
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUBGRAPH GENERATION FOR GENERALIZING ON OUT-
OF-DISTRIBUTION LINKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs Neural Networks (GNNs) demonstrate high-performance on link prediction
(LP) datasets, especially when the distribution of testing samples falls within the
dataset’s training distribution. However, GNNs suffer decreased performance
when evaluated on samples from outside their training distribution. In addition,
graph generative models (GGMs) show a pronounced ability to generate novel
output graphs. Despite this, the application of GGMs remains largely limited to
domain-specific tasks. To bridge this gap, we propose leveraging GGMs to produce
synthetic samples which extrapolate between training and testing distributions.
These synthetic samples are then used for fine-tuning GNNs to improve link
prediction performance in out-of-distribution (OOD) scenarios. We introduce a
theoretical perspective on this phenomena which is further verified empirically via
increased performance across synthetic and real-world OOD settings. We conduct
further analysis to investigate how inducing structural change within training
samples improves OOD performance, indicating promising new developments in
graph data augmentation on link structures.

1 INTRODUCTION

Graph Neural Networks (GNNs) demonstrate the ability to learn on graph data and have been used on
a number of different downstream tasks that rely on understanding graph structure (Kipf & Welling,
2017). Link Prediction (LP)(Liben-Nowell & Kleinberg, 2003; Li et al., 2024), which attempts to
predict unseen links in a graph, serves as one such example. For the task of LP, GNNs are used to
learn node representations, which are then used to determine whether two nodes will form a link (Kipf
& Welling, 2016). In recent years, advanced architectures have further enhanced state-of-the-art link
prediction performance. To achieve this, the models often leverage structural features directly within
their neural architecture, enabling the model’s more effective understanding of link formation(Wang
et al., 2023; Yun et al., 2021; Shomer et al., 2024).

However, recent studies indicate that GNNs struggle to generalize to out-of-distribution (OOD)
samples. This can arise when the underlying dataset properties differ between training and testing (Gui
et al., 2022). Additionally, the distribution shift in graph data is not well-aided by generalization
techniques from other machine learning domains, such as CV and NLP (Li et al., 2022a; Gao et al.,
2023). Therefore, the study of the OOD problem has flourished for graph- and node-classification
(Ji et al., 2022; Koh et al., 2021). However, little direct attention has been paid to designing link
prediction models which better withstand shifts in the underlying data distribution (Zhou et al., 2022;
Bevilacqua et al., 2021). This is an issue, as recent work (Revolinsky et al., 2024) has shown that
current link prediction models (even when augmented with OOD-generalization techniques) struggle
to generalize to shifts in the underlying structural distribution. Given the success of out-of-distribution
(OOD) generalization techniques in various graph-related tasks beyond link prediction (Arjovsky
et al., 2019; Krueger et al., 2021; Wu et al., 2024; Wang et al., 2020), a question arises regarding the
relatively limited success of these methods within the OOD link prediction problem. How can we
improve out-of-distribution performance in link prediction?

Intrinsically, out-of-distribution problems are difficult to manage; the simplest solution is to retrain
or tune the model on new samples within distribution of the testing set (Bai et al., 2023). Before
retraining can occur, the samples must be acquired, or even detected that they fall out-of-distribution
(Wu et al., 2023b;a). A promising example of this application occurs within both CV and NLP, where

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Example of counterfactual links that differ in terms of their structural properties such as
Common Neighbors (CNs). In this example, the average training link typically contains very few
CNs (0.2), thus we may want to generate counterfactuals with more CNs (2.8).

the training data is augmented with counterfactual samples. Such counterfactual samples have been
shown to be helpful for OOD tasks by improving the diversity of the training data problem (Sun et al.,
2022). This uplift is possible because counterfactual samples operate under the same causal rules
as the original samples, even if the counterfactual sample was not originally contained within the
training dataset (Ma et al., 2022). An example of how this may work for link prediction is shown
in Figure 1, where the counterfactual links are meant to be structurally different from the training
samples. As shown, the training samples have none or few common neighbors (i.e., shared 1-hop
neighbors), the counterfactual samples have multiple. The counterfactual links thus demonstrate
an alternative reason for why some links may form. Within link prediction, counterfactuals have
demonstrated the ability to enhance baseline model performance (Zhao et al., 2022). However, these
methods are often reliant on expensive pre-processing to generate counterfactuals, also requiring
prior knowledge of the dataset’s distribution shift, limiting real-world use (Zhao et al., 2022; Sun
et al., 2022).

Thus, an important question is, how can we learn to efficiently generate new but meaningfully different
samples to improve LP generalization? To address this issue, we apply graph generation as a data
augmentation method to generate samples which are counterfactual to the training distribution. The
underlying principle behind this approach is to determine if it is possible to augment our training
distribution to increase generalization and potentially improve LP performance. In order to achieve
this, we design a new framework called FLEX which leverages a generative graph model (GGM)
co-trained with a GNN to produce subgraphs that are conditioned on a specific training link. The
goal of the GGM is to take a single potential link (that is positive or negative) as input, and learn
how to generate a new link that is counterfactual in structure to the input. To ensure that the GGM
learns to generate counterfactual links, we maximize the Kullback-Leibler (KL) divergence with a
quadratic penalty between posterior and prior sampling distributions to maximize structural diversity,
but ensure we don’t deviate too far from the original distribution. Furthermore, to avoid generating
the entire adjacency for each new link, we instead propose to work with subgraphs, thus overcoming
issues with efficiency.

Our contributions can be summarized as the following:

1. Overall, we introduce FLEX: a simple yet effective graph-generative framework that learns
to generate counterfactual examples for improved link prediction performance.

2. We demonstrate the effect of structural shifts through targeted analysis on link prediction
model performance.

3. We also conduct numerous experiments to show how FLEX can improve model generaliza-
tion across multiple datasets and methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

We denote a graph as G(X,A), abbreviated to G, where X ∈ Rn×d represents the node features in
real space with n nodes and feature dimensions d. A ∈ {0, 1}n×n represents the adjacency matrix,
within which nodes connect with one another to form edges, e = (u, v). The k-hop subgraph of a
node v is denoted by A

(k)
v . Consequently, the k-hop subgraph enclosed around an edge e is defined

as A(k)
e = A

(k)
u ∪A

(k)
v .

Link Prediction: Graph Neural Networks (GNNs) (Kipf & Welling, 2017) are a common tool for
modeling link prediction. GNNs learn representations relevant to graph structure as embeddings,
H = GNN(X,A) which are then passed to link predictors to estimate whether a link will form or
not. However, several studies (Zhang et al., 2021; Srinivasan & Ribeiro, 2019) have shown that
standard GNNs are not enough for link prediction, as the models ignore the pairwise information
between two nodes. To account for this, recent methods either inject or augment pairwise information
within GNNs to elevate their link prediction capabilities. We include more discussion link-prediction
models within Appendix A.

Graph Generative Models: We treat graph generation as output of a scoring function s : Rd×Rd →
R to quantify similarity between node embeddings, which is often defined as an inner product:
s(u, v) = H⊤

uHv and further calculated as edge-probabilities, P ((u, v) ∈ E | Hu,Hv) = σ(s(i, j)),
where σ(·) is the sigmoid function. Whereas, we focus on the capability of auto-encoders inferring
from latent embeddings to re-produce an adjacency matrix (Kipf & Welling, 2016). More advanced
graph generation models exist: such as auto-regressive, diffusion, normalizing-flow, and generative-
adversarial networks (You et al., 2018; Vignac et al., 2022; Luo et al., 2021; Martinkus et al., 2022).
However, these models often employ mechanisms which restrict their applications beyond graph
generation. For example, discrete-denoising models generate a new adjacency matrix with discrete
space edits, which can be computationally restrictive to re-train when generalizing on a variety of
different graph structures (Kong et al., 2023).

Methods for OOD: Numerous methods, operating underneath the invariance learning principle, exist
to improve the generalization performance of neural models (Arjovsky et al., 2019). These invariant
methods divide training data into environmental subsets for conditioning models to variance between
training subsets. However, these methods require careful considerations for effective performance
improvement in OOD scenarios (Gulrajani & Lopez-Paz, 2020). Additionally, generalizing with
these techniques is difficult for graph representation learning (Li et al., 2022b; Revolinsky et al.,
2024). Therefore, architectures and techniques which target invariance principles within graph data
are employed to improve GNN performance (Chen et al., 2023; Zhang et al., 2022). Recently, graph
generation has been applied within OOD scenarios as well. For example, EERM is a technique which
integrates graph generators to improve OOD performance on graphs. However, the generators can
lead to scalability issues when considering the additional nodes necessary for link formation (Wu
et al., 2022). GOLD leverages latent generative models to learn on OOD samples, yet it functions
predominantly for OOD detection on graphs and not directly improving OOD generalization in link
prediction (Wang et al., 2025). Lastly, CFLP (Zhao et al., 2022) considers extracting counterfactual
links for enhancing link prediction. However, their proposed algorithm is (a) a non-parametric method
that relies on the Louvain (Blondel et al., 2008) algorithm, (b) has been shown to be prohibitive to
run. This paper’s initial runtime investigations verify CFLP’s difficulty scaling within Appendix F,
Tables 5 and 6.

3 FLEX

In Section 1, we introduced the OOD problem for link prediction and how graph generation has
potential to solve the problem. However, is it possible to generate such counterfactual links?
Effectively, there are endless “meaningless” graphs with no relevant structure to a training dataset;
a GNN tuned on these graphs is also likely to suffer decreased downstream model performance.
Therefore, applying graph data augmentation to improve performance requires understanding of the
structure within the graph dataset (Singh et al., 2021). It’s thus desirable for a learnable framework
which understands link formation but can also target relevant graph structure to improve OOD
performance. To achieve this, we introduce FLEX, the Framework for Learning to EXtrapolate

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An illustration of the FLEX framework for a single dataset sample. Step 1 involves
pre-training both models separately to optimize their performance, like in real-world scenarios. Step
2 involves adversarial co-training of the two models, where the GGM generates synthetic samples to
tune the GNN.

Structures in Link Prediction. As a graph data augmentation framework, FLEX utilizes a variety of
techniques to ensure: computability, scalability, and expressiveness.

Following these principles, FLEX then functions in two critical steps, as illustrated in Fig. 2. First,
we pre-train a GNN on the dataset’s full adjacency matrix by optimizing the predictive loss, LLP.
GNN pre-training simulates a real-world scenario, where we may only wish to improve a pre-
existing model’s ability to generalize on OOD samples (Gui et al., 2022; Krueger et al., 2021). A
graph generative model (GGM) is then pre-trained separately to minimize generative loss, LSIVI.
The GGM is conditioned on each sample (i.e., link) via the labeling trick on the k-hop enclosed
subgraph (Zhang et al., 2021). This ensures that we can generate a new link that is counterfactual to
an existing link. Second, we apply both pre-trained models in a co-training framework, where the
GGM produces synthetic dataset samples as input for fine-tuning the GNN. The GGM maximizes the
distance between posterior and prior while the GNN attempts to minimize prediction loss; much like
adversarial-conditioning in GANs and other auto-encoder frameworks (Goodfellow et al., 2020; Yang
et al., 2019; Wang et al., 2025). As such, the GNN prediction loss functions to retain information
from the original dataset distribution, further acting as counterfactual conditioning to improve OOD
performance.

3.1 GENERAL MOTIVATION

The main objective of the FLEX framework is to generate graph samples which retain node feature
properties while producing edge structures counterfactual to the original data. After which, the
co-trained GNN is tuned on the synthetic counter-factual to improve performance. This is feasible
with any type of well-trained graph generative model (e.g., auto-encoders (Kipf & Welling, 2016) or
diffusion models (Vignac et al., 2022)). To explain what constitutes a relevant counterfactual for link
prediction, we consider the following definitions.
Definition 3.1 (Basic Counterfactual Entity). Given a structural equation model (M), consisting of
two function sets (Y,X). Let Mx represent a modified version of M where all possible X = x. When
we infer x from Y with an input u, this represents the axiom: Yx(u) ≜ ∆YMx(u) (Pearl, 2009).

As such, Definition 3.1 represents the most basic example of a counterfactual, where Y would
properly denote the expected outcome y, had the function X been x for the given input u (Pearl,
2013). In context of machine learning, this is further represented as a model learning a function
which generalizes performance to testing data had training data formed differently.

To extend this for graph-structured data, specifically link prediction, we need an understanding of
what our generated samples should be counterfactual to. Intuitively, we target higher-order link
properties (Common Neighbors) which were previously unobserved within the training data. As
shown in the next definition, an encoder fθ(·) that can extract expressive link features is therefore
necessary for producing proper counterfactual links. If fθ(·) is not suitably expressive, our generative
model will be unable to distinguish higher-order link structure and fail to generate counterfactuals
relevant to the current model’s training distribution.
Definition 3.2 (Expressive Link Features). Consider an edge sample e = (u, v), and it’s k-hop
subgraph A

(k)
e . We want to learn an encoder fθ(·) that can operate on A

(k)
e and learn to extract

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

structural features He that are specific to the link (u, v) (e.g., link heuristics (Newman, 2001; Katz,
1953)). We assume that fθ(·) is expressive such that it can extract link-specific features. We then
represent the probability distribution of the features extracted by the encoder to be PH(A

(k)
e) =

fθ(A
(k)
e).

Definition 3.3 (Structural Link-Counterfactual). For an edge sample e = (u, v), a meaningfully dif-
ferent sample (counterfactual) – Ã

(k)
e exists where the link feature distribution estimated between the

original subgraph and it’s counterfactual are approximately non-equivalent, PH(Ak
e) ̸≈ PH(Ã

(k)
e).

A proper counterfactual sample should have different underlying link features from the original sample.
As shown in Figure 1, we assume that we have an encoder which can extract common neighbors
(CNs) (Newman, 2001). Given that the training samples have no or few CNs, the corresponding
counterfactuals then contain a greater number of CNs. These new samples are thus structurally-
counterfactual, in that they differ in higher-order structural features but retain the original node
features.
Corollary 3.3.1 (Feature-Conditional Equivalence). Given the previous definition of counterfactual
structure, the link features contained within k-hop subgraph A

(k)
e are not invariant in isolation as

we must consider the node features. Therefore, in order for Ã(k)
e to maintain a valid counterfactual

structure, it must be conditioned on the node features Xk
e within the original subgraph. That is,

PH(A
(k)
e | Xk

e) = fθ(A
(k)
e | Xk

e)) and PH(Ã
(k)
e | Xk

e) = fθ(Ã
(k)
e | Xk

e)). For convenience, we
further write this as PH(G

(k)
e) = fθ(G

(k)
e) and PH(G̃

(k)
e) = fθ(G̃

(k)
e).

Therefore, the link-counterfactual is dependent on the compatibility between Ã and X. A failure
to properly condition structure on X will not fulfill the definition for counterfactual structure since
the newly-generated node features will introduce spurious correlations relative to original subgraph
samples. So, the encoder fθ(·) must also consider the original node features as input. We further
explain these principle within Appendix B.

Given these definitions, we can see generating proper counterfactual samples requires extracting link
features conditional to node features. To do this, we learn a Generative Graph Model (GGM) which
inputs both types of features to output a new sample with a different structural distribution. In order
to do this, we must ensure three things: (a) Scalability: In order to ensure relevance to real-world
problems, the GGMs must operate on large graphs. (b) Expressiveness: First, the extracted features
for each link must be suitably expressive. Second, the GGM itself will need to effectively sample
from complicated distributions to produce relevant graph structures. (c) Counterfactual: Generated
structures must indicate a level of change which does not replicate the training distribution, but
retains meaningful feature correlation. In the rest of this section, we outline our method for tackling
these challenges. In consideration of space, we demonstrate the efficiency of our method within
Appendix F.

3.2 SEMI-IMPLICIT VARIATION FOR OUT-OF-DISTRIBUTION GENERATION

Following principle (a.) from Section 3.1, the scalability of the practical implementation becomes
a concern. Computational complexity of more refined GGMs can be restrictive, whereas less
computationally-intensive generative models may result in low-quality generations (Simonovsky &
Komodakis, 2018; Yan et al., 2024). To balance this, we employ semi-implicit variation (Yin & Zhou,
2018), for it’s inherent scalability when implemented in an auto-encoder and it’s expressiveness for
modeling complex distributions.

Let the true data-generating distribution be p(G), and assume it is modeled via a latent variable model
with latent code H and a semi-implicit posterior of the form:

qϕ(He | X̃(k)
e , Ã(k)

e) =

∫
qϕ(He | ψ) qϕ(ψ | X(k)

e , Ã(k)
e) dψ, (1)

where qϕ(ψ | X,A) is a flexible (potentially implicit) distribution. Suppose the model is trained to
maximize the semi-implicit evidence lower bound (ELBO) (Hasanzadeh et al., 2019):

LSIVI = E
ψ∼qϕ(ψ|X(k)

e ,A
(k)
e)

[
EH∼qϕ(H|ψ)

[
log p(A(k)

e | He)
]
−KL(qϕ(He | ψ) ∥ p(He))

]
, (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and assume p(He) is a broad prior (e.g., isotropic Gaussian) while p(Ae | He) defines a valid graph
decoder. Then, given an auto-encoder with an expressive architecture capable of distinguishing the
structure within samples drawn from qϕ and p, sampling from He ∼ qϕ(He | ψ), ψ ∼ qϕ(ψ) yields
synthetic graphs G̃e = (Xe, Ãe) whose features are derived from the original dataset distribution but
reveal emergent out-of-distribution (OOD) structure with respect to the training data Dtrain ∼ P(G),
provided that qϕ(ψ) ̸≈ qϕ(ψ | Dtrain). That is, the complete generative process follows:

G̃e ∼ pθ(G̃e | He), He ∼ qϕ(He | ψ), ψ ∼ qϕ(ψ), (3)

Therefore, Eq. 3 defines a valid procedure for generating OOD graph samples. In scenarios where
the sampled distribution is not a broad prior, this process then decomposes further to a standard
variational generative process (Hasanzadeh et al., 2019; Kipf & Welling, 2016). We further develop
our reasoning on link-counterfactual generative processes in Appendix B.

As a learnable mechanism, semi-implicit variance (ψ) often relies on inputting randomness into
prior distributions; this randomness can then be treated as an adversarial noise, much like how OOD
samples would appear to pre-trained GGMs. As such, an auto-encoder which effectively models
semi-implicit variance of training distributions can generate complicated graph samples which mimic
link-counterfactuals, fulfilling our expressiveness principle while maintaining the scalability of an
auto-encoder (Hasanzadeh et al., 2019; Simonovsky & Komodakis, 2018). We show in Section 4.3
that the use of a semi-implicit GGM to a standard graph GGM is helpful for strong counterfactual
generation.

3.3 LINK-SPECIFIC SUBGRAPH GENERATION

Semi-implicit variation assumes that a GGM can learn to generate G̃e. However, as noted in
Definition 3.2, to make this task relevant to link-prediction and continue fulfilling the expressiveness
principle, we must first learn to extract link-specific features. That is, we want an encoder fθ(G

(k)
e)

that can extract such features from the k-hop neighborhood of a link e = (u, v). Only then will our
GGM have the suitable amount of information to generate meaningful counterfactuals that differ in
key link properties.

To achieve this, the encoder fθ(·) should be able to effectively encode the graph conditional on a
specific link. The link-specific representations are then used by the GGM for generation. (Zhang
et al., 2021) show that standard GNNs aren’t expressive to links. To combat this, they introduce the
labeling trick that ensures that a given GNN can learn to distinguish target links from other nodes
within a graph sample. They demonstrate that the labeling trick can extract a number of different
relevant structural features for a link (Zhang & Chen, 2018).

The labeling trick is defined as a function ℓ : A(k) → {0, 1} where for a link e = (u, v) the value for
a sampled node x is given by:

ℓ(x) =

{
1, if x = u or x = v

0, else
(4)

This results in a labelled subgraph L(k)
e which is fed, along with the node features, to a GNN to

produce the link-specific representations:

He = GNN(L(k)
e , X(k)

e). (5)

Given that all edges within a graph are viable link prediction targets, an effective zero-one labeling
requires extracting the k-hop enclosed subgraphs conditioned on a target edge, G(k)

e . When these
subgraphs are restricted to a smaller size, this reduces the direct computation required from the GGM
to model subgraph distributions, ensuring FLEX’s scalability principle (Zhang & Chen, 2018).

3.3.1 NODE-AWARE DECODER

Furthermore, to continue ensuring scalability and expressiveness. The decoder for FLEX’s GGM is
made aware of the independent number of nodes within subgraph samples for a given mini-batch
along the block diagonal matrix, A = diag(A1, . . . , AK) with Ai ∈ RNi×Ni . This ensures that
generated subgraphs retain the original number of input nodes and prevent message-passing along
edges between distinct subgraph samples.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Within early experiments, as shown in Figure 13, generated subgraph samples suffered from the
degree-bias phenomenon (Tang et al., 2020). Wherein, the backbone GNN learns on nodes with a
higher number of edges at a much-greater frequency than low-degree nodes, prioritizing learning
information from the high-degree nodes (Liu et al., 2023). Therefore, generated subgraph samples
were always dense, regardless of the input graph’s node-degree. We verify this phenomenon in
Appendix M. To account for this, we apply an indicator function to FLEX-generated subgraphs which
eliminates edges with lower probability than a threshold, γ:

p̃(u, v) = p(u, v) · I[p(u, v) ≥ γ]. (6)

This function only keeps those links with high probability, constraining the GGM to connect links
which it is most confident in. As such, the indicator function prevents densely-connected graphs,
especially for OOD scenarios where training on dense graphs may not be desirable for downstream
performance. The value of the threshold γ is treated as a hyperparameter. In Section 4.3, we show
how the value of γ impacts performance.

3.4 GENERATING COUNTERFACTUAL LINKS

As part of FLEX, all previous components work to produce meaningful subgraphs. However, it is still
necessary for the GGM to learn how to produce subgraph samples which are structurally-dissimilar
from training, while retaining relevance to the node features within the training distribution.

As discussed in Definition 3.3, to ensure generated samples are link-counterfactual we can input links
structural feature distribution. That is, for an input training sample e = (u, v) and it’s counterfactual,
we want that PH(Ak

e) ̸≈ PH(Ã
(k)
e) where Ã

(k)
e = pθ(G̃e | He). That is, we need to optimize the

GGM to maximize the difference in input and generated samples; maxLGEN where LGEN is defined
as in Eq. 7.

However, blindly maximizing the generative loss will result in generated subgraphs which are
structurally-incoherent to our training samples and therefore our baseline model. In reality, we nudge
the generated sample distribution to modestly differ in key structural features. We ensure this in two
ways. First, we apply a quadratic penalty to the generative loss LGEN. The penalty is centered around
a target value, τ . This penalty restricts any shifts to the posterior distribution. In effect, generated
graphs will only deviate slowly from the prior distribution and prevent the samples from devolving
into noise. This is given by the following,

LGEN = −
(
LSIVI −KL

(
Eψ∼qϕ(ψ|Xe,Ae) [q(He | ψ)]

∥∥ p(He)
)
− τ

)2
. (7)

Second, we also attempt to correctly classify the link based on it’s original label. That is, we want to
predict the existence of the original link based on the newly generated sample. This serves as a means
for inducing learnable counterfactual treatment within the GGM. If the generative model deviates
too far from the training distribution or considers useless structural features, the GNN will be unable
to cope, thus resulting in poor classification performance. It therefore allows for a “check” on the
generation quality, limiting the potential for incoherent generation.

The final optimization goal of FLEX is given by the following, LLP denotes the classification loss
(BCE):

min
LP

max
GEN

LFlex = αLLP + LGEN (8)

α represents the weight assigned to the counterfactual predictions produced by the GNN tuned within
the FLEX framework. Since the co-trained GNN is tuned on synthetic samples, the minimization of
LLP ensures that the GNN retains it’s ability to predict on positive and negative samples while also
conditioning the maximization of LGEN. In tandem, the two function in an adversarial co-optimization
to predict on samples with increasingly different structures (Pan et al., 2018; Wang et al., 2025).

We further illustrate the overall framework in Figure 2. In the first stage both the GNN and GGM are
trained separately. Then in the second stage, the components are co-trained via the objective defined
in Equation 8. Both procedures are described further in Algorithm 1. In the next section, we test
FLEX, showing it’s ability to improve OOD performance for link prediction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We now evaluate FLEX to answer the following research questions. RQ1: Does FLEX contribute
to better link prediction performance in OOD scenarios? RQ2: How might separate components
of the FLEX framework improve OOD performance? RQ3: How sensitive is FLEX to different
hyperparameter settings? RQ4: Does FLEX learn to generate link-counterfactual samples?

4.1 SETUP

Our benchmarking experiments apply two different GNN backbones, Graph Convolutional Network
(GCN) and Neural Common Neighbor (NCN) (Kipf & Welling, 2017; Wang et al., 2023). We
then compare against the following generalization methods: CORAL, DANN, GroupDRO, VREx,
IRM (Sun & Saenko, 2016; Ganin et al., 2016; Sagawa et al., 2019; Krueger et al., 2021; Arjovsky
et al., 2019). Detailed hyperparameter settings are included within Appendix G. For datasets, we
consider the synthetic datasets generated via the protocol designed by LPShift (Revolinsky et al.,
2024). Please see Appendix H for more details. As a means of testing performance under distribution
shift, we test on the original ogbl-collab split (Hu et al., 2020) and domain-transfer between Amazon
Photos and Computer (Shchur et al., 2018). Lastly, all synthetic datasets are evaluated using Hits@20,
while ogbl-collab is evaluated with Hits@50 and domain-transfer with AUC.

4.2 RQ1: FLEX PERFORMANCE

As shown in Table 3, FLEX improves the performance in 28 out of 29 data scenarios when applied to
GCN, and for all tested scenarios when applied to NCN. This leads to an average relative increase
of 4.41% to GCN and 9.56% to NCN. On the other hand, other baselines either perform worse or
on-par with GCN. This indicates that FLEX generates subgraphs which improve model generalization
under distribution shift.

Table 1: Hits@20 results for real-world and LPShift datasets, AUC results for domain-transfer
datasets. LPShift dataset splits are marked “Forward” and “Backward”, “Forward” meaning more
higher-order structure within testing versus training, and vice versa for “Backward”. CN = Common
Neighbors, PA = Preferential-Attachment, SP = Shortest-Path. LPShift results are averaged across
five datasets (Collab, PubMed, Cora, CiteSeer, PPA).

Datasets Methods
Type Name Metric Avg. OOD VGAE CFLP GCN GCN+FLEX NCN NCN+FLEX

Forward
CN Hits@20 51.07 ± 1.88 50.71 ± 1.06 53.70 ± 1.90 53.61 ± 1.13 54.43 ± 0.33 50.47 ± 2.24 52.55 ± 0.27
PA Hits@20 62.99 ± 3.09 63.36 ± 2.01 67.61 ± 3.71 67.47 ± 2.66 68.86 ± 1.87 68.27 ± 0.87 68.97 ± 0.19
SP Hits@20 41.70 ± 2.48 46.89 ± 1.60 35.64 ± 2.51 44.27 ± 2.36 46.56 ± 1.29 46.63 ± 2.00 52.46 ± 6.10

Backward
CN Hits@20 27.44 ± 2.30 26.29 ± 2.03 27.46 ± 0.99 29.69 ± 1.71 31.57 ± 0.43 22.06 ± 1.66 24.33 ± 1.33
PA Hits@20 37.49 ± 2.45 31.97 ± 1.30 38.92 ± 1.86 44.52 ± 1.66 43.82 ± 1.53 38.19 ± 4.05 41.30 ± 0.11
SP Hits@20 23.86 ± 2.79 26.28 ± 2.75 23.07 ± 1.89 24.96 ± 2.70 27.22 ± 0.76 22.61 ± 2.41 28.09 ± 0.86

Real
Collab Hits@50 47.98 ± 1.02 50.71 ± 0.21 OOM 50.40 ± 1.01 52.42 ± 0.08 64.83 ± 0.18 64.99 ± 0.32
P→ C AUC 85.80 ± 3.52 88.94 ± 1.06 OOT 87.48 ± 2.73 91.16 ± 1.24 – –
C→ P AUC 82.58 ± 4.61 86.44 ± 3.15 OOT 83.87 ± 5.08 91.36 ± 0.05 – –

Avg (∆%) – -7.44 -7.09 -0.19 – +4.41 – +9.56

4.3 RQ2: FRAMEWORK ABLATION
Table 2: Ablation across the LPShift
"Backwards" CN Splits.

Dataset Models
FLEX w/o SEAL w/o LP Loss w/o SIGVAE

Cora 44.87 ± 0.32 34.62 ± 0.49 39.15 ± 1.31 33.90 ± 0.35

CiteSeer 51.98 ± 0.03 41.63 ± 0.37 51.83 ± 0.24 41.58 ± 0.01

PubMed 29.31 ± 0.12 28.07 ± 0.12 28.66 ± 0.57 27.95 ± 0.08

Collab 25.24 ± 0.01 24.76 ± 0.03 24.78 ± 0.69 24.80 ± 0.69

In order to determine which components of FLEX func-
tion to improve performance, we ablate across singular
mechanisms which are directly involved with the FLEX-
tuning process for the co-trained GNN. This includes the
use of (a) semi-implicit variation, (b) an expressive link
encoder (SEAL), (c) the LP loss LLP described in Eq. 8.
As shown in Table 2, ablating each component leads to a
consistent decrease on four different datasets, thus validating the importance of each component.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 RQ3: HYPERPARAMETER SENSITIVITY

In order to gauge the impact the that Eq. 7 has on downstream performance for FLEX, we con-
duct a study which measures the difference in performance across the indicator function’s target
γ = {0.0, 0.25, 0.5, 0.75, 0.9, 0.9999}. As shown in Figure 3, we see that the “Backward” split
experiences gradually increasing performance up to a value of 0.9 while the “Forward” split per-
formance sharply decreases at a threshold value of 0.9999. Given that indicator threshold values
directly affect edge-probabilities, these results demonstrate that sparser generated graphs are useful
for the “Backward” split to a point. Whereas little seems to affect a change in the “Forward” split
performance until the graph grows too sparse at 0.9999. We also include the effect of the learning
rate in Figure 9.

Figure 3: Performance of FLEX on the "Backwards CN" CiteSeer dataset across thresholds.

4.5 RQ4: OOD STRUCTURAL ALIGNMENT

To further verify the effect that FLEX has on graph structure and whether it generates samples with
counterfactual link-structure, we directly measure the distribution of Common Neighbors within the
original training and validation distribution versus FLEX-generated subgraphs. As shown in Figure 4,
the “Flex - Generated” sample distribution closely matches the distribution of validation samples for
the “Backward” subplot, with none of the FLEX samples exceeding a difference of 0.17 CNs. This
is a 3-10x improved alignment versus the original training distribution. Within the “Forward” split,
FLEX samples are verifiably denser than the 0 CNs present in training. Despite this, the threshold
function still manages to ensure that FLEX samples never exceed a CN threshold of 1. This indicates
that FLEX is successfully targeting structure to produce graphs which are link-counterfactual
to the training distribution and help improve performance. A core consideration is FLEX’s ability
to do this without requiring access to validation or testing samples. We include more results on how
FLEX affects node-degree and clustering coefficient within Appendix D.

Figure 4: The distribution of Common Neighbors (CNs) scores across different dataset splits for the
Backward and Forward CN LPshift splits.

5 CONCLUSION

Within this work, we formalize a theory for generating link-counterfactuals. To test this theory, we
introduce FLEX, a simple generative framework which targets link-structures within input samples to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

produce link-counterfactuals which improve downstream performance. Further experimentation indi-
cates FLEX’s ability to model OOD structures without access to validation and testing distributions.
Additionally, tuning within the FLEX framework improves performance under realistic and synthetic
distribution shifts, even where traditional generalization methods often decrease performance. This
work opens considerations on the application of graph generation with distribution shifted scenarios,
potentially opening a path to further development of counterfactuals within graph representations.

6 LLM USAGE DISCLOSURE

We use LLMs solely as writing-assist and coding-assist tools to polish the manuscript and debug
broken functionality within this research’s code. LLMs were used to fix broken formatting within
LaTeX and resolve persistent dataloading issues. All research ideas, methodology, experiments,
theoretical analyses, and initial drafts were conceived and written by the authors.

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert D Nowak, and Yixuan Li. Feed
two birds with one scone: Exploiting wild data for both out-of-distribution generalization and
detection. In International Conference on Machine Learning, pp. 1454–1471. PMLR, 2023.

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for graph
classification extrapolations. In International Conference on Machine Learning, pp. 837–851.
PMLR, 2021.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for
link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
graph learning via environment augmentation learn invariance? Advances in Neural Information
Processing Systems, 36:71486–71519, 2023.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1–35, 2016.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Alleviating structural distribution shift in graph anomaly detection. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, pp. 357–365, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
Advances in Neural Information Processing Systems, 35:2059–2073, 2022.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and
Xiaoning Qian. Semi-implicit graph variational auto-encoders. Advances in neural information
processing systems, 32, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark
for ai-aided drug discovery–a focus on affinity prediction problems with noise annotations. arXiv
preprint arXiv:2201.09637, 2022.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning, pp.
5637–5664. PMLR, 2021.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pp. 17391–17408. PMLR, 2023.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapola-
tion (rex). In International conference on machine learning, pp. 5815–5826. PMLR, 2021.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized
graph neural network. IEEE Transactions on Knowledge and Data Engineering, 2022a.

Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. Advances in Neural Information Processing Systems, 35:
11828–11841, 2022b.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking.
Advances in Neural Information Processing Systems, 36, 2024.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the twelfth international conference on Information and knowledge management,
pp. 556–559, 2003.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4525–4533, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pp. 7192–7203. PMLR, 2021.

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. Advances in neural information processing systems, 35:
25895–25907, 2022.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? Advances in
Neural Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. Structural counterfactuals: A brief introduction. Cognitive science, 37(6):977–985,
2013.

Jay Revolinsky, Harry Shomer, and Jiliang Tang. Understanding the generalizability of link predictors
under distribution shifts on graphs. arXiv preprint arXiv:2406.08788, 2024.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: an adaptive
graph transformer for link prediction. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2686–2698, 2024.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, and
Austin R Benson. Edge proposal sets for link prediction. arXiv preprint arXiv:2106.15810, 2021.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2019.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part III 14, pp. 443–450. Springer, 2016.

Teng Sun, Wenjie Wang, Liqaing Jing, Yiran Cui, Xuemeng Song, and Liqiang Nie. Counterfactual
reasoning for out-of-distribution multimodal sentiment analysis. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 15–23, 2022.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1435–1444, 2020.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Danny Wang, Ruihong Qiu, Guangdong Bai, and Zi Huang. Gold: Graph out-of-distribution detection
via implicit adversarial latent generation. arXiv preprint arXiv:2502.05780, 2025.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In The Twelfth International Conference on Learning Representations, 2023.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations (ICLR), 2022.

Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
for graph neural networks. arXiv preprint arXiv:2302.02914, 2023a.

Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-distribution general-
ization via causal intervention. In Proceedings of the ACM on Web Conference 2024, pp. 850–860,
2024.

Xinheng Wu, Jie Lu, Zhen Fang, and Guangquan Zhang. Meta ood learning for continuously adaptive
ood detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 19353–19364, October 2023b.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. Transactions on Machine Learning Research,
2024.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. Advances in neural information processing
systems, 32, 2019.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International conference
on machine learning, pp. 5660–5669. PMLR, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683–13694, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. Advances in neural information
processing systems, 35:6074–6089, 2022.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26911–26926. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/zhao22e.html.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. Ood link prediction generalization capabilities of
message-passing gnns in larger test graphs. Advances in Neural Information Processing Systems,
35:20257–20272, 2022.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476–29490, 2021.

13

https://proceedings.mlr.press/v162/zhao22e.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS - CONTINUED

There are numerous models and methods to improve the link-prediction capabilities of GNNs. First
of which include SEAL (Zhang & Chen, 2018) and NBFNet (Zhu et al., 2021), which consider
message passing schemes that are conditional on a given link. To improve efficiency, other methods
don’t modify the message passing process, instead opting to include some link-specific information
when scoring a prospective link. BUDDY applies a unique version of the labeling trick to subgraphs
for generalizing on structural features (Chamberlain et al., 2022). NCN/NCNC (Wang et al., 2023)
and Neo-GNN (Yun et al., 2021) both elevate traditional link heuristics via neural operators to
better understand link formation. Lastly, (Shomer et al., 2024) proposes a more general scheme for
estimating the pairwise information between nodes that adaptively learns how two nodes relate. A
core component of these models is their increased reliance on the substructures contained within the
graph datasets, which improves the model’s expressivity but can affect prediction performance in
OOD scenarios (Mao et al., 2024).

B SET-THEORY PERSPECTIVE

Within the following section, we detail how treating the space of training and test samples within
the domain of their node features can feasibly lead to scenarios where a GGM will produce link-
counterfactual samples which extend the scope of the training distribution with the testing distribution.
Definition B.1 (Node-feature domain and link distributions). Let X ⊆ Rd be the node-feature space.
A link is an element of X×X. Let Ptrain and Ptest be probability measures on X×X with supports

T := supp(Ptrain), U := supp(Ptest).

Remark 1. In Figure 5, T (blue) and U (red) are subsets of the same domain; their overlap T ∩ U is
visualized by triangle hatching.
Assumption 1 (Link-counterfactual conditioning mechanism). There exists a counterfactual mecha-
nism C that, given samples from Ptrain and link structure, produces link-counterfactuals samples in
a set S ⊆ X×X. We assume T ⊆ T ′ := T ∪ S (closure taken in X×X). Operationally, C may
be implemented by counterfactual structural perturbations parametrized by ELBO-guided sampling
under learned generative constraints. In Figure 6, S is indicated by square hatching surrounding T
(yellow annulus).

Figure 5: The domain space depicting T (Train) and U (Test) with triangle hatching for T ∩ U .

Definition B.2 (Overlap measure). Let µ be the ambient Lebesgue measure on R2d (or any measure
absolutely continuous with respect to both Ptrain and Ptest). Define the overlap sizes

Ω(T,U) := µ(T ∩ U), Ω(T ′, U) := µ(T ′ ∩ U).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: The domain space extended from Figure 5. The larger (yellow) set encapsulating T
demonstrates the expansion to T ′ via S (square hatching), increasing the overlap with U as guaranteed
by Theorem 1

Theorem 1 (Coverage expansion via structural conditioning). Under the Structural Conditioning
Assumption, if the conditiond set intersects the OOD region with positive measure,

µ
(
S ∩ (U \ T)

)
> 0,

then the training–test overlap strictly increases:

Ω(T ′, U) > Ω(T,U).

Proof. By definition T ′ = T ∪ S and T ⊆ T ′. Hence

T ′ ∩ U = (T ∪ S) ∩ U ⊇ (T ∪ S) ∩ U = (T ∩ U) ∪ (S ∩ U).

Taking µ and using subadditivity with the union decomposition,

µ(T ′ ∩ U) ≥ µ(T ∩ U) + µ
(
S ∩ U \ (T ∩ U)

)
.

Note that S ∩ U \ (T ∩ U) = S ∩ (U \ T). By our hypothesis µ
(
S ∩ (U \ T)

)
> 0, therefore

µ(T ′ ∩ U) > µ(T ∩ U).

Equivalently, Ω(T ′, U) > Ω(T,U), proving the claim.

Corollary B.2.1 (Bayesian consequence for generalization). Assume a model class with likelihood
pθ is trained only on Ptrain (or its empirical sample) to form a posterior p(θ | Dtrain). If Theorem 1
holds, then evaluating on Ptest after augmenting training with link-counterfactual samples from
S reduces the measure of purely OOD inputs U \ T ′ compared to U \ T . Consequently, any risk
functional that is nonnegative and integrates over test support (e.g., expected loss) can only benefit
from the reduction of the OOD region, all else equal.
Definition B.3 (Structural hull of training support). Let Π be a family of structure-preserving
perturbations (e.g., counterfactual edits that obey graph constraints such as Common Neighbors).
Each π ∈ Π induces a measurable map Φπ : X × X → X × X. The structural hull of T =
supp(Ptrain) is

HullΠ(T) := {Φπ(x) : x ∈ T, π ∈ Π} ⊆ X×X.

Assumption 2 (Encoding Continuous Embeddings). Given our encoding scheme (Π : G→ H), the
sets (T,U, S) are mapped into continuous representation space (H ⊆ R2d) (i.e, a continuous latent
embedding space). Therefore, enabling the ability to affect coverage given the ambient Lebesque
measure, µ. We treat X and H interchangeably.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Assumption 3 (ELBO-trained generator with structural constraints). Let pθ(x | z) be a decoder
likelhood on X ×X with latent prior p(z), and let qϕ(z | x) be a variational encoder. Training
maximizes the ELBO over Dtrain, possibly augmented with structure-preserving perturbations Π:

LELBO(θ, ϕ) = Ex∼Ptrain

[
Ez∼qϕ(·|x)

[
log pθ(x | z)

]
−KL

(
qϕ(z | x) ∥ p(z)

)]
subject to x ∈ HullΠ(T).

Sampling link-counterfactual points is implemented by: draw x ∼ Ptrain, choose π ∈ Π, form
x̃ = Φπ(x) ∈ HullΠ(T), then sample z ∼ qϕ(· | x̃) and emit x̂ ∼ pθ(· | z). Let S be the set of
realizations of x̂ with non-negligible likelihood under the trained (θ, ϕ).
Assumption 4 (Support-positivity and absolute continuity). (i) pθ(x | z) > 0 for all x in an open
neighborhood of HullΠ(T) for qϕ-a.e. z (decoder has positive density on a structural neighborhood).
(ii) Ptest is absolutely continuous with respect to µ (the ambient Lebesgue measure on R2d). (iii)
There exists a set W ⊆ HullΠ(T) ∩ U with µ(W) > 0 such that infx∈W Ez∼qϕ(·|x)[pθ(x | z)] > 0
(posterior predictive places nonzero mass on a test-overlapping region of the hull).
Lemma 1 (ELBO-guided structural conditioning yields positive OOD coverage). Under the above
assumptions, the structurally-conditioned sample set S satisfies

µ
(
S ∩ (U \ T)

)
> 0.

Consequently, the hypothesis of Theorem 1 holds, and the training–test overlap strictly increases:
Ω(T ′, U) > Ω(T,U).

The question still remains, how do we extend these Set-theoretic principles into the discrete domain
for generating link-counterfactuals which can improve OOD performance?

Proof sketch. By construction, realizations x̂ concentrate where the joint qϕ(z | x)pθ(x̂ | z) is large
with x ∈ HullΠ(T). Assumption 3(i) implies that for any measurable A ⊂ HullΠ(T) with µ(A) > 0,
the decoder assigns strictly positive probability to neighborhoods within A. By 3(iii), there exists
W ⊆ HullΠ(T) ∩ U with µ(W) > 0 on which the posterior predictive is uniformly positive, so
samples land in W with nonzero probability. Since W ⊆ U and, by defintion of OOD, U \ T has
positive µ-measure in typical OOD scenarios (Figure 6), we obtain µ(S ∩ (U \ T)) > 0. Therefore
the sufficient condition of Theorem 1 is met.

Remark 2 (Operational Takeaway #1). If your generator is trained with ELBO while respecting
structural perturbations Π, and the decoder retains positive density on a neighborhood of the structural
hull, then sampling through the encoder–decoder pipeline from structurally-perturbed points produces
a set S that (with positive measure) reaches into the OOD region U \ T , thus enlarging coverage and
improving test overlap.
Remark 3 (Operational Takeaway #2). Genuinely ensuring that learned parametrizations of structural
perturbations Π always increase coverage to OOD regions/datasets is difficult in practice, since
µ-measure for all possible OOD samples are inaccessible or have limited accessibility from the
training distribution. Careful considerations about dataset balance must be considered (i.e. smaller
structures in training samples have less to infer for structure in larger testing samples)

We further formalize the intuition that augmenting training support broadens test risk to improve
coverage within OOD scenarios.

Proposition B.1 (Coverage-based OOD risk bound). Let ℓ ∈ [0, 1]. For any predictor f ,

Rtest(f) ≤ Rtrain′(f) + δ′,

where δ′ := Ptest(N
′) and N ′ = supp(Ptest) \ supp(Ptrain′).

Proof sketch. Decompose the test risk over the covered and uncovered regions:

Rtest(f) =

∫
C′
ℓ(f, x) dPtest(x) +

∫
N ′
ℓ(f, x) dPtest(x).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

On C ′, the density of Ptest is supported inside supp(Ptrain′), so we can rewrite∫
C′
ℓ(f, x) dPtest(x) ≤ Rtrain′(f)

up to standard estimation error terms (handled separately by classical generalization bounds). On N ′,
we only know that ℓ ≤ 1, hence∫

N ′
ℓ(f, x) dPtest(x) ≤

∫
N ′

1 dPtest(x) = Ptest(N
′) = δ′.

Combining the two inequalities yields Rtest(f) ≤ Rtrain′(f) + δ′.

Corollary B.3.1 (FLEX shrinks the uncovered test mass). Assume the conditions of Lemma 1 and
Theorem 1, and suppose Ptest is absolutely continuous w.r.t. µ on U . Let

δ := Ptest

(
U \ T

)
, δ′ := Ptest

(
U \ T ′).

If µ
(
S ∩ (U \ T)

)
> 0, then

δ′ < δ.

Consequently, for any predictor f ,

Rtest(f) ≤ Rtrain′(f) + δ′ < Rtrain′(f) + δ.

Remark 4 (KL-regularization as a surrogate for coverage expansion). Our FLEX objective maximizes
a KL divergence KL(P∗ ∥Ptrain) constrained to the structural hull HullΠ(T). Under mild regularity
conditions, any nontrivial increase in this KL divergence implies that the counterfactual distribution
P∗ assigns positive probability to regions of U \ T with µ(·) > 0, thus increasing µ(S ∩ (U \ T))
for the resulting sample set S. The coverage expansion guaranteed by Lemma 1 then translates, via
Proposition B.1, into a strictly tighter upper bound on our test risk.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C RAW RESULTS TABLES

Table 3: Results for the LPShift Datasets by direction (forward or backwards) and type (CN, SP or
PA). OOT = Out-of-Time, OOM = Out-of-Memory. Ordered from bottom up: Collab, PubMed, Cora,
CiteSeer, PPA. Note: PPA for PA and SP is missing due to taking >24h. Results for the original
ogbl-collab (Hu et al., 2020) are included as real. Cross-Domain transfer dataset performance is
measured after one-shot tuning on top of an already-tuned baseline. We highlight in blue when FLEX
increases over the base model and red otherwise.

Dataset Models
CORAL DANN GroupDRO VREx IRM VGAE CFLP GCN GCN+FLEX NCN NCN+FLEX EERM HL-GNN HL-GNN+FLEX GAT GAT+FLEX GIN GIN+FLEX

Fo
rw

ar
d

CN

30.93 ± 0.24 30.86 ± 0.32 27.83 ± 1.76 30.93 ± 0.24 25.78 ± 2.04 21.60 ± 0.20 OOM 31.92 ± 0.25 32.87 ± 0.23 1.62 ± 5.04 3.95 ± 0.75 OOM 1.46 ± 2.19 2.57 ± 1.27 OOM – 30.92 ± 0.58 31.73 ± 0.30
67.75 ± 2.49 68.11 ± 3.04 65.27 ± 3.50 66.54 ± 2.42 66.67 ± 1.50 71.32 ± 1.99 67.63 ± 2.51 67.18 ± 2.43 68.24 ± 1.30 75.83 ± 4.42 79.34 ± 0.1 55.93 ± 1.49 67.71 ± 2.52 68.23 ± 1.27 47.16 ± 4.63 49.03 ± 3.72 56.15 ± 2.89 58.07 ± 1.03
57.45 ± 1.70 57.54 ± 2.80 38.21 ± 5.63 53.15 ± 3.58 55.30 ± 2.54 54.74 ± 2.24 56.64 ± 1.29 56.22 ± 1.31 57.78 ± 0.08 75.91 ± 1.50 79.34 ± 0.10 66.89 ± 2.78 50.81 ± 4.91 55.19 ± 0.34 31.10 ± 3.26 32.47 ± 2.83 39.25 ± 4.78 41.05 ± 2.83
71.32 ± 0.32 71.62 ± 0.42 57.25 ± 1.95 71.60 ± 0.66 68.18 ± 0.48 65.18 ± 0.56 OOT 69.60 ± 0.45 70.04 ± 0.01 96.63 ± 0.24 96.72 ± 0.32 OOM 57.39 ± 2.14 58.01 ± 1.83 48.87 ± 1.06 49.62 ± 1.04 55.93 ± 16.06 59.19 ± 12.90
42.60 ± 1.61 43.60 ± 1.21 22.71 ± 4.03 43.61 ± 1.21 42.04 ± 1.32 40.69 ± 0.29 OOM 43.14 ± 1.22 43.23 ± 0.05 2.37 ± 0.02 3.39 ± 0.09 OOM 3.42 ± 4.74 5.03 ± 2.95 37.99 ± 2.34 38.61 ± 1.78 24.92 ± 13.49 27.48 ± 12.81

PA

69.85 ± 3.79 67.57 ± 4.72 51.80 ± 7.12 69.03 ± 2.92 68.28 ± 3.63 69.78 ± 2.15 65.52 ± 5.20 68.88 ± 3.34 70.83 ± 0.41 65.64 ± 1.27 67.65 ± 0.26 54.87 ± 5.03 66.60 ± 4.16 68.12 ± 2.49 50.05 ± 4.49 52.03 ± 3.74 54.05 ± 7.21 56.19 ± 4.30
52.39 ± 4.16 49.24 ± 6.44 40.16 ± 6.56 51.05 ± 3.63 50.03 ± 3.06 50.85 ± 4.56 55.28 ± 4.97 55.13 ± 5.30 56.58 ± 5.22 53.44 ± 1.52 53.59 ± 0.08 68.41 ± 3.57 48.37 ± 1.78 49.26 ± 1.32 38.12 ± 3.98 39.50 ± 3.60 43.79 ± 4.63 45.83 ± 3.49
83.35 ± 0.65 83.19 ± 0.50 66.00 ± 3.71 81.43 ± 0.80 75.68 ± 0.81 79.33 ± 1.00 82.04 ± 0.95 82.04 ± 0.95 84.09 ± 0.65 88.35 ± 0.19 88.71 ± 0.11 OOM 76.99 ± 0.77 79.18 ± 0.50 65.00 ± 1.60 66.01 ± 0.93 70.47 ± 2.12 71.02 ± 1.72
61.39 ± 1.19 61.69 ± 1.33 39.92 ± 5.11 61.52 ± 0.92 60.27 ± 0.66 53.48 ± 0.31 OOT 63.83 ± 1.04 63.93 ± 1.20 65.66 ± 0.50 65.94 ± 0.32 OOM 4.87 ± 14.70 7.93 ± 5.29 51.41 ± 1.36 52.53 ± 0.49 36.72 ± 3.12 38.29 ± 2.06

SP

42.35 ± 1.52 35.53 ± 5.14 30.69 ± 2.43 44.60 ± 2.57 39.18 ± 3.79 45.77 ± 2.49 44.63 ± 1.89 44.60 ± 2.57 45.85 ± 0.24 52.06 ± 2.99 54.21 ± 0.36 23.04 ± 3.28 59.49 ± 2.40 60.55 ± 1.14 30.74 ± 4.93 33.01 ± 2.53 35.89 ± 4.60 37.19 ± 3.44
26.26 ± 3.22 26.89 ± 3.62 19.63 ± 2.65 25.91 ± 2.88 24.13 ± 4.01 33.36 ± 1.95 26.65 ± 3.12 24.82 ± 3.40 29.91 ± 0.19 48.31 ± 1.91 49.68 ± 0.08 42.91 ± 2.09 39.56 ± 3.09 41.39 ± 1.83 22.31 ± 3.55 24.04 ± 2.49 22.14 ± 4.13 24.09 ± 2.47
67.41 ± 2.15 68.03 ± 1.03 51.49 ± 3.49 68.18 ± 1.63 64.28 ± 1.98 63.53 ± 1.36 OOM 68.52 ± 1.29 69.24 ± 1.19 77.91 ± 0.48 79.10 ± 0.02 OOM 66.65 ± 0.77 66.84 ± 0.52 48.56 ± 3.63 49.92 ± 1.87 60.22 ± 2.12 61.03 ± 1.89
40.36 ± 1.86 39.07 ± 2.43 32.82 ± 2.54 40.45 ± 2.35 38.63 ± 2.28 44.88 ± 0.59 OOM 39.13 ± 2.16 41.22 ± 3.55 8.23 ± 2.60 26.83 ± 23.95 OOM 3.26 ± 4.84 5.09 ± 2.99 31.45 ± 10.23 36.99 ± 5.17 11.69 ± 4.86 15.95 ± 2.91

B
ac

kw
ar

d

CN

13.52 ± 1.01 14.31 ± 0.49 11.70 ± 0.81 13.46 ± 1.17 11.34 ± 2.84 6.30 ± 0.46 14.24 ± 0.73 14.19 ± 0.46 14.49 ± 0.51 1.21 ± 0.53 2.62 ± 0.14 OOM 0.93 ± 0.68 1.62 ± 1.37 OOM – 12.83 ± 1.49 13.87 ± 0.92
41.88 ± 4.38 42.37 ± 4.62 31.78 ± 6.07 41.27 ± 6.01 41.83 ± 3.25 47.42 ± 4.67 40.67 ± 1.25 41.03 ± 5.68 43.96 ± 1.18 34.70 ± 4.12 38.65 ± 0.18 38.39 ± 1.43 46.04 ± 6.92 48.38 ± 4.03 42.37 ± 4.88 44.09 ± 2.73 33.96 ± 6.68 35.47 ± 4.71
43.13 ± 5.13 40.72 ± 3.60 26.36 ± 3.19 40.68 ± 2.76 38.60 ± 3.79 35.68 ± 3.53 OOT 39.92 ± 1.09 44.87 ± 0.32 45.04 ± 2.57 46.32 ± 1.02 39.85 ± 5.2 42.42 ± 5.33 44.19 ± 3.89 33.35 ± 2.90 35.38 ± 1.39 30.13 ± 2.87 31.93 ± 1.93
28.96 ± 0.77 26.77 ± 0.51 15.57 ± 2.02 27.91 ± 0.41 27.24 ± 0.67 18.27 ± 1.27 OOT 28.67 ± 0.57 29.31 ± 0.12 22.16 ± 0.66 22.43 ± 0.03 OOM 21.18 ± 4.10 23.10 ± 3.07 27.86 ± 0.83 28.12 ± 0.57 18.33 ± 4.35 20.19 ± 2.46
24.16 ± 0.72 25.07 ± 0.67 21.03 ± 1.37 24.40 ± 0.51 21.86 ± 0.64 23.78 ± 0.23 OOM 24.62 ± 0.73 25.24 ± 0.01 7.18 ± 0.42 11.62 ± 5.27 OOM 2.40 ± 2.58 3.93 ± 1.21 12.13 ± 1.06 12.81 ± 0.61 16.85 ± 5.96 18.39 ± 3.89

PA

38.68 ± 3.39 38.13 ± 3.52 16.16 ± 7.56 38.33 ± 2.19 31.26 ± 4.09 36.36 ± 1.12 38.01 ± 1.62 37.67 ± 2.87 39.70 ± 0.26 35.30 ± 2.55 39.49 ± 0.22 36.72 ± 1.89 24.19 ± 5.53 25.74 ± 3.96 37.27 ± 8.62 39.84 ± 5.44 2.48 ± 1.57 3.78 ± 0.89
38.90 ± 1.79 38.45 ± 3.22 25.10 ± 2.32 37.63 ± 1.87 37.88 ± 1.11 32.83 ± 2.73 39.82 ± 2.09 38.00 ± 1.24 40.07 ± 0.14 24.69 ± 5.02 26.63 ± 0.10 35.84 ± 2.10 22.04 ± 7.32 24.79 ± 4.82 29.30 ± 5.64 30.73 ± 3.82 43.79 ± 4.63 45.19 ± 1.04
26.86 ± 0.97 27.51 ± 0.56 19.38 ± 4.85 28.40 ± 0.74 25.25 ± 2.95 29.37 ± 0.59 OOT 29.04 ± 1.58 35.94 ± 4.60 22.10 ± 3.30 27.05 ± 0.09 OOM 15.85 ± 3.96 17.12 ± 1.93 29.15 ± 1.86 30.63 ± 1.29 4.74 ± 7.67 6.12 ± 5.93
72.45 ± 0.71 72.68 ± 0.82 9.77 ± 2.30 72.45 ± 0.30 54.50 ± 3.72 29.31 ± 0.74 OOM 73.38 ± 0.94 59.58 ± 1.12 70.66 ± 5.33 72.04 ± 0.02 OOM 2.40 ± 2.58 3.64 ± 1.89 79.63 ± 0.82 80.01 ± 0.37 44.71 ± 26.17 45.89 ± 1.58

SP

19.30 ± 4.72 16.51 ± 6.82 11.51 ± 3.65 16.98 ± 5.12 15.81 ± 2.58 28.49 ± 4.19 19.02 ± 1.30 16.98 ± 5.12 22.09 ± 1.10 23.95 ± 4.32 41.63 ± 0.49 23.94 ± 3.68 25.47 ± 5.74 27.79 ± 4.02 11.28 ± 5.03 18.12 ± 0.72 13.49 ± 4.85 15.73 ± 2.81
24.65 ± 3.66 27.02 ± 3.20 17.81 ± 3.92 26.67 ± 3.49 25.96 ± 3.86 26.58 ± 4.91 27.12 ± 2.48 26.67 ± 3.49 28.25 ± 1.23 22.81 ± 2.77 24.30 ± 0.93 11.74 ± 8.91 28.51 ± 3.10 29.63 ± 2.91 12.98 ± 4.86 15.07 ± 1.31 17.28 ± 4.22 19.17 ± 2.73
22.39 ± 2.29 23.05 ± 1.80 10.59 ± 3.42 22.61 ± 1.73 20.92 ± 2.44 15.48 ± 1.38 OOT 22.61 ± 1.73 24.93 ± 0.23 23.82 ± 1.54 25.44 ± 0.34 OOM 25.51 ± 2.29 26.05 ± 1.78 12.10 ± 2.10 14.01 ± 0.29 18.27 ± 2.87 20.08 ± 1.99
33.50 ± 0.57 33.94 ± 0.40 33.40 ± 0.94 33.48 ± 0.58 32.97 ± 0.57 34.55 ± 0.53 OOM 33.58 ± 0.47 33.62 ± 0.49 19.87 ± 1.02 20.99 ± 1.67 OOM 4.17 ± 5.20 6.08 ± 4.39 19.18 ± 2.46 21.09 ± 1.03 18.24 ± 12.63 19.83 ± 0.83

Real Collab 49.49 ± 0.86 48.48 ± 1.78 44.30 ± 0.61 49.35 ± 0.75 46.26 ± 1.09 50.71 ± 0.21 OOM 50.40 ± 1.01 52.42 ± 0.08 64.83 ± 0.18 64.99 ± 0.32 OOM – – – – – –
X-Transfer Photo→ Computers 87.85 ± 1.92 86.68 ± 4.30 81.92 ± 1.84 86.73 ± 1.31 85.83 ± 3.69 88.94 ± 1.06 OOT 87.48 ± 2.73 91.16 ± 1.24 – – OOM – – – – – –
X-Transfer Computers→ Photo 83.96 ± 4.93 82.75 ± 3.98 82.62 ± 4.57 81.94 ± 5.01 81.65 ± 4.12 86.44 ± 3.15 OOT 83.87 ± 5.08 91.36 ± 0.05 – – OOM – – – – – –

Avg (∆%) -0.02 -0.89 -28.84 -0.58 -6.85 -7.09 -0.19 – +5.31 – +28.36 – – +21.61 – +8.12 – +10.08

D GRAPH GENERATION STATISTICS

Within this section, we further detail how FLEX can generate samples which are link-counterfactual
to their training input. As shown within Table 4, we see that the node-degree of FLEX-generated
samples more closely-aligns with the testing distribution. However, the clustering coefficient for
FLEX-generated samples differs from training for Cora and PubMed but also from testing against all
three datasets. Therefore, indicating that FLEX-generated need not fully-align with testing samples
in order to improve the baseline GCN performance.

Table 4: Graph Generation Statistics

Degree Cora Citeseer Pubmed

Train 3.34 3.91 4.12
Flex 2.38 2.62 2.92
Test 2.57 2.64 2.67

Clustering Coefficient Cora Citeseer Pubmed

Train 0.60 0.48 0.36
Flex 0.49 0.48 0.31
Test 0.58 0.57 0.38

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E GRAPH GENERATION VISUALIZATIONS

Figure 7: The training, FLEX-generated, and test subgraphs for the ogbl-collab dataset.

Figure 8: The training, FLEX-generated, and test subgraphs for LPShift’s ’Backwards - CN’ CiteSeer
dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F MODEL COMPLEXITY ANALYSIS

Table 5: CFLP edge-calculation pre-processing step with 16 data workers on the "Forward" and
"Backward" variants of the LPShift dataset.

Forward Cora CiteSeer PubMed ogbl-collab ogbl-ppa

CN 353.88s 182.33s 25367.64 s OOM OOM

PA 59.7s 100.7s 64644.61 s OOM –

SP 1282.98s 634.18s OOT OOM –

Backward Cora CiteSeer PubMed ogbl-collab ogbl-ppa

CN 2115.47s 182.33s 25367.64 s OOM OOM

PA 3607.99s 22932.10s OOT OOM –

SP 625.92s 36385.35s OOT OOM –

Table 6: Per-Epoch Training efficiency of FLEX versus CFLP

Dataset Models
Cora CiteSeer PubMed ogbl-collab ogbl-ppa

FLEX 0.366s 0.450s 3.19s 132.7s 945.2 s

CFLP 0.382s 0.514s 56.04s OOM OOM

Table 7: Inference runtime (in seconds) of FLEX versus a baseline GCN across the Common
Neighbors Split of the ogbl-collab dataset.

Dataset Models
Cora CiteSeer PubMed ogbl-collab ogbl-ppa

GCN 0.1566s 0.8839s 0.4175s 29.31s 62.3475s

FLEX 0.1564s 0.1411s 0.4207s 27.4656s 61.263s

To verify FLEX’s memory and time complexity, we derive the separate components of FLEX’s
autoencoder and baseline: L = layer, B = batch size, K = noise steps, e = subgraph edge, n = node
edge, d = dimension, dz = sampled dimension, m = candidate samples.

• Encoding works across nodes and edges for: LB(ed+ nd2). Sampling works across the
latent dimension for: KBnddz , Decoding works across the final output for: KBmdz .
Cumulatively, these three steps work in sequential order for a time-complexity: Tbatch =
O(LB(ed+ nd2) +KBndz +KBmdz).

• FLEX functions with a given GNN backbone (TGNN), we abstract this and integrate into
the overall framework for a time complexity of: O(Tbatch + TGNN).

• For memory complexity, autoencoders are linear across the sampled latent dimension (dz)
on given nodes (n) and edges (m), where semi-implicit variation aggregates across noise
(K) to derive: Mbatch = O(LB(nd+ ed) +KBndz).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: The maximum memory (megabytes) utilized when training with of batch size of 32 by a
baseline GCN versus GCN integrated within the FLEX framework. Out-of-memory (OOM) occurs
on ogbl-ppa due to the severe graph density. In practice, when training on ogbl-ppa we lower the
batch size to 4.

Dataset Models
Cora CiteSeer PubMed ogbl-collab ogbl-ppa

GCN 3171.88MB 3129.93MB 3653.11MB 4387.33MB 5373.76MB

+FLEX 3932.12MB 3171.88 MB 3904.29MB 6387.33MB OOM

G HYPERPARAMETER SETTINGS

Initial tuning of GCN on all tested datasets and NCN on the LPShift datasets followed a hierarchical
approach. Initially, GCN was tuned for 1000 epochs in single runs with early-stopping when
validation performance did not improve after 20 steps, a learning rate of 1e − 3 and dropout of
0 across a number of layers = {2, 3} and number of hidden channels = {128, 256} and batch
sizes = {32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536}. Initial NCN tuning
followed the same approach, except for being limited to 100 epochs. Dropout and Learning Rate
were fixed across the backbone GCN and link predictor.

The second phase of GCN and NCN tuning fixed hidden channels, number of layers, and batch size
and then search across a space of learning rate {1e-5, 1e-6, 1e-7} and dropout = {0.1, 0.3}. NCN
was tuned on the ogbl-collab dataset following the author’s provided hyperparameters (Wang et al.,
2023), as indicated in Table 10. Tuning of the OOD baselines follows the methodology set in (Gui
et al., 2022). To do this, we integrate the open-source GOOD (Gui et al., 2022) algorithms within the
backbone GCN before feeding the learned GCN embedding to an MLP link-predictor.

To determine the best OOD method hyperparameter settings, we apply the tuned baseline GCN
parameters and further tune across OOD loss coefficients as follows: CORAL = {0.01, 1.0, 0.1},
VREx = {10.0, 1000.0, 100.0}, IRM = {10.0, 0.1, 1.0}, DANN = {0.1, 1.0, 0.01}, GroupDRO
= {0.01, 1.0, 0.1}. Final loss coefficients are shown in Table 9. The number of equal-sized, randomly-
sampled environmental subsets were determined in a grid-search across, e = 3, 4, 5. The final, e = 3
was determined by training loss The number of sampled environmental subsets was fixed at 3 and
sampled randomly at program start.

All models, irrespective of FLEX, were evaluated on the full adjacency matrix to ensure consistency
with original results.

SIG-VAE, VGAE, and GAE were tuned for 2000 epochs with early stopping set to 100 epochs across
learning rates {1e-3, 1e-4}. Models were chosen based on their loss values. All generative auto-
encoders were fixed to 32 hidden dimensions and 16 output dimensions to model µ, with variation
encoders also modeling σ. The zero-one labeling trick was applied solely to the generative auto-
encoder, with a latent embedding size of (1000,Num. Hidden). Given significant time complexity of
pre-training SIG-VAE, a random seed was chosen for SIG-VAE and it’s respective GNN and then
tested across ten unique seeded runs to obtain final performance.

FLEX was tuned for single seeded runs across learning rates = {1e − 5, 1e − 6} and
alpha = {0.95, 1.05}. Initial sampling runs were tested with threshold values of =
{0.0, 0.25, 0.5, 0.75, 0.9, 0.99, 0.999, 0.9999},

H SYNTHETIC DATASET SPLIT SETTINGS

LPShift datasets were generated following the process described by the authors in (Revolinsky
et al., 2024). They consider three types of datasets splits that divide the links based on common
heuristics. This includes: CN = Common Neighbors (Adamic & Adar, 2003), SP = Shortest-Path, PA
= Preferential-Attachment (Liben-Nowell & Kleinberg, 2003). They further include two “directions”
for how the links are split. A ‘Forward’ splits indicates that the value of the heuristics increase
from train to valid and then test. The ‘Backwards‘ split indicates that they decrease. The splits are
defined based on two threshold parameters. For the ‘Forward’ splits the first parameter defines the
upper-bound on training data and the second the lower-bound on testing data. The opposite is true for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Loss Coefficients for each tested OOD method. α/γ-threshold for each FLEX-tuned GNN
backbone. Ordered from bottom up: Collab, PubMed, Cora, CiteSeer, PPA.

Dataset Models
CORAL DANN GroupDRO VREx IRM GCN+FLEX NCN+FLEX

Fo
rw

ar
d

CN

0.01 0.01 0.1 1000.0 10.0 0.95/0.0 1.05/0.0
0.1 0.1 0.1 100.0 0.1 0.95/0.0 0.95/0.0
1.0 0.1 0.01 1000.0 0.1 1.05/0.0 0.95/0.0
0.1 0.01 0.1 10.0 0.1 0.95/0.0 0.95/0.5
0.1 0.01 0.1 100.0 0.1 0.95/0.5 0.95/0.0

PA

0.01 1.0 0.1 100.0 0.1 0.95/0.5 1.05/0.5
1.0 0.1 0.1 10.0 0.1 1.05/0.9 0.95/0.0
1.0 0.01 0.01 10.0 0.1 0.95/0.5 0.95/0.5
0.1 0.01 0.1 100.0 0.1 0.95/0.9 0.95/0.0

SP

0.1 0.01 0.01 1000.0 0.1 0.95/0.25 0.95/0.25
1.0 1.0 0.1 10.0 0.1 0.95/0.0 0.95/0.0
1.0 0.01 0.01 1000.0 0.1 0.95/0.5 0.95/0.0
0.1 0.01 0.01 100.0 1.0 0.95/0.5 1.05/0.5

B
ac

kw
ar

d

CN

0.1 0.1 0.1 1000.0 1.0 0.95/0.999 0.95/0.5
1.0 1.0 0.01 10.0 0.1 0.95/0.9 0.95/0.99
0.01 0.1 0.01 100.0 0.1 0.95/0.9999 1.05/0.5
0.1 0.1 0.01 1000.0 0.1 0.95/0.99 0.95/0.9
0.1 1.0 0.01 10.0 0.1 0.95/0.5 0.95/0.5

PA

0.01 0.01 0.1 100.0 1.0 0.95/0.5 0.95/0.5
1.0 1.0 0.1 10.0 0.1 1.05/0.9 0.95/0.5
1.0 0.1 0.1 10.0 0.1 0.95/0.9999 0.95/0.9
1.0 0.01 0.1 100.0 0.1 0.95/0.9 0.95/0.9

SP

0.01 0.01 0.01 100.0 10.0 0.95/0.9999 0.95/0.9
0.1 0.01 0.1 10.0 0.1 0.95/0.5 0.95/0.5
0.01 1.0 0.1 100.0 0.1 1.05/0.9999 0.95/0.5
0.1 1.0 0.01 100.0 0.1 1.05/0.999 0.95/0.9

Real Collab 0.1 0.01 0.1 10.0 1.0 0.95/0.99 0.95/0.9
X-Transfer Photo→ Computers 1.0 0.1 0.1 100.0 10.0 0.95/0.99 0.95/0.5
X-Transfer Computers→ Photo 0.1 0.1 0.01 1000.0 10.0 0.95/0.9 1.05/0.5

Table 10: NCN Hyperparameters for the ogbl-collab dataset.

Parameter Value Parameter Value
GNN Learning Rate 0.0082 Predictor 0.0037

X Dropout 0.25 T Dropout 0.05

PT 0.1 GNN EdgeDropout 0.25

Predictor Edge Dropout 0.0 Predictor Dropout 0.3

GNN Dropout 0.1 Probability Scaling 2.5

Probability Offset 6.0 Alpha 1.05

Batch Size 65536 Layer Norm True

Layer Norm N True Predictor GCN

Epochs 100 Model GCN

Hidden Dimension 64 MP Layers 1

Test Batch Size 131072 Mask Input True

Validation Edges As Input True Res. True

Use X. Linear True Tail Acting True

the ‘Backwards’ split. For example, the CN split of ‘1, 2’ indicates that training links contain CNs
in the range [0, 1), valid in [1, 2), and test [2,∞). For a CN split of ‘2, 1’, the training and testing
links would be flipped. The parameters used across all tested LPShift datasets are detailed below in
Table 11 and follow those used by the original authors (Revolinsky et al., 2024). Note that these are
the same across all datasets used.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: LPShift Dataset Parameters.

’Backward’ Split Parameters ’Forward’ Split Parameters
SP 26, 17 SP 17, 26

CN 2,1 CN 1,2

PA 50, 100 PA 100, 50

I RESOURCES

All models and datasets were tuned and tested on single Nvidia A5000 GPUs with 24 GB available
RAM and a server with 128 cores and 1TB available RAM.

J HYPERPARAMETER SENSITIVITY

Within this section, we provide further details on the sensitivity analysis conducted on the FLEX
framework. As shown in both the ’Backward’ and ’Forward’ subplots in Figure 9 a higher learning
rate contributes to monotonically decreasing performance. This represents a potential pitfall when
FLEX-tuning any pre-trained GNNs. Especially since FLEX relies on subgraph samples, whereas
GNNs often train on a full adjacency matrix. Within, Figure 10 demonstrates an ablation conducted
on the (top) ratio of FLEX-generated subgraphs used for fine-tuning. where a higher-ratio of FLEX-
generated subgraphs used within fine-tuning boosts the performance of the GNN backbone by2%.
The (middle) indicates how the number of samples drawn to derive log-likelihood affect performance,
with more impact occuring at smaller J-values (< 50). The (bottom) indicates how the number of K
samples for estimating the ψ sampling parameter affects performance, where a pronounced increase
occurs where K < 10. Figure 10 indicates how the top) ratio of FLEX-generated subgraphs used for
fine-tuning the GNN backbone without co-trained parameter-sharing to the generative autoencoder
affect performance, where the pre-trained GNN receives an roughly 1% increase from 10% of
FLEX-generated subgraphs but limited returns on higher-ratios. The (middle) effect on performance
when the ratio of FLEX-generated subgraphs after maximizing KL-divergence is not penalized by
a threshold (τ), the limited change indicates how noisy subgraphs obtained from unbounded KL
maximization have no capability to boost pre-trained performance. We attribute the significant
reduction in performance shown in the final (bottom) image, since the ’from-scratch’ trained GNN
backbone is unable to distinguish counterfactual links from the original training links.

Figure 9: The Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset across different
learning rates.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 10: An ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset,
conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning. The (middle)
samples drawn to derive log-likelihood. The (bottom) number of K samples for estimating the ψ
sampling parameter. The (third from bottom) ratio of FLEX-generated subgraphs used for fine-tuning
the GNN backbone without co-trained parameter-sharing to the generative autoencoder.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 11: A ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset,
which disconnects the parameters from the generative autoencoder and removes the quadratic penalty,
conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning the GNN
backbone without co-trained parameter-sharing to the generative autoencoder. The (middle) ratio
of FLEX-generated subgraphs when maximizing KL-divergence is not penalized by a threshold
(τ). The (bottom) ratio of FLEX-generated subgraphs when training a GNN ’from-scratch’ on
FLEX-generated subgraphs with co-trained parameter sharing to the generative autoencoder.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

K GENERATOR ARCHITECTURE

Figure 12: The encoder-decoder module of our proposed framework. Given that training samples
are used a direct input, the architecture focuses solely on the block-diagonal adjacency matrix input,
A, which is encoded into a learnable latent dimension, Z. An MLP-decoder reads in Z across target
features to output the augmented subgraph, A′. The MLP-decoder can be swapped for the original
Bernoulli-Poisson decoder, proposed in Hasanzadeh et al. (2019).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

L FLEX ALGORITHMS

As defined earlier in Section 3, FLEX operates in two critical stages, (1): The generative graph model
(GGM) is pretrained on labeled subgraphs extracted from the target dataset following Eq. equation 2.
While the GNN is pre-training separately on the full adjacency matrix. This is defined on lines
3-5 in Algorithm 1. (2): After pre-training, the generative GGM is then placed within the FLEX
framework and co-trained with the GNN following Eq. equation 8. At each subsequent mini-batch,
the GGM produces new synthetic graphs and therefore new structural views of the original dataset
which are subsequently passed into the GNN to gauge sample validity. This is defined on lines 6-10
in Algorithm 1. Given that the divergence between the posterior and prior distributions is maximized,
this means that subsequent epochs should converge to generate a final distribution that is structurally
different from the training samples. As mentioned in Section 3.3.1, Algorithm 2 takes in feature
input and a representative block-diagonal matrix to ensure that SIG-VAE is expressive to mini-batch
samples of varying node numbers (Hasanzadeh et al., 2019).

Algorithm 1 FLEX - Pre-training and Tuning

Require: G(X,A), X ∈ RN×d

1: Extract Gs from 1-hop enclosed subgraphs of A
2: Retrieve Z using the zero-one labeling trick, Eq. equation 6
3: for epoch = 1 to pretrain do
4: Train SIG-VAE on Gs using Eq. equation 2 and labels Z
5: end for
6: for epoch = 1 to flex-tune do
7: Sample G′

s from SIG-VAE
8: Apply Eq. equation 6 on G′

s
9: Train GNN + SIG-VAE on G′

s using Eq. equation 8
10: end for

Algorithm 2 Node-Aware Decoder Algorithm

Require:
x ∈ RN×F : Node features, A = diag(A1, . . . , AK): Block-diagonal adjacency
Z ∈ RN×d: Structural features, J : Truncation index, ntrain = [N1, . . . ,NN]: Training Nodes

1: (µ, log σ2, SNR)← Encoder(x,A,Z)
2: µ′ ← µJ:N , log σ′2 ← log σ2

J:N
3: Split µ′, log σ′2 into subgraphs µi, log σ2

i using ntrain
4: for i = 1 to N do
5: Sample ϵi ∼ N (0, I)
6: zi ← µi + ϵi ⊙ exp(0.5 · log σ2

i) ▷ Reparametrization Trick
7: (Âi, z

scaled
i , rk)← Decoder(zi)

8: Insert Âi into Âglobal at block (i, i)
9: Insert zi, zscaled

i , ϵi into global tensors
10: end for
11: return Âglobal, µ, log σ

2,Zglobal,Z
scaled
global, ϵglobal, rk, SNR

M DEGREE BIAS INVESTIGATION

As previously-mentioned in Section 3.3.1, the generated subgraph samples without an indicated
threshold suffer from degree-bias (Tang et al., 2020), thereby resulting in densely-generated outputs,
even on sparse inputs. This effect is demonstrated in Figure 13, as shown with the perfect linear
relationship between the mean number of common neighbors in the output sample respective to the
number of nodes within input samples. To combat this, the indicator threshold is tuned to eliminate
edge-probabilities with a lower threshold than indicated. The effect of this threshold can be seen in
Figure 14, where a threshold of 0.9999 reduces the maximum mean number of Common Neighbors

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

by a factor of 40, as respective to Figure 13. This then shows a more meaningful correlation between
output CNs and input nodes, meaning that output graphs are no longer densely-connected which
serves as a desirable property when attempt to generalize on much sparser graphs; like those contained
within the ’Backward’ CN Cora dataset.

Figure 13: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
samples generated by FLEX on the ’Backward’ LPShift CN - Cora dataset without the threshold
function. Note the near-perfect linear growth of Common Neighbors with respect to the number of
nodes within a given input subgraph.

Figure 14: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
samples generated by FLEX on the ’Backward’ LPShift CN - Cora dataset after applying the threshold
function. The threshold function ensures that low-probabilities edges are not formed, resulting in
generated samples with a common neighbors that are morely closely-correlated to the input samples.

N DATASET LICENSES

Both OGB (Hu et al., 2020) and LPShift (Revolinsky et al., 2024), the datasets considered in our
study, are licensed under the MIT license.

O LIMITATIONS

From a theoretical perspective, FLEX operates under the critical assumption that there are counter-
factual substructures which exist under the causal model that constructed the original dataset. If no
such substructures are present, (i.e. the dataset samples are not OOD), then FLEX is also likely to
decrease model performance.

For practical implementation, FLEX requires sampling k-hop enclosed subgraphs, which can be
computationally-restrictive if applied with the same settings as training on full adjacency matrices.
Additionally, if poorly-tuned, then SIG-VAE will produce meaningless outputs and decrease down-
stream performance regardless of how well pre-trained the GNN is. FLEX has a high-likelihood of

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

inducing dataset drift, where a single epoch can increase performance but subsequent epochs will
likely lead to a monotonic decrease in performance.

This work introduces, formalizes, and demonstrates the notion that it is possible to generate counter-
factual link-structure and then apply those same structures to improve OOD performance. It does
not claim to fully-understand this mechanism but instead bring awareness to a phenomena that can
elevate the performance of current link-prediction models and their robustness to OOD data.

P SOCIETAL IMPACT

Our proposed method, FLEX, aims to improve the generalization capabilities of link prediction
methods. Since generalization is a key real-world concerns for many ML models, we argue that
FLEX has a potential to have a positive impact. Furthermore, link prediction is a common task used
in many fields such as recommender systems, drug-drug interactions, and knowledge graph reasoning.
Thus, improving the generalization of link prediction in those fields can be helpful for future research.
Therefore, no apparent risk is related to the contribution of this work.

29

	Introduction
	Background and Related Work
	FLEX
	General Motivation
	Semi-Implicit Variation for Out-of-Distribution Generation
	Link-Specific Subgraph Generation
	Node-Aware Decoder

	Generating Counterfactual Links

	Experiments
	Setup
	RQ1: Flex Performance
	RQ2: Framework Ablation
	RQ3: Hyperparameter Sensitivity
	RQ4: OOD Structural Alignment

	Conclusion
	LLM Usage Disclosure
	Related Works - Continued
	Set-Theory Perspective
	Raw Results Tables
	Graph Generation Statistics
	Graph Generation Visualizations
	Model Complexity Analysis
	Hyperparameter Settings
	Synthetic Dataset Split Settings
	Resources
	Hyperparameter Sensitivity
	Generator Architecture
	Flex Algorithms
	Degree Bias Investigation
	Dataset Licenses
	Limitations
	Societal Impact

