb{R}^d \rightarrow$
125 \mathbb{R} to quantify similarity between node embeddings, which is often defined as an inner product:
126 $s(u, v) = \mathbf{H}_u^\top \mathbf{H}_v$ and further calculated as edge-probabilities, $P((u, v) \in E \mid \mathbf{H}_u, \mathbf{H}_v) = \sigma(s(i, j))$,
127 where $\sigma(\cdot)$ is the sigmoid function. Whereas, we focus on the capability of auto-encoders inferring
128 from latent embeddings to re-produce an adjacency matrix (Kipf & Welling, 2016). More advanced
129 graph generation models exist: such as auto-regressive, diffusion, normalizing-flow, and generative-
130 adversarial networks (You et al., 2018; Vignac et al., 2022; Luo et al., 2021; Martinkus et al., 2022).
131 However, these models often employ mechanisms which restrict their applications beyond graph
132 generation. For example, discrete-denoising models generate a new adjacency matrix with discrete
133 space edits, which can be computationally restrictive to re-train when generalizing on a variety of
134 different graph structures (Kong et al., 2023).135 **Methods for OOD:** Numerous methods, operating underneath the invariance learning principle, exist
136 to improve the generalization performance of neural models (Arjovsky et al., 2019). These invariant
137 methods divide training data into environmental subsets for conditioning models to variance between
138 training subsets. However, these methods require careful considerations for effective performance
139 improvement in OOD scenarios (Gulrajani & Lopez-Paz, 2020). Additionally, generalizing with
140 these techniques is difficult for graph representation learning (Li et al., 2022b; Revolinsky et al.,
141 2024). Therefore, architectures and techniques which target invariance principles within graph data
142 are employed to improve GNN performance (Chen et al., 2023; Zhang et al., 2022). Recently, graph
143 generation has been applied within OOD scenarios as well. For example, EERM is a technique which
144 integrates graph generators to improve OOD performance on graphs. However, the generators can
145 lead to scalability issues when considering the additional nodes necessary for link formation (Wu
146 et al., 2022). GOLD leverages latent generative models to learn on OOD samples, yet it functions
147 predominantly for OOD detection on graphs and not directly improving OOD generalization in link
148 prediction (Wang et al., 2025). Lastly, CFLP (Zhao et al., 2022) considers extracting counterfactual
149 links for enhancing link prediction. However, their proposed algorithm is (a) a non-parametric method
150 that relies on the Louvain (Blondel et al., 2008) algorithm, (b) has been shown to be prohibitive to
151 run. This paper’s initial runtime investigations verify CFLP’s difficulty scaling within Appendix F,
152 Tables 5 and 6.153 **3 FLEX**
154155 In Section 1, we introduced the OOD problem for link prediction and how graph generation has
156 potential to solve the problem. However, *is it possible to generate such counterfactual links?*
157 Effectively, there are endless “meaningless” graphs with no relevant structure to a training dataset;
158 a GNN tuned on these graphs is also likely to suffer decreased downstream model performance.
159 Therefore, applying graph data augmentation to improve performance requires understanding of the
160 structure within the graph dataset (Singh et al., 2021). It’s thus desirable for a learnable framework
161 which understands link formation but can also target relevant graph structure to improve OOD
162 performance. To achieve this, we introduce **FLEX**, the Framework for Learning to **E**Xtrapolate

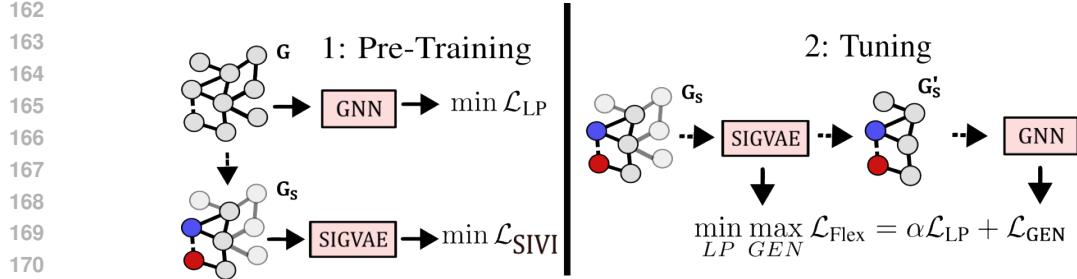


Figure 2: An illustration of the FLEX framework for a single dataset sample. **Step 1** involves pre-training both models separately to optimize their performance, like in real-world scenarios. **Step 2** involves adversarial co-training of the two models, where the GGM generates synthetic samples to tune the GNN.

Structures in Link Prediction. As a graph data augmentation framework, FLEX utilizes a variety of techniques to ensure: computability, scalability, and expressiveness.

Following these principles, FLEX then functions in two critical steps, as illustrated in Fig. 2. **First**, we pre-train a GNN on the dataset’s full adjacency matrix by optimizing the predictive loss, \mathcal{L}_{LP} . GNN pre-training simulates a real-world scenario, where we may only wish to improve a pre-existing model’s ability to generalize on OOD samples (Gui et al., 2022; Krueger et al., 2021). A graph generative model (GGM) is then pre-trained separately to minimize generative loss, \mathcal{L}_{SIVI} . The GGM is conditioned on each sample (i.e., link) via the labeling trick on the k -hop enclosed subgraph (Zhang et al., 2021). This ensures that we can generate a *new link* that is counterfactual to an *existing link*. **Second**, we apply both pre-trained models in a co-training framework, where the GGM produces synthetic dataset samples as input for fine-tuning the GNN. The GGM maximizes the distance between posterior and prior while the GNN attempts to minimize prediction loss; much like adversarial-conditioning in GANs and other auto-encoder frameworks (Goodfellow et al., 2020; Yang et al., 2019; Wang et al., 2025). As such, the GNN prediction loss functions to retain information from the original dataset distribution, further acting as counterfactual conditioning to improve OOD performance.

3.1 GENERAL MOTIVATION

The main objective of the FLEX framework is to generate graph samples which retain node feature properties while producing edge structures counterfactual to the original data. After which, the co-trained GNN is tuned on the synthetic counter-factual to improve performance. This is feasible with any type of well-trained graph generative model (e.g., auto-encoders (Kipf & Welling, 2016) or diffusion models (Vignac et al., 2022)). To explain what constitutes a relevant counterfactual for link prediction, we consider the following definitions.

Definition 3.1 (Basic Counterfactual Entity). *Given a structural equation model (M), consisting of two function sets (Y, X). Let M_x represent a modified version of M where all possible $X = x$. When we infer x from Y with an input u , this represents the axiom: $Y_x(u) \triangleq \Delta Y_{M_x}(u)$ (Pearl, 2009).*

As such, Definition 3.1 represents the most basic example of a counterfactual, where Y would properly denote the expected outcome y , had the function X been x for the given input u (Pearl, 2013). In context of machine learning, this is further represented as a model learning a function which generalizes performance to testing data had training data [formed differently](#).

To extend this for graph-structured data, specifically link prediction, we need an understanding of *what* our generated samples should be counterfactual to. Intuitively, we target higher-order link properties (Common Neighbors) which were previously unobserved within the training data. As shown in the next definition, an encoder $f_\theta(\cdot)$ that can extract expressive link features is therefore necessary for producing proper counterfactual links. If $f_\theta(\cdot)$ is not suitably expressive, our generative model will be unable to distinguish higher-order link structure and fail to generate counterfactuals relevant to the current model’s training distribution.

Definition 3.2 (Expressive Link Features). *Consider an edge sample $e = (u, v)$, and it’s k -hop subgraph $A_e^{(k)}$. We want to learn an encoder $f_\theta(\cdot)$ that can operate on $A_e^{(k)}$ and learn to extract*

216 structural features \mathbf{H}_e that are specific to the link (u, v) (e.g., link heuristics (Newman, 2001; Katz, 1953)). We assume that $f_\theta(\cdot)$ is expressive such that it can extract link-specific features. We then
 217 represent the probability distribution of the features extracted by the encoder to be $\mathbb{P}_H(\mathbf{A}_e^{(k)}) =$
 218 $f_\theta(\mathbf{A}_e^{(k)})$.
 219

220 **Definition 3.3** (Structural Link-Counterfactual). *For an edge sample $e = (u, v)$, a meaningfully different sample (counterfactual) – $\tilde{\mathbf{A}}_e^{(k)}$ exists where the link feature distribution estimated between the
 221 original subgraph and it's counterfactual are approximately non-equivalent, $\mathbb{P}_H(\mathbf{A}_e^{(k)}) \not\approx \mathbb{P}_H(\tilde{\mathbf{A}}_e^{(k)})$.*
 222

223 A proper counterfactual sample should have different underlying link features from the original sample.
 224 As shown in Figure 1, we assume that we have an encoder which can extract common neighbors
 225 (CNs) (Newman, 2001). Given that the training samples have no or few CNs, the corresponding
 226 counterfactuals then contain a greater number of CNs. These new samples are thus *structurally-
 227 counterfactual*, in that they differ in higher-order structural features but retain the original node
 228 features.
 229

230 **Corollary 3.3.1** (Feature-Conditional Equivalence). *Given the previous definition of counterfactual
 231 structure, the link features contained within k -hop subgraph $\mathbf{A}_e^{(k)}$ are not invariant in isolation as
 232 we must consider the node features. Therefore, in order for $\tilde{\mathbf{A}}_e^{(k)}$ to maintain a valid counterfactual
 233 structure, it must be conditioned on the node features \mathbf{X}_e^k within the original subgraph. That is,
 234 $\mathbb{P}_H(\mathbf{A}_e^{(k)} \mid \mathbf{X}_e^k) = f_\theta(\mathbf{A}_e^{(k)} \mid \mathbf{X}_e^k)$ and $\mathbb{P}_H(\tilde{\mathbf{A}}_e^{(k)} \mid \mathbf{X}_e^k) = f_\theta(\tilde{\mathbf{A}}_e^{(k)} \mid \mathbf{X}_e^k)$. For convenience, we
 235 further write this as $\mathbb{P}_H(\mathbf{G}_e^{(k)}) = f_\theta(\mathbf{G}_e^{(k)})$ and $\mathbb{P}_H(\tilde{\mathbf{G}}_e^{(k)}) = f_\theta(\tilde{\mathbf{G}}_e^{(k)})$.*
 236

237 Therefore, the link-counterfactual is dependent on the compatibility between $\tilde{\mathbf{A}}$ and \mathbf{X} . A failure
 238 to properly condition structure on \mathbf{X} will not fulfill the definition for counterfactual structure since
 239 the newly-generated node features will introduce spurious correlations relative to original subgraph
 240 samples. So, the encoder $f_\theta(\cdot)$ must also consider the original node features as input. We further
 241 explain these principle within Appendix B.
 242

243 Given these definitions, we can see generating proper counterfactual samples requires extracting link
 244 features conditional to node features. To do this, we learn a Generative Graph Model (GGM) which
 245 inputs both types of features to output a new sample with a different structural distribution. In order
 246 to do this, we must ensure three things: (a) *Scalability*: In order to ensure relevance to real-world
 247 problems, the GGMs must operate on large graphs. (b) *Expressiveness*: First, the extracted features
 248 for each link must be suitably expressive. Second, the GGM itself will need to effectively sample
 249 from complicated distributions to produce relevant graph structures. (c) *Counterfactual*: Generated
 250 structures must indicate a level of change which does not replicate the training distribution, but
 251 retains meaningful feature correlation. In the rest of this section, we outline our method for tackling
 252 these challenges. In consideration of space, we demonstrate the efficiency of our method within
 253 Appendix F.
 254

255 3.2 SEMI-IMPLICIT VARIATION FOR OUT-OF-DISTRIBUTION GENERATION

256 Following principle (a.) from Section 3.1, the scalability of the practical implementation becomes
 257 a concern. Computational complexity of more refined GGMs can be restrictive, whereas less
 258 computationally-intensive generative models may result in low-quality generations (Simonovsky &
 259 Komodakis, 2018; Yan et al., 2024). To balance this, we employ semi-implicit variation (Yin & Zhou,
 260 2018), for it's inherent scalability when implemented in an auto-encoder and it's expressiveness for
 261 modeling complex distributions.

262 Let the true data-generating distribution be $p(G)$, and assume it is modeled via a latent variable model
 263 with latent code H and a semi-implicit posterior of the form:

$$264 \quad q_\phi(H_e \mid \tilde{X}_e^{(k)}, \tilde{A}_e^{(k)}) = \int q_\phi(H_e \mid \psi) q_\phi(\psi \mid X_e^{(k)}, \tilde{A}_e^{(k)}) d\psi, \quad (1)$$

265 where $q_\phi(\psi \mid X, A)$ is a flexible (potentially implicit) distribution. Suppose the model is trained to
 266 maximize the semi-implicit evidence lower bound (ELBO) (Hasanzadeh et al., 2019):
 267

$$268 \quad \mathcal{L}_{\text{SIVI}} = \mathbb{E}_{\psi \sim q_\phi(\psi \mid X_e^{(k)}, A_e^{(k)})} \left[\mathbb{E}_{H \sim q_\phi(H \mid \psi)} \left[\log p(A_e^{(k)} \mid H_e) \right] - \text{KL}(q_\phi(H_e \mid \psi) \parallel p(H_e)) \right], \quad (2)$$

270 and assume $p(\mathbf{H}_e)$ is a broad prior (e.g., isotropic Gaussian) while $p(\mathbf{A}_e \mid \mathbf{H}_e)$ defines a valid graph
 271 decoder. Then, given an auto-encoder with an expressive architecture capable of distinguishing the
 272 structure within samples drawn from q_ϕ and p , sampling from $\mathbf{H}_e \sim q_\phi(\mathbf{H}_e \mid \psi)$, $\psi \sim q_\phi(\psi)$ yields
 273 synthetic graphs $\tilde{\mathbf{G}}_e = (\mathbf{X}_e, \tilde{\mathbf{A}}_e)$ whose features are derived from the original dataset distribution but
 274 reveal emergent out-of-distribution (OOD) structure with respect to the training data $\mathcal{D}_{\text{train}} \sim \mathbb{P}(\mathbf{G})$,
 275 provided that $q_\phi(\psi) \not\approx q_\phi(\psi \mid \mathcal{D}_{\text{train}})$. That is, the complete generative process follows:

$$\tilde{\mathbf{G}}_e \sim p_\theta(\tilde{\mathbf{G}}_e \mid \mathbf{H}_e), \quad \mathbf{H}_e \sim q_\phi(\mathbf{H}_e \mid \psi), \quad \psi \sim q_\phi(\psi), \quad (3)$$

276 Therefore, Eq. 3 defines a valid procedure for generating OOD graph samples. In scenarios where
 277 the sampled distribution is not a broad prior, this process then decomposes further to a standard
 278 variational generative process (Hasanzadeh et al., 2019; Kipf & Welling, 2016). We further develop
 279 our reasoning on link-counterfactual generative processes in Appendix B.

280 As a learnable mechanism, semi-implicit variance (ψ) often relies on inputting randomness into
 281 prior distributions; this randomness can then be treated as an adversarial noise, much like how OOD
 282 samples would appear to pre-trained GGMs. As such, an auto-encoder which effectively models
 283 semi-implicit variance of training distributions can generate complicated graph samples which mimic
 284 link-counterfactuals, fulfilling our expressiveness principle while maintaining the scalability of an
 285 auto-encoder (Hasanzadeh et al., 2019; Simonovsky & Komodakis, 2018). We show in Section 4.3
 286 that the use of a semi-implicit GGM to a standard graph GGM is helpful for strong counterfactual
 287 generation.

290 3.3 LINK-SPECIFIC SUBGRAPH GENERATION

291 Semi-implicit variation assumes that a GGM can learn to generate $\tilde{\mathbf{G}}_e$. However, as noted in
 292 Definition 3.2, to make this task relevant to link-prediction and continue fulfilling the expressiveness
 293 principle, we must first learn to extract *link-specific features*. That is, we want an encoder $f_\theta(G_e^{(k)})$
 294 that can extract such features from the k -hop neighborhood of a link $e = (u, v)$. Only then will our
 295 GGM have the suitable amount of information to generate meaningful counterfactuals that differ in
 296 key link properties.

297 To achieve this, the encoder $f_\theta(\cdot)$ should be able to effectively encode the graph conditional on a
 298 specific link. The link-specific representations are then used by the GGM for generation. (Zhang
 299 et al., 2021) show that standard GNNs aren't expressive to links. To combat this, they introduce the
 300 labeling trick that ensures that a given GNN can learn to distinguish target links from other nodes
 301 within a graph sample. They demonstrate that the labeling trick can extract a number of different
 302 relevant structural features for a link (Zhang & Chen, 2018).

303 The labeling trick is defined as a function $\ell : \mathbf{A}^{(k)} \rightarrow \{0, 1\}$ where for a link $e = (u, v)$ the value for
 304 a sampled node x is given by:

$$\ell(x) = \begin{cases} 1, & \text{if } x = u \text{ or } x = v \\ 0, & \text{else} \end{cases} \quad (4)$$

305 This results in a labelled subgraph $L_e^{(k)}$ which is fed, along with the node features, to a GNN to
 306 produce the link-specific representations:

$$\mathbf{H}_e = \text{GNN}(L_e^{(k)}, X_e^{(k)}). \quad (5)$$

307 Given that all edges within a graph are viable link prediction targets, an effective zero-one labeling
 308 requires extracting the k -hop enclosed subgraphs conditioned on a target edge, $\mathbf{G}_e^{(k)}$. When these
 309 subgraphs are restricted to a smaller size, this reduces the direct computation required from the GGM
 310 to model subgraph distributions, ensuring FLEX's scalability principle (Zhang & Chen, 2018).

311 3.3.1 NODE-AWARE DECODER

312 Furthermore, to continue ensuring scalability and expressiveness. The decoder for FLEX's GGM is
 313 made aware of the independent number of nodes within subgraph samples for a given mini-batch
 314 along the block diagonal matrix, $A = \text{diag}(A_1, \dots, A_K)$ with $A_i \in \mathbb{R}^{\mathcal{N}_i \times \mathcal{N}_i}$. This ensures that
 315 generated subgraphs retain the original number of input nodes and prevent message-passing along
 316 edges between distinct subgraph samples.

324 Within early experiments, as shown in Figure 13, generated subgraph samples suffered from the
 325 degree-bias phenomenon (Tang et al., 2020). Wherein, the backbone GNN learns on nodes with a
 326 higher number of edges at a much-greater frequency than low-degree nodes, prioritizing learning
 327 information from the high-degree nodes (Liu et al., 2023). Therefore, generated subgraph samples
 328 were always dense, regardless of the input graph’s node-degree. We verify this phenomenon in
 329 Appendix M. To account for this, we apply an indicator function to FLEX-generated subgraphs which
 330 eliminates edges with lower probability than a threshold, γ :

$$331 \quad 332 \quad \tilde{p}(u, v) = p(u, v) \cdot \mathbb{I}[p(u, v) \geq \gamma]. \quad (6)$$

333 This function only keeps those links with high probability, constraining the GGM to connect links
 334 which it is most confident in. As such, the indicator function prevents densely-connected graphs,
 335 especially for OOD scenarios where training on dense graphs may not be desirable for downstream
 336 performance. The value of the threshold γ is treated as a hyperparameter. In Section 4.3, we show
 337 how the value of γ impacts performance.

339 3.4 GENERATING COUNTERFACTUAL LINKS

341 As part of FLEX, all previous components work to produce meaningful subgraphs. However, it is still
 342 necessary for the GGM to learn how to produce subgraph samples which are structurally-dissimilar
 343 from training, while retaining relevance to the node features within the training distribution.

344 As discussed in Definition 3.3, to ensure generated samples are link-counterfactual we can input links
 345 structural feature distribution. That is, for an input training sample $e = (u, v)$ and it’s counterfactual,
 346 we want that $\mathbb{P}_H(\mathbf{A}_e^k) \not\approx \mathbb{P}_H(\tilde{\mathbf{A}}_e^{(k)})$ where $\tilde{\mathbf{A}}_e^{(k)} = p_\theta(\tilde{\mathbf{G}}_e \mid \mathbf{H}_e)$. That is, we need to optimize the
 347 GGM to maximize the difference in input and generated samples; $\max \mathcal{L}_{\text{GEN}}$ where \mathcal{L}_{GEN} is defined
 348 as in Eq. 7.

349 However, blindly maximizing the generative loss will result in generated subgraphs which **are**
 350 structurally-incoherent to our training samples and therefore our baseline model. In reality, we nudge
 351 the generated sample distribution to modestly differ in key structural features. We ensure this in two
 352 ways. First, we apply a quadratic penalty to the generative loss \mathcal{L}_{GEN} . The penalty is centered around
 353 a target value, τ . This penalty restricts any shifts to the posterior distribution. **In effect**, generated
 354 graphs will only deviate slowly from the prior distribution and prevent the samples from devolving
 355 into noise. This is given by the following,

$$357 \quad 358 \quad \mathcal{L}_{\text{GEN}} = -(\mathcal{L}_{\text{SIVI}} - \text{KL}(\mathbb{E}_{\psi \sim q_\phi(\psi \mid X_e, A_e)} [q(H_e \mid \psi)] \parallel p(H_e)) - \tau)^2. \quad (7)$$

359 Second, we also attempt to correctly classify the link based on it’s original label. That is, we want to
 360 predict the existence of the original link based on the newly generated sample. This serves as a means
 361 for inducing learnable counterfactual treatment within the GGM. If the generative model deviates
 362 too far from the training distribution or considers useless structural features, the GNN will be unable
 363 to cope, thus resulting in poor classification performance. It therefore allows for a “check” on the
 364 generation quality, limiting the potential for incoherent generation.

365 The final optimization goal of FLEX is given by the following, \mathcal{L}_{LP} denotes the classification loss
 366 (BCE):

$$368 \quad 369 \quad \min_{LP} \max_{GEN} \mathcal{L}_{\text{Flex}} = \alpha \mathcal{L}_{\text{LP}} + \mathcal{L}_{\text{GEN}} \quad (8)$$

370 α represents the weight assigned to the counterfactual predictions produced by the GNN tuned within
 371 the FLEX framework. Since the co-trained GNN is tuned on synthetic samples, the minimization of
 372 \mathcal{L}_{LP} ensures that the GNN retains it’s ability to predict on positive and negative samples while also
 373 conditioning the maximization of \mathcal{L}_{GEN} . In tandem, the two function in an adversarial co-optimization
 374 to predict on samples with increasingly different structures (Pan et al., 2018; Wang et al., 2025).

375 We further illustrate the overall framework in Figure 2. In the first stage both the GNN and GGM are
 376 trained separately. Then in the second stage, the components are co-trained via the objective defined
 377 in Equation 8. Both procedures are described further in Algorithm 1. In the next section, we test
 FLEX, showing it’s ability to improve OOD performance for link prediction.

378 **4 EXPERIMENTS**
 379

380 We now evaluate FLEX to answer the following research questions. **RQ1:** Does FLEX contribute
 381 to better link prediction performance in OOD scenarios? **RQ2:** How might separate components
 382 of the FLEX framework improve OOD performance? **RQ3:** How sensitive is FLEX to different
 383 hyperparameter settings? **RQ4:** Does FLEX learn to generate link-counterfactual samples?
 384

385 **4.1 SETUP**
 386

388 Our benchmarking experiments apply two different GNN backbones, Graph Convolutional Network
 389 (GCN) and Neural Common Neighbor (NCN) (Kipf & Welling, 2017; Wang et al., 2023). We
 390 then compare against the following generalization methods: CORAL, DANN, GroupDRO, VREx,
 391 IRM (Sun & Saenko, 2016; Ganin et al., 2016; Sagawa et al., 2019; Krueger et al., 2021; Arjovsky
 392 et al., 2019). Detailed hyperparameter settings are included within Appendix G. For datasets, we
 393 consider the synthetic datasets generated via the protocol designed by LPShift (Revolinsky et al.,
 394 2024). Please see Appendix H for more details. As a means of testing performance under distribution
 395 shift, we test on the original ogbl-collab split (Hu et al., 2020) and domain-transfer between Amazon
 396 Photos and Computer (Shchur et al., 2018). Lastly, all synthetic datasets are evaluated using Hits@20,
 397 while ogbl-collab is evaluated with Hits@50 and domain-transfer with AUC.
 398

399 **4.2 RQ1: FLEX PERFORMANCE**
 400

401 As shown in Table 3, FLEX improves the performance in 28 out of 29 data scenarios when applied to
 402 GCN, and for all tested scenarios when applied to NCN. This leads to an average relative increase
 403 of **4.41% to GCN and 9.56% to NCN**. On the other hand, other baselines either perform worse or
 404 on-par with GCN. This indicates that FLEX generates subgraphs which improve model generalization
 405 under distribution shift.

406
 407 Table 1: Hits@20 results for real-world and LPShift datasets, AUC results for domain-transfer
 408 datasets. LPShift dataset splits are marked “Forward” and “Backward”, “Forward” meaning more
 409 higher-order structure within testing versus training, and vice versa for “Backward”. CN = Common
 410 Neighbors, PA = Preferential-Attachment, SP = Shortest-Path. LPShift results are averaged across
 411 five datasets (Collab, PubMed, Cora, CiteSeer, PPA).

412 **Datasets**
 413 **Type** **Name** **Metric** **Avg. OOD** **VGAE** **Methods**
 414 **CFLP** **GCN** **GCN+FLEX** **NCN** **NCN+FLEX**
 415

Type	Name	Metric	Avg. OOD	VGAE	CFLP	GCN	GCN+FLEX	NCN	NCN+FLEX
Forward	CN	Hits@20	51.07 ± 1.88	50.71 ± 1.06	53.70 ± 1.90	53.61 ± 1.13	54.43 ± 0.33	50.47 ± 2.24	52.55 ± 0.27
	PA	Hits@20	62.99 ± 3.09	63.36 ± 2.01	67.61 ± 3.71	67.47 ± 2.66	68.86 ± 1.87	68.27 ± 0.87	68.97 ± 0.19
	SP	Hits@20	41.70 ± 2.48	46.89 ± 1.60	35.64 ± 2.51	44.27 ± 2.36	46.56 ± 1.29	46.63 ± 2.00	52.46 ± 6.10
Backward	CN	Hits@20	27.44 ± 2.30	26.29 ± 2.03	27.46 ± 0.99	29.69 ± 1.71	31.57 ± 0.43	22.06 ± 1.66	24.33 ± 1.33
	PA	Hits@20	37.49 ± 2.45	31.97 ± 1.30	38.92 ± 1.86	44.52 ± 1.66	43.82 ± 1.53	38.19 ± 4.05	41.30 ± 0.11
	SP	Hits@20	23.86 ± 2.79	26.28 ± 2.75	23.07 ± 1.89	24.96 ± 2.70	27.22 ± 0.76	22.61 ± 2.41	28.09 ± 0.86
Real	Collab	Hits@50	47.98 ± 1.02	50.71 ± 0.21	OOT	50.40 ± 1.01	52.42 ± 0.08	64.83 ± 0.18	64.99 ± 0.32
	P → C	AUC	85.80 ± 3.52	88.94 ± 1.06	OOT	87.48 ± 2.73	91.16 ± 1.24	—	—
	C → P	AUC	82.58 ± 4.61	86.44 ± 3.15	OOT	83.87 ± 5.08	91.36 ± 0.05	—	—
Avg (Δ%)		—	-7.44	-7.09	-0.19	—	+4.41	—	+9.56

421
 422 **4.3 RQ2: FRAMEWORK ABLATION**
 423

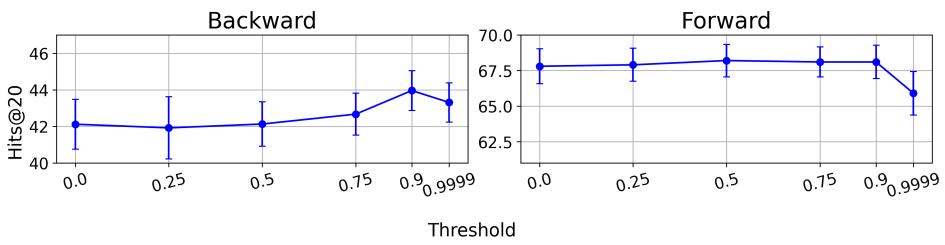
424 In order to determine which components of FLEX function to improve performance, we ablate across singular
 425 mechanisms which are directly involved with the FLEX-tuning process for the co-trained GNN. This includes the
 426 use of (a) semi-implicit variation, (b) an expressive link
 427 encoder (SEAL), (c) the LP loss \mathcal{L}_{LP} described in Eq. 8.
 428 As shown in Table 2, ablating each component leads to a
 429 consistent decrease on four different datasets, thus validating the importance of each component.
 430

431 Table 2: Ablation across the LPShift
 432 “Backwards” CN Splits.

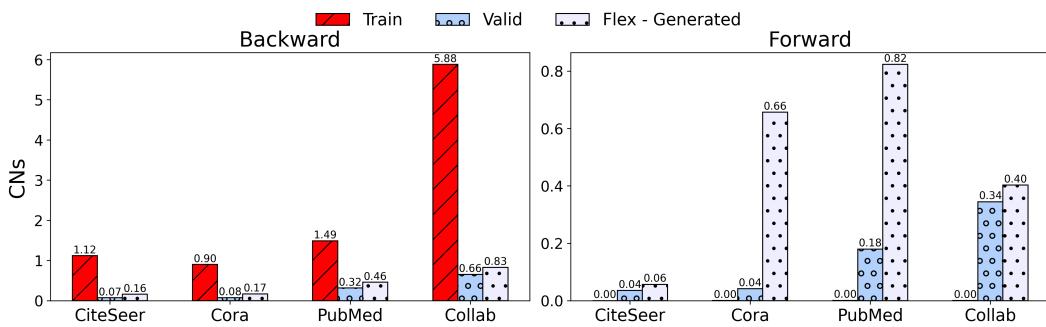
Dataset	Models			
	FLEX	w/o SEAL	w/o LP Loss	w/o SIGVAE
Cora	44.87 ± 0.32	34.62 ± 0.49	39.15 ± 1.31	33.90 ± 0.35
CiteSeer	51.98 ± 0.03	41.63 ± 0.37	51.83 ± 0.24	41.58 ± 0.01
PubMed	29.31 ± 0.12	28.07 ± 0.12	28.66 ± 0.57	27.95 ± 0.08
Collab	25.24 ± 0.01	24.76 ± 0.03	24.78 ± 0.69	24.80 ± 0.69

432 4.4 RQ3: HYPERPARAMETER SENSITIVITY
433

434 In order to gauge the impact the that Eq. 7 has on downstream performance for FLEX, we
435 conduct a study which measures the difference in performance across the indicator function’s target
436 $\gamma = \{0.0, 0.25, 0.5, 0.75, 0.9, 0.9999\}$. As shown in Figure 3, we see that the “Backward” split
437 experiences gradually increasing performance up to a value of 0.9 while the “Forward” split per-
438 formance sharply decreases at a threshold value of 0.9999. Given that indicator threshold values
439 directly affect edge-probabilities, these results demonstrate that sparser generated graphs are useful
440 for the “Backward” split to a point. Whereas little seems to affect a change in the “Forward” split
441 performance until the graph grows too sparse at 0.9999. We also include the effect of the learning
442 rate in Figure 9.

450 Figure 3: Performance of FLEX on the “Backwards CN” CiteSeer dataset across thresholds.
451452 4.5 RQ4: OOD STRUCTURAL ALIGNMENT
453

454 To further verify the effect that FLEX has on graph structure and whether it generates samples with
455 counterfactual link-structure, we directly measure the distribution of Common Neighbors within the
456 original training and validation distribution versus FLEX-generated subgraphs. As shown in Figure 4,
457 the “Flex - Generated” sample distribution closely matches the distribution of validation samples for
458 the “Backward” subplot, with none of the FLEX samples exceeding a difference of 0.17 CNs. This
459 is a 3-10x improved alignment versus the original training distribution. Within the “Forward” split,
460 FLEX samples are verifiably denser than the 0 CNs present in training. Despite this, the threshold
461 function still manages to ensure that FLEX samples never exceed a CN threshold of 1. This indicates
462 that FLEX is **successfully targeting structure to produce graphs which are link-counterfactual**
463 **to the training distribution** and help improve performance. A core consideration is FLEX’s ability
464 to do this without requiring access to validation or testing samples. We include more results on how
465 FLEX affects node-degree and clustering coefficient within Appendix D.
466

478 Figure 4: The distribution of Common Neighbors (CNs) scores across different dataset splits for the
479 Backward and Forward CN LPshift splits.
480481 5 CONCLUSION
482

483 Within this work, we formalize a theory for generating link-counterfactuals. To test this theory, we
484 introduce FLEX, a simple generative framework which targets link-structures within input samples to

486 produce link-counterfactuals which improve downstream performance. Further experimentation indicates
 487 FLEX’s ability to model OOD structures without access to validation and testing distributions.
 488 Additionally, tuning within the FLEX framework improves performance under realistic and synthetic
 489 distribution shifts, even where traditional generalization methods often decrease performance. This
 490 work opens considerations on the application of graph generation with distribution shifted scenarios,
 491 potentially opening a path to further development of counterfactuals within graph representations.
 492

493 6 LLM USAGE DISCLOSURE

494
 495 We use LLMs solely as writing-assist and coding-assist tools to polish the manuscript and debug
 496 broken functionality within this research’s code. LLMs were used to fix broken formatting within
 497 LaTeX and resolve persistent dataloading issues. All research ideas, methodology, experiments,
 498 theoretical analyses, and initial drafts were conceived and written by the authors.
 499

500 REFERENCES

501 Lada A Adamic and Eytan Adar. Friends and neighbors on the web. *Social networks*, 25(3):211–230,
 502 2003.

503 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 504 *arXiv preprint arXiv:1907.02893*, 2019.

505 Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert D Nowak, and Yixuan Li. Feed
 506 two birds with one scone: Exploiting wild data for both out-of-distribution generalization and
 507 detection. In *International Conference on Machine Learning*, pp. 1454–1471. PMLR, 2023.

508 Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for graph
 509 classification extrapolations. In *International Conference on Machine Learning*, pp. 837–851.
 510 PMLR, 2021.

511 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
 512 of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008
 513 (10):P10008, 2008.

514 Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
 515 Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for
 516 link prediction with subgraph sketching. *arXiv preprint arXiv:2209.15486*, 2022.

517 Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
 518 graph learning via environment augmentation learn invariance? *Advances in Neural Information
 519 Processing Systems*, 36:71486–71519, 2023.

520 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 521 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 522 *Journal of machine learning research*, 17(59):1–35, 2016.

523 Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
 524 Alleviating structural distribution shift in graph anomaly detection. In *Proceedings of the Sixteenth
 525 ACM International Conference on Web Search and Data Mining*, pp. 357–365, 2023.

526 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 527 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
 528 ACM*, 63(11):139–144, 2020.

529 Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
 530 *Advances in Neural Information Processing Systems*, 35:2059–2073, 2022.

531 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. *arXiv preprint
 532 arXiv:2007.01434*, 2020.

540 Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and
 541 Xiaoning Qian. Semi-implicit graph variational auto-encoders. *Advances in neural information*
 542 *processing systems*, 32, 2019.

543 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 544 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in*
 545 *neural information processing systems*, 33:22118–22133, 2020.

546 Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
 547 Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark
 548 for ai-aided drug discovery—a focus on affinity prediction problems with noise annotations. *arXiv*
 549 *preprint arXiv:2201.09637*, 2022.

550 Leo Katz. A new status index derived from sociometric analysis. *Psychometrika*, 18(1):39–43, 1953.

551 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint arXiv:1611.07308*,
 552 2016.

553 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 554 In *International Conference on Learning Representations (ICLR)*, 2017.

555 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 556 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 557 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*, pp.
 558 5637–5664. PMLR, 2021.

559 Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
 560 Autoregressive diffusion model for graph generation. In *International conference on machine*
 561 *learning*, pp. 17391–17408. PMLR, 2023.

562 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 563 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation
 564 (rex). In *International conference on machine learning*, pp. 5815–5826. PMLR, 2021.

565 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized
 566 graph neural network. *IEEE Transactions on Knowledge and Data Engineering*, 2022a.

567 Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
 568 for out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 35:
 569 11828–11841, 2022b.

570 Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
 571 Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking.
 572 *Advances in Neural Information Processing Systems*, 36, 2024.

573 David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
 574 *Proceedings of the twelfth international conference on Information and knowledge management*,
 575 pp. 556–559, 2003.

576 Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
 577 networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
 578 4525–4533, 2023.

579 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
 580 generation. In *International conference on machine learning*, pp. 7192–7203. PMLR, 2021.

581 Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
 582 counterfactual explanations on graphs. *Advances in neural information processing systems*, 35:
 583 25895–25907, 2022.

584 Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
 585 Demystifying structural disparity in graph neural networks: Can one size fit all? *Advances in*
 586 *Neural Information Processing Systems*, 36, 2024.

594 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
 595 tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
 596 *International Conference on Machine Learning*, pp. 15159–15179. PMLR, 2022.

597

598 Mark EJ Newman. Clustering and preferential attachment in growing networks. *Physical review E*,
 599 64(2):025102, 2001.

600 Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
 601 regularized graph autoencoder for graph embedding. *arXiv preprint arXiv:1802.04407*, 2018.

602

603 Judea Pearl. *Causality*. Cambridge university press, 2009.

604 Judea Pearl. Structural counterfactuals: A brief introduction. *Cognitive science*, 37(6):977–985,
 605 2013.

606

607 Jay Revolinsky, Harry Shomer, and Jiliang Tang. Understanding the generalizability of link predictors
 608 under distribution shifts on graphs. *arXiv preprint arXiv:2406.08788*, 2024.

609

610 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 611 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 612 *arXiv preprint arXiv:1911.08731*, 2019.

613

614 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 615 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.

616

617 Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: an adaptive
 618 graph transformer for link prediction. In *Proceedings of the 30th ACM SIGKDD Conference on
 Knowledge Discovery and Data Mining*, pp. 2686–2698, 2024.

619

620 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
 621 variational autoencoders. In *Artificial Neural Networks and Machine Learning–ICANN 2018:
 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018,
 Proceedings, Part I 27*, pp. 412–422. Springer, 2018.

623

624 Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, and
 625 Austin R Benson. Edge proposal sets for link prediction. *arXiv preprint arXiv:2106.15810*, 2021.

626

627 Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
 628 embeddings and structural graph representations. In *International Conference on Learning Representations*, 2019.

629

630 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 631 *Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and 15–16,
 2016, Proceedings, Part III 14*, pp. 443–450. Springer, 2016.

632

633 Teng Sun, Wenjie Wang, Liqiang Jing, Yiran Cui, Xuemeng Song, and Liqiang Nie. Counterfactual
 634 reasoning for out-of-distribution multimodal sentiment analysis. In *Proceedings of the 30th ACM
 International Conference on Multimedia*, pp. 15–23, 2022.

635

636 Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
 637 and Suhang Wang. Investigating and mitigating degree-related biases in graph convolutional
 638 networks. In *Proceedings of the 29th ACM International Conference on Information & Knowledge
 Management*, pp. 1435–1444, 2020.

639

640 Clement Vignac, Igor Krawczuk, Antoine Siraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 641 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
 642 2022.

643

644 Danny Wang, Ruihong Qiu, Guangdong Bai, and Zi Huang. Gold: Graph out-of-distribution detection
 645 via implicit adversarial latent generation. *arXiv preprint arXiv:2502.05780*, 2025.

646

647 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 648 test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.

648 Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
 649 prediction. In *The Twelfth International Conference on Learning Representations*, 2023.
 650

651 Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
 652 invariance perspective. In *International Conference on Learning Representations (ICLR)*, 2022.
 653

654 Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
 655 for graph neural networks. *arXiv preprint arXiv:2302.02914*, 2023a.
 656

657 Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-distribution general-
 658 ization via causal intervention. In *Proceedings of the ACM on Web Conference 2024*, pp. 850–860,
 659 2024.
 660

661 Xinheng Wu, Jie Lu, Zhen Fang, and Guangquan Zhang. Meta ood learning for continuously adaptive
 662 ood detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 (ICCV)*, pp. 19353–19364, October 2023b.
 663

664 Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
 665 invariance in diffusion models for graph generation. *Transactions on Machine Learning Research*,
 666 2024.
 667

668 Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
 669 through graph variational generative adversarial nets. *Advances in neural information processing
 systems*, 32, 2019.
 670

671 Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In *International conference
 on machine learning*, pp. 5660–5669. PMLR, 2018.
 672

673 Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
 674 realistic graphs with deep auto-regressive models. In *International conference on machine learning*,
 675 pp. 5708–5717. PMLR, 2018.
 676

677 Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
 678 borhood overlap-aware graph neural networks for link prediction. *Advances in Neural Information
 679 Processing Systems*, 34:13683–13694, 2021.
 680

681 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. *Advances in neural
 682 information processing systems*, 31, 2018.
 683

684 Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
 685 graph neural networks for multi-node representation learning. *Advances in Neural Information
 686 Processing Systems*, 34:9061–9073, 2021.
 687

688 Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
 689 graph neural networks under spatio-temporal distribution shift. *Advances in neural information
 processing systems*, 35:6074–6089, 2022.
 690

691 Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
 692 links for link prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 693 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine
 694 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 26911–26926. PMLR,
 695 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/zhao22e.html>.
 696

697 Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. Ood link prediction generalization capabilities of
 698 message-passing gnns in larger test graphs. *Advances in Neural Information Processing Systems*,
 699 35:20257–20272, 2022.
 700

701 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
 702 networks: A general graph neural network framework for link prediction. *Advances in Neural
 703 Information Processing Systems*, 34:29476–29490, 2021.

702 A RELATED WORKS - CONTINUED
703

704 There are numerous models and methods to improve the link-prediction capabilities of GNNs. First
705 of which include SEAL (Zhang & Chen, 2018) and NBFNet (Zhu et al., 2021), which consider
706 message passing schemes that are conditional on a given link. To improve efficiency, other methods
707 don't modify the message passing process, instead opting to include some link-specific information
708 when scoring a prospective link. BUDDY applies a unique version of the labeling trick to subgraphs
709 for generalizing on structural features (Chamberlain et al., 2022). NCN/NCNC (Wang et al., 2023)
710 and Neo-GNN (Yun et al., 2021) both elevate traditional link heuristics via neural operators to
711 better understand link formation. Lastly, (Shomer et al., 2024) proposes a more general scheme for
712 estimating the pairwise information between nodes that adaptively learns how two nodes relate. A
713 core component of these models is their increased reliance on the substructures contained within the
714 graph datasets, which improves the model's expressivity but can affect prediction performance in
715 OOD scenarios (Mao et al., 2024).
716

717 B SET-THEORY PERSPECTIVE
718

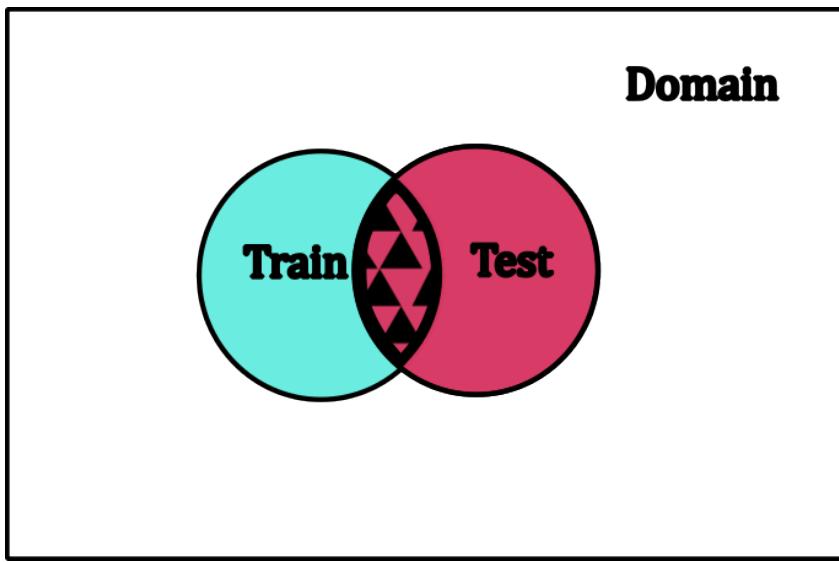
719 Within the following section, we detail how treating the space of training and test samples within
720 the domain of their node features can feasibly lead to scenarios where a GGM will produce link-
721 counterfactual samples which extend the scope of the training distribution with the testing distribution.

722 **Definition B.1** (Node-feature domain and link distributions). *Let $\mathbf{X} \subseteq \mathbb{R}^d$ be the node-feature space.
723 A link is an element of $\mathbf{X} \times \mathbf{X}$. Let P_{train} and P_{test} be probability measures on $\mathbf{X} \times \mathbf{X}$ with supports*

$$724 T := \text{supp}(P_{\text{train}}), \quad U := \text{supp}(P_{\text{test}}).$$

725 *Remark 1.* In Figure 5, T (blue) and U (red) are subsets of the same domain; their overlap $T \cap U$ is
726 visualized by triangle hatching.

727 **Assumption 1** (Link-counterfactual conditioning mechanism). *There exists a counterfactual mech-
728 a-nism \mathcal{C} that, given samples from P_{train} and link structure, produces link-counterfactuals samples in
729 a set $S \subseteq \mathbf{X} \times \mathbf{X}$. We assume $T \subseteq T' := \overline{T \cup S}$ (closure taken in $\mathbf{X} \times \mathbf{X}$). Operationally, \mathcal{C} may
730 be implemented by counterfactual structural perturbations parametrized by ELBO-guided sampling
731 under learned generative constraints. In Figure 6, S is indicated by square hatching surrounding T
732 (yellow annulus).*

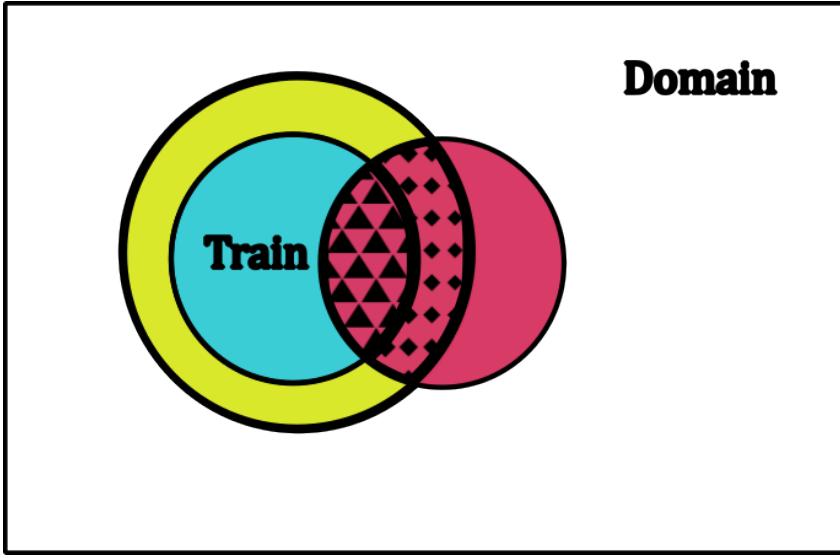


751 Figure 5: The domain space depicting T (Train) and U (Test) with triangle hatching for $T \cap U$.
752

753 **Definition B.2** (Overlap measure). *Let μ be the ambient Lebesgue measure on \mathbb{R}^{2d} (or any measure
754 absolutely continuous with respect to both P_{train} and P_{test}). Define the overlap sizes*

$$755 \Omega(T, U) := \mu(T \cap U), \quad \Omega(T', U) := \mu(T' \cap U).$$

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773



774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 6: The domain space extended from Figure 5. The larger (yellow) set encapsulating T demonstrates the expansion to T' via S (square hatching), increasing the overlap with U as guaranteed by Theorem 1

Theorem 1 (Coverage expansion via structural conditioning). *Under the Structural Conditioning Assumption, if the conditiond set intersects the OOD region with positive measure,*

$$\mu(S \cap (U \setminus T)) > 0,$$

then the training-test overlap strictly increases:

$$\Omega(T', U) > \Omega(T, U).$$

Proof. By definition $T' = \overline{T \cup S}$ and $T \subseteq T'$. Hence

$$T' \cap U = \overline{(T \cup S)} \cap U \supseteq (T \cup S) \cap U = (T \cap U) \cup (S \cap U).$$

Taking μ and using subadditivity with the union decomposition,

$$\mu(T' \cap U) \geq \mu(T \cap U) + \mu(S \cap U \setminus (T \cap U)).$$

Note that $S \cap U \setminus (T \cap U) = S \cap (U \setminus T)$. By our hypothesis $\mu(S \cap (U \setminus T)) > 0$, therefore

$$\mu(T' \cap U) > \mu(T \cap U).$$

Equivalently, $\Omega(T', U) > \Omega(T, U)$, proving the claim. \square

Corollary B.2.1 (Bayesian consequence for generalization). *Assume a model class with likelihood p_θ is trained only on P_{train} (or its empirical sample) to form a posterior $p(\theta | \mathcal{D}_{\text{train}})$. If Theorem 1 holds, then evaluating on P_{test} after augmenting training with link-counterfactual samples from S reduces the measure of purely OOD inputs $U \setminus T'$ compared to $U \setminus T$. Consequently, any risk functional that is nonnegative and integrates over test support (e.g., expected loss) can only benefit from the reduction of the OOD region, all else equal.*

Definition B.3 (Structural hull of training support). *Let Π be a family of structure-preserving perturbations (e.g., counterfactual edits that obey graph constraints such as Common Neighbors). Each $\pi \in \Pi$ induces a measurable map $\Phi_\pi : \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$. The structural hull of $T = \text{supp}(P_{\text{train}})$ is*

$$\text{Hull}_\Pi(T) := \overline{\{\Phi_\pi(x) : x \in T, \pi \in \Pi\}} \subseteq \mathbf{X} \times \mathbf{X}.$$

Assumption 2 (Encoding Continuous Embeddings). *Given our encoding scheme ($\Pi : G \rightarrow \mathbf{H}$), the sets (T, U, S) are mapped into continuous representation space ($\mathbf{H} \subseteq \mathbb{R}^{2d}$) (i.e., a continuous latent embedding space). Therefore, enabling the ability to affect coverage given the ambient Lebesgue measure, μ . We treat \mathbf{X} and \mathbf{H} interchangeably.*

810 **Assumption 3** (ELBO-trained generator with structural constraints). *Let $p_\theta(x | z)$ be a decoder
 811 likelihood on $\mathbf{X} \times \mathbf{X}$ with latent prior $p(z)$, and let $q_\phi(z | x)$ be a variational encoder. Training
 812 maximizes the ELBO over $\mathcal{D}_{\text{train}}$, possibly augmented with structure-preserving perturbations Π :*

$$814 \quad \mathcal{L}_{\text{ELBO}}(\theta, \phi) = \mathbb{E}_{x \sim P_{\text{train}}} \left[\mathbb{E}_{z \sim q_\phi(\cdot | x)} [\log p_\theta(x | z)] - \text{KL}(q_\phi(z | x) \| p(z)) \right] \\ 815 \quad \text{subject to } x \in \text{Hull}_\Pi(T).$$

817 *Sampling link-counterfactual points is implemented by: draw $x \sim P_{\text{train}}$, choose $\pi \in \Pi$, form
 818 $\tilde{x} = \Phi_\pi(x) \in \text{Hull}_\Pi(T)$, then sample $z \sim q_\phi(\cdot | \tilde{x})$ and emit $\hat{x} \sim p_\theta(\cdot | z)$. Let S be the set of
 819 realizations of \hat{x} with non-negligible likelihood under the trained (θ, ϕ) .*

820 **Assumption 4** (Support-positivity and absolute continuity). (i) $p_\theta(x | z) > 0$ for all x in an open
 821 neighborhood of $\text{Hull}_\Pi(T)$ for q_ϕ -a.e. z (decoder has positive density on a structural neighborhood).
 822 (ii) P_{test} is absolutely continuous with respect to μ (the ambient Lebesgue measure on \mathbb{R}^{2d}). (iii)
 823 There exists a set $W \subseteq \text{Hull}_\Pi(T) \cap U$ with $\mu(W) > 0$ such that $\inf_{x \in W} \mathbb{E}_{z \sim q_\phi(\cdot | x)} [p_\theta(x | z)] > 0$
 824 (posterior predictive places nonzero mass on a test-overlapping region of the hull).

825 **Lemma 1** (ELBO-guided structural conditioning yields positive OOD coverage). *Under the above
 826 assumptions, the structurally-conditioned sample set S satisfies*

$$827 \quad \mu(S \cap (U \setminus T)) > 0.$$

829 *Consequently, the hypothesis of Theorem 1 holds, and the training–test overlap strictly increases:
 830 $\Omega(T', U) > \Omega(T, U)$.*

831 The question still remains, how do we extend these Set-theoretic principles into the discrete domain
 832 for generating link-counterfactuals which can improve OOD performance?

834 *Proof sketch.* By construction, realizations \hat{x} concentrate where the joint $q_\phi(z | x)p_\theta(\hat{x} | z)$ is large
 835 with $x \in \text{Hull}_\Pi(T)$. Assumption 3(i) implies that for any measurable $\mathbf{A} \subset \text{Hull}_\Pi(T)$ with $\mu(\mathbf{A}) > 0$,
 836 the decoder assigns strictly positive probability to neighborhoods within \mathbf{A} . By 3(iii), there exists
 837 $W \subseteq \text{Hull}_\Pi(T) \cap U$ with $\mu(W) > 0$ on which the posterior predictive is uniformly positive, so
 838 samples land in W with nonzero probability. Since $W \subseteq U$ and, by defintion of OOD, $U \setminus T$ has
 839 positive μ -measure in typical OOD scenarios (Figure 6), we obtain $\mu(S \cap (U \setminus T)) > 0$. Therefore
 840 the sufficient condition of Theorem 1 is met. \square

841 **Remark 2** (Operational Takeaway #1). If your generator is trained with ELBO while respecting
 842 structural perturbations Π , and the decoder retains positive density on a neighborhood of the structural
 843 hull, then *sampling through the encoder–decoder pipeline from structurally-perturbed points* produces
 844 a set S that (with positive measure) reaches into the OOD region $U \setminus T$, thus enlarging coverage and
 845 improving test overlap.

846 **Remark 3** (Operational Takeaway #2). Genuinely ensuring that learned parametrizations of structural
 847 perturbations Π always increase coverage to OOD regions/datasets is difficult in practice, since
 848 μ -measure for all possible OOD samples are inaccessible or have limited accessibility from the
 849 training distribution. Careful considerations about dataset balance must be considered (i.e. smaller
 850 structures in training samples have less to infer for structure in larger testing samples)

851 We further formalize the intuition that *augmenting training support broadens test risk to improve
 852 coverage within OOD scenarios.*

854 **Proposition B.1** (Coverage-based OOD risk bound). *Let $\ell \in [0, 1]$. For any predictor f ,*

$$856 \quad R_{\text{test}}(f) \leq R_{\text{train}'}(f) + \delta',$$

857 *where $\delta' := P_{\text{test}}(N')$ and $N' = \text{supp}(P_{\text{test}}) \setminus \text{supp}(P_{\text{train}'})$.*

859 *Proof sketch.* Decompose the test risk over the covered and uncovered regions:

$$863 \quad R_{\text{test}}(f) = \int_{C'} \ell(f, x) dP_{\text{test}}(x) + \int_{N'} \ell(f, x) dP_{\text{test}}(x).$$

864 On C' , the density of P_{test} is supported inside $\text{supp}(P_{\text{train}'})$, so we can rewrite
 865

$$866 \int_{C'} \ell(f, x) dP_{\text{test}}(x) \leq R_{\text{train}'}(f) \\ 867$$

868 up to standard estimation error terms (handled separately by classical generalization bounds). On N' ,
 869 we only know that $\ell \leq 1$, hence
 870

$$871 \int_{N'} \ell(f, x) dP_{\text{test}}(x) \leq \int_{N'} 1 dP_{\text{test}}(x) = P_{\text{test}}(N') = \delta'. \\ 872$$

873 Combining the two inequalities yields $R_{\text{test}}(f) \leq R_{\text{train}'}(f) + \delta'$. \square
 874

875
 876 **Corollary B.3.1** (FLEX shrinks the uncovered test mass). *Assume the conditions of Lemma 1 and
 877 Theorem 1, and suppose P_{test} is absolutely continuous w.r.t. μ on U . Let*
 878

$$879 \delta := P_{\text{test}}(U \setminus T), \quad \delta' := P_{\text{test}}(U \setminus T'). \\ 880$$

881 If $\mu(S \cap (U \setminus T)) > 0$, then

$$882 \delta' < \delta.$$

883 Consequently, for any predictor f ,

$$884 R_{\text{test}}(f) \leq R_{\text{train}'}(f) + \delta' < R_{\text{train}'}(f) + \delta. \\ 885$$

886
 887 **Remark 4** (KL-regularization as a surrogate for coverage expansion). Our FLEX objective maximizes
 888 a KL divergence $\text{KL}(P_* \parallel P_{\text{train}})$ constrained to the structural hull $\text{Hull}_{\Pi}(T)$. Under mild regularity
 889 conditions, any nontrivial increase in this KL divergence implies that the counterfactual distribution
 890 P_* assigns positive probability to regions of $U \setminus T$ with $\mu(\cdot) > 0$, thus increasing $\mu(S \cap (U \setminus T))$
 891 for the resulting sample set S . The coverage expansion guaranteed by Lemma 1 then translates, via
 892 Proposition B.1, into a strictly tighter upper bound on our test risk.
 893

894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

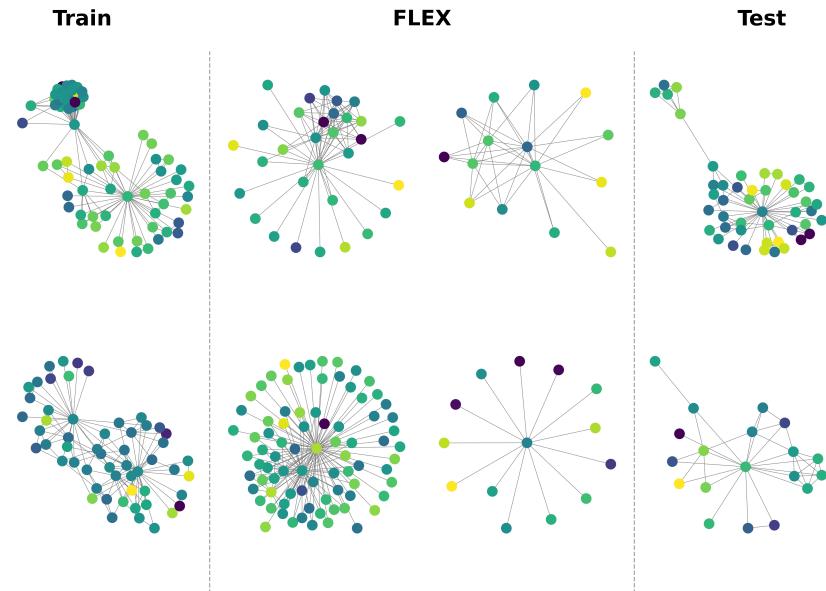
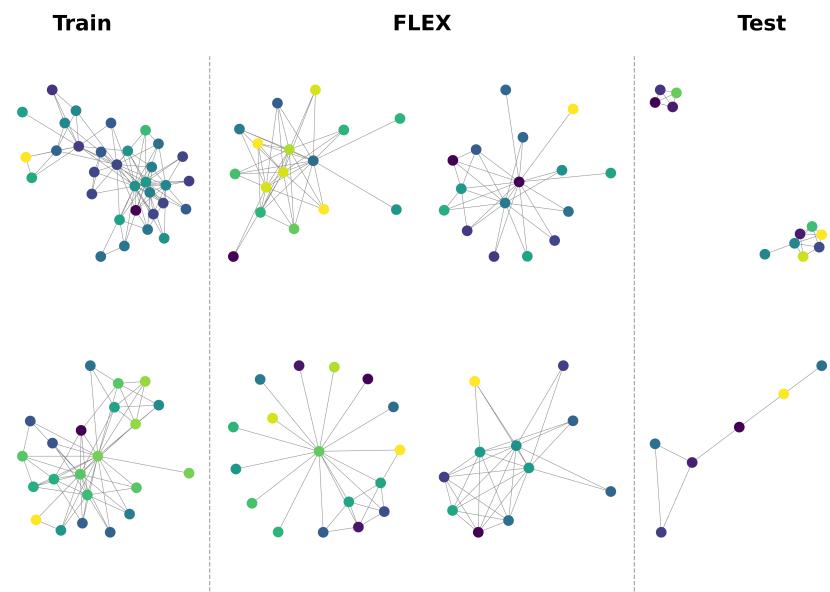
918 C RAW RESULTS TABLES

919
920 Table 3: Results for the LPShift Datasets by direction (*forward* or *backwards*) and type (*CN*, *SP* or
921 *PA*). *OOT* = Out-of-Time, *OOM* = Out-of-Memory. Ordered from bottom up: Collab, PubMed, Cora,
922 CiteSeer, PPA. *Note*: PPA for PA and SP is missing due to taking >24h. Results for the original
923 ogbl-collab (Hu et al., 2020) are included as *real*. Cross-Domain transfer dataset performance is
924 measured after one-shot tuning on top of an already-tuned baseline. We highlight in **blue** when FLEX
925 increases over the base model and **red** otherwise.
926

927	Dataset	Models																			
		CORAL	DANN	GroupDRO	VREx	IRM	YGAE	CPLP	GCN	GCN+Flex	NCN	NCN+Flex	EERM	HL-GNN	HL-GNN+Flex	GAT	GAT+Flex	GIN	GIN+Flex		
928	CN	30.93 ± 0.25	30.86 ± 0.32	27.83 ± 1.76	30.93 ± 0.24	25.78 ± 2.04	21.40 ± 2.03	OOT	31.92 ± 0.25	32.87 ± 0.23	62.4 ± 5.04	3.96 ± 0.75	1.46 ± 2.19	2.57 ± 1.27	OOT	30.92 ± 0.35	31.7 ± 0.30	56.1 ± 2.89	31.0 ± 1.03		
		67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	67.54 ± 1.04	75.8 ± 2.43	58.56 ± 5.49	1.77 ± 0.77	4.71 ± 3.63	49.03 ± 3.72	50.82 ± 3.72	39.2 ± 4.78	41.05 ± 2.83			
		57.54 ± 1.76	57.54 ± 2.80	38.21 ± 5.63	53.15 ± 3.58	55.30 ± 2.34	54.74 ± 2.24	56.64 ± 1.29	56.22 ± 1.31	57.78 ± 0.08	75.91 ± 1.50	79.34 ± 0.10	66.89 ± 2.78	50.81 ± 4.91	55.19 ± 0.34	31.10 ± 3.26	32.47 ± 2.83	39.2 ± 4.78	41.05 ± 2.83		
		71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04	71.52 ± 1.04		
929	PA	42.04 ± 1.61	43.06 ± 1.61	40.03 ± 4.03	43.05 ± 1.21	42.04 ± 1.32	40.69 ± 2.29	OOT	33.14 ± 1.22	33.22 ± 0.05	2.37 ± 0.02	3.39 ± 0.09	OOT	34.42 ± 4.74	5.03 ± 2.95	37.99 ± 2.34	38.0 ± 1.78	24.95 ± 13.49	27.48 ± 12.81		
		69.85 ± 3.79	67.57 ± 4.72	51.80 ± 7.12	69.0 ± 2.92	68.28 ± 3.63	69.78 ± 2.15	68.52 ± 5.20	68.88 ± 3.34	70.83 ± 0.61	65.64 ± 1.27	67.65 ± 0.26	54.87 ± 5.03	66.60 ± 4.16	68.12 ± 2.49	50.05 ± 4.49	52.03 ± 3.74	54.05 ± 7.21	56.79 ± 4.30		
		52.39 ± 4.16	49.2 ± 6.44	40.16 ± 6.56	51.0 ± 3.63	50.8 ± 4.36	50.8 ± 4.56	55.28 ± 4.97	55.13 ± 5.30	56.30 ± 5.22	53.44 ± 4.52	53.99 ± 0.08	68.41 ± 3.57	48.37 ± 1.78	49.26 ± 1.32	38.12 ± 3.98	39.50 ± 3.60	43.79 ± 4.63	45.83 ± 3.49		
		83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04	83.53 ± 1.04		
930	SP	61.39 ± 1.19	61.09 ± 1.33	39.92 ± 5.11	61.52 ± 0.92	60.27 ± 0.04	53.68 ± 0.31	OOT	63.83 ± 1.04	63.93 ± 1.20	65.66 ± 0.59	65.94 ± 0.32	OOT	4.87 ± 14.70	7.91 ± 5.29	51.41 ± 1.36	52.53 ± 0.40	36.72 ± 3.12	38.29 ± 2.06		
		42.35 ± 1.51	35.53 ± 5.14	30.69 ± 2.43	44.60 ± 2.57	39.18 ± 3.78	45.77 ± 2.49	44.63 ± 1.22	44.60 ± 2.57	45.83 ± 0.24	52.06 ± 2.99	54.21 ± 0.36	23.04 ± 3.28	59.49 ± 2.40	60.55 ± 1.17	30.74 ± 4.93	33.01 ± 2.53	35.89 ± 4.60	37.19 ± 3.44		
		24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04	24.29 ± 1.04		
		67.41 ± 2.15	68.0 ± 1.03	51.49 ± 3.49	68.18 ± 1.63	64.28 ± 1.98	63.53 ± 1.36	OOT	68.52 ± 1.29	69.23 ± 1.19	77.91 ± 0.40	79.10 ± 0.02	OOT	66.65 ± 0.77	66.84 ± 0.52	48.56 ± 3.63	49.92 ± 1.87	60.22 ± 2.12	61.03 ± 1.89		
931	Real X-Transfer	40.36 ± 1.86	39.07 ± 2.43	32.82 ± 2.54	40.46 ± 2.35	38.63 ± 0.59	44.88 ± 0.59	OOT	39.13 ± 2.16	41.22 ± 3.55	8.23 ± 2.66	26.81 ± 23.90	OOT	3.26 ± 4.84	5.09 ± 2.99	31.45 ± 10.23	11.69 ± 4.86	15.95 ± 2.91			
		23.07 ± 0.67	21.03 ± 1.37	24.40 ± 0.51	23.86 ± 0.04	23.78 ± 0.23	OOT	24.62 ± 0.73	25.24 ± 0.01	7.18 ± 0.42	11.62 ± 5.77	OOT	2.40 ± 2.58	3.93 ± 1.21	12.13 ± 1.06	12.81 ± 0.61	16.85 ± 5.96	18.39 ± 3.89			
		13.52 ± 1.01	14.13 ± 0.49	11.70 ± 0.81	13.46 ± 1.17	11.34 ± 2.34	6.39 ± 0.46	14.24 ± 0.73	14.19 ± 0.51	14.49 ± 0.51	21.21 ± 0.52	2.62 ± 1.14	OOT	0.93 ± 0.68	4.62 ± 1.79	12.83 ± 1.49	13.87 ± 0.92				
		41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04	41.89 ± 1.04		
932	CN	43.13 ± 5.13	40.72 ± 3.60	26.36 ± 3.10	40.66 ± 2.76	38.60 ± 3.79	35.68 ± 3.53	OOT	39.92 ± 1.09	44.87 ± 0.32	45.04 ± 2.57	46.32 ± 1.02	42.42 ± 5.33	44.19 ± 3.39	33.35 ± 2.90	35.38 ± 1.30	30.13 ± 2.87	31.90 ± 1.93			
		28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72	28.93 ± 0.72		
		24.16 ± 0.72	25.07 ± 0.67	21.03 ± 1.37	24.40 ± 0.51	23.86 ± 0.04	23.78 ± 0.23	OOT	24.62 ± 0.73	25.24 ± 0.01	7.18 ± 0.42	11.62 ± 5.77	OOT	2.40 ± 2.58	3.93 ± 1.21	12.13 ± 1.06	12.81 ± 0.61	16.85 ± 5.96	18.39 ± 3.89		
		38.68 ± 3.39	38.13 ± 3.52	16.16 ± 7.59	38.33 ± 2.19	31.26 ± 4.09	36.20 ± 1.12	38.01 ± 1.62	37.67 ± 0.26	35.30 ± 2.55	39.49 ± 0.22	36.72 ± 1.89	24.19 ± 5.53	25.74 ± 3.90	37.27 ± 8.62	39.84 ± 5.44	2.48 ± 1.57	3.78 ± 0.89			
933	PA	38.40 ± 1.79	38.43 ± 3.22	25.10 ± 2.32	37.60 ± 1.87	37.88 ± 1.11	32.83 ± 2.73	39.82 ± 2.10	38.00 ± 1.24	40.01 ± 0.14	24.69 ± 5.02	26.63 ± 0.10	35.84 ± 2.10	22.04 ± 7.32	24.79 ± 4.88	29.86 ± 5.64	30.73 ± 3.82	43.79 ± 4.63	45.19 ± 1.04		
		26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72	26.26 ± 0.72		
		72.45 ± 0.71	72.06 ± 0.82	9.77 ± 2.39	72.48 ± 0.30	54.50 ± 3.72	29.31 ± 0.74	OOT	73.38 ± 0.94	79.95 ± 0.12	70.66 ± 5.33	72.04 ± 0.02	OOT	2.40 ± 2.58	3.64 ± 1.89	79.63 ± 0.82	80.01 ± 0.37	44.71 ± 26.17	45.89 ± 1.58		
		19.30 ± 4.72	16.51 ± 6.82	11.51 ± 3.66	16.98 ± 5.12	15.81 ± 2.33	28.49 ± 4.19	19.02 ± 1.30	16.98 ± 5.12	22.09 ± 1.10	23.95 ± 4.32	41.63 ± 0.49	25.94 ± 3.68	25.47 ± 5.74	27.79 ± 4.02	11.28 ± 5.03	18.12 ± 0.72	13.49 ± 4.85	15.73 ± 2.81		
934	Real X-Transfer	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04	24.84 ± 1.04		
		22.39 ± 2.29	22.00 ± 1.80	10.59 ± 3.46	22.00 ± 1.73	20.92 ± 2.44	15.48 ± 1.38	OOT	22.61 ± 1.73	23.49 ± 0.23	23.82 ± 1.52	25.44 ± 0.34	OOT	25.51 ± 2.29	26.05 ± 1.78	12.10 ± 2.10	14.01 ± 0.29	18.27 ± 2.87	19.18 ± 2.46		
		33.50 ± 0.57	33.94 ± 0.40	33.40 ± 0.98	32.97 ± 0.58	32.97 ± 0.53	34.25 ± 0.53	OOT	33.58 ± 0.47	19.87 ± 1.03	19.87 ± 1.03	20.99 ± 1.67	OOT	4.17 ± 5.20	6.08 ± 4.39	19.18 ± 1.03	18.24 ± 12.63	19.83 ± 0.83			
		Avg (Δ%)	-0.02	-0.89	-28.84	-0.58	-6.85	-7.09	-0.19	-	+8.31	-	-	-	+28.36	-	-	+8.12	-	+10.08	

937
938 Table 4: Graph Generation Statistics
939

940	Degree	Cora	Citeseer	Pubmed
941	Train	3.34	3.91	4.12
942	Flex	2.38	2.62	2.92
943	Test	2.57	2.64	2.67
944	Clustering Coefficient	Cora	Citeseer	Pubmed
945	Train	0.60	0.48	0.36
946	Flex	0.49	0.48	0.31
947	Test	0.58	0.57	0.38

972 **E GRAPH GENERATION VISUALIZATIONS**
973994 Figure 7: The training, FLEX-generated, and test subgraphs for the ogbl-collab dataset.
9951016 Figure 8: The training, FLEX-generated, and test subgraphs for LPShift's 'Backwards - CN' CiteSeer
1017 dataset.
1018
1019
1020
1021
1022
1023
1024
1025

1026 **F MODEL COMPLEXITY ANALYSIS**
10271028 Table 5: CFLP edge-calculation pre-processing step with 16 data workers on the "Forward" and
1029 "Backward" variants of the LPShift dataset.
1030

	Forward	Cora	CiteSeer	PubMed	ogbl-collab	ogbl-ppa
CN	353.88s	182.33s	25367.64 s	OOM	OOM	
PA	59.7s	100.7s	64644.61 s	OOM	—	
SP	1282.98s	634.18s	OOT	OOM	—	
Backward	Cora	CiteSeer	PubMed	ogbl-collab	ogbl-ppa	
CN	2115.47s	182.33s	25367.64 s	OOM	OOM	
PA	3607.99s	22932.10s	OOT	OOM	—	
SP	625.92s	36385.35s	OOT	OOM	—	

1040 Table 6: Per-Epoch Training efficiency of FLEX versus CFLP
1041

Dataset	Models				
	Cora	CiteSeer	PubMed	ogbl-collab	ogbl-ppa
FLEX	0.366s	0.450s	3.19s	132.7s	945.2 s
CFLP	0.382s	0.514s	56.04s	OOM	OOM

1042 Table 7: Inference runtime (in seconds) of FLEX versus a baseline GCN across the Common
1043 Neighbors Split of the ogbl-collab dataset.
1044

Dataset	Models				
	Cora	CiteSeer	PubMed	ogbl-collab	ogbl-ppa
GCN	0.1566s	0.8839s	0.4175s	29.31s	62.3475s
FLEX	0.1564s	0.1411s	0.4207s	27.4656s	61.263s

1045 To verify FLEX’s memory and time complexity, we derive the separate components of FLEX’s
1046 autoencoder and baseline: L = layer, B = batch size, K = noise steps, e = subgraph edge, n = node
1047 edge, d = dimension, d_z = sampled dimension, m = candidate samples.
1048

- 1049 • Encoding works across nodes and edges for: $LB(ed + nd^2)$. Sampling works across the
1050 latent dimension for: $KBnd_z$, Decoding works across the final output for: $KBmd_z$.
1051 Cumulatively, these three steps work in sequential order for a time-complexity: $T_{batch} =$
1052 $O(LB(ed + nd^2) + KBnd_z + KBmd_z)$.
- 1053 • FLEX functions with a given GNN backbone (T_{GNN}), we abstract this and integrate into
1054 the overall framework for a time complexity of: $O(T_{batch} + T_{GNN})$.
- 1055 • For memory complexity, autoencoders are linear across the sampled latent dimension (d_z)
1056 on given nodes (n) and edges (m), where semi-implicit variation aggregates across noise
1057 (K) to derive: $M_{batch} = O(LB(nd + ed) + KBnd_z)$.

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081 Table 8: The maximum memory (megabytes) utilized when training with of batch size of 32 by a
 1082 baseline GCN versus GCN integrated within the FLEX framework. Out-of-memory (OOM) occurs
 1083 on ogbl-ppa due to the severe graph density. In practice, when training on ogbl-ppa we lower the
 1084 batch size to 4.
 1085

Dataset	Models				ogbl-collab	ogbl-ppa
	Cora	CiteSeer	PubMed	ogbl-collab		
GCN	3171.88MB	3129.93MB	3653.11MB	4387.33MB	5373.76MB	
+FLEX	3932.12MB	3171.88 MB	3904.29MB	6387.33MB	OOM	

1089 G HYPERPARAMETER SETTINGS

1090
 1091 Initial tuning of GCN on all tested datasets and NCN on the LPShift datasets followed a hierarchical
 1092 approach. Initially, GCN was tuned for 1000 epochs in single runs with early-stopping when
 1093 validation performance did not improve after 20 steps, a learning rate of $1e - 3$ and dropout of
 1094 0 across a number of layers = {2, 3} and number of hidden channels = {128, 256} and batch
 1095 sizes = {32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536}. Initial NCN tuning
 1096 followed the same approach, except for being limited to 100 epochs. Dropout and Learning Rate
 1097 were fixed across the backbone GCN and link predictor.
 1098

1099 The second phase of GCN and NCN tuning fixed hidden channels, number of layers, and batch size
 1100 and then search across a space of learning rate {1e-5, 1e-6, 1e-7} and dropout = {0.1, 0.3}. NCN
 1101 was tuned on the ogbl-collab dataset following the author’s provided hyperparameters (Wang et al.,
 1102 2023), as indicated in Table 10. Tuning of the OOD baselines follows the methodology set in (Gui
 1103 et al., 2022). [To do this, we integrate the open-source GOOD \(Gui et al., 2022\) algorithms within the
 1104 backbone GCN before feeding the learned GCN embedding to an MLP link-predictor.](#)

1105 [To determine the best OOD method hyperparameter settings, we apply the tuned baseline GCN
 1106 parameters and further tune across OOD loss coefficients as follows: CORAL = {0.01, 1.0, 0.1},
 1107 VREx = {10.0, 1000.0, 100.0}, IRM = {10.0, 0.1, 1.0}, DANN = {0.1, 1.0, 0.01}, GroupDRO
 1108 = {0.01, 1.0, 0.1}. Final loss coefficients are shown in Table 9. The number of equal-sized, randomly-
 1109 sampled environmental subsets were determined in a grid-search across, \$e = 3, 4, 5\$. The final, \$e = 3\$
 1110 was determined by training loss](#) The number of sampled environmental subsets was fixed at 3 and
 1111 sampled randomly at program start.

1112 All models, irrespective of FLEX, were evaluated on the full adjacency matrix to ensure consistency
 1113 with original results.

1114 SIG-VAE, VGAE, and GAE were tuned for 2000 epochs with early stopping set to 100 epochs across
 1115 learning rates {1e-3, 1e-4}. Models were chosen based on their loss values. All generative auto-
 1116 encoders were fixed to 32 hidden dimensions and 16 output dimensions to model μ , with variation
 1117 encoders also modeling σ . The zero-one labeling trick was applied solely to the generative auto-
 1118 encoder, with a latent embedding size of (1000, Num. Hidden). Given significant time complexity of
 1119 pre-training SIG-VAE, a random seed was chosen for SIG-VAE and it’s respective GNN and then
 1120 tested across ten unique seeded runs to obtain final performance.

1121 FLEX was tuned for single seeded runs across learning rates = { $1e - 5, 1e - 6$ } and
 1122 alpha = {0.95, 1.05}. Initial sampling runs were tested with threshold values of =
 1123 {0.0, 0.25, 0.5, 0.75, 0.9, 0.99, 0.999, 0.9999},

1125 H SYNTHETIC DATASET SPLIT SETTINGS

1126 LPShift datasets were generated following the process described by the authors in (Revolinsky
 1127 et al., 2024). They consider three types of datasets splits that divide the links based on common
 1128 heuristics. This includes: CN = Common Neighbors (Adamic & Adar, 2003), SP = Shortest-Path, PA
 1129 = Preferential-Attachment (Liben-Nowell & Kleinberg, 2003). They further include two “directions”
 1130 for how the links are split. A ‘Forward’ splits indicates that the value of the heuristics increase
 1131 from train to valid and then test. The ‘Backwards’ split indicates that they decrease. The splits are
 1132 defined based on two threshold parameters. For the ‘Forward’ splits the first parameter defines the
 1133 upper-bound on training data and the second the lower-bound on testing data. The opposite is true for

1134
1135 Table 9: Loss Coefficients for each tested OOD method. α/γ -threshold for each FLEX-tuned GNN
1136 backbone. Ordered from bottom up: Collab, PubMed, Cora, CiteSeer, PPA.

1137	Dataset	Models						
		CORAL	DANN	GroupDRO	VREx	IRM	GCN+FLEX	NCN+FLEX
1139	CN	0.01	0.01	0.1	1000.0	10.0	0.95/0.0	1.05/0.0
		0.1	0.1	0.1	100.0	0.1	0.95/0.0	0.95/0.0
		1.0	0.1	0.01	1000.0	0.1	1.05/0.0	0.95/0.0
		0.1	0.01	0.1	10.0	0.1	0.95/0.0	0.95/0.5
		0.1	0.01	0.1	100.0	0.1	0.95/0.5	0.95/0.0
	PA	0.01	1.0	0.1	100.0	0.1	0.95/0.5	1.05/0.5
		1.0	0.1	0.1	10.0	0.1	1.05/0.9	0.95/0.0
		1.0	0.01	0.01	10.0	0.1	0.95/0.5	0.95/0.5
		0.1	0.01	0.1	100.0	0.1	0.95/0.9	0.95/0.0
1146	SP	0.1	0.01	0.01	1000.0	0.1	0.95/0.25	0.95/0.25
		1.0	1.0	0.1	10.0	0.1	0.95/0.0	0.95/0.0
		1.0	0.01	0.01	1000.0	0.1	0.95/0.5	0.95/0.0
		0.1	0.01	0.01	100.0	1.0	0.95/0.5	1.05/0.5
	CN	0.1	0.1	0.1	1000.0	1.0	0.95/0.999	0.95/0.5
		1.0	1.0	0.01	10.0	0.1	0.95/0.9	0.95/0.99
		0.01	0.1	0.01	100.0	0.1	0.95/0.9999	1.05/0.5
		0.1	0.1	0.01	1000.0	0.1	0.95/0.99	0.95/0.9
		0.1	1.0	0.01	10.0	0.1	0.95/0.5	0.95/0.5
1154	PA	0.01	0.01	0.1	100.0	1.0	0.95/0.5	0.95/0.5
		1.0	1.0	0.1	10.0	0.1	1.05/0.9	0.95/0.5
		1.0	0.1	0.1	10.0	0.1	0.95/0.9999	0.95/0.9
		1.0	0.01	0.1	100.0	0.1	0.95/0.9	0.95/0.9
	SP	0.01	0.01	0.01	100.0	10.0	0.95/0.9999	0.95/0.9
		0.1	0.01	0.1	10.0	0.1	0.95/0.5	0.95/0.5
		0.01	1.0	0.1	100.0	0.1	1.05/0.9999	0.95/0.5
		0.1	1.0	0.01	100.0	0.1	1.05/0.999	0.95/0.9
1160	Real	Collab	0.1	0.01	0.1	10.0	1.0	0.95/0.99
	X-Transfer	Photo \rightarrow Computers	1.0	0.1	0.1	100.0	10.0	0.95/0.99
	X-Transfer	Computers \rightarrow Photo	0.1	0.1	0.01	1000.0	10.0	0.95/0.9
								1.05/0.5

1163
1164 Table 10: NCN Hyperparameters for the ogbl-collab dataset.

Parameter	Value	Parameter	Value
GNN Learning Rate	0.0082	Predictor	0.0037
X Dropout	0.25	T Dropout	0.05
PT	0.1	GNN EdgeDropout	0.25
Predictor Edge Dropout	0.0	Predictor Dropout	0.3
GNN Dropout	0.1	Probability Scaling	2.5
Probability Offset	6.0	Alpha	1.05
Batch Size	65536	Layer Norm	True
Layer Norm N	True	Predictor	GCN
Epochs	100	Model	GCN
Hidden Dimension	64	MP Layers	1
Test Batch Size	131072	Mask Input	True
Validation Edges As Input	True	Res.	True
Use X. Linear	True	Tail Acting	True

1184 the ‘Backwards’ split. For example, the CN split of ‘1, 2’ indicates that training links contain CNs
1185 in the range $[0, 1]$, valid in $[1, 2]$, and test $[2, \infty)$. For a CN split of ‘2, 1’, the training and testing
1186 links would be flipped. The parameters used across all tested LPShift datasets are detailed below in
1187 Table 11 and follow those used by the original authors (Revolinsky et al., 2024). Note that these are
1188 the same across all datasets used.

1188

Table 11: LPShift Dataset Parameters.

1189

1190

'Backward' Split	Parameters	'Forward' Split	Parameters
SP	26, 17	SP	17, 26
CN	2,1	CN	1,2
PA	50, 100	PA	100, 50

1191

1192

1193

1194

1195

1196

1197

I RESOURCES

1198

1199

1200

1201

1202

1203

1204

All models and datasets were tuned and tested on single Nvidia A5000 GPUs with 24 GB available RAM and a server with 128 cores and 1TB available RAM.

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

Within this section, we provide further details on the sensitivity analysis conducted on the FLEX framework. As shown in both the 'Backward' and 'Forward' subplots in Figure 9 a higher learning rate contributes to monotonically decreasing performance. This represents a potential pitfall when FLEX-tuning any pre-trained GNNs. Especially since FLEX relies on subgraph samples, whereas GNNs often train on a full adjacency matrix. Within, Figure 10 demonstrates an ablation conducted on the (top) ratio of FLEX-generated subgraphs used for fine-tuning, where a higher-ratio of FLEX-generated subgraphs used within fine-tuning boosts the performance of the GNN backbone by 2%. The (middle) indicates how the number of samples drawn to derive log-likelihood affect performance, with more impact occurring at smaller J -values (< 50). The (bottom) indicates how the number of K samples for estimating the ψ sampling parameter affects performance, where a pronounced increase occurs where $K < 10$. Figure 10 indicates how the top) ratio of FLEX-generated subgraphs used for fine-tuning the GNN backbone without co-trained parameter-sharing to the generative autoencoder affect performance, where the pre-trained GNN receives an roughly 1% increase from 10% of FLEX-generated subgraphs but limited returns on higher-ratios. The (middle) effect on performance when the ratio of FLEX-generated subgraphs after maximizing KL-divergence is not penalized by a threshold (τ), the limited change indicates how noisy subgraphs obtained from unbounded KL maximization have no capability to boost pre-trained performance. We attribute the significant reduction in performance shown in the final (bottom) image, since the 'from-scratch' trained GNN backbone is unable to distinguish counterfactual links from the original training links.

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

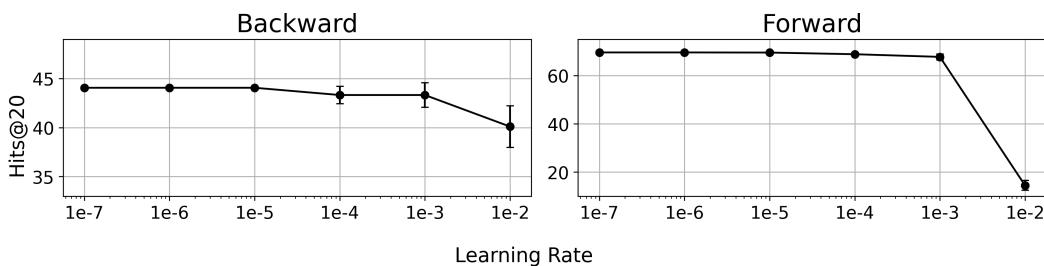
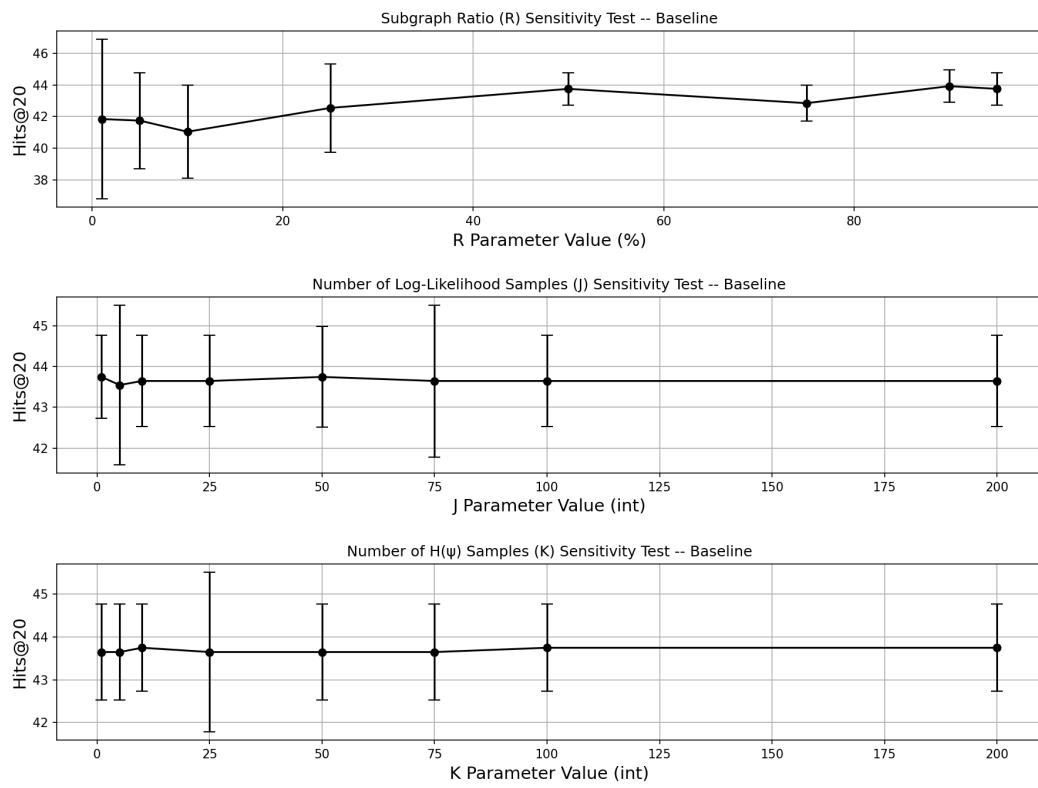


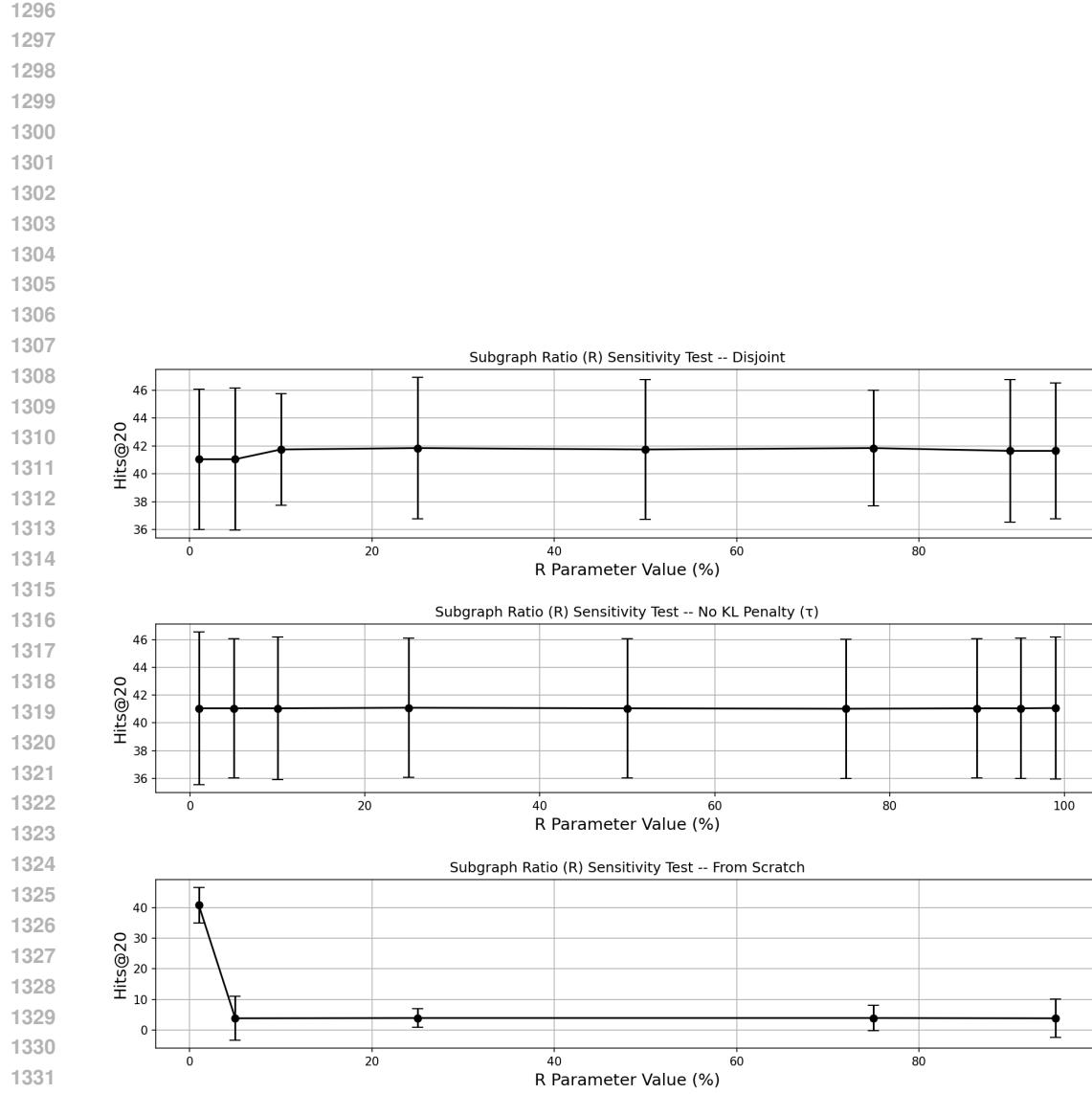
Figure 9: The Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset across different learning rates.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254



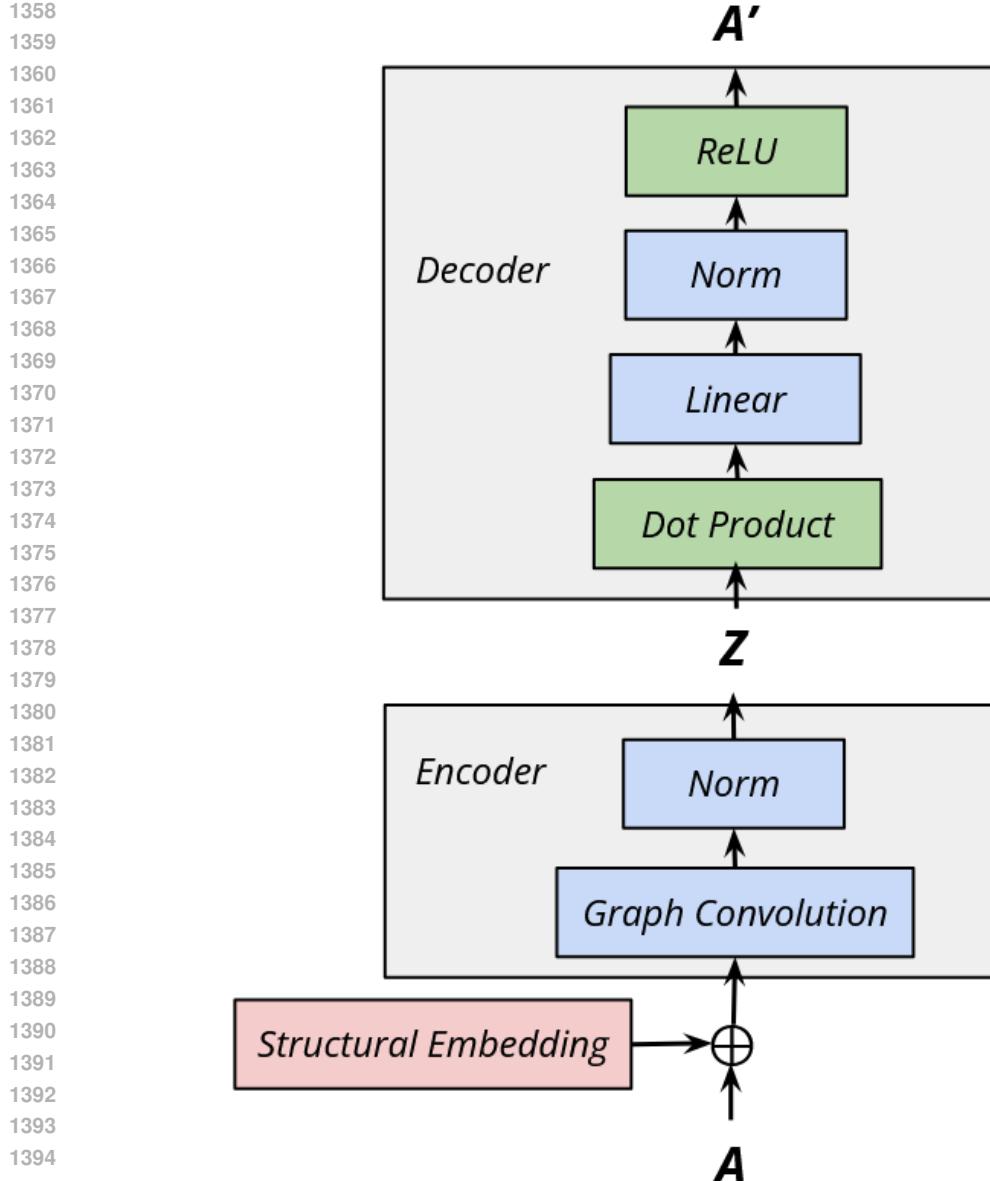
1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280 Figure 10: [An ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset](#),
 1281 conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning. The (middle)
 1282 samples drawn to derive log-likelihood. The (bottom) number of K samples for estimating the ψ
 1283 sampling parameter. The (third from bottom) ratio of FLEX-generated subgraphs used for fine-tuning
 1284 the GNN backbone without co-trained parameter-sharing to the generative autoencoder.

1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295



1333 Figure 11: [A ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset](#),
 1334 which disconnects the parameters from the generative autoencoder and removes the quadratic penalty,
 1335 conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning the GNN
 1336 backbone without co-trained parameter-sharing to the generative autoencoder. The (middle) ratio
 1337 of FLEX-generated subgraphs when maximizing KL-divergence is not penalized by a threshold
 1338 (τ). The (bottom) ratio of FLEX-generated subgraphs when training a GNN 'from-scratch' on
 1339 FLEX-generated subgraphs with co-trained parameter sharing to the generative autoencoder.

1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 K GENERATOR ARCHITECTURE
1351
1352
1353
1354
1355
1356
13571396 Figure 12: The encoder-decoder module of our proposed framework. Given that training samples
1397 are used a direct input, the architecture focuses solely on the block-diagonal adjacency matrix input,
1398 A , which is encoded into a learnable latent dimension, Z . An MLP-decoder reads in Z across target
1399 features to output the augmented subgraph, A' . The MLP-decoder can be swapped for the original
1400 Bernoulli-Poisson decoder, proposed in Hasanzadeh et al. (2019).1401
1402
1403

1404 **L FLEX ALGORITHMS**
1405

1406 As defined earlier in Section 3, FLEX operates in two critical stages, (1): The generative graph model
1407 (GGM) is pretrained on labeled subgraphs extracted from the target dataset following Eq. equation 2.
1408 While the GNN is pre-training separately on the full adjacency matrix. This is defined on lines
1409 3-5 in Algorithm 1. (2): After pre-training, the generative GGM is then placed within the FLEX
1410 framework and co-trained with the GNN following Eq. equation 8. At each subsequent mini-batch,
1411 the GGM produces new synthetic graphs and therefore new structural views of the original dataset
1412 which are subsequently passed into the GNN to gauge sample validity. This is defined on lines 6-10
1413 in Algorithm 1. Given that the divergence between the posterior and prior distributions is maximized,
1414 this means that subsequent epochs should converge to generate a final distribution that is structurally
1415 different from the training samples. As mentioned in Section 3.3.1, Algorithm 2 takes in feature
1416 input and a representative block-diagonal matrix to ensure that SIG-VAE is expressive to mini-batch
1417 samples of varying node numbers (Hasanzadeh et al., 2019).
1418

1419 **Algorithm 1** FLEX - Pre-training and Tuning
1420

1421 **Require:** $G(\mathbf{X}, \mathbf{A})$, $\mathbf{X} \in \mathbb{R}^{N \times d}$

1422 1: Extract \mathbf{G}_s from 1-hop enclosed subgraphs of A
1423 2: Retrieve \mathbf{Z} using the zero-one labeling trick, Eq. equation 6
1424 3: **for** epoch = 1 to pretrain **do**
1425 4: Train SIG-VAE on \mathbf{G}_s using Eq. equation 2 and labels \mathbf{Z}
1426 5: **end for**
1427 6: **for** epoch = 1 to flex-tune **do**
1428 7: Sample \mathbf{G}'_s from SIG-VAE
1429 8: Apply Eq. equation 6 on \mathbf{G}'_s
1430 9: Train GNN + SIG-VAE on \mathbf{G}'_s using Eq. equation 8
1431 10: **end for**

1432 **Algorithm 2** Node-Aware Decoder Algorithm
1433

1434 **Require:**

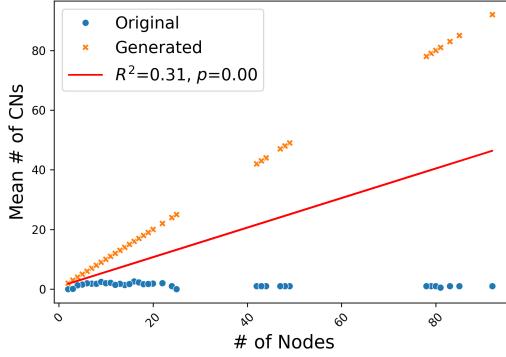
1435 $x \in \mathbb{R}^{N \times F}$: Node features, $A = \text{diag}(A_1, \dots, A_K)$: Block-diagonal adjacency
1436 $\mathbf{Z} \in \mathbb{R}^{N \times d}$: Structural features, J : Truncation index, $n_{train} = [\mathcal{N}_1, \dots, \mathcal{N}_N]$: Training Nodes

1437 1: $(\mu, \log \sigma^2, \text{SNR}) \leftarrow \text{Encoder}(x, A, \mathbf{Z})$
1438 2: $\mu' \leftarrow \mu_{J:N}$, $\log \sigma'^2 \leftarrow \log \sigma^2_{J:N}$
1439 3: Split μ' , $\log \sigma'^2$ into subgraphs μ_i , $\log \sigma_i^2$ using n_{train}
1440 4: **for** $i = 1$ to N **do**
1441 5: Sample $\epsilon_i \sim \mathcal{N}(0, I)$
1442 6: $z_i \leftarrow \mu_i + \epsilon_i \odot \exp(0.5 \cdot \log \sigma_i^2)$ ▷ Reparametrization Trick
1443 7: $(\hat{A}_i, z_i^{\text{scaled}}, r_k) \leftarrow \text{Decoder}(z_i)$
1444 8: Insert \hat{A}_i into \hat{A}_{global} at block (i, i)
1445 9: Insert z_i , z_i^{scaled} , ϵ_i into global tensors
1446 10: **end for**
1447 11: **return** \hat{A}_{global} , μ , $\log \sigma^2$, $\mathbf{Z}_{\text{global}}$, $\mathbf{Z}_{\text{global}}^{\text{scaled}}$, ϵ_{global} , r_k , SNR

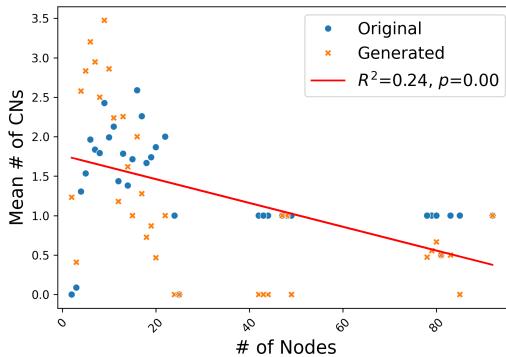
1449 **M DEGREE BIAS INVESTIGATION**

1450 As previously-mentioned in Section 3.3.1, the generated subgraph samples without an indicated
1451 threshold suffer from degree-bias (Tang et al., 2020), thereby resulting in densely-generated outputs,
1452 even on sparse inputs. This effect is demonstrated in Figure 13, as shown with the perfect linear
1453 relationship between the mean number of common neighbors in the output sample respective to the
1454 number of nodes within input samples. To combat this, the indicator threshold is tuned to eliminate
1455 edge-probabilities with a lower threshold than indicated. The effect of this threshold can be seen in
1456 Figure 14, where a threshold of 0.9999 reduces the maximum mean number of Common Neighbors
1457

1458 by a factor of 40, as respective to Figure 13. This then shows a more meaningful correlation between
 1459 output CNs and input nodes, meaning that output graphs are no longer densely-connected which
 1460 serves as a desirable property when attempt to generalize on much sparser graphs; like those contained
 1461 within the 'Backward' CN Cora dataset.



1474
 1475 Figure 13: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
 1476 samples generated by FLEX on the 'Backward' LPShift CN - Cora dataset without the threshold
 1477 function. Note the near-perfect linear growth of Common Neighbors with respect to the number of
 1478 nodes within a given input subgraph.



1491
 1492 Figure 14: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
 1493 samples generated by FLEX on the 'Backward' LPShift CN - Cora dataset after applying the threshold
 1494 function. The threshold function ensures that low-probabilities edges are not formed, resulting in
 1495 generated samples with a common neighbors that are more closely-correlated to the input samples.

N DATASET LICENSES

1499 Both OGB (Hu et al., 2020) and LPShift (Revolinsky et al., 2024), the datasets considered in our
 1500 study, are licensed under the MIT license.

O LIMITATIONS

1505 From a theoretical perspective, FLEX operates under the critical assumption that there are counter-
 1506 factual substructures which exist under the causal model that constructed the original dataset. If no
 1507 such substructures are present, (i.e. the dataset samples are not OOD), then FLEX is also likely to
 1508 decrease model performance.

1509 For practical implementation, FLEX requires sampling k -hop enclosed subgraphs, which can be
 1510 computationally-restrictive if applied with the same settings as training on full adjacency matrices.
 1511 Additionally, if poorly-tuned, then SIG-VAE will produce meaningless outputs and decrease down-
 stream performance regardless of how well pre-trained the GNN is. FLEX has a high-likelihood of

1512 inducing dataset drift, where a single epoch can increase performance but subsequent epochs will
1513 likely lead to a monotonic decrease in performance.

1514
1515 This work introduces, formalizes, and demonstrates the notion that **it is possible** to generate counter-
1516 factual link-structure and then apply those same structures to improve OOD performance. It does
1517 not claim to fully-understand this mechanism but instead bring awareness to a phenomena that can
1518 elevate the performance of current link-prediction models and their robustness to OOD data.

1519
1520 **P SOCIETAL IMPACT**

1521 Our proposed method, FLEX, aims to improve the generalization capabilities of link prediction
1522 methods. Since generalization is a key real-world concerns for many ML models, we argue that
1523 FLEX has a potential to have a positive impact. Furthermore, link prediction is a common task used
1524 in many fields such as recommender systems, drug-drug interactions, and knowledge graph reasoning.
1525 Thus, improving the generalization of link prediction in those fields can be helpful for future research.
1526 Therefore, no apparent risk is related to the contribution of this work.

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565