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Abstract

Robotic piano performance requires both accurate key strikes and expressive-
ness—human-like variation in timing, dynamics, articulation, and left/right-hand
coordination. We present PANDORA, a diffusion-based policy for dexterous
control trained with a train-only language-model expressiveness reward. From
each rollout we compute symbolic descriptors (tempo curve via IOI-CV/nPVI,
velocity histogram, articulation ratio), serialize them as compact JSON, and query
an off-the-shelf LLM with a 0—4 rubric (deterministic, cached). The normalized
score shapes the total reward, while inference never queries the oracle. A residual
inverse-kinematics controller enforces joint/velocity limits. On RoboPianist, PAN-
DORA irglproves note accuracy and perceived phrasing compared to PianoMime
variants.

1 Introduction

Robotic musicianship demands more than accurate key presses. Existing methods trained by imitation
or reinforcement learning often sound mechanical: quantized timing, flat dynamics, and lack of
expressiveness [2, 6, 16]. Two observations motivate our approach. (i) Diffusion policies suit high-
rate continuous control: denoising refines actions without compounding auto-regressive error. (ii)
Human notions of “musicality” are hard to encode by hand yet can be judged from compact statistics
by language models [9, 20]. We propose PANDORA, a diffusion-guided pianist trained with a
language-model expressiveness reward. During training only, phrase-wise symbolic descriptors—
IOI-CV/nPVI (tempo curve), velocity histogram, articulation ratio—are serialized to JSON and
scored by an off-the-shelf LLM on a 0—4 rubric (deterministic decoding; cached outputs) [3, 7, 12].
The normalized score shapes the reward; inference never queries the oracle. By avoiding raw audio,
the reward is insensitive to simulator timbre and is easy to reproduce. In summary, PANDORA seeks
to bridge a longstanding gap in dexterous manipulation: the disparity between precise mechanical
control and the nuanced interpretive qualities required for artistic expression. Through an innovative
synergy between diffusion-based policy learning and LLM-driven semantic rewards, our PANDORA
framework not only achieves precise key-presses but also imbues robotic piano performances with
genuine musical expressiveness. Our key contributions are summarized as follows:

* We introduce a diffusion policy learning approach featuring a conditional U-Net with FiLM-
based global conditioning, generating robust, high-dimensional action trajectories reflective
of human expressivity.

*Corresponding author.
2Projects can be found: https://taco-group.github.io/PANDORA/

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for Music.
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Figure 1: State and goal conditioned diffusion ([11], [13]) produces x, executed via residual IK in
MuJoCo [19]; an LLM oracle scores symbolic expressiveness (train-only).
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* We introduce a novel composite reward function that leverages a large language model
oracle to provide semantic feedback, thereby enriching the learning process with qualitative
artistic insights beyond traditional numeric metrics.

* We incorporate a residual inverse-kinematics refinement policy that enhances fine-grained
finger-level precision, significantly improving the robotic system’s ability to execute complex
and expressive piano techniques.

* Through extensive experimentation and rigorous ablation studies in the ROBOPIANIST
environment, we empirically demonstrate that PANDORA achieves superior performance in
both technical precision and musical expressiveness compared to existing state-of-the-art
methods.

2 Method

2.1 State, Goal and Action Parameterization

At time ¢, the agent observes s;=(qy, ¢, key states) and a short-horizon goal g; (a queue of target
key events within the next 0.3-0.5s). The policy outputs an action chunk xy € R7*¢ (duration
H/100s at 100 Hz) which is executed by a residual inverse-kinematics (IK) controller to update
joints g:+1 = g+ + Aq while enforcing joint/velocity limits (penalized in 7). We keep all simulator
and sensing components identical to the baseline to isolate our contributions.

2.2 Conditioned Diffusion Policy

Architecture. A condition encoder maps ; = [s¢, g¢] to FILM [11] parameters (v, 3) that modulate
each block of a conditional U-Net €. Given a noise level ¢t € {1,..., N}, the network predicts
€ = eg(xy,t | Uy) and we perform a DDIM [4, 5, 15] step

x¢—1 = DDIM (x4, €, t; n=0),

yielding x( after N steps (we use N=20 by default) [13]. This denoising view stabilizes high-rate
control and affords sub-beat timing without compounding auto-regressive error.

PianoMime anticipated DDIM as an engineering improvement; we integrate diffusion with (i) explicit
FiLM conditioning on state+goal, and (ii) residual IK [18] (below), which together make diffusion
feasible for dexterous piano where timing jitter and kinematic feasibility are tightly coupled.

2.3 Residual IK with Physical Constraints
Given zg (end-effector deltas), IK solves a small QP

min 17(ge)Ag = zoll5 + widn(g:+Aq) + wvallAgll3,



where ¢; penalizes joint-limit violations [10]; max-velocity is enforced softly. The terms wjj, wve are
the same across all methods and their penalties are part of ryg [1, 8, 14, 17]. Design choice. We use
the residual form by default (more stable than direct joint prediction); we treat it as an engineering
choice, not a novelty, but we make its interaction with diffusion explicit and reproducible.

2.4 Train-only LLM Expressiveness Oracle

Descriptor design (no raw audio). From each rollout we compute phrase-wise (window 3.0's, hop
1.5 s) symbolic statistics, optionally per hand: (i) tempo curve: IOI-CV and nPVI; (ii) velocity:
mean/std and 8-bin histogram (Gaussian smoothing c=1 bin) plus temporal slope; (iii) articulation
ratio dj, /IOI, with legato/staccato fractions. Only these descriptors are passed to the oracle; no
audio is used, avoiding simulator timbre confounds.

Prompting & rubric. An off-the-shelf LLM (GPT-40) is prompted as a pedagogy rater with K=4
few-shot exemplars and a 0—4 rubric (poor—excellent) that explicitly references (a) rhythmic stability,
(b) dynamic shaping, (c) LH/RH coordination. Decoding is deterministic (temperature=0.0,
top_p=1.0, max_tokens=64) and returns strict JSON: {score € {0..4}, rationale}. Queries are
cached by SHA-256 over the JSON + rubric version to ensure bit-wise repeatability; the oracle is
never queried at inference.

Score fusion and reward shaping. Per-hand scores sir7, spy € {0, . . ., 4} merge to
8= %(SLH + SRH)v s = 5/4 € [Oa 1]7 Tiotal = Ttask T >\expr§7

with Aexpr=0.10 by default. This injects human-aligned phrasing/dynamics/coordination while
preserving accuracy.

Compact schema (for reproducibility). We serialize each phrase as:

{ "ioi_cv": 0.11, "npvi": 41.7,
"vel_hist": [0.02,0.05,0.11,0.22,0.26,0.20,0.10,0.04],
"artic_ratio": 0.63, "hand": "LH" }

and prompt with 4 rubric bullets (0..4) requesting a single integer score and a one-line rationale.

2.5 Training objective and defaults

We train the conditional diffusion model with the standard denoising objective and optimize expected
Toral; Unless stated, we use DDIM-20 (n=0), 100 Hz control with 0.10 s chunks, 3.0/1.5 s phrase
window/hop, 8-bin velocity histogram, K =4 exemplars, and Ae,p,=0.10.

3 Experiments & Qualitative

Setup. We evaluate on RoboPianist with the same splits as prior work. The agent observes simulated
hand/key states and a short-horizon goal. Actions are executed by residual IK with joint/velocity
penalties included in r,g. Training queries the oracle phrase-wise; inference never queries the oracle.

Baselines. PianoMime (two-stage diff) and a residual variant (engineering improvement). Our
full method PANDORA adds the LLM reward to diffusion+residual control.

Metric. We report note-level F1. Predicted note onsets/offsets (from rendered MIDI) are matched
to the reference score using a +40 ms onset tolerance and a 20% relative tolerance on duration;
precision/recall are computed per piece and then macro-averaged over three seeds. We qualitatively
discuss tempo variability (nPVI) trends on the project page. 3

Finger Trajectory Comparison To evaluate the effectiveness of our approach in controlling hand
movements, we analyze the X-axis trajectories of each finger during piano performance. Figure
2illustrates the trajectory comparisons between different methods.

3Per-song results are provided in the supplement/webpage. Rhythm variability (nPVI) trends are discussed
qualitatively with audio demos.



Table 1: Quantitative results of each song in our collected test dataset.

Two-stage Diff (PianoMime) Two-stage Diff-res (PianoMime) PANDORA (Ours)

Song Name
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Forester 0.81 0.70 0.68 0.79 0.71 0.67 081 0.75 0.78
Wednesday 0.66 0.57 0.58 0.67 0.54 0.55 079 0.62 0.70
Alone 0.80 0.62 0.66 0.83 0.65 0.67 0.80 0.66 0.72
Only We Know  0.63  0.53 0.58 0.67 0.57 0.59 0.73 0.67 0.70
Eyes Closed 0.60 0.52 0.53 0.61 045 0.50 0.59 0.53 0.56
Pedro 0.70 0.58 0.60 0.67 0.56 0.47 0.78 0.64 0.70
Ohne Dich 0.73 0.55 0.58 0.75 0.56 0.62 0.79 055 0.65
Paradise 0.66 042 0.43 0.68 0.45 0.47 0.77 048 0.59
Hope 0.74 0.55 0.57 0.76  0.58 0.62 0.81 0.62 0.70
No Time To Die 0.77 0.53 0.55 0.79 0.57 0.60 0.88 0.57 0.69
The Spectre 0.64 0.52 0.54 0.67 0.50 0.52 0.63 049 0.53
Numb 0.55 044 0.45 0.57 047 0.48 0.67 049 0.57
Cold Play 0.63 0.33 0.64 / / / 0.67 050 0.74
Mean 0.68 0.54 0.57 0.70 0.56 0.58 0.78 0.60 0.68

LoseYourself_1 - Left Hand Trajectory (X) LoseYourself_1 - Right Hand Trajectory (X)

(a) Left Hand (Ours) (b) Right Hand (Ours)

LoseYourself_1 - Left Hand Trajectory (X) LoseYourself_1 - Right Hand Trajectory (X)

(c) Left Hand (PianoMime) (d) Right Hand (PianoMime)

Figure 2: Finger-trace comparison. Ours vs. PianoMime for left/right hands (top vs. bottom).

4 Discussion, Limitations, and Conclusion

Discussion. Conditioning diffusion on state+goal and executing via residual IK yields stable sub-beat
timing while respecting joint/velocity limits; a train-only, deterministic LLM oracle that scores
symbolic descriptors (IOI-CV, nPVI, velocity histogram, articulation) supplies a reproducible expres-
siveness signal insensitive to simulator timbre. Empirically we observe higher F1 and increased nPVI,
with clearer LH-RH alternation in overlays.

Limitations. The 0—4 rubric and feature set are subjective and coarse (e.g., no pedaling/voice-
leading); Acxpr and window/hop trade-offs are only partially explored; very fast leaps remain failure
modes and sim-to-real is untested; no formal listener study is included.

Conclusion. PANDORA couples conditioned diffusion and residual IK with a deterministic, train-
only symbolic oracle, improving accuracy and phrasing while remaining reproducible via released
schema, rubric, and cache keys.
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