Under review as a conference paper at ICLR 2026

SUBGRAPH GENERATION FOR GENERALIZING ON OUT-
OF-DISTRIBUTION LINKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs Neural Networks (GNNs) demonstrate high-performance on link prediction
(LP) datasets, especially when the distribution of testing samples falls within the
dataset’s training distribution. However, GNNs suffer decreased performance
when evaluated on samples from outside their training distribution. In addition,
graph generative models (GGMs) show a pronounced ability to generate novel
output graphs. Despite this, the application of GGMs remains largely limited to
domain-specific tasks. To bridge this gap, we propose leveraging GGMs to produce
synthetic samples which extrapolate between training and testing distributions.
These synthetic samples are then used for fine-tuning GNNs to improve link
prediction performance in out-of-distribution (OOD) scenarios. We introduce a
theoretical perspective on this phenomena which is further verified empirically via
increased performance across synthetic and real-world OOD settings. We conduct
further analysis to investigate how inducing structural change within training
samples improves OOD performance, indicating promising new developments in
graph data augmentation on link structures.

1 INTRODUCTION

Graph Neural Networks (GNNs) demonstrate the ability to learn on graph data and have been used on
a number of different downstream tasks that rely on understanding graph structure (Kipf & Welling,
2017). Link Prediction (LP)(Liben-Nowell & Kleinberg, 2003; L1 et al.,2024), which attempts to
predict unseen links in a graph, serves as one such example. For the task of LP, GNNs are used to
learn node representations, which are then used to determine whether two nodes will form a link (Kipf
& Welling, [2016). In recent years, advanced architectures have further enhanced state-of-the-art link
prediction performance. To achieve this, the models often leverage structural features directly within
their neural architecture, enabling the model’s more effective understanding of link formation(Wang
et al.l 2023 [Yun et al.l 2021; [Shomer et al .| 2024).

However, recent studies indicate that GNNs struggle to generalize to out-of-distribution (OOD)
samples. This can arise when the underlying dataset properties differ between training and testing (Gui
et al.l [2022). Additionally, the distribution shift in graph data is not well-aided by generalization
techniques from other machine learning domains, such as CV and NLP (Li et al.} 2022a; Gao et al.,
2023). Therefore, the study of the OOD problem has flourished for graph- and node-classification
(J1 et al., 2022} [Koh et al.| [2021). However, little direct attention has been paid to designing link
prediction models which better withstand shifts in the underlying data distribution (Zhou et al.| 2022
Bevilacqua et al.| [2021). This is an issue, as recent work (Revolinsky et al.,[2024) has shown that
current link prediction models (even when augmented with OOD-generalization techniques) struggle
to generalize to shifts in the underlying structural distribution. Given the success of out-of-distribution
(OOD) generalization techniques in various graph-related tasks beyond link prediction (Arjovsky
et al., 2019; Krueger et al., [2021; Wu et al., 2024; Wang et al., 2020), a question arises regarding the
relatively limited success of these methods within the OOD link prediction problem. How can we
improve out-of-distribution performance in link prediction?

Intrinsically, out-of-distribution problems are difficult to manage; the simplest solution is to retrain
or tune the model on new samples within distribution of the testing set (Bai et al., [2023)). Before
retraining can occur, the samples must be acquired, or even detected that they fall out-of-distribution
(Wu et al.l |2023bza). A promising example of this application occurs within both CV and NLP, where

Under review as a conference paper at ICLR 2026

— =
Training Links Q{C?_ _ _3 , .
(Mean CNs =0.2) R 1 y ~
b—& ! —O
#CNs =0 #CNs=1
Structurally — -
Different Links
s =\
Counterfactual Links | Q /O\ :ﬂ P
(MeanCNs=28) | ~C~~°Z2 !
] —0]
L #CNs=3 #CNs =2 B

Figure 1: Example of counterfactual links that differ in terms of their structural properties such as
Common Neighbors (CNs). In this example, the average training link typically contains very few
CNs (0.2), thus we may want to generate counterfactuals with more CNs (2.8).

the training data is augmented with counterfactual samples. Such counterfactual samples have been
shown to be helpful for OOD tasks by improving the diversity of the training data problem (Sun et al.}
2022)). This uplift is possible because counterfactual samples operate under the same causal rules
as the original samples, even if the counterfactual sample was not originally contained within the
training dataset (Ma et al.} [2022). An example of how this may work for link prediction is shown
in Figure (1| where the counterfactual links are meant to be structurally different from the training
samples. As shown, the training samples have none or few common neighbors (i.e., shared 1-hop
neighbors), the counterfactual samples have multiple. The counterfactual links thus demonstrate
an alternative reason for why some links may form. Within link prediction, counterfactuals have
demonstrated the ability to enhance baseline model performance (Zhao et al.|[2022)). However, these
methods are often reliant on expensive pre-processing to generate counterfactuals, also requiring
prior knowledge of the dataset’s distribution shift, limiting real-world use (Zhao et al., 2022} Sun
et al.l [2022).

Thus, an important question is, how can we learn to efficiently generate new but meaningfully different
samples to improve LP generalization? To address this issue, we apply graph generation as a data
augmentation method to generate samples which are counterfactual to the training distribution. The
underlying principle behind this approach is to determine if it is possible to augment our training
distribution to increase generalization and potentially improve LP performance. In order to achieve
this, we design a new framework called FLEX which leverages a generative graph model (GGM)
co-trained with a GNN to produce subgraphs that are conditioned on a specific training link. The
goal of the GGM is to take a single potential link (that is positive or negative) as input, and learn
how to generate a new link that is counterfactual in structure to the input. To ensure that the GGM
learns to generate counterfactual links, we maximize the Kullback-Leibler (KL) divergence with a
quadratic penalty between posterior and prior sampling distributions to maximize structural diversity,
but ensure we don’t deviate too far from the original distribution. Furthermore, to avoid generating
the entire adjacency for each new link, we instead propose to work with subgraphs, thus overcoming
issues with efficiency.

Our contributions can be summarized as the following:

1. Overall, we introduce FLEX: a simple yet effective graph-generative framework that learns
to generate counterfactual examples for improved link prediction performance.

2. We demonstrate the effect of structural shifts through targeted analysis on link prediction
model performance.

3. We also conduct numerous experiments to show how FLEX can improve model generaliza-
tion across multiple datasets and methods.

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

We denote a graph as G(X, A), abbreviated to G, where X € R"*< represents the node features in
real space with n nodes and feature dimensions d. A € {0, 1}™*" represents the adjacency matrix,
within which nodes connect with one another to form edges, ¢ = (u, v). The k-hop subgraph of a

node v is denoted by Ag,k)
as AP = AP UAPD,

Link Prediction: Graph Neural Networks (GNNs) (Kipf & Welling},2017) are a common tool for
modeling link prediction. GNNs learn representations relevant to graph structure as embeddings,
H = GNN(X, A) which are then passed to link predictors to estimate whether a link will form or
not. However, several studies (Zhang et al., 2021} |Srinivasan & Ribeirol [2019) have shown that
standard GNNs are not enough for link prediction, as the models ignore the pairwise information
between two nodes. To account for this, recent methods either inject or augment pairwise information
within GNNSs to elevate their link prediction capabilities. We include more discussion link-prediction
models within Appendix [A]

. Consequently, the k-hop subgraph enclosed around an edge e is defined

Graph Generative Models: We treat graph generation as output of a scoring function s : R? x R? —
R to quantify similarity between node embeddings, which is often defined as an inner product:
s(u,v) = H, H, and further calculated as edge-probabilities, P((u,v) € E | H,,H,) = a(s(i, 7)),
where o (-) is the sigmoid function. Whereas, we focus on the capability of auto-encoders inferring
from latent embeddings to re-produce an adjacency matrix (Kipf & Welling}, 2016). More advanced
graph generation models exist: such as auto-regressive, diffusion, normalizing-flow, and generative-
adversarial networks (You et al., [2018; |Vignac et al.|[2022; Luo et al.,[2021; Martinkus et al., [2022).
However, these models often employ mechanisms which restrict their applications beyond graph
generation. For example, discrete-denoising models generate a new adjacency matrix with discrete
space edits, which can be computationally restrictive to re-train when generalizing on a variety of
different graph structures (Kong et al., [2023).

Methods for OOD: Numerous methods, operating underneath the invariance learning principle, exist
to improve the generalization performance of neural models (Arjovsky et al.||2019). These invariant
methods divide training data into environmental subsets for conditioning models to variance between
training subsets. However, these methods require careful considerations for effective performance
improvement in OOD scenarios (Gulrajani & Lopez-Paz, |2020). Additionally, generalizing with
these techniques is difficult for graph representation learning (L1 et al.| [2022bj; Revolinsky et al.,
2024). Therefore, architectures and techniques which target invariance principles within graph data
are employed to improve GNN performance (Chen et al., 2023} |Zhang et al.} 2022). Recently, graph
generation has been applied within OOD scenarios as well. For example, EERM is a technique which
integrates graph generators to improve OOD performance on graphs. However, the generators can
lead to scalability issues when considering the additional nodes necessary for link formation (Wu
et al., 2022). GOLD leverages latent generative models to learn on OOD samples, yet it functions
predominantly for OOD detection on graphs and not directly improving OOD generalization in link
prediction (Wang et al.| 2025). Lastly, CFLP (Zhao et al.| [2022) considers extracting counterfactual
links for enhancing link prediction. However, their proposed algorithm is (a) a non-parametric method
that relies on the Louvain (Blondel et al.,2008) algorithm, (b) has been shown to be prohibitive to
run. This paper’s initial runtime investigations verify CFLP’s difficulty scaling within Appendix [F}
Tables[5land

3 FLEX

In Section [} we introduced the OOD problem for link prediction and how graph generation has
potential to solve the problem. However, is it possible to generate such counterfactual links?
Effectively, there are endless “meaningless” graphs with no relevant structure to a training dataset;
a GNN tuned on these graphs is also likely to suffer decreased downstream model performance.
Therefore, applying graph data augmentation to improve performance requires understanding of the
structure within the graph dataset (Singh et al.,[2021). It’s thus desirable for a learnable framework
which understands link formation but can also target relevant graph structure to improve OOD
performance. To achieve this, we introduce FLEX, the Framework for Learning to EXtrapolate

Under review as a conference paper at ICLR 2026

G 1: Pre-Training 2: Tuning

—» [onN [minLip) Gs <
Lo O [sen]-> &I >

;v’GS + +

> [sicvag | -min Lgjy; min max Lpex = aLrp + Laen

Figure 2: An illustration of the FLEX framework for a single dataset sample. Step 1 involves
pre-training both models separately to optimize their performance, like in real-world scenarios. Step
2 involves adversarial co-training of the two models, where the GGM generates synthetic samples to
tune the GNN.

Structures in Link Prediction. As a graph data augmentation framework, FLEX utilizes a variety of
techniques to ensure: computability, scalability, and expressiveness.

Following these principles, FLEX then functions in two critical steps, as illustrated in Fig. [2] First,
we pre-train a GNN on the dataset’s full adjacency matrix by optimizing the predictive loss, Lpp.
GNN pre-training simulates a real-world scenario, where we may only wish to improve a pre-
existing model’s ability to generalize on OOD samples (Gui et al., 2022} |Krueger et al.| 2021). A
graph generative model (GGM) is then pre-trained separately to minimize generative loss, Lsyyr.
The GGM is conditioned on each sample (i.e., link) via the labeling trick on the k-hop enclosed
subgraph (Zhang et al.l 2021). This ensures that we can generate a new link that is counterfactual to
an existing link. Second, we apply both pre-trained models in a co-training framework, where the
GGM produces synthetic dataset samples as input for fine-tuning the GNN. The GGM maximizes the
distance between posterior and prior while the GNN attempts to minimize prediction loss; much like
adversarial-conditioning in GANs and other auto-encoder frameworks (Goodfellow et al.l|2020; Yang
et al.,[2019; [Wang et al.| 2025). As such, the GNN prediction loss functions to retain information
from the original dataset distribution, further acting as counterfactual conditioning to improve OOD
performance.

3.1 GENERAL MOTIVATION

The main objective of the FLEX framework is to generate graph samples which retain node feature
properties while producing edge structures counterfactual to the original data. After which, the
co-trained GNN is tuned on the synthetic counter-factual to improve performance. This is feasible
with any type of well-trained graph generative model (e.g., auto-encoders (Kipf & Welling, 2016) or
diffusion models (Vignac et al.| [2022)). To explain what constitutes a relevant counterfactual for link
prediction, we consider the following definitions.

Definition 3.1 (Basic Counterfactual Entity). Given a structural equation model (M), consisting of
two function sets (Y, X). Let M, represent a modified version of M where all possible X = x. When

we infer x from Y with an input w, this represents the axiom: Y, (u) = AYyy, (u) (Pearl, 2009).

As such, Definition represents the most basic example of a counterfactual, where ¥ would
properly denote the expected outcome y, had the function X been z for the given input u (Pearl,
2013). In context of machine learning, this is further represented as a model learning a function
which generalizes performance to testing data had training data formed differently.

To extend this for graph-structured data, specifically link prediction, we need an understanding of
what our generated samples should be counterfactual to. Intuitively, we target higher-order link
properties (Common Neighbors) which were previously unobserved within the training data. As
shown in the next definition, an encoder fy(-) that can extract expressive link features is therefore
necessary for producing proper counterfactual links. If fy(-) is not suitably expressive, our generative
model will be unable to distinguish higher-order link structure and fail to generate counterfactuals
relevant to the current model’s training distribution.

Definition 3.2 (Expressive Link Features). Consider an edge sample ¢ = (u,v), and it’s k-hop
subgraph A((gk). We want to learn an encoder fy(-) that can operate on Agk) and learn to extract

Under review as a conference paper at ICLR 2026

structural features H, that are specific to the link (u,v) (e.g., link heuristics (Newman} |2001} Katz,
1953)). We assume that fo(-) is expressive such that it can extract link-specific features. We then

represent the probability distribution of the features extracted by the encoder to be]P’H(Agk)) =
fo(AM).

Definition 3.3 (Structural Link-Counterfactual). For an edge sample e = (u,v), a meaningfully dif-
ferent sample (counterfactual) — AE’” exists where the link feature distribution estimated between the
original subgraph and it’s counterfactual are approximately non-equivalent, Pr; (A¥) % P H(Aé’“))

A proper counterfactual sample should have different underlying link features from the original sample.
As shown in Figure[T| we assume that we have an encoder which can extract common neighbors
(CNs) (Newman, [2001). Given that the training samples have no or few CNs, the corresponding
counterfactuals then contain a greater number of CNs. These new samples are thus structurally-
counterfactual, in that they differ in higher-order structural features but retain the original node
features.

Corollary 3.3.1 (Feature-Conditional Equivalence). Given the previous definition of counterfactual
structure, the link features contained within k-hop subgraph Aék) are not invariant in isolation as

we must consider the node features. Therefore, in order for Aé"') to maintain a valid counterfactual
structure, it must be conditioned on the node features X¥ within the original subgraph. That is,

IPH(ASJC) | Xk) = fg(Agk) | X*)) and IF’H(ASC) | Xk) = f@(]&gk) | X*)). For convenience, we
further write this as IPH(ng)) = fg(ng)) and]P’H(é.(gk)) = f@(égk)).

Therefore, the link-counterfactual is dependent on the compatibility between A and X. A failure
to properly condition structure on X will not fulfill the definition for counterfactual structure since
the newly-generated node features will introduce spurious correlations relative to original subgraph
samples. So, the encoder fy(-) must also consider the original node features as input. We further
explain these principle within Appendix [B]

Given these definitions, we can see generating proper counterfactual samples requires extracting link
features conditional to node features. To do this, we learn a Generative Graph Model (GGM) which
inputs both types of features to output a new sample with a different structural distribution. In order
to do this, we must ensure three things: (a) Scalability: In order to ensure relevance to real-world
problems, the GGMs must operate on large graphs. (b) Expressiveness: First, the extracted features
for each link must be suitably expressive. Second, the GGM itself will need to effectively sample
from complicated distributions to produce relevant graph structures. (¢) Counterfactual: Generated
structures must indicate a level of change which does not replicate the training distribution, but
retains meaningful feature correlation. In the rest of this section, we outline our method for tackling
these challenges. In consideration of space, we demonstrate the efficiency of our method within

Appendix [
3.2 SEMI-IMPLICIT VARIATION FOR OUT-OF-DISTRIBUTION GENERATION

Following principle (a.) from Section [3.1] the scalability of the practical implementation becomes
a concern. Computational complexity of more refined GGMs can be restrictive, whereas less
computationally-intensive generative models may result in low-quality generations (Simonovsky &
Komodakis} 2018} |Yan et al.,[2024). To balance this, we employ semi-implicit variation (Yin & Zhou,
2018), for it’s inherent scalability when implemented in an auto-encoder and it’s expressiveness for
modeling complex distributions.

Let the true data-generating distribution be p(G), and assume it is modeled via a latent variable model
with latent code H and a semi-implicit posterior of the form:

olHe | X, A9 = [(. | 0) ol | X9, A0 av, m

where ¢, (¢ | X, A) is a flexible (potentially implicit) distribution. Suppose the model is trained to
maximize the semi-implicit evidence lower bound (ELBO) (Hasanzadeh et al.| 2019):

Lsvi = EwN%(w\Xg’“),Ag’“)) [EHqu,(HW;) [IOgP(Agk) | He):| —KL(qy(He | ¥) || p(He)) |, ()

Under review as a conference paper at ICLR 2026

and assume p(H.) is a broad prior (e.g., isotropic Gaussian) while p(A | H.) defines a valid graph
decoder. Then, given an auto-encoder with an expressive architecture capable of distinguishing the
structure within samples drawn from g, and p, sampling from He ~ ¢4 (Hc |), ¢ ~ ¢4(¢) yields

synthetic graphs Ge = (Xe, Ae) whose features are derived from the original dataset distribution but
reveal emergent out-of-distribution (OOD) structure with respect to the training data Dy, ~ P(G),
provided that ¢4(¢) % G4(¢ | Duain). That is, the complete generative process follows:

ée ~ pQ(ée | He)a He ~ q¢(He | 7/))7 1/} ~ QQﬁ(’lp)a (3)

Therefore, Eq. [3|defines a valid procedure for generating OOD graph samples. In scenarios where
the sampled distribution is not a broad prior, this process then decomposes further to a standard
variational generative process (Hasanzadeh et al.|[2019; Kipf & Welling} 2016). We further develop
our reasoning on link-counterfactual generative processes in Appendix

As a learnable mechanism, semi-implicit variance (1)) often relies on inputting randomness into
prior distributions; this randomness can then be treated as an adversarial noise, much like how OOD
samples would appear to pre-trained GGMs. As such, an auto-encoder which effectively models
semi-implicit variance of training distributions can generate complicated graph samples which mimic
link-counterfactuals, fulfilling our expressiveness principle while maintaining the scalability of an
auto-encoder (Hasanzadeh et al.,[2019; |Simonovsky & Komodakis| 2018). We show in Section@]
that the use of a semi-implicit GGM to a standard graph GGM is helpful for strong counterfactual
generation.

3.3 LINK-SPECIFIC SUBGRAPH GENERATION

Semi-implicit variation assumes that a GGM can learn to generate Ge. However, as noted in
Definition[3.2] to make this task relevant to link-prediction and continue fulfilling the expressiveness

principle, we must first learn to extract link-specific features. That is, we want an encoder fg(Gék))
that can extract such features from the k-hop neighborhood of a link e = (u, v). Only then will our
GGM have the suitable amount of information to generate meaningful counterfactuals that differ in
key link properties.

To achieve this, the encoder fy(-) should be able to effectively encode the graph conditional on a
specific link. The link-specific representations are then used by the GGM for generation. (Zhang
et al.,[2021)) show that standard GNNs aren’t expressive to links. To combat this, they introduce the
labeling trick that ensures that a given GNN can learn to distinguish target links from other nodes
within a graph sample. They demonstrate that the labeling trick can extract a number of different
relevant structural features for a link (Zhang & Chen, 2018)).

The labeling trick is defined as a function ¢ : A*) — {0, 1} where for a link e = (u,v) the value for
a sampled node x is given by:

1, fe=worz=v
f) = {O, else “)

This results in a labelled subgraph Lgk) which is fed, along with the node features, to a GNN to
produce the link-specific representations:

H, = GNN(L®), x %),)
Given that all edges within a graph are viable link prediction targets, an effective zero-one labeling
requires extracting the k-hop enclosed subgraphs conditioned on a target edge, ng). When these

subgraphs are restricted to a smaller size, this reduces the direct computation required from the GGM
to model subgraph distributions, ensuring FLEX’s scalability principle (Zhang & Chenl 2018)).

3.3.1 NODE-AWARE DECODER

Furthermore, to continue ensuring scalability and expressiveness. The decoder for FLEX’s GGM is
made aware of the independent number of nodes within subgraph samples for a given mini-batch
along the block diagonal matrix, A = diag(A;,..., Ax) with A; € RNi*Ni | This ensures that
generated subgraphs retain the original number of input nodes and prevent message-passing along
edges between distinct subgraph samples.

Under review as a conference paper at ICLR 2026

Within early experiments, as shown in Figure [I3] generated subgraph samples suffered from the
degree-bias phenomenon (Tang et al.,[2020). Wherein, the backbone GNN learns on nodes with a
higher number of edges at a much-greater frequency than low-degree nodes, prioritizing learning
information from the high-degree nodes (Liu et al.,[2023)). Therefore, generated subgraph samples
were always dense, regardless of the input graph’s node-degree. We verify this phenomenon in
Appendix [M] To account for this, we apply an indicator function to FLEX-generated subgraphs which
eliminates edges with lower probability than a threshold, :

p(u,v) = p(u,v) - I[p(u, v) > 1]. ©)

This function only keeps those links with high probability, constraining the GGM to connect links
which it is most confident in. As such, the indicator function prevents densely-connected graphs,
especially for OOD scenarios where training on dense graphs may not be desirable for downstream
performance. The value of the threshold is treated as a hyperparameter. In Section[4.3] we show
how the value of v impacts performance.

3.4 GENERATING COUNTERFACTUAL LINKS

As part of FLEX, all previous components work to produce meaningful subgraphs. However, it is still
necessary for the GGM to learn how to produce subgraph samples which are structurally-dissimilar
from training, while retaining relevance to the node features within the training distribution.

As discussed in Definition [3.3] to ensure generated samples are link-counterfactual we can input links
structural feature distribution. That is, for an input training sample e = (u, v) and it’s counterfactual,
we want that Pz (AF) % IP’H(ASC)) where AlF) = po(Ge | He). That is, we need to optimize the
GGM to maximize the difference in input and generated samples; max Lggn Where Lggy is defined
as in Eq.

However, blindly maximizing the generative loss will result in generated subgraphs which are
structurally-incoherent to our training samples and therefore our baseline model. In reality, we nudge
the generated sample distribution to modestly differ in key structural features. We ensure this in two
ways. First, we apply a quadratic penalty to the generative loss Lggn. The penalty is centered around
a target value, 7. This penalty restricts any shifts to the posterior distribution. In effect, generated
graphs will only deviate slowly from the prior distribution and prevent the samples from devolving
into noise. This is given by the following,

Laex = — (Lsivi — KL (Ewwqu(mxﬂ,Ae) [q(He |)] || p(He)) — T)2~ (N

Second, we also attempt to correctly classify the link based on it’s original label. That is, we want to
predict the existence of the original link based on the newly generated sample. This serves as a means
for inducing learnable counterfactual treatment within the GGM. If the generative model deviates
too far from the training distribution or considers useless structural features, the GNN will be unable
to cope, thus resulting in poor classification performance. It therefore allows for a “check” on the
generation quality, limiting the potential for incoherent generation.

The final optimization goal of FLEX is given by the following, £;p denotes the classification loss
(BCE):

min max Lpex = aLip + L 8
nin max Lpex LP GEN (8)

o represents the weight assigned to the counterfactual predictions produced by the GNN tuned within
the FLEX framework. Since the co-trained GNN is tuned on synthetic samples, the minimization of
L1 p ensures that the GNN retains it’s ability to predict on positive and negative samples while also
conditioning the maximization of Lggn. In tandem, the two function in an adversarial co-optimization
to predict on samples with increasingly different structures (Pan et al., [2018; |Wang et al., 2025).

We further illustrate the overall framework in Figure[2| In the first stage both the GNN and GGM are
trained separately. Then in the second stage, the components are co-trained via the objective defined
in Equation [§] Both procedures are described further in Algorithm[I] In the next section, we test
FLEX, showing it’s ability to improve OOD performance for link prediction.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We now evaluate FLEX to answer the following research questions. RQ1: Does FLEX contribute
to better link prediction performance in OOD scenarios? RQ2: How might separate components
of the FLEX framework improve OOD performance? RQ3: How sensitive is FLEX to different
hyperparameter settings? RQ4: Does FLEX learn to generate link-counterfactual samples?

4.1 SETUP

Our benchmarking experiments apply two different GNN backbones, Graph Convolutional Network
(GCN) and Neural Common Neighbor (NCN) (Kipt & Welling) 2017; Wang et al., 2023). We
then compare against the following generalization methods: CORAL, DANN, GroupDRO, VREX,
IRM (Sun & Saenkol 2016; |Ganin et al., | 2016; Sagawa et al., [2019; |Krueger et al., 2021} |Arjovsky:
et all[2019). Detailed hyperparameter settings are included within Appendix [G| For datasets, we
consider the synthetic datasets generated via the protocol designed by LPShift (Revolinsky et al.|
2024). Please see Appendix [H|for more details. As a means of testing performance under distribution
shift, we test on the original ogbl-collab split (Hu et al.,|2020) and domain-transfer between Amazon
Photos and Computer (Shchur et al.,[2018). Lastly, all synthetic datasets are evaluated using Hits @20,
while ogbl-collab is evaluated with Hits@50 and domain-transfer with AUC.

4.2 RQI1: FLEX PERFORMANCE

As shown in Table 3] FLEX improves the performance in 28 out of 29 data scenarios when applied to
GCN, and for all tested scenarios when applied to NCN. This leads to an average relative increase
of 4.41% to GCN and 9.56% to NCN. On the other hand, other baselines either perform worse or
on-par with GCN. This indicates that FLEX generates subgraphs which improve model generalization
under distribution shift.

Table 1: Hits@20 results for real-world and LPShift datasets, AUC results for domain-transfer
datasets. LPShift dataset splits are marked “Forward” and “Backward”, “Forward” meaning more
higher-order structure within testing versus training, and vice versa for “Backward”. CN = Common
Neighbors, PA = Preferential-Attachment, SP = Shortest-Path. LPShift results are averaged across
five datasets (Collab, PubMed, Cora, CiteSeer, PPA).

Datasets Methods

Type Name Metric | Avg. OOD | VGAE | CFLP | GCN | GCN+FLEX | NCN | NCN+FLEX
CN Hits@20 | 51.07 +1.88 | 50.71 £1.06 | 53.70 +1.90 | 53.61 £ 1.13 | 54.43£0.33 | 50.47 £2.24 | 52.55+0.27
Forward PA Hits@20 | 62.99 £3.09 | 63.36 £2.01 | 67.61 £3.71 | 67.47 £2.66 | 68.86+ 1.87 | 68.27+0.87 | 68.97 +0.19
Sp Hits@20 | 41.70 £2.48 | 46.89 £ 1.60 | 35.64 +2.51 | 4427 £2.36 | 46.56+1.29 | 46.63 £2.00 | 52.46 +£6.10
CN Hits@20 | 27.44 £2.30 | 2629 £2.03 | 27.46+£0.99 | 29.69 £ 1.71 | 31.57£0.43 | 22.06 + 1.66 | 24.33 +1.33
Backward PA Hits@20 | 37.49£2.45 | 31.97+1.30 | 38.92+1.86 | 44.52+1.66 | 43.82 +1.53 | 38.19+4.05 | 41.30£0.11
SP Hits@20 | 23.86 £2.79 | 2628 £2.75 | 23.07+1.89 | 2496 £2.70 | 27.22+0.76 | 22.61 +2.41 | 28.09 + 0.86
Collab Hits@50 | 47.98 +1.02 | 50.71 £0.21 OOM 50.40 £ 1.01 | 52.42+0.08 | 64.83+0.18 | 64.99 +0.32

Real P—C AUC 85.80 £3.52 | 88.94 + 1.06 Oo0T 87.48+£2.73 | 91.16 +1.24 - -

C—P AUC 82.58 +4.61 | 86.44 £3.15 Oo0T 83.87 £5.08 | 91.36 + 0.05 - -

Avg (A%) - | -7.44 | -7.09 | -0.19 | - | +4.41 | - | +9.56

4.3 RQ2:F ORK A 0
3 Q RAMEWORK ABLATION Table 2: Ablation across the LPShift

In order to determine which components of FLEX func- Backwards" CN Splits.

tion to improve performance, we ablate across singular
mechanisms which are directly involved with the FLEX-

tuning process for the co-trained GNN. This includes the o | #7505 42201 i 1) s
use of (a) semi—implicit variation, (b) an expressive link “pumea | 29.31+0.12 | 28.07 +0.12 | 28.66+0.57 | 27.95+0.08
encoder (SEAL), (¢) the LP loss L:LP described in Eq_ B} Collab | 25.24+0.01 | 2476 +0.03 | 24.78 +0.69 | 24.80 +0.69
As shown in Table 2] ablating each component leads to a

consistent decrease on four different datasets, thus validating the importance of each component.

Models
FLEX | w/oSEAL | w/o LP Loss | w/o SIGVAE

Dataset

Under review as a conference paper at ICLR 2026

4.4 RQ3: HYPERPARAMETER SENSITIVITY

In order to gauge the impact the that Eq. [7|has on downstream performance for FLEX, we con-
duct a study which measures the difference in performance across the indicator function’s target
v = {0.0,0.25,0.5,0.75,0.9,0.9999}. As shown in Figure [3| we see that the “Backward” split
experiences gradually increasing performance up to a value of 0.9 while the “Forward” split per-
formance sharply decreases at a threshold value of 0.9999. Given that indicator threshold values
directly affect edge-probabilities, these results demonstrate that sparser generated graphs are useful
for the “Backward” split to a point. Whereas little seems to affect a change in the “Forward” split
performance until the graph grows too sparse at 0.9999. We also include the effect of the learning
rate in Figure 9]

Backward 0.0 Forward
46 '
67.5
S 44
65.0
94 }\
2 62.5
T a0
0.0 02° 05 0.1% 090‘9999 00 02° 05 0.1° 0.90 9999
Threshold

Figure 3: Performance of FLEX on the "Backwards CN" CiteSeer dataset across thresholds.

4.5 RQ4: OOD STRUCTURAL ALIGNMENT

To further verify the effect that FLEX has on graph structure and whether it generates samples with
counterfactual link-structure, we directly measure the distribution of Common Neighbors within the
original training and validation distribution versus FLEX-generated subgraphs. As shown in Figure 4}
the “Flex - Generated” sample distribution closely matches the distribution of validation samples for
the “Backward” subplot, with none of the FLEX samples exceeding a difference of 0.17 CNs. This
is a 3-10x improved alignment versus the original training distribution. Within the “Forward” split,
FLEX samples are verifiably denser than the 0 CNs present in training. Despite this, the threshold
function still manages to ensure that FLEX samples never exceed a CN threshold of 1. This indicates
that FLEX is successfully targeting structure to produce graphs which are link-counterfactual
to the training distribution and help improve performance. A core consideration is FLEX’s ability
to do this without requiring access to validation or testing samples. We include more results on how
FLEX affects node-degree and clustering coefficient within Appendix

Bl Train Faal Valid L Flex - Generated

Backward Forward
6 588 0.82
0.8 o .
5
0.6
4
(2]
53 0.4
2
112 b 0.2 0.18}
1 0.90 o d
0.46 ; 0.06 °
0 Jg.g&‘ lﬂl@.ﬂ‘ Ionﬂl_l v 0.0 oozl 000k :
CiteSeer Cora PubMed Collab CiteSeer Cora PubMed Collab

Figure 4: The distribution of Common Neighbors (CNs) scores across different dataset splits for the
Backward and Forward CN LPshift splits.

5 CONCLUSION

Within this work, we formalize a theory for generating link-counterfactuals. To test this theory, we
introduce FLEX, a simple generative framework which targets link-structures within input samples to

Under review as a conference paper at ICLR 2026

produce link-counterfactuals which improve downstream performance. Further experimentation indi-
cates FLEXs ability to model OOD structures without access to validation and testing distributions.
Additionally, tuning within the FLEX framework improves performance under realistic and synthetic
distribution shifts, even where traditional generalization methods often decrease performance. This
work opens considerations on the application of graph generation with distribution shifted scenarios,
potentially opening a path to further development of counterfactuals within graph representations.

6 LLM USAGE DISCLOSURE

We use LLMs solely as writing-assist and coding-assist tools to polish the manuscript and debug
broken functionality within this research’s code. LLMs were used to fix broken formatting within
LaTeX and resolve persistent dataloading issues. All research ideas, methodology, experiments,
theoretical analyses, and initial drafts were conceived and written by the authors.

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211-230,
2003.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert D Nowak, and Yixuan Li. Feed
two birds with one scone: Exploiting wild data for both out-of-distribution generalization and
detection. In International Conference on Machine Learning, pp. 1454—1471. PMLR, 2023.

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for graph
classification extrapolations. In International Conference on Machine Learning, pp. 837-851.
PMLR, 2021.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for
link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Yonggiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
graph learning via environment augmentation learn invariance? Advances in Neural Information
Processing Systems, 36:71486-71519, 2023.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1-35, 2016.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Alleviating structural distribution shift in graph anomaly detection. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, pp. 357-365, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
Advances in Neural Information Processing Systems, 35:2059-2073, 2022.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

10

Under review as a conference paper at ICLR 2026

Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and
Xiaoning Qian. Semi-implicit graph variational auto-encoders. Advances in neural information
processing systems, 32, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark
for ai-aided drug discovery—a focus on affinity prediction problems with noise annotations. arXiv
preprint arXiv:2201.09637, 2022.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39—43, 1953.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning, pp.
5637-5664. PMLR, 2021.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pp. 17391-17408. PMLR, 2023.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapola-
tion (rex). In International conference on machine learning, pp. 5815-5826. PMLR, 2021.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized
graph neural network. IEEE Transactions on Knowledge and Data Engineering, 2022a.

Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. Advances in Neural Information Processing Systems, 35:
11828-11841, 2022b.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking.
Advances in Neural Information Processing Systems, 36, 2024.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the twelfth international conference on Information and knowledge management,
pp- 556-559, 2003.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4525-4533, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pp. 7192-7203. PMLR, 2021.

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. Advances in neural information processing systems, 35:
25895-25907, 2022.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? Advances in
Neural Information Processing Systems, 36, 2024.

11

Under review as a conference paper at ICLR 2026

Karolis Martinkus, Andreas Loukas, Nathanaél Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159-15179. PMLR, 2022.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. Structural counterfactuals: A brief introduction. Cognitive science, 37(6):977-985,
2013.

Jay Revolinsky, Harry Shomer, and Jiliang Tang. Understanding the generalizability of link predictors
under distribution shifts on graphs. arXiv preprint arXiv:2406.08788, 2024.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Gilinnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: an adaptive
graph transformer for link prediction. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 26862698, 2024.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning—ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412-422. Springer, 2018.

Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, and
Austin R Benson. Edge proposal sets for link prediction. arXiv preprint arXiv:2106.15810, 2021.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2019.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
Computer Vision—ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part III 14, pp. 443-450. Springer, 2016.

Teng Sun, Wenjie Wang, Liqaing Jing, Yiran Cui, Xuemeng Song, and Ligiang Nie. Counterfactual
reasoning for out-of-distribution multimodal sentiment analysis. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 15-23, 2022.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1435-1444, 2020.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Danny Wang, Ruihong Qiu, Guangdong Bai, and Zi Huang. Gold: Graph out-of-distribution detection
via implicit adversarial latent generation. arXiv preprint arXiv:2502.05780, 2025.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

12

Under review as a conference paper at ICLR 2026

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In The Twelfth International Conference on Learning Representations, 2023.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations (ICLR), 2022.

Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
for graph neural networks. arXiv preprint arXiv:2302.02914, 2023a.

Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-distribution general-
ization via causal intervention. In Proceedings of the ACM on Web Conference 2024, pp. 850-860,
2024.

Xinheng Wu, Jie Lu, Zhen Fang, and Guangquan Zhang. Meta ood learning for continuously adaptive
ood detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 19353-19364, October 2023b.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. Transactions on Machine Learning Research,
2024.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. Advances in neural information processing
systems, 32, 2019.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International conference
on machine learning, pp. 5660-5669. PMLR, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp- 5708-5717. PMLR, 2018.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683—13694, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061-9073, 2021.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. Advances in neural information
processing systems, 35:6074-6089, 2022.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26911-26926. PMLR,
17-23 Jul 2022. URL https://proceedings.mlr.press/v162/zhao22e.html.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. Ood link prediction generalization capabilities of
message-passing gnns in larger test graphs. Advances in Neural Information Processing Systems,
35:20257-20272, 2022.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford

networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476-29490, 2021.

13

https://proceedings.mlr.press/v162/zhao22e.html

Under review as a conference paper at ICLR 2026

A RELATED WORKS - CONTINUED

There are numerous models and methods to improve the link-prediction capabilities of GNNs. First
of which include SEAL (Zhang & Chenl 2018)) and NBFNet (Zhu et al [2021)), which consider
message passing schemes that are conditional on a given link. To improve efficiency, other methods
don’t modify the message passing process, instead opting to include some link-specific information
when scoring a prospective link. BUDDY applies a unique version of the labeling trick to subgraphs
for generalizing on structural features (Chamberlain et al.,[2022). NCN/NCNC (Wang et al |, [2023)
and Neo-GNN (Yun et al., 2021) both elevate traditional link heuristics via neural operators to
better understand link formation. Lastly, (Shomer et al.,2024) proposes a more general scheme for
estimating the pairwise information between nodes that adaptively learns how two nodes relate. A
core component of these models is their increased reliance on the substructures contained within the
graph datasets, which improves the model’s expressivity but can affect prediction performance in
OOD scenarios (Mao et al., [2024).

B SET-THEORY PERSPECTIVE

Within the following section, we detail how treating the space of training and test samples within
the domain of their node features can feasibly lead to scenarios where a GGM will produce link-
counterfactual samples which extend the scope of the training distribution with the testing distribution.

Definition B.1 (Node-feature domain and link distributions). Let X C R be the node-feature space.
A link is an element of X X X. Let P ain and Piesy be probability measures on X x X with supports

T:= Supp(Ptrain)7 U := supp(Ptest)-

Remark 1. In Figure|§|, T (blue) and U (red) are subsets of the same domain; their overlap T'N U is
visualized by triangle hatching.

Assumption 1 (Link-counterfactual conditioning mechanism). There exists a counterfactual mecha-
nism C that, given samples from Py, and link structure, produces link-counterfactuals samples in
aset S CX xX. WeassumeT CT' :=T US (closure taken in X x X). Operationally, C may
be implemented by counterfactual structural perturbations parametrized by ELBO-guided sampling
under learned generative constraints. In Figure[6] S is indicated by square hatching surrounding T
(vellow annulus).

Domain

Figure 5: The domain space depicting 1" (Train) and U (Test) with triangle hatching for T'N U.

Definition B.2 (Overlap measure). Let p be the ambient Lebesgue measure on R>? (or any measure
absolutely continuous with respect to both P;,ain and Piegs;). Define the overlap sizes

NT,U) := (T NU), QT U) :==u(T'NT).

14

Under review as a conference paper at ICLR 2026

Figure 6: The domain space extended from Figure [5| The larger (yellow) set encapsulating T’
demonstrates the expansion to 7" via S (square hatching), increasing the overlap with U as guaranteed
by Theorem]

Theorem 1 (Coverage expansion via structural conditioning). Under the Structural Conditioning
Assumption, if the conditiond set intersects the OOD region with positive measure,

p(SN(U\T)) > 0,
then the training—test overlap strictly increases:
QUT',U) > QT,U).

Proof. By definition 7" =T U S and T C T". Hence
T'NU = (TuS)NnU 2 (TuS)NU = (TNU) U (SNU).
Taking i and using subadditivity with the union decomposition,
wT'NU) > wW(TNU)+p(SNUN\(TNU)).
Note that SNU \ (I'NU) = SN (U \T). By our hypothesis x¢(S N (U \ T)) > 0, therefore
w(T' NU) > w(TnU).
Equivalently, Q(T",U) > Q(T, U), proving the claim. O

Corollary B.2.1 (Bayesian consequence for generalization). Assume a model class with likelihood
py Is trained only on Py (or its empirical sample) to form a posterior p(6 | Dirain)- IfTheorem
holds, then evaluating on Piesy after augmenting training with link-counterfactual samples from
S reduces the measure of purely OOD inputs U \ T' compared to U \ T. Consequently, any risk
functional that is nonnegative and integrates over test support (e.g., expected loss) can only benefit
from the reduction of the OOD region, all else equal.

Definition B.3 (Structural hull of training support). Let 11 be a family of structure-preserving
perturbations (e.g., counterfactual edits that obey graph constraints such as Common Neighbors).
Each © € Il induces a measurable map @, : X x X — X x X. The structural hull of T" =
Supp(Ptrain) is

Hullp(T) = {®;(z) : 2 €T, rell} C X xX.
Assumption 2 (Encoding Continuous Embeddings). Given our encoding scheme (11 : G — H), the
sets (T, U, S) are mapped into continuous representation space (H C R??) (i.e, a continuous latent
embedding space). Therefore, enabling the ability to affect coverage given the ambient Lebesque
measure, [i. We treat X and H interchangeably.

15

Under review as a conference paper at ICLR 2026

Assumption 3 (ELBO-trained generator with structural constraints). Let pg(z | z) be a decoder
likelhood on X x X with latent prior p(z), and let q4(z |) be a variational encoder. Training
maximizes the ELBO over Dy,ain, possibly augmented with structure-preserving perturbations 11:

LeLpo(0,¢) = Eznpyain {]Ezwq(p(-m [logpe(z | 2)] — KL(gy(z | x) ||p(2))}

subject to x € Hullp (T).

Sampling link-counterfactual points is implemented by: draw x ~ Pipain, choose m € 11, form
Z = O, (z) € Hullg(T), then sample z ~ q4(- | &) and emit & ~ py(- | z). Let S be the set of
realizations of & with non-negligible likelihood under the trained (0, ¢).

Assumption 4 (Support-positivity and absolute continuity). (i) ps(x | z) > 0 for all x in an open
neighborhood of Hully (T') for qg-a.e. z (decoder has positive density on a structural neighborhood).
(ii) Piesy is absolutely continuous with respect to . (the ambient Lebesgue measure on R?>?). (iii)
There exists a set W C Hullp(T') N U with 1(W) > 0 such that inf,ew E. g, (.| [Po(7 | 2)] > 0
(posterior predictive places nonzero mass on a test-overlapping region of the hull).

Lemma 1 (ELBO-guided structural conditioning yields positive OOD coverage). Under the above
assumptions, the structurally-conditioned sample set S satisfies

p(SN(U\T)) > 0.

Consequently, the hypothesis of Theorem|l| holds, and the training—test overlap strictly increases:
QT,U) > QT,0).

The question still remains, how do we extend these Set-theoretic principles into the discrete domain
for generating link-counterfactuals which can improve OOD performance?

Proof sketch. By construction, realizations & concentrate where the joint g, (2 | 2)pe(Z | 2) is large
with z € Hullpr(7"). Assumption 3(i) implies that for any measurable A C Hull (7)) with 1(A) > 0,
the decoder assigns strictly positive probability to neighborhoods within A. By 3(iii), there exists
W C Hullp(T) N U with u(W) > 0 on which the posterior predictive is uniformly positive, so
samples land in W with nonzero probability. Since W C U and, by defintion of OOD, U \ T has
positive pi-measure in typical OOD scenarios (Figure[6), we obtain ;(S N (U \ T')) > 0. Therefore
the sufficient condition of Theorem [T]is met. O

Remark 2 (Operational Takeaway #1). If your generator is trained with ELBO while respecting
structural perturbations I1, and the decoder retains positive density on a neighborhood of the structural
hull, then sampling through the encoder—decoder pipeline from structurally-perturbed points produces
a set S that (with positive measure) reaches into the OOD region U \ T, thus enlarging coverage and
improving test overlap.

Remark 3 (Operational Takeaway #2). Genuinely ensuring that learned parametrizations of structural
perturbations IT always increase coverage to OOD regions/datasets is difficult in practice, since
p-measure for all possible OOD samples are inaccessible or have limited accessibility from the
training distribution. Careful considerations about dataset balance must be considered (i.e. smaller
structures in training samples have less to infer for structure in larger testing samples)

We further formalize the intuition that augmenting training support broadens test risk to improve
coverage within OOD scenarios.

Proposition B.1 (Coverage-based OOD risk bound). Let ¢ € [0, 1]. For any predictor f,

Rtest(f) < Rtrain’ (f) + 5/7
where §' := Piost(N') and N’ = supp(Piest) \ SUpP(Prrain’)-

Proof sketch. Decompose the test risk over the covered and uncovered regions:

Rios(£) = [60.0)dPes(@) + [€07,2) dPros(0).

’

16

Under review as a conference paper at ICLR 2026

On (', the density of Py is supported inside supp(Piyain’), SO We can rewrite
E(fa .’L’) dPyest (.’t) < Rtrain’(f)
C/

up to standard estimation error terms (handled separately by classical generalization bounds). On N’,
we only know that ¢ < 1, hence

(f,LI}) dPtest(x) S / 1dPtest(x) - Ptest(N/) - 61-

’

14
N/
Combining the two inequalities yields Riest (f) < Rirain’ (f) + 9. O

Corollary B.3.1 (FLEX shrinks the uncovered test mass). Assume the conditions of Lemmall|and
Theorem([l} and suppose Pies; is absolutely continuous w.r.t. juon U. Let

= Ptcst(U\T)a (S/ = Ptcst(U\T/)-
Ifu(SN(UN\T)) >0, then
§ < 4.
Consequently, for any predictor f,

thst(f) S Rtrain’ (.f) + 5/ < Rtrain’ (f) + 0.

Remark 4 (KL-regularization as a surrogate for coverage expansion). Our FLEX objective maximizes
a KL divergence KL(P || Pirain) constrained to the structural hull Hullp (7). Under mild regularity
conditions, any nontrivial increase in this KL divergence implies that the counterfactual distribution
P, assigns positive probability to regions of U \ T with p(-) > 0, thus increasing u(S N (U \ T))
for the resulting sample set S. The coverage expansion guaranteed by Lemmal|[T]then translates, via
Proposition[B-1] into a strictly tighter upper bound on our test risk.

17

Under review as a conference paper at ICLR 2026

C RAW RESULTS TABLES

Table 3: Results for the LPShift Datasets by direction (forward or backwards) and type (CN, SP or
PA). OOT = Out-of-Time, OOM = Out-of-Memory. Ordered from bottom up: Collab, PubMed, Cora,
CiteSeer, PPA. Note: PPA for PA and SP is missing due to taking >24h. Results for the original
ogbl-collab (Hu et al., 2020) are included as real. Cross-Domain transfer dataset performance is
measured after one-shot tuning on top of an already-tuned baseline. We highlight in blue when FLEX
increases over the base model and red otherwise.

Models
Dataset CORAL DANN VREx VGAE CFLP Cr NCN+FLEX EERM HL-GNN | HL-GNN+FLEX GAT GAT+FLEX GIN GIN+FLEX
30932024 | 0862032 76| 30932024 | 25782204 | 21602020 2501 | 1952075 — | 092+05% | 31732030
w e 1632251 | 6 30 | 75835442 | 7934201 4716463 615 S50 103
70| 575 53158358 24| 56642129 31102326
5 | 7160 2066 oot %7106
o 4361121 | 420 0OM 34
H BETES] 6605416 50032499
H 5105536 50852450 | 55 w3108 3125398 | 3
£ 7 | sia0s0 8179335100 | 52 7699£077 65005 160 0475212 | 7
61522092 | 60272066 | 53482031 | oo 48741470 S1A12136 | 52532049 | 56724512
FIvERET) 4328 | 39492240 0742493 5895460 | 37
26652312 | 2682 39562309 2311355 2142413 | 2
N | 66635077 501363 w2t
oom 3264484 5 119248
207 CEE o [EE
ae7x 125 382405 53962 66
oot 34191350 9| 3013287
oot 2104307 18332435
- oM 35, 1635259
H Wols 16 e im 55157
H 2825209 35812210 5795063
H oot prrvers)
oM ooM 3644 189 4713261
o852 BWA9E419 | D022 130 | 16982512 0 | Boieies | Ba1257i| 2954020 [11282503 | 5122072 | BAIE48
o 26582491 | 27.122248 | 26672349 310| M63:291 | 12952486 | 15072131 | 17285422
3 Isassias | oot | 2615173 26055178 | 12102210 | 14012029 | 18275287
53485058 54552053 | ooM | 33807 6035439 | 19185246 | 21095 103 | 1834
5 [#8302061 | 9352075 50712021 00M | 50402 L01 B - - = -
1922184 | 86732 131 894106 | 00T 2 2
82625457 | 81942500 soasi3ts | oor | suwrases |oisszoos | - - 00M - - - - - -
2 = o1 - 531 - 3% - - a6t - Wi - 00

D GRAPH GENERATION STATISTICS

Within this section, we further detail how FLEX can generate samples which are link-counterfactual
to their training input. As shown within Table] we see that the node-degree of FLEX-generated
samples more closely-aligns with the testing distribution. However, the clustering coefficient for
FLEX-generated samples differs from training for Cora and PubMed but also from testing against all
three datasets. Therefore, indicating that FLEX-generated need not fully-align with testing samples
in order to improve the baseline GCN performance.

Table 4: Graph Generation Statistics

Degree Cora Citeseer Pubmed
Train 3.34 391 4.12
Flex 2.38 2.62 2.92
Test 2.57 2.64 2.67
Clustering Coefficient Cora Citeseer Pubmed
Train 0.60 0.48 0.36
Flex 0.49 0.48 0.31
Test 0.58 0.57 0.38

18

Under review as a conference paper at ICLR 2026

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994 Figure 7: The training, FLEX-generated, and test subgraphs for the ogbl-collab dataset.
995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

1015

1016 Figure 8: The training, FLEX-generated, and test subgraphs for LPShift’s "Backwards - CN” CiteSeer
dataset.

1017

E GRAPH GENERATION VISUALIZATIONS

Train FLEX Test

Train FLEX Test

1018
1019
1020
1021
1022
1023
1024
1025

19

Under review as a conference paper at ICLR 2026

F MODEL COMPLEXITY ANALYSIS

Table 5: CFLP edge-calculation pre-processing step with 16 data workers on the "Forward" and
"Backward" variants of the LPShift dataset.

Forward | Cora | CiteSeer | PubMed | ogbl-collab | ogbl-ppa

|

CN | 35388s | 18233s | 2536764s| OOM | OOM |
PA | 597s | 1007s | 6464461s | OOM | - |
SP | 128298s | 634.18s | OOT | OOM | - |
Backward | Cora | CiteSeer | PubMed | ogbl-collab | ogbl-ppa |
CN | 211547s | 182335 | 25367645 | OOM | OOM |
PA | 3607995 | 22932.10s | OOT | OOM | - |
SP | 625925 | 36385355 | OOT | OOM | - |

Table 6: Per-Epoch Training efficiency of FLEX versus CFLP

Dataset Models

Cora | CiteSeer | PubMed | ogbl-collab | ogbl-ppa
FLEX | 0.366s | 0450s | 3.19s | 1327s | 9452s
CFLP | 0382s | 05l4s | 5604s | OOM | OOM

Table 7: Inference runtime (in seconds) of FLEX versus a baseline GCN across the Common
Neighbors Split of the ogbl-collab dataset.

Dataset Models
Cora | CiteSeer | PubMed | ogbl-collab | ogbl-ppa

GCN | 0.1566s | 0.8839s | 0.4175s | 29.31s | 62.3475s
FLEX | 0.1564s | 0.1411s | 0.4207s | 27.4656s | 61.263s

To verify FLEX’s memory and time complexity, we derive the separate components of FLEX’s
autoencoder and baseline: L = layer, B = batch size, K = noise steps, ¢ = subgraph edge, n = node
edge, d = dimension, d, = sampled dimension, m = candidate samples.

* Encoding works across nodes and edges for: LB(ed + nd?). Sampling works across the
latent dimension for: K Bndd,, Decoding works across the final output for: K Bmd..
Cumulatively, these three steps work in sequential order for a time-complexity: Tyqten =
O(LB(ed + nd?) + KBnd, + KBmd,).

* FLEX functions with a given GNN backbone (T v), we abstract this and integrate into
the overall framework for a time complexity of: O(Tpatch + TaNN)-

* For memory complexity, autoencoders are linear across the sampled latent dimension (d)
on given nodes (n) and edges (m), where semi-implicit variation aggregates across noise
(K) to derive: Mputep, = O(LB(nd + ed) + K Bnd,,).

20

Under review as a conference paper at ICLR 2026

Table 8: The maximum memory (megabytes) utilized when training with of batch size of 32 by a
baseline GCN versus GCN integrated within the FLEX framework. Out-of-memory (OOM) occurs
on ogbl-ppa due to the severe graph density. In practice, when training on ogbl-ppa we lower the
batch size to 4.

Dataset Models
Cora | CiteSeer | PubMed | ogbl-collab | ogbl-ppa

GCN | 3171.88MB | 3129.93MB | 3653.11MB | 4387.33MB | 5373.76MB
+FLEX | 3932.12MB | 3171.88 MB | 3904.29MB | 6387.33MB | OOM

G HYPERPARAMETER SETTINGS

Initial tuning of GCN on all tested datasets and NCN on the LPShift datasets followed a hierarchical
approach. Initially, GCN was tuned for 1000 epochs in single runs with early-stopping when
validation performance did not improve after 20 steps, a learning rate of le — 3 and dropout of
0 across a number of layers = {2,3} and number of hidden channels = {128,256} and batch
sizes = {32,64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 }. Initial NCN tuning
followed the same approach, except for being limited to 100 epochs. Dropout and Learning Rate
were fixed across the backbone GCN and link predictor.

The second phase of GCN and NCN tuning fixed hidden channels, number of layers, and batch size
and then search across a space of learning rate { le-5, le-6, le-7} and dropout = {0.1,0.3}. NCN
was tuned on the ogbl-collab dataset following the author’s provided hyperparameters (Wang et al.,
2023), as indicated in Table[T0} Tuning of the OOD baselines follows the methodology set in (Gui
et al., 2022). To do this, we integrate the open-source GOOD (Gui et al., 2022) algorithms within the
backbone GCN before feeding the learned GCN embedding to an MLP link-predictor.

To determine the best OOD method hyperparameter settings, we apply the tuned baseline GCN
parameters and further tune across OOD loss coefficients as follows: CORAL = {0.01,1.0,0.1},
VREx = {10.0,1000.0,100.0}, IRM = {10.0,0.1,1.0}, DANN = {0.1,1.0,0.01}, GroupDRO
= {0.01, 1.0,0.1}. Final loss coefficients are shown in Table@ The number of equal-sized, randomly-
sampled environmental subsets were determined in a grid-search across, e = 3,4, 5. The final, e = 3
was determined by training loss The number of sampled environmental subsets was fixed at 3 and
sampled randomly at program start.

All models, irrespective of FLEX, were evaluated on the full adjacency matrix to ensure consistency
with original results.

SIG-VAE, VGAE, and GAE were tuned for 2000 epochs with early stopping set to 100 epochs across
learning rates {le-3, le-4}. Models were chosen based on their loss values. All generative auto-
encoders were fixed to 32 hidden dimensions and 16 output dimensions to model p, with variation
encoders also modeling 0. The zero-one labeling trick was applied solely to the generative auto-
encoder, with a latent embedding size of (1000, Num. Hidden). Given significant time complexity of
pre-training SIG-VAE, a random seed was chosen for SIG-VAE and it’s respective GNN and then
tested across ten unique seeded runs to obtain final performance.

FLEX was tuned for single seeded runs across learning rates = {le — 5,1le — 6} and
alpha = {0.95,1.05}. Initial sampling runs were tested with threshold values of =
{0.0,0.25,0.5,0.75,0.9,0.99, 0.999, 0.9999},

H SYNTHETIC DATASET SPLIT SETTINGS

LPShift datasets were generated following the process described by the authors in (Revolinsky
et al., 2024). They consider three types of datasets splits that divide the links based on common
heuristics. This includes: CN = Common Neighbors (Adamic & Adar,2003), SP = Shortest-Path, PA
= Preferential-Attachment (Liben-Nowell & Kleinberg, |2003)). They further include two “directions”
for how the links are split. A ‘Forward’ splits indicates that the value of the heuristics increase
from train to valid and then test. The ‘Backwards* split indicates that they decrease. The splits are
defined based on two threshold parameters. For the ‘Forward’ splits the first parameter defines the
upper-bound on training data and the second the lower-bound on testing data. The opposite is true for

21

Under review as a conference paper at ICLR 2026

Table 9: Loss Coefficients for each tested OOD method. «/+-threshold for each FLEX-tuned GNN
backbone. Ordered from bottom up: Collab, PubMed, Cora, CiteSeer, PPA.

Dataset Models

CORAL \ DANN \ GroupDRO \ VREx \ IRM \ GCN+FLEX \ NCN+FLEX

0.01 0.01 0.1 1000.0 | 10.0 0.95/0.0 1.05/0.0

0.1 0.1 0.1 100.0 0.1 0.95/0.0 0.95/0.0

CN 1.0 0.1 0.01 1000.0 | 0.1 1.05/0.0 0.95/0.0

0.1 0.01 0.1 10.0 0.1 0.95/0.0 0.95/0.5

- 0.1 0.01 0.1 100.0 0.1 0.95/0.5 0.95/0.0

§ 0.01 1.0 0.1 100.0 0.1 0.95/0.5 1.05/0.5

5 PA 1.0 0.1 0.1 10.0 0.1 1.05/0.9 0.95/0.0

- 1.0 0.01 0.01 10.0 0.1 0.95/0.5 0.95/0.5

0.1 0.01 0.1 100.0 0.1 0.95/0.9 0.95/0.0

0.1 0.01 0.01 1000.0 | 0.1 0.95/0.25 0.95/0.25

Sp 1.0 1.0 0.1 10.0 0.1 0.95/0.0 0.95/0.0

1.0 0.01 0.01 1000.0 | 0.1 0.95/0.5 0.95/0.0

0.1 0.01 0.01 100.0 1.0 0.95/0.5 1.05/0.5

0.1 0.1 0.1 1000.0 | 1.0 0.95/0.999 0.95/0.5

1.0 1.0 0.01 10.0 0.1 0.95/0.9 0.95/0.99

CN 0.01 0.1 0.01 100.0 0.1 0.95/0.9999 1.05/0.5

0.1 0.1 0.01 1000.0 | 0.1 0.95/0.99 0.95/0.9

o 0.1 1.0 0.01 10.0 0.1 0.95/0.5 0.95/0.5

S 0.01 0.01 0.1 100.0 1.0 0.95/0.5 0.95/0.5

é PA 1.0 1.0 0.1 10.0 0.1 1.05/0.9 0.95/0.5

M 1.0 0.1 0.1 10.0 0.1 0.95/0.9999 0.95/0.9

1.0 0.01 0.1 100.0 0.1 0.95/0.9 0.95/0.9

0.01 0.01 0.01 100.0 | 10.0 | 0.95/0.9999 0.95/0.9

Sp 0.1 0.01 0.1 10.0 0.1 0.95/0.5 0.95/0.5

0.01 1.0 0.1 100.0 0.1 1.05/0.9999 0.95/0.5

0.1 1.0 0.01 100.0 0.1 1.05/0.999 0.95/0.9

Real Collab 0.1 0.01 0.1 10.0 1.0 0.95/0.99 0.95/0.9

X-Transfer Photo — Computers 1.0 0.1 0.1 100.0 | 10.0 0.95/0.99 0.95/0.5

X-Transfer Computers — Photo 0.1 0.1 0.01 1000.0 | 10.0 0.95/0.9 1.05/0.5

Table 10: NCN Hyperparameters for the ogbl-collab dataset.

Parameter | Value | Parameter | Value
GNN Learning Rate | 0.0082 | Predictor | 0.0037
X Dropout | 025 | T Dropout | 0.05
PT | 0.1 | GNN EdgeDropout | 0.25
Predictor Edge Dropout | 0.0 | Predictor Dropout | 0.3
GNN Dropout | 0.1 | Probability Scaling | 2.5
Probability Offset | 60 | Alpha | 1.05
Batch Size | 65536 | Layer Norm | True
Layer Norm N | True | Predictor | GCN
Epochs | 100 | Model | GCN
Hidden Dimension | 64 | MP Layers | 1
Test Batch Size | 131072 | Mask Input | True
Validation Edges As Input | True | Res. | True
Use X. Linear | True | Tail Acting | True

the ‘Backwards’ split. For example, the CN split of ‘1, 2’ indicates that training links contain CNs
in the range [0, 1), valid in [1,2), and test [2, c0). For a CN split of ‘2, 17, the training and testing
links would be flipped. The parameters used across all tested LPShift datasets are detailed below in
TableE] and follow those used by the original authors (Revolinsky et al.,|2024). Note that these are
the same across all datasets used.

22

Under review as a conference paper at ICLR 2026

Table 11: LPShift Dataset Parameters.

’Backward’ Split | Parameters | ’Forward’ Split | Parameters

SP | 26,17 | SP | 17,26
CN 21| CN 12
PA | 50,100 | PA | 100,50

I RESOURCES

All models and datasets were tuned and tested on single Nvidia AS000 GPUs with 24 GB available
RAM and a server with 128 cores and 1TB available RAM.

J HYPERPARAMETER SENSITIVITY

Within this section, we provide further details on the sensitivity analysis conducted on the FLEX
framework. As shown in both the "Backward’ and "Forward’ subplots in Figure [9]a higher learning
rate contributes to monotonically decreasing performance. This represents a potential pitfall when
FLEX-tuning any pre-trained GNNs. Especially since FLEX relies on subgraph samples, whereas
GNNss often train on a full adjacency matrix. Within, Figure [T0]demonstrates an ablation conducted
on the (top) ratio of FLEX-generated subgraphs used for fine-tuning. where a higher-ratio of FLEX-
generated subgraphs used within fine-tuning boosts the performance of the GNN backbone by2%.
The (middle) indicates how the number of samples drawn to derive log-likelihood affect performance,
with more impact occuring at smaller J-values (< 50). The (bottom) indicates how the number of K
samples for estimating the v/ sampling parameter affects performance, where a pronounced increase
occurs where K < 10. Figure[I0]indicates how the top) ratio of FLEX-generated subgraphs used for
fine-tuning the GNN backbone without co-trained parameter-sharing to the generative autoencoder
affect performance, where the pre-trained GNN receives an roughly 1% increase from 10% of
FLEX-generated subgraphs but limited returns on higher-ratios. The (middle) effect on performance
when the ratio of FLEX-generated subgraphs after maximizing KL-divergence is not penalized by
a threshold (7), the limited change indicates how noisy subgraphs obtained from unbounded KL
maximization have no capability to boost pre-trained performance. We attribute the significant
reduction in performance shown in the final (bottom) image, since the *from-scratch’ trained GNN
backbone is unable to distinguish counterfactual links from the original training links.

Backward Forward
45 - 60 1
8
© 401 40
2
T 35/ 20
le-7 1le6 1le5 led 1le3 1le-2 le-7 1le6 1le5 led 1le3 1le-2

Learning Rate

Figure 9: The Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset across different
learning rates.

23

Under review as a conference paper at ICLR 2026

Subgraph Ratio (R) Sensitivity Test -- Baseline

Hits@20
5

0 20 40 60 80
R Parameter Value (%)

Number of Log-Likelihood Samples (J) Sensitivity Test -- Baseline
45
444 -[-[-[

25 50 75 100 125 150 175 200
J Parameter Value (int)

Hits@20
E
&
—e—
|_

o4

Number of H(y) Samples (K) Sensitivity Test -- Baseline

. E—
1

25 50 75 100 125 150 175 200
K Parameter Value (int)

—a—

o

Figure 10: An ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset,
conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning. The (middle)
samples drawn to derive log-likelihood. The (bottom) number of K samples for estimating the v
sampling parameter. The (third from bottom) ratio of FLEX-generated subgraphs used for fine-tuning
the GNN backbone without co-trained parameter-sharing to the generative autoencoder.

24

Under review as a conference paper at ICLR 2026

Subgraph Ratio (R) Sensitivity Test -- Disjoint

46 4
o 44 4 “' “V
8) 424
n
£ 404 \
T

1 J T

0 20 40 60 80
R Parameter Value (%)

Subgraph Ratio (R) Sensitivity Test -- No KL Penalty (t)

S]
T T 11

0 20 40 60 80 100
R Parameter Value (%)

Subgraph Ratio (R) Sensitivity Test -- From Scratch

40 4
© 301
o~
T
by e 1
o 1 + A 1

0 20 40 60 80
R Parameter Value (%)

Figure 11: A ablation on the Hits@20 Scores for FLEX on the "Backwards" - CN CiteSeer Dataset,
which disconnects the parameters from the generative autoencoder and removes the quadratic penalty,
conducted in order: the (top) ratio of FLEX-generated subgraphs used for fine-tuning the GNN
backbone without co-trained parameter-sharing to the generative autoencoder. The (middle) ratio
of FLEX-generated subgraphs when maximizing KL-divergence is not penalized by a threshold
(7). The (bottom) ratio of FLEX-generated subgraphs when training a GNN ’from-scratch’ on
FLEX-generated subgraphs with co-trained parameter sharing to the generative autoencoder.

25

Under review as a conference paper at ICLR 2026

K GENERATOR ARCHITECTURE

A’
A
RelLU
A
Decoder Norm
A
Linear
A

Dot Product
A

z
)

Encoder Norm

A

Graph Convolution

Structural Embedding

A

Figure 12: The encoder-decoder module of our proposed framework. Given that training samples
are used a direct input, the architecture focuses solely on the block-diagonal adjacency matrix input,
A, which is encoded into a learnable latent dimension, Z. An MLP-decoder reads in Z across target
features to output the augmented subgraph, A’. The MLP-decoder can be swapped for the original
Bernoulli-Poisson decoder, proposed in Hasanzadeh et al.|(2019).

26

Under review as a conference paper at ICLR 2026

L FLEX ALGORITHMS

As defined earlier in Section[3] FLEX operates in two critical stages, (1): The generative graph model
(GGM) is pretrained on labeled subgraphs extracted from the target dataset following Eq. equation 2]
While the GNN is pre-training separately on the full adjacency matrix. This is defined on lines
3-5 in Algorithm [T} (2): After pre-training, the generative GGM is then placed within the FLEX
framework and co-trained with the GNN following Eq. equation[§] At each subsequent mini-batch,
the GGM produces new synthetic graphs and therefore new structural views of the original dataset
which are subsequently passed into the GNN to gauge sample validity. This is defined on lines 6-10
in Algorithm[I] Given that the divergence between the posterior and prior distributions is maximized,
this means that subsequent epochs should converge to generate a final distribution that is structurally
different from the training samples. As mentioned in Section [3.3.1] Algorithm [2]takes in feature
input and a representative block-diagonal matrix to ensure that SIG-VAE is expressive to mini-batch
samples of varying node numbers (Hasanzadeh et al.,[2019).

Algorithm 1 FLEX - Pre-training and Tuning

Require: G(X,A), X € RV*d
1: Extract Gg from 1-hop enclosed subgraphs of A

Retrieve Z using the zero-one labeling trick, Eq. equation [6)]
for epoch = 1 to pretrain do

Train SIG-VAE on G using Eq. equation 2] and labels Z
end for
for epoch = 1 to flex-tune do

Sample G/, from SIG-VAE

Apply Eq. equatlon@on G/

Train GNN + SIG-VAE on G’ using Eq. equatlonl
end for

YR IAIUNHELD

Ju—

Algorithm 2 Node-Aware Decoder Algorithm

Require:
r € RVXF: Node features, A = diag(Ay, ..., Ax): Block-diagonal adjacency
7 € RV*d: Stryctural features, J: Truncation index, nyyqin = [V, ..., Nn]: Training Nodes

(1, log 02, SNR) <+ Encoder(az A Z)
W= py.N, loga + logo? v
Split ¢/, log 0’2 into subgraphs y;,log o2 using n4yain
fori=1to N do
Sample €¢; ~ N (0, 1)
zi + pi + € ©exp(0.5 - log o?) > Reparametrization Trick
(Ay, 234 1)) « Decoder(z;)
Insert A; into Aglobal at block (i, 1)
Insert z;, 25°¢4, ¢, into global tensors
end for
return Agiopa, /2, 10g 02, Zigiobal, Zg]o{)zﬁ, €globals Tk»> SNR

A B A A U

—_

M DEGREE BIAS INVESTIGATION

As previously-mentioned in Section the generated subgraph samples without an indicated
threshold suffer from degree-bias (Tang et al., 2020)), thereby resulting in densely-generated outputs,
even on sparse inputs. This effect is demonstrated in Figure [I3] as shown with the perfect linear
relationship between the mean number of common neighbors in the output sample respective to the
number of nodes within input samples. To combat this, the indicator threshold is tuned to eliminate
edge-probabilities with a lower threshold than indicated. The effect of this threshold can be seen in
Figure |14} where a threshold of 0.9999 reduces the maximum mean number of Common Neighbors

27

Under review as a conference paper at ICLR 2026

by a factor of 40, as respective to Figure[I3] This then shows a more meaningful correlation between
output CNs and input nodes, meaning that output graphs are no longer densely-connected which
serves as a desirable property when attempt to generalize on much sparser graphs; like those contained
within the "Backward’ CN Cora dataset.

e Original
80 Generated
—— R2=0.31, p=0.00

o
S

Mean # of CNs

N
o

0 @metconsiuer 0o, w o» ewg00 .

© o © & [

of Nodes

Figure 13: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
samples generated by FLEX on the "Backward’ LPShift CN - Cora dataset without the threshold
function. Note the near-perfect linear growth of Common Neighbors with respect to the number of
nodes within a given input subgraph.

e Original
Generated
—— R?=0.24, p=0.00

Mean # of CNs
5 5 & 8

-
=)

o
o

o
=)
°

®© S L

of Nodes

2 1

Figure 14: The distribution of Mean Common Neighbors and Mean Number of Nodes for subgraph
samples generated by FLEX on the "Backward’ LPShift CN - Cora dataset after applying the threshold
function. The threshold function ensures that low-probabilities edges are not formed, resulting in
generated samples with a common neighbors that are morely closely-correlated to the input samples.

N DATASET LICENSES

Both OGB (Hu et al., 2020) and LPShift (Revolinsky et al., 2024), the datasets considered in our
study, are licensed under the MIT license.

O LIMITATIONS

From a theoretical perspective, FLEX operates under the critical assumption that there are counter-
factual substructures which exist under the causal model that constructed the original dataset. If no
such substructures are present, (i.e. the dataset samples are not OOD), then FLEX is also likely to
decrease model performance.

For practical implementation, FLEX requires sampling k-hop enclosed subgraphs, which can be
computationally-restrictive if applied with the same settings as training on full adjacency matrices.
Additionally, if poorly-tuned, then SIG-VAE will produce meaningless outputs and decrease down-
stream performance regardless of how well pre-trained the GNN is. FLEX has a high-likelihood of

28

Under review as a conference paper at ICLR 2026

inducing dataset drift, where a single epoch can increase performance but subsequent epochs will
likely lead to a monotonic decrease in performance.

This work introduces, formalizes, and demonstrates the notion that it is possible to generate counter-
factual link-structure and then apply those same structures to improve OOD performance. It does
not claim to fully-understand this mechanism but instead bring awareness to a phenomena that can
elevate the performance of current link-prediction models and their robustness to OOD data.

P SOCIETAL IMPACT

Our proposed method, FLEX, aims to improve the generalization capabilities of link prediction
methods. Since generalization is a key real-world concerns for many ML models, we argue that
FLEX has a potential to have a positive impact. Furthermore, link prediction is a common task used
in many fields such as recommender systems, drug-drug interactions, and knowledge graph reasoning.
Thus, improving the generalization of link prediction in those fields can be helpful for future research.
Therefore, no apparent risk is related to the contribution of this work.

29

	Introduction
	Background and Related Work
	FLEX
	General Motivation
	Semi-Implicit Variation for Out-of-Distribution Generation
	Link-Specific Subgraph Generation
	Node-Aware Decoder

	Generating Counterfactual Links

	Experiments
	Setup
	RQ1: Flex Performance
	RQ2: Framework Ablation
	RQ3: Hyperparameter Sensitivity
	RQ4: OOD Structural Alignment

	Conclusion
	LLM Usage Disclosure
	Related Works - Continued
	Set-Theory Perspective
	Raw Results Tables
	Graph Generation Statistics
	Graph Generation Visualizations
	Model Complexity Analysis
	Hyperparameter Settings
	Synthetic Dataset Split Settings
	Resources
	Hyperparameter Sensitivity
	Generator Architecture
	Flex Algorithms
	Degree Bias Investigation
	Dataset Licenses
	Limitations
	Societal Impact

