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ABSTRACT

Text-to-image diffusion models allow seamless generation of personalized images from scant
reference photos. Yet, these tools, in the wrong hands, can fabricate misleading or harmful content,
endangering individuals. To address this problem, existing poisoning-based approaches perturb
user images in an imperceptible way to render them "unlearnable" from malicious uses. We
identify two limitations of these defending approaches: i) sub-optimal due to the hand-crafted
heuristics for solving the intractable bilevel optimization and ii) lack of robustness against simple
data transformations like Gaussian filtering. To solve these challenges, we propose MetaCloak,
which solves the bi-level poisoning problem with a meta-learning framework with an additional
transformation sampling process to craft transferable and robust perturbation. Specifically, we
employ a pool of surrogate diffusion models to craft transferable and model-agnostic perturba-
tion. Furthermore, by incorporating an additional transformation process, we design a simple
denoising-error maximization loss that is sufficient for causing transformation-robust semantic
distortion and degradation in a personalized generation. Extensive experiments on the VG-
GFace2 and CelebA-HQ datasets show that MetaCloak outperforms existing approaches. Notably,
MetaCloak can successfully fool online training services like Replicate, in a black-box manner,
demonstrating the effectiveness of MetaCloak in real-world scenarios. Our code is available at
https://github.com/liuyixin-louis/MetaCloak.

1 Introduction

Diffusion models achieve significant success in a wide range of applications, including image generation [15; 47; 7],
image editing [21; 46; 5], and text-to-image synthesis [38]. Subject-driven text-to-image synthesis, an emerging
application of diffusion models, in particular, has attracted considerable attention due to its potential to generate
personalized images from a few reference photos. Among the approaches proposed to achieve this goal [34;
42], DreamBooth [40] and Text Inversion [12] are two prominent training-based methods that offer impressive
personalize generation ability. With an additional lightweight model fine-tuning process for capturing the subject
or a concept-related embedding training phase, personalized diffusion models can retain the generation capacity
from the pre-training stage and conduct vivid personalized generation. While these methods empower high-quality
personalized generation, they also raise privacy concerns as they can fabricate misleading or harmful content in the
wrong hands, endangering individuals. For example, recent news [19] indicates that AI tools like diffusion models
have been employed to generate fake profiles of individuals for launching a new wave of fraud.

To tackle these issues, some poisoning-based approaches [24; 26] have been recently proposed to perturb user
images in an imperceptible way to render them “unlearnable” from malicious uses. Specifically, these approaches
aim to craft perturbations that can mislead the personalized diffusion model generation process to compromise the
generation ability. For instance, PhotoGuard [43] proposes to attack the VAE encoder or UNet decoder for crafting
perturbation that aligns the perturbed latent code or denoised image to the ones of a dummy target. Similarly,
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Figure 1: Image protected by existing methods fails to fool personalized text-to-image approaches after applying
data transformations. In contrast, our MetaCloak is still robust in such adversity.

Liang et al. [26] proposes AdvDM to craft protected images with a pre-trained fixed surrogate model with adversarial
perturbation. Its latter version, Mist [25], considers an additional targeting loss for degrading the texture quality.
Targeting art style transferring, Glaze [45] proposes to minimize the feature distance between the perturbed image
and a targeting image with a pre-trained feature extractor. However, these works all focus on attacking text-to-image
synthesis methods that leverage fixed diffusion models, where protection is much easier due to the inevitable
adversarial vulnerability of the DNNs.

In contrast, fine-tuning-based personalized generation approaches, represented by DreamBooth, ensure high-
quality synthesis via actively learning the concept of the subject by optimizing either the model parameters
or a concept-related embedding. Compared to attacking fixed diffusion model, success in attacking these fine-
tuning-based generation methods is rooted in different mechanisms, i.e., tricking the models into establishing
false correlations or overfitting. To the best of our knowledge, Anti-Dreambooth [24] is the only existing work
focused on this challenging setting. Although this approach has shown effectiveness in preventing unauthorized
subject-driven text-to-image synthesis, it exhibits two limitations. Firstly, it uses hand-crafted heuristics to address
the underlying poisoning problem, which is a challenging bilevel optimization problem, yielding sub-optimal
performance. Specifically, it incorporates an additional clean set training process in the surrogate model training
trajectory, which is mismatched with the actual ones trained on the poison and thus degrades the poisoning
capacity. Secondly, recent studies found that these data protections are fragile and demonstrate limited robustness
against minor data transformations such as filtering (see Fig. 1). Given these limitations, in this work, we ask the
following question: Can we design a more effective and robust data protection scheme that can prevent unauthorized
subject-driven text-to-image diffusion-based synthesis under data transformation?

To answer this question, we propose MetaCloak, a more effective and robust poisoning-based data protection
approach against unauthorized subject-driven text-to-image diffusion-based synthesis. To tackle the first challenge,
as well as to improve perturbation transferability, MetaCloak leverages meta-learning to learn model-agnostic
perturbation over a pool of steps-staggered surrogates. With this meta-learning framework, we found that the per-
turbations are more effective than the previous approaches under the training setup without data transformations.
To address the second challenge, i.e., improving the robustness of perturbation under the training setting with data
transformation, we incorporate a transformation sampling process to craft transformation-robust perturbation.
Besides, designing generation loss to guide poisoning is tricky since leveraging the “ground-truth” metrics might lead
to an over-fitting problem. To address this problem, we design a denoising-error maximization loss to encourage
the added perturbation to cause serious semantic distortion from the model perception, which aims to introduce
“meaningless” and “hard-to-understand” patterns that can trick the model into learning false correlations. On the
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VGGFace2 and CelebA-HQ datasets, we show that our method significantly outperforms existing approaches under
data transformations. Notably, MetaCloak can successfully fool an online personalized diffusion model training
service, Replicate, in a black-box manner, demonstrating the effectiveness of MetaCloak in real-world scenarios.
Our main contributions are summarized as follows.

1. We propose MetaCloak, the first robust poisoning-based approach for crafting more effective perturbation
that can further bypass data transformation defenses.

2. To solve the intractable bi-level poisoning, we propose to use meta-learning to learn model-agnostic and
transferable perturbation by leveraging a pool of surrogates.

3. To guide the poisoning and bypass transformation defenses, we design a simple denoising-error maximiza-
tion loss with an additional transformation process for transformation-robust semantic distortion.

4. Extensive experiments on the VGGFace2 and CelebA-HQ datasets show the superiority of our method
compared to existing approaches under settings with and without data transformations. Notably, our
method can fool online training services like Replicate in a black-box manner.

2 Related Wroks

Avability Attack. Availability attack aims to degrade data availability for model training by injecting imperceptible
perturbations into the training data. The underlying mechanism of this attack is rooted in the shortcut learning
preference of deep neural networks (DNNs), where models turn to learn easy but brittle features for prediction.
Existing works on avability attacks mainly focus on image classification [16; 17; 9; 53]. Unlearnable Example [16]
and L2C [9] are two of the pioneers in this field, and later research Tao et al. [48] indicates that noise can be easily
removed with adversarial training and data transformations. To address this concern, many works have been
proposed, with techniques of min-max optimization [11], filter-based perturbation [41], and score guiding [8].
To better understand the defense mechanism, Tao et al. [48] propose frameworks for showing some certificated
purification against such attacks. To adapt to other models and applications, studies are also conducted in natural
language processing [18], graph learning [27], and contrastive learning [35]. To the best of our knowledge, we are
the first to study robust availability attacks to personalized generation with diffusion models.

Protection Against Unauthorized Subject-driven AI Synthesis. Unauthorized subject-driven AI synthesis including
style transfer [21], personalized generation [40], and image inpainting [2], pose a serious threat to the privacy
of individuals and art copyright [4; 50]. To address this concern, recent works [43; 55; 45; 24] propose to protect
the data with poisoning-based approaches, which modify the data in an imperceptible way while causing severe
degradation in the generation performance. PhotoGuard [43] proposes to attack the VAE encoder or UNet decoder
for crafting perturbation that aligns the perturbed latent code or denoised image to the ones of the dummy target.
Targeting degrading art style transferring, Glaze [45] proposes to minimize similar targeting loss with a pre-trained
style-transfer model, with learned perceptual similarity as a penalty. Similarly, AdvDM [55] proposes to craft
perturbation that minimizes the likelihood of the perturbed image with a pre-trained diffusion model, which
equivalently maximizes the denoising loss during training. Its later version, Mist [25], further incorporates a texture
targeting loss for a more robust and sharp pattern into the perturbed images. However, these works all focus on
attacking the synthesis methods that leverage fixed diffusion models by exploiting the adversarial vulnerability of
the DNNs. In contrast, our work focuses on conducting more challenging data protection against fine-tuning-based
synthesis methods [40; 33]. To the best of our knowledge, Anti-DreamBooth [24] is the only work that studies data
protection against fine-tuning-based synthesis approaches. However, it crafts sub-optimal perturbation and is also
not robust against transformation purification. In our work, targetting fine-tuning-based synthesis methods, we
study poisoning-based data protection with better effectiveness and robustness against transformations.

3 Preliminary

Text-to-Image Diffusion Models. Diffusion models are probabilistic generative models that are trained to learn a
data distribution by the gradual denoising of a variable sampled from a Gaussian distribution. Our specific interest
lies in a pre-trained text-to-image diffusion model denoted as x̂θ. This model operates by taking an initial noise
map ϵ sampled from a standard Gaussian distribution N (0,I) and a conditioning vector c. This conditioning vector
c is generated through a series of steps involving a text encoder represented as Γ, a text tokenizer denoted as f , and
a text prompt P (i.e., c = Γ( f (P))). The ultimate output of this model is an image denoted as xgen, which is produced
as a result of the operation xgen = x̂θ(ϵ,c). They are trained using a squared error loss to denoise a variably-noised
image as follows:

Ldenoise(x,c;θ) = Eϵ,t [wt∥x̂θ(αt x+σtϵ,c)−x∥2
2], (1)
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where x is the ground-truth image, c is a conditioning vector (e.g., obtained from a text prompt), and αt ,σt , wt are
terms that control the noise schedule and sample quality, and are functions of the diffusion process time t .

Adversarial Attacks to Text-to-Image Diffusion Models. Adversarial attacks aim to perform an imperceptible
perturbation on the input image in order to mislead machine learning models’ predictions. In the classification
scenario, for a given classifier fcls, a perturbed adversarial image x′ is generated from the original image x to
misguide the model into incorrect classification. Constraints on the perceptibility of changes are often imposed
through ℓp norms (with p ≥ 1), such that the perturbed image x′ is bounded within a ℓp -ball centered at x with
radius r > 0, i.e., x ′ ∈ Bp (x,r ) = {

x′ : ∥x′−x∥p ≤ r
}
. Given a classification loss Lcls, untargeted adversarial examples

are crafted by solving maxx′∈Bp (x,r ) Lcls( fcls(x′), ytrue), where ytrue is the true label of image x. For the text-to-image
generation scenario, given a pre-trained text-to-image diffusion model x̂θ, the adversarial attack aims to perturb
the image to hinder the model from reconstructing the image, i.e., x′ ← argmaxx′∈Bp (x,r ) Ldenoise(x′,c;θ). In this
paper, we consider the ℓ∞-norm for its alignment with perception [13]. To solve this constrained optimization, the
Projected Gradient Descent (PGD) [29] technique is commonly utilized by iteratively updating the poisoned image
x′. Formally, the adversarial example x′ is updated as

x′i =ΠB∞(x,r )(x′i−1 +αsign(∇x′i−1
Ldenoise)), (2)

where x′0 = x, sign(·) is the sign function, i is the step index, and the step size α> 0.

During this generation process, the adversarial examples gradually progress in a direction that would increase
the denoising loss while maintaining imperceptible perturbations. Recent works [24; 25] have demonstrated that
perturbed images from this attack can effectively deceive text-to-image generation models [12; 40] to produce
low-quality images.

Personalized Diffusion via DreamBooth Fine-turning. DreamBooth is a method aimed at personalizing text-to-
image diffusion models for specific instances. It has two main objectives: first, to train the model to generate images
of the given subject with generic prompts like “a photo of sks [class noun]", where sks specifies the subject and
“[class noun]" is the category of object (e.g., “person"). For this, it uses the loss defined in Eq. 1 with xu as the user’s
reference image and conditioning vector c := Γ( f (“a photo of sks [class noun]")). Similar to the classification model,
this guides the model to create the correlation between the identifier and the subject. Secondly, it introduces a
class-specific prior-preserving loss to mitigate overfitting and language-drifting issues. Specifically, it retains the
prior by supervising the model with its own generated samples during the fine-tuning stage. With a class-specific
conditioning vector cpr := Γ( f (“ photo of a [class noun]")) and random initial noise zt1 ∼N (0,I), DreamBooth first
generates prior data xpr = x̂θ0

(
zt1 ,cpr

)
using the pre-trained diffusion model and then minimize:

Ldb(x,c;θ) = Eϵ,ϵ′,t
[
wt ∥x̂θ (αt x+σtϵ,c)−x∥2

2+
λwt ′

∥∥x̂θ
(
αt ′xpr +σt ′ϵ

′,cpr
)−xpr

∥∥2
2

]
,

(3)

where ϵ,ϵ′ are both sampled from N (0,I), the second term is the prior-preservation term that supervises the model
with its own generated images and λ controls for the relative importance of this term. With approximately one
thousand training steps and four subject images, it can generate vivid personalized subject images with Stable
Diffusion [49].

4 Problem Statement

We formulate the problem as follows. A user (image protector) wants to protect his images Xc = {xi }n
i=1 from being

used by an unauthorized model trainer for generating personalized images using DreamBooth, where n is the
number of images. To achieve this, for some portion of images x ∈ Xc , the user injects a small perturbation onto the
original image to craft poisoned images set Xp = {x′

i }n
i=1, which is then published to the public. Later, the model

trainers will collect and use Xp to finetune a text-to-image generator x̂θ, following the DreamBooth algorithm, to
get the optimal parameters θ∗. We assume that the model trainer is aware of the poisoning to some extent, so
some data transformations like filtering or cropping might be applied to the training image set Xp during the data
pre-processing phase of DreamBooth training. The objective of the user is to craft a delusive and robust image set
Xp to degrade the DreamBooth’s personalized generation ability, which can be formulated as:

X ∗
p ∈ argmax

Xp ,θ∗
L ∗

gen(Xref; x̂θ∗ , Xp ) (4)

s.t. θ∗ ∈ argmin
θ

{L rob
db (Xp ,T ;θ) :=

Ex′i∼Xp ,g∼T Ldb(g (x′i ),c;θ)}.
(5)
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Here, c is the class-wise conditional vector, L ∗
gen is some perception-aligned loss to measure the personalization

generation ability of trained model x̂θ∗ (with more details in the next section), T is a set of data transformations the
expected adversary might use, Xref is a clean reference set, and c is the conditioning vector. Compared to vanilla
Ldb in (3), L rob

db
2 is more robust to learning personalized diffusion models.

Overall Goals. While it’s hard to quantify a unified evaluation loss L ∗
gen to measure the personalized generation

quality, our overall goal is to degrade the usability of generated images, and we attempt to decompose the evaluation
metric into the following two aspects: quality-related and semantic-related distortion. Specifically, we seek to render
the generated image awful quality by tricking the victim’s model into generating an image with some artifacts. With
this distortion, the model trainer can’t use those images for some quality-sensitive applications. Furthermore, the
subject identity of generated images should be greatly distorted for other’s utilization. We’ll dive into the design of
L ∗

gen in Sec. 5.2.

5 Method

5.1 Learning to Learn Transferable and Model-agnostic Perturbation

One naive idea to solve the bilevel problem (4)-(5) is to unroll all the training steps and optimize the protected
examples Xp via backpropagating. However, accurately minimizing this full bi-level objective is intractable since a
computation graph that explicitly unrolls 103 SGD steps would not fit on most of the current machines. To address
this issue, inspired by Huang et al. [17], we propose to approximately optimize the upper-level objective (4) and
lower-level objective (5) in an alternative fashion. Specifically, considering the i -th iteration, when the current
model weight θi and the protected image set X i

P are available (with θ0 is initialized from pre-trained diffusion model
and X 0

P = Xc ), we make a copy of current model weight θ′i ,0 ← θi for noise crafting and optimize the lower-level
problem for K steps as:

θ′i , j+1 = θ′i , j −β∇θ′i , j
L rob

db (X i
p ;θ′i , j ), (6)

where j ∈ {0,1, . . . ,K −1} and β> 0 is the stepsize. We term this procedure K -step method. This unrolling procedure
allows us to “look ahead” in training and view how the perturbations now will impact the generation loss L ∗

gen
after K steps. We then leverage the unrolled model x̂θ′i ,K

for optimizing the upper-level problem, i.e., updating the

protected images Xp as:
X i+1

p =Π
B∞(X 0

p ,r )
(X i

p +αsign(∇
X i

p
L ∗

gen(Xref; x̂
θ′

i ,K
, X i

p )). (7)

After obtaining the updated protected images X i+1
p , the surrogate model θi is trained with L rob

db for a few SGD steps

on X i+1
p to get θi+1 as the next iteration’s starting point

θi+1 = θi −β∇θi L
rob
db (X i+1

p ;θi ). (8)

The procedure (6)-(8) is executed repeatedly until the surrogate model reaches maximum training steps to obtain the
final protected images X ∗

p . While this K-step method offers satisfactory results, it is not robust under various training
settings with different models and initialization. Since training with a single surrogate model will turn to overfit on a
single training trajectory [17]. To craft transferable perturbations, we treat the injected perturbations as a training
“hyperparameter”, and use meta-learning to learn model-agnostic perturbations that degrade the performance of
trained models. Different from the conventional meta-learning setting, whose goal is to transfer across datasets and
tasks, in our poisoning problem, we aim to craft perturbations that transfer across different models and different
training trajectories. To achieve this, we propose to learn perturbation over a pool of steps-staggered surrogates.
Specifically, we train M surrogate models {θ j }M

j=1 as the initial point for the j -th surrogate model. Given maximum

training steps Nmax, the j -th surrogate model θ j is trained with L rob
db for ⌊ j Nmax/M⌋ steps on clean data from the

pre-trained weight θ0. With this pool, we then conduct C crafting outer loop; for each loop, we sample a batch of
surrogates and train them separately on the poison. Upon the completion of inner-loop training, we average the
generation losses L ∗

gen over ensembles and update the protected images Xp with gradient ascent. Following MAML
[10], a first-order gradient approximation is used for efficient perturbation crafting.

5.2 Transformation-robust Semantic Distortion with Denoising-error Maximization

During the evaluation stage of the generated images, we can readily leverage various quality reference-based
and reference-free assessment metrics like CLIP-IQA [52] and FDSR [14] for the construction of the ground-truth

2We by default omit T and simplify the notation as L rob
db (Xp ;θ) in the following context.
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Algorithm 1 Training robust perturbation with MetaCloak

Input: User training image set Xc , training iteration Nmax, the number of surrogate models M , PGD radius r , PGD
step size α, the unrolling number K , the transformation distribution T , the sampling times J , learning rate β.

Output: Protected user image set Xp
1: Stagger the M models as a pool Dθ, training the m-th model weights θm up to ⌊mNmax/M⌋ steps on Xc
2: for i in 1, · · · ,C crafting steps do ▷ Outer-loop
3: Sample a batch of surrogate {θm}B

m=1,θm ∼Dθ

4: for m in 1, · · · ,B do ▷ Inner-loop
5: Copy model weight θ̃ = θm
6: for k = 1, . . . ,K unroll steps do
7: θ̃ = θ̃−β∇θ̃L rob

db

(
Xp ,T ; θ̃

)
8: end for
9: for j in 1, · · · , J do

10: L
j

m =Lgen
(
t j (Xp ); θ̃

)
, t j ∼ T

11: end for
12: θm = θm −α∇θm L rob

db

(
Xp ,T ;θm

)
13: end for
14: Average denoise losses Ladv =

∑
m, j L

j
m/B J

15: Compute ∇Xp Ladv
16: Update Xp using SGD and project onto r ball
17: end for
18: return Xp

generation loss L ∗
gen. However, during the poisoning stage, we can not simply take these “ground-truth” metric

losses to serve as the loss for crafting noise: i) overfitting is prone to happen since most quality-assessment models
are neural-network-based; ii) even if the metrics are rule-based, the leading distortion might over-adapt to certain
assessment models. To avoid these problems, we take a different way of designing an approximated generation loss
Lgen(Xp ;θ) ∈ R+ used for crafting poison. Our design of Lgen is motivated by the insight that introducing some
“meaningless” and “hard-to-understand” patterns can trick the diffusion model into overfitting on the perturbations,
leading the diffusion model to establish false correlations. Specifically, our approximated generation loss can be
formulated as,

Lgen(Xp ;θ) = Ec,x′∼Xp

[
Ldenoise(x′,c;θ)

]
. (9)

Our empirical observation indicates that the maximization of this loss can result in chaotic content and scattered
texture in the generated images. Instead of introducing an additional targeting loss term [26; 25], we found that
our simple denoising-maximization loss is more effective against fine-tuning-based diffusion models. However,
perturbations crafted directly with (9) are fragile to minor transformations and ineffective in bypassing (5). To
remedy this, we adopt the expectation over transformation technique (EOT [1]) into the PGD process. Specifically,
given T as a distribution over a set of transformations in (5), we apply EOT on (7) as

X i+1
p = Eg∼T

[
Π

B∞(X 0
p ,r )

(X i
p +αsign(∇

X i
p

Lgen(g (X i
p ); x̂

θ′
i ,K

))

]
, (10)

where g (Xp ) = {g (xp ) : xp ∈ Xp } is the transformed image of Xp under the transformation g , θ′ is a K-step unrolled
model following (6), and the expectation is estimated by Monte Carlo sampling with J samples (J = 1 in our setup).
In summary, we present the overall framework in Alg. 1.

6 Experiments

6.1 Setup

Datasets. Our experiments are performed on human subjects using the two face datasets: Celeba-HQ [20] and
VGGFace2 [3] following Anti-DreamBooth [24]. CelebA-HQ is an enhanced version of the original CelebA dataset
consisting of 30,000 celebrity face images. VGGFace2 is a comprehensive dataset with over 3.3 million face images
from 9,131 unique identities. Fifty identities are selected from each dataset, and we randomly pick 8 images from
each individual and split those images into two subsets for image protection and reference. More results on non-face
data are in the App. C.3.

6
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Dataset Method SDS ↓ I MSCLIP ↓ I MSVGG ↓ CLIP-IQAC ↓ LIQE ↓

VGGFace2

Clean 0.903 ± 0.291 0.790 ± 0.076 0.435 ± 0.657 0.329 ± 0.354 0.984 ± 0.124

ASPL 0.879 ± 0.321 0.712 ± 0.082 0.193 ± 0.792 -0.090 ± 0.432 0.891 ± 0.312

EASPL 0.801 ± 0.395 0.703 ± 0.076 0.142 ± 0.814 -0.024 ± 0.406 0.820 ± 0.384

FSMG 0.911 ± 0.280 0.718 ± 0.063 0.273 ± 0.753 -0.111 ± 0.371 0.891 ± 0.312

AdvDM 0.903 ± 0.291 0.769 ± 0.068 0.570 ± 0.510 0.241 ± 0.341 0.984 ± 0.124

Glaze 0.910 ± 0.279 0.774 ± 0.083 0.490 ± 0.607 0.258 ± 0.330 0.984 ± 0.124

PhotoGuard 0.928 ± 0.255 0.793 ± 0.072 0.524 ± 0.558 0.407 ± 0.249 1.000 ± 0.000

MetaCloak 0.432* ± 0.489 0.644* ± 0.107 -0.151* ± 0.864 -0.440* ± 0.223 0.570* ± 0.495

CelebA-HQ

Clean 0.810 ± 0.389 0.763 ± 0.119 0.181 ± 0.784 0.470 ± 0.264 0.984 ± 0.124

ASPL 0.755 ± 0.427 0.714 ± 0.082 0.044 ± 0.823 0.054 ± 0.364 0.969 ± 0.174

EASPL 0.841 ± 0.362 0.707 ± 0.069 -0.113 ± 0.834 0.020 ± 0.423 0.984 ± 0.124

FSMG 0.769 ± 0.416 0.718 ± 0.081 0.073 ± 0.805 0.085 ± 0.343 0.953 ± 0.211

AdvDM 0.866 ± 0.339 0.789 ± 0.083 0.431 ± 0.618 0.373 ± 0.268 1.000 ± 0.000

Glaze 0.889 ± 0.312 0.778 ± 0.092 0.318 ± 0.716 0.338 ± 0.311 0.992 ± 0.088

PhotoGuard 0.879 ± 0.320 0.790 ± 0.092 0.401 ± 0.658 0.451 ± 0.277 0.992 ± 0.088

MetaCloak 0.305* ± 0.452 0.608* ± 0.109 -0.637* ± 0.686 -0.354*± 0.244 0.438* ± 0.496

Table 1: Results of different methods under the transformations training setting with the corresponding mean and
standard deviation (±) on two datasets. The best data performances are in bold, and the second runners are shaded
in gray. The Gaussian filtering kernel size is set to 7. * denotes a significant improvement according to the Wilcoxon
signed-rank significance test (p ≤ 0.01).

Training Settings. The Stable Diffusion (SD) v2-1-base [37] is used as the model backbone by default. For Dream-
booth training, we fine-tune both the text-encoder and U-Net model with a learning rate of 5×10−7 and batch size of
2 for 1000 iterations in mixed-precision training mode. We consider two training settings: standard training (Stand.
Training) and training with data transformations (Trans. Training). For the standard training setting, DreamBooth is
trained without performing special pre-processing. For the training with data transformations scenario, we consider
transformations including Gaussian filtering with a kernel size of 7, horizontal flipping with half probability, center
cropping, and image resizing to 512x512. For both the settings, we leverage two inferring prompts with 50 inferring
steps, “a photo of sks person" and “a DSLR portrait of sks person” during inference to generate 16 images per
prompt.

Baselines and Implementation Details. We compare our method with the following adopted state-of-the-art
baselines in [26; 24; 25]: i) ASPL [24] alternatively update the perturbations and surrogate models, where the
surrogate models are updated on both poisons and clean data; ii) E-ASPL is an extension of ASPL that ensembles
multiple types of diffusion models for better transferability; iii) FSMG leverages a DreamBooth trained on clean
image for crafting adversarial examples; iv) AdvDM [26; 25] leverages a pre-trained diffusion model for crafting
adversarial examples with additional targeting loss for texture distortion; v) Glaze [45] minimizes the representation
between the perturbed image and a target dummy image with a pre-trianed encoder; vi) PhotoGuard [43] perturb
image to align its denoised image closer to a dummy target with efficient partial back-propagation; Following the
common setup [24], we set the noise radius (ℓ∞-norm ball) to 11/255 with a step size of 1/255 and a step number of 6
by default. We set the unrolling number K = 1, surrogate model number M = 5, sample batch size B = 1, and crafting
step C = 4000 with SD v2-1-base as the surrogate model, which takes about 3 GPU hours to train instance-wise
noise. See App. A for more details.

Metrics. We evaluate the generated images in terms of their semantic-related quality and graphical quality. For the
semantic-related score, first, we want to determine whether the subject is present in the generated image. We term
this score as Subject Detection Score (SDS). For human faces, we can take the mean of face detection confidence
probability using RetinaFace detector [6] as its SDS. Secondly, we are interested in how the generated image is
semantically close to its subject. We term this score as Identity Matching Score (IMS) [24], the similarity between
embedding of generated face images and an average of all reference images. We use VGG-Face [44] and CLIP-ViT-
base-32 [32] as embedding extractors and employ the cosine similarity. Besides, we use LIQE [54], a vision-language
multitask-learning image quality assessment model, for human scene category prediction. For the graphical quality,
we design CLIP-IQAC, which is based on CLIP-IQA [52] by considering additional class information. See the App. B.1
for details.
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Figure 2: Visualization of transformation robustness of different methods. The first row is a generated sample from
DreamBooth trained on poisons with no transformation defenses. The 2-th row showcases the robustness of each
method under transformation with a Gaussian kernel size of 7. Our method performs robustly under transformation
defenses, while other methods fail to preserve the perturbation.
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Figure 3: Results under online training-as-service settings with the Full and LoRA DreamBooth fine-tuning settings
on the Replicate.

6.2 Effectiveness of MetaCloak

Effectiveness Comparison through Quantitative and Qualitative Metrics. As observed in Tab. 1, MetaCloak
consistently outperforms other baselines across all the metrics. Specifically, in the most important metric, SDS,
which measures whether a face appeared in the generated image, MetaCloak successfully degraded this metric by
36.9% and 45.0% compared to previous SOTA on VGGFace2 and CelebA-HQ. Regarding reference-based semantic
matching metrics, the results on IMS-VGG and IMS-CLIP also show that our method is more effective than other
baselines. Regarding image quality metrics, the results on CLIP-IQAC suggest that MetaCloak can effectively degrade
the image quality of generated images. Furthermore, the results in Tab. 5 (see appendix) also suggest that MetaCloak
also achieves better effectiveness than existing methods under Stand. Training settings. For visualization, as we
can see in Fig. 2, compared to other baselines, MetaCloak can robustly fool the model to generate images with low
quality and semantic distortion under both Stand. and Trans. training while others are sensitive to transformations.
More visualizations are in App C.2.

Effectiveness under Online Training-as-services Scenarios. To test the effectiveness of our framework in the wild,
we conduct experiments under online training-as-service settings. Unlike local training, attacking online training
services is more challenging due to the limited knowledge of data prepossessing. We first showcase the performance
of our method under two common DreamBooth fine-tuning scenarios, including full fine-tuning (Full-FT) and

8
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Figure 4: Results of MetaCloak with different protection radii and ratios. The dashed line marks the previous SOTA
results under r = 32/255 and the protection ratio of 100%, respectively.

Table 2: Generated images of Stable Diffusion fine-tuned with Textual Inversion on a randomly selected instance
from VGGFace2. S∗ denotes a learned token initialized from token <person>.

LoRA-fine-tuning (LoRA-FT). We sample data from VGGFace2 and upload its clean and poisoned images to Replicate
[36] for DreamBooth training. From the results in Fig. 3, we can see that MetaCloak performs well under the Full-FT
setting; for instance, it successfully degrades the SDS from 98.9% to 21.8%. Under the LoRA-FT setting, the model
seems to be more resilient, but MetaCloak can still cause some degradation. Additionally, under another popular
training setting with the Text Inversion, we validate that MetaCloak can still work well in disturbing the generation
quality in Tab. 2. These results demonstrate that MetaCloak can seriously threaten online training services.

Effectiveness of Proposed Components. To evaluate the individual contributions of MetaCloak’s components to
its overall effectiveness, we conducted ablation studies using the VGGFace2 dataset, specifically under the Trans.
Training setting. The results, presented in Tab. 3, indicate that each module within MetaCloak independently plays
a role in degrading the generative performance. Meanwhile, the integration of all modules results in the most robust
protection.

Effectiveness across Different Training Settings. While crafting specifically with the SD v2-1-base model, one might
wonder whether our protection can transfer across training settings with other diffusion models. To investigate
that, we further conducted experiments under training settings with two other versions of stable diffusion models,
including SD v2-1 and SD v1-5. The results in Fig. 5 show that our protection is well transferable in introducing
distortion in generation across different versions of stable diffusion models. Please refer to the App. C.4 for more
results. Furthermore, we also study training settings with different protection ratios and radii under the Trans.
Training settings on VGGFace2 dataset. As shown in Fig. 4, these two factors are essential for protection. Besides,
MetaCloak is more budget-efficient since it matches the same performance as the previous SOTA with lower
protection ratios and radii. Please refer to the App. C.7 on the trade-off between stealthiness and performance of
our perturbation under different radii.
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Meta. EOT SDS I MSCLIP I MSVGG CLIP-IQAC LIQE

× × 0.879 0.712 0.193 -0.090 0.891
✓ × 0.787 0.692 0.056 -0.108 0.871
× ✓ 0.515 0.677 0.072 -0.244 0.570
✓ ✓ 0.432 0.644 -0.151 -0.440 0.562

Table 3: Ablation Study of MetaCloak on VGGFace2 under Trans. Training. The 2nd to 4th rows are the ablated
versions. “Meta.” denotes the meta-learning process in our method.

Setting Defenses SDS I MSCLIP I MSVGG CLIP-IQAC LIQE

Stand.
Training

× 0.296 0.662 -0.051 -0.380 0.180
+SR 0.876 0.748 0.354 0.417 0.984

+TVM 0.690 0.638 0.320 -0.083 0.867
+JPEG 0.496 0.682 -0.135 -0.363 0.365

Oracle* 0.897 0.814 0.438 0.456 0.992

Trans.
Training

× 0.432 0.644 -0.151 -0.440 0.570
+SR 0.824 0.739 0.507 0.039 0.945

+TVM 0.617 0.636 0.175 -0.076 0.771
+JPEG 0.616 0.691 -0.160 -0.262 0.562

Oracle* 0.903 0.790 0.435 0.329 0.984
Table 4: Resilience of MetaCloak under more advanced adversarial purifications. JPEG compression, Super-
resolution (SR), and Total-variation minimization (TVM) are considered. Oracle* denotes the performance of
Dreambooth trained on clean data.

6.3 Resistance against Adversarial Purification

We consider three adversarial purification techniques, including JPEG compression [28], super-resolution transfor-
mation (SR) [31], and image reconstruction based on total-variation minimization (TVM) [51]. We use a quality
factor of 75 for the JPEG defense and a scale factor of 4 for the SR defense [26]. As shown in Tab. 4, additional
purification does hinder the data protection performance of MetaCloak to some extent, and SR is the most effective
one in restoring the generation ability compared to others. For the other two approaches, we found that JPEG
compression will compromise the purified image quality, and the TVM does better in retaining graphical quality,
but it causes significant and unacceptable distortion in the face region of purified images. While SR does the best in
purification, it still can not fully recover the original generation ability of DreamBooth trained on clean data. See
App. C.6 for more details and results.

7 Conlusion

This paper proposes MetaCloak, the first work that protects user images from unauthorized subject-driven text-
to-image synthesis under data transformation defense. MetaCloak resolves the limitations of existing works
in sub-optimal optimization and fragility to data transformations with a novel meta-learning framework and
transformation-robust perturbation crafting process. Extensive experiments demonstrate that MetaCloak can
effectively degrade the diffusion-based personalized generation under various training settings with and without
data transformations. Notably, MetaCloak is practical and can be applied to protect images in a black-box manner
against online training-as-service platforms like Replicate. An important future direction is to establish a theoretical
foundation for the effectiveness and robustness of MetaCloak. Another interesting direction is to design a more
efficient and robust perturbations training approach.
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