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Abstract

Methods for automatic chemical retrosynthesis have found recent success through
the application of models traditionally built for natural language processing, pri-
marily through transformer neural networks. These models have demonstrated
significant ability to translate between the SMILES encodings of chemical products
and reactants, but are constrained as a result of their autoregressive nature. We pro-
pose DiffER, an alternative template-free method for retrosynthesis prediction in
the form of categorical diffusion, which allows the entire output SMILES sequence
to be predicted in unison. We construct an ensemble of diffusion models which
achieves state of the art performance for top-1 accuracy and competitive perfor-
mance for top-3 and top-5 accuracy. We prove that DiffER is a strong baseline for
a new class of template-free model and is capable of learning a variety of synthetic
techniques used in laboratory settings.

1 Introduction

Retrosynthesis prediction is a vital step in organic synthesis tasks, particularly those posed for drug
discovery or drug engineering. In forward synthesis prediction, the products of a chemical reaction
are predicted from known reactants; retrosynthesis prediction reverses this process, instead predicting
possible reactants that would produce a target product. Repeated application of retrosynthesis
prediction can help chemists construct synthetic pathways for drug targets [21, 20, 23], promoting
the discovery and advancement of new pharmaceuticals. While numerous types of models for
computer-aided retrosynthesis have been proposed, many modern approaches utilize data-driven
machine learning to find suitable models for retrosynthesis prediction.
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Figure 1: Schematic of DiffER, our diffusion process for retrosynthesis. a) The Product Encoder,
which converts the product to a random, root-aligned SMILES form and encodes it using the encoder
portion of the DiffER models. The encoder models also predict the size of the diffusion noise
vector. b) The Reactant Decoder, which diffuses the reactant from randomly initialized categorical
noise using the decoder portion of the DiffER models. Decoder models can predict pad tokens
<P> to diffuse SMILES strings of varying lengths. c) The Canonicalized Ranking, which ranks the
canonical molecules predicted by the DiffER models by the number of times they are generated. The
top-ranked reactant is the predicted reactant.

Recent advances in machine learning models for chemical retrosynthesis have taken advantage of
transformer architectures originally crafted for natural language tasks. Instead of operating on natural
language, these models are set to operate on SMILES [31] encodings of chemical products and
reactants, effectively translating between two molecular sets [16]. Indeed, recent work has done
precisely this, going as far as using neural machine translation models originally built for language
tasks for retrosynthesis prediction [34, 12]. While these models exhibit remarkable performance
compared to other baseline methods for retrosynthesis, they impose autoregressive constraints during
training and prediction, enforcing sequential decoding of the SMILES string. A more detailed
overview of current work in single-step retrosynthesis we compare our work to is provided in
Appendix B.

In this work, we offer DiffER, an alternative to sequential decoding of SMILES strings in the
prediction process by utilizing categorical diffusion models rather than autoregressive models. This
exchange allows DiffER to decode the entire SMILES string in unison, rather than in an autore-
gresssive manner. We hypothesize that by allowing the model to predict the entire SMILES string
in unison, it may better learn structural relationships within the molecule. Additionally, diffusion
models have experienced a recent surge of success for many generation tasks across domains. By
employing categorical diffusion for the chemical retrosynthesis task, we provide a strong and compet-
itive baseline for a new class of model. An outline of our approach is display in Figure 1, while a
more detailed overview is available in Section 1.1. DiffER achieves state-of-the-art top-1 accuracy
against a variety of baseline models and competitive performance for top-3 and top-5 accuracy.

1.1 Methods

We define the retrosynthesis task as a sequence-to-sequence modeling problem and combine the
approaches of Hoogeboom et al. [11], DiffuSeq [8, 9], and MaskPredict [7] to train conditional,
multinomial diffusion models for the retrosynthesis task. We utilize a traditional encoder-decoder
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transformer architecture to construct individual conditional diffusion models, where the encoder
is responsible for learning the representation of the conditional features and the decoder acts as
the diffusion approximation model. In the end, eight individual diffusion models are ensembled to
produce DiffER, a novel ensemble model for chemical retrosynthesis.

Let xt ∈ {0, 1}K×ℓx be a sequence of ℓx one-hot encoded vectors of size K representing the source
and let yt ∈ {0, 1}K×ℓy be similarly defined representing the target. Let C denote a categorical
probability distribution with parametrized probability. Finally, let F represent a transformer neural
network with encoder Fencoder, decoder Fdecoder, and sequence length prediction classifier Flength.

1.1.1 Forward Noising Process

Following Hoogeboom et al. [11], we define the multinomial diffusion process q as a categorical
distribution C with probability βt of sampling uniformly from {0, 1}K for any step in the sequence,
and apply noising to the target matrix yt:

q(yt|yt−1) = C(yt|(1− βt)yt−1 + βt/K). (1)

This forms a Markov chain allowing yt to be directly sampled from y0:

q(yt|y0) = C(yt|ᾱty0 + (1− ᾱt)/K), (2)

where αt = 1 − βt and ᾱt =
∏t

τ=1 ατ . Note that in the forward noising process, we only apply
noise to the target sequence y0.

1.1.2 Conditional Denoising

We continue following the work of Hoogeboom et al. to denoise the categorical data. We construct
the posterior distribution of the categorical model as

pθ(yt−1|yt,y0) = C(yt−1|θpost(yt,y0)), (3)

where

θpost(yt,y0) = θ̄/

K∑
k=1

θ̂k (4)

and
θ̄ = [αtyt + (1− αt)/K]⊙ [α̂t−1y0 + (1− α̂t−1)/K]. (5)

Notably, as y0 is not known during inference, it must be estimated using a neural network. Inspired by
DiffuSeq [8, 9], we concatenate a representation of the source sequence to the noised representation
of the target sequence to use as input to the y0 approximation model. In contrast to DiffuSeq, which
uses the embedded representation of the source sequence x0, we process the source sequence with a
transformer encoder model prior to concatenating, which is used as the memory component in the
decoder architecture [15]. Thus, the reverse diffusion process is fully modeled as

pθ(yt−1|yt,x0) = C(yt−1|θpost(yt,Fdecoder(yt||Fencoder(x0)))), (6)

where || is the concatenation operator. We denote the estimated target sequence as ŷ0. Additionally,
we add a sinusoidal embedding of the current diffusion timestep t to the diffusion model input yt.

1.1.3 Length Prediction

One downside of the diffusion methodology compared to normal autoregressive methods is the
requirement that the total length of the sequence must be known prior to inference so that the
starting uniform noise distribution can be properly initialized. Prior work, such as DiffuSeq [8, 9],
have primarily approached this issue by padding the sequence with observable PAD tokens up to a
maximum length, and allowing the diffusion model to predict the location of PAD tokens as necessary.
In contrast, MaskPredict [7] presents the idea of a length prediction token, which is learnt by the
transformer encoder block and used to initialize the input to the transformer decoder. We similarly
prepend a LENGTH token to the source sequence x0 and use the learned representation of the LENGTH
token for the sequence to predict a target length ℓ̂y:

p(ℓ̂y|x0) = Flength(Fencoder(x0)), (7)
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where Flength is a feed-forward classifier function over integers up to the maximum sequence length
dependent only on the first column of Fencoder(x0).

Upon initial testing, we find that the baseline implementation of MaskPredict length prediction
performs poorly for this task due to its rigidity in predicting the sequence length and frequency of
predicting shorter sequences than the ground truth. To remedy this, we propose a novel adjustment to
the method by appending a uniform random number n ∼ U(1, N) of observable padding tokens to the
decoder sequences during training. This increases the expected length of the sequence by (1+N)

2 while
allowing the diffusion model to predict pad tokens within a range of the the target length. Notably,
as the probability of predicting n padding tokens is equivalent for n ∈ [1, N ], the probability of
predicting sequences with lengths within (1+N)

2 of the predicted length is approximately equal. This
offers benefits of both the MaskPredict and DiffuSeq approaches: The diffusion model is provided
with information about the target length from the encoder while still allowing for the possibility of
predicting a variety of sequence lengths rather than only the predicted target length. Intuitively, lower
limits of N place more focus on the length prediction component, while higher values of N allow
the model to vary more from the initial length prediction. Additionally, as the lengths of the input
source sequence and output target sequence of the retrosynthesis task are highly correlated, we shift
the methodology to predict the difference in length between the source and target rather than the total
length of the target.

1.1.4 Ensemble Voting of Models

In order to stabilize and diversify the output of the diffusion model, we implement an ensemble of
various individual diffusion models with different values of the random padding limit N . During
inference, multiple samples are drawn from each model trained on different N . Outputs are then
ranked according to the number of times they are sampled overall. Ties are broken using a ranked-
choice voting scheme. This process encourages output diversity by combining models trained with
varying degrees of reliance on the length prediction component. We refer to the constructed ensemble
model as DiffER.

We identically construct and train the individual models that compose DiffER, varying only
the maximum number of random padding that can be added on to the target sequence dur-
ing training. We test various voting combinations of models with random padding limit N ∈
{5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90}. We find that models trained with N < 20 perform
poorly, as they place too much focus on the length prediction component, which is biased to-
ward a lower increase in length. We construct the final ensemble using eight models trained on
N ∈ {20, 30, 40, 50, 60, 70, 80, 90}.

1.1.5 Loss Functions

We utilize a combination of mean square error (MSE) and variational lower bound (VLB) losses to
train the diffusion models, the latter of which is derived using the Kullback-Leibler (KL) divergence
according to Hoogeboom et al [11]. We apply MSE loss directly to the predicted target y0, while the
VLB loss uses the sampled posterior of the predicted target:

LMSE = E
[
||y2

0 − ŷ2
0 ||

]
(8)

LVLB = E

[
K∑

k=0

y0,k log ŷ0,k −
T∑

t=2

KL(q(yt−1|yt,y0)|q(yt−1|yt, ŷ0))

]
. (9)

Finally, we include a loss term for the length prediction task using cross entropy:

Lℓ = E

[
L∑

l=0

ℓyl log p(ℓ̂y|x0)l

]
, (10)

where ℓy is a one-hot encoded vector representing the length difference between y0 and x0. Addition-
ally, when training the diffusion models, we employ the importance-based time sampling algorithm
used in DiffuSeq [8, 9].
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1.1.6 Reproducibility

We apply our models to the USPTO-50K [17] data set with Root-aligned SMILES augmentation
[34], which greatly improves the performance of the diffusion models. We directly utilize the dataset
splits provided by the authors of Root-aligned SMILES. We form DiffER as an ensemble of models
with random padding limit N ∈ {20, 30, 40, 50, 60, 70, 80, 90}. Each model takes the form of a
encoder-decoder transformer architecture with 6 layers and 8 attention heads with hidden dimension
size 512, feed-forward size 2048, and GELU activation [10]. We utilize an Adam optimizer with
learning rate 1 × 10−4 and dropout rate of 0.1. We set the number of diffusion steps to T = 200.
We use a cosine beta schedule [3] and a Gumbel-softmax distribution for noise sampling during
the diffusion process. All models are trained using a high-performance computer with Intel Xeon
E5-2680 v4 CPUs (128GB memory) and NVIDIA Tesla P100 GPUs (16GB memory).

During inference, we follow the work of Zhong et al. [34] to augment the input SMILES strings. 20
random Root-aligned SMILES strings are generated for each input product and provided to DiffER
for sampling. Thus, each model in DiffER outputs 20 random samples for the input string. Output
samples are canonized and ranked according to rate of occurrence.

2 Results

Table 1: Top-K accuracy for tempate-based, semi-template, and template-free retrosynthesis models.
The best performing model of its category for each K is in bold and the second best model is
underlined. DiffER is the best performing model for K = 1 and the second best model for K = 3, 5
among template-free methods.

Category Model K=1 3 5 10

Template-based

Retrosim [5] 37.3 54.7 63.3 74.1
Neuralsym [21] 44.4 65.3 72.4 78.9
GLN [6] 52.5 69.0 75.6 83.7
LocalRetro [2] 53.4 77.5 85.9 92.4

Semi-template

G2Gs [24] 48.9 67.6 72.5 75.5
GraphRetro [25] 53.7 68.3 72.2 75.5
RetroXpert [32] 50.4 61.1 62.3 63.4
RetroPrime [30] 51.4 70.8 74.0 76.1
G2Retro [4] 53.9 74.6 80.7 86.6

Template-free

Seq2Seq [16] 37.4 52.4 57.0 61.7
Levenshtein [26] 41.5 48.1 50.0 51.4
GTA [22] 51.1 67.6 74.8 81.6
Graph2SMILES [28] 51.2 66.3 70.4 73.9
Dual-TF [27] 53.3 69.7 73.0 75.0
MEGAN [19] 48.1 70.7 78.4 86.1
Chemformer [12] 54.3 - 62.3 63.0
Retroformer [29] 53.2 71.1 76.6 82.1
Tied transformer [13] 47.1 67.2 73.5 78.5
R-SMILES [34] 56.3 79.2 86.2 91.0

DiffER 57.6 79.0 84.1 87.4

We compare DiffER to a variety of template-based, semi-template, and template-free methods for
retrosynthesis prediction with unknown reaction types, detailed in Appendix B. We report top-k
accuracy for k ∈ {1, 3, 5, 10} following standard procedures. We construct DiffER as an ensemble
of eight diffusion models with various hyperparameters and sample from each model twenty times
with augmented input SMILES according to the work of Zhong et al. [34]. Predicted reactants
sampled from the diffusion models are ranked according to the number of times they were predicted
by the diffusion models. By using multiple different models with different hyperparameters to predict
possible reactants for the same reaction, we encourage diversity and stability in the output reactants.
Ties in reactant rankings are decided according to a ranked choice voting scheme. Further ties are
broken arbitrarily. Results for the diffusion ensemble model are reported against baseline algorithms
in Table 1.
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Notably, DiffER is the best performing model for K = 1 (57.6%) across all model types, and is
highly competitive for higher values of K, achieving the second best performance for K = 3 (79.0%)
behind Root-Aligned SMILES [34] and third best performance for K = 5 and K = 10 (84.1% and
87.4%, respectively) behind Root-aligned SMILES and LocalRetro [2], making it the second best
model among template-free approaches. The decrease in performance of ours at higher values of K
can likely be attributed to a lack of outputs for higher values of K: despite generating outputs from
multiple models for a diversity of input product SMILES, the output of DiffER tends to produce just
a few candidate reactant sets for each product, producing the same output molecule numerous times
in a different, non-canonical SMILES form. Indeed, Figure 2 shows a histogram of the number of
sample reactions generated for the test dataset. The diffusion ensemble produces a median number
of samples of 9, with 17.9% of reactions producing less than 5 samples, and 57.1% producing less
than 10. Notably, we find that fewer reactants tend to be sampled when DiffER is correct in its
output: reactions where the top-1 reactant is correctly predicted produce only 8.4 different molecules
on average, compared to 12.3 for cases where the top-1 reactant does not match the ground truth.
This lack of outputs is less observed in other methods such as R-SMILES which apply beam-search
algorithms to sequential decoders, allowing a greater number of possible reactants to be found.

Figure 2: A histogram of the number of different molecules output by DiffER for each reaction
during inference.The distribution has a mean of 10.0 and a median of 9. “K=1 is Accurate” indicates
if the most commonly predicted molecule matched the ground-truth reaction.

2.1 Individual Model Performance

We construct DiffER from eight individually trained diffusion models, each of which uses a different
random padding limit N (described in Section 1.1.3) during training. We report the individual
performance for each of the trained models in Table 2. We compare these results to the DiffER
ensemble as well as a baseline diffusion model trained using direct length prediction, without the
length variation used in the individual DiffER models, also reported in Table 2.

The individual DiffER models greatly improve upon the baseline length prediction model, demon-
strating the effectiveness of our length variation technique. The length variation technique encourages
the individual models to over-predict the length of the reactant SMILES and then reduce the output
SMILES to the correct size using predictable padding tokens. Meanwhile, the baseline length pre-
diction model drastically under-performs all other models in terms of accuracy, demonstrating the
sensitivity of the diffusion models for SMILES string generation to the size of the noise vector. Both
the individual DiffER models and the baseline length prediction model exhibit low variance in the
output reactants, only predicting 3.2 and 3.8 reactants on average, respectively. Notably, all models
still achieves high validity from among the output molecules, indicating that the individual diffusion
models are properly learning not only the SMILES grammar, but also rules of molecular validity.

When the individual models are ensembled into the complete DiffER model, both the accuracy
and diversity of predicted reactants are significantly improved. The DiffER ensemble produces on
average twice the number of reactants compared to the individual models, highlighting the impact of
the different individual model setups on the output molecules. By combining multiple models trained
on different upper limits for the length of the SMILES string, we can leverage different weightings of
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the length prediction mechanism. When a model is trained on a lower padding limit, more emphasis
is placed on the length prediction component, as the model is less able to diverge from the predicted
length. When the padding limit is larger, the diffusion model has more freedom to construct SMILES
of varying lengths, but are less informed by the length prediction. By combining multiple models on
various random padding limits, we improve the diversity and accuracy of the predicted reactants.

Table 2: Comparison of the DiffER ensemble with the individual models that make up DiffER.
Individual models are notated as DiffER N , where N represents the upper bound on the number of
added padding tokens according to the procedure in Section 1.1.3. We additionally include single
models with baseline length prediction and oracle length prediction. The individual DiffER models
show significantly higher accuracy than baseline length prediction, but are outperformed by the
DiffER ensemble. The oracle length model drastically outperforms all existing models.

Model K=1 3 5 10 Sample Validity Avg. Num. Reactants

DiffER Ensemble 57.6 79.0 84.1 87.4 100.0 10.0

DiffER 20 53.2 70.3 72.9 73.6 100.0 3.2
DiffER 30 55.2 71.5 74.4 75.2 99.9 3.2
DiffER 40 54.6 72.1 74.4 75.3 99.9 3.2
DiffER 50 54.9 71.3 73.7 74.4 100.0 3.2
DiffER 60 55.4 71.7 74.6 75.4 99.9 3.3
DiffER 70 54.3 71.1 73.5 74.4 99.6 3.2
DiffER 80 54.6 71.9 74.4 75.1 99.6 3.3
DiffER 90 54.5 71.6 74.2 74.9 99.8 3.3

Baseline Length 40.4 55.9 58.8 59.9 99.9 3.8
Oracle Length 77.0 88.1 89.5 90.0 99.7 2.8

Upper Limits on Performance we additionally consider a upper limit on the performance of
categorical diffusion models for chemical retrosynthesis by considering an oracle model which
predicts the length of the output SMILES string with 100% accuracy. This allows us to construct a
diffusion model without needing to incorporate aspects of length prediction or variability in the size
of the output as discussed in Section 1.1.3. Under the assumption of the length-predicting oracle,
we can initialize input noise to the diffusion model of the proper size. We run this experiment for a
single diffusion model and utilize the same parameters and repeated sampling during inference as
discussed in the experimental setup.

Results for this experiment are presented in Table 2 in comparison to the DiffER models and the
baseline length prediction diffusion model. The model with oracle length drastically outperforms
DiffER as well as all existing methods for K = 1, 3, 5, but performs slightly worse than both Root-
aligned SMILES and LocalRetro for K = 10. Similarly to DiffER, this can be attributed to a lack of
variety in the predicted output, which is even more extreme for the oracle length model: on average,
only 2.8 different reactants are predicted, with a median of just 2 predicted reactants. However, this
lack of diversity is overcome by the oracle model’s high accuracy amongst the predicted reactants.

This result highlights the importance of accurate length prediction in non-auto-regressive models,
particularly in the case of molecular generation with SMILES strings. While there is some variability
in the length of randomly generated SMILES string for a specific molecule, these variants generally
only differ by a length of two or three, if they differ at all. If the length prediction is off from a viable
value by even one or two, it may force an entirely different molecule to be generated, resulting in
lower reported performance. By including the random length padding in DiffER, we help combat
the diffusion model’s sensitivity to length prediction, but remain far from the performance of a model
with perfect length prediction.

3 Discussion

Our results show that categorical diffusion models offer a competitive alternative to auto-regressive
models for template-free single step retrosynthesis prediction and are able to outperform state-of-the-
art template-based, semi-template, and template-free methods on top-1 accuracy, and achieve similar
performance to state-of-the-art models on top-3, top-5, and top-10 accuracy. The proposed DiffER
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ensemble is able to efficiently sample from the posterior distribution of possible reactant SMILES
strings while maintaining the viability of output SMILES. DiffER is capable of reproducing existing
patented reactions as well as proposing new and viable reactants (Appendix A.1).

3.1 Limitations and Directions of Future Work

Despite the strong performance of DiffER, there are a few notable limitations to the modeling
approach. Firstly, raw diffusion models are highly sensitive to the predicted size of the output. Thus,
methods such as our novel variant length padding (Section 1.1.3) must be employed to diversify
target lengths and allow diffusion models to predict molecules of varying size. Secondly, DiffER
suffers from a lack of output variety, often producing just a few possible reactants. Because diffusion
models sample from an approximated posterior, reactants which the model deems more probable will
be sampled at a higher rate, resulting in fewer reactants being sampled overall for a static sample
size. This is particularly true in cases where the model is confident in its prediction. Finally, the
model sometimes produces sub-optimal reactions, such as some of those displayed in Appendix A.1.
Such reactions often undergo additional reactions alongside the target reaction, and while the desired
product is a possible outcome, additional byproducts would likely be produced in many cases. These
limitations highlight necessary areas of future research for not only categorical diffusion models in
chemical retrosynthesis, but also categorical diffusion models for sequence generation in general:

1. Categorical diffusion models must be able to adapt to differently sized outputs. Prior work
relies on predictable padding tokens to predict differently sized sequences [8, 9], but this
reliance can introduce its own biases due to the prevalence of padding tokens for shorter
sequences. DiffER overcomes reliance on predicting padding tokens by adding limited
variability in the number of possible padding tokens, with some success; however, results
still pale in comparison to a model with perfect sequence length prediction.

2. Additional techniques to sample categorical diffusion models must be developed in order
to improve sequence diversity and coverage. Compared to the traditional applications
of diffusion models in image generation, molecular SMILES generation has significantly
fewer possible outputs, making the models more likely to converge to a single prediction.
This effect is heightened by the the presence of multiple SMILES strings mapping to the
same molecular structure: while the sequence itself may be different, the same molecule is
produced. We must develop methods to encourage greater output diversity in the sampled
molecules. DiffER attempts encourages output diversity using an ensemble approach, and
while the results are significantly more diverse than single model approaches, the number of
differently sampled molecules remains low.

The case studies of DiffER presented in Appendix A.1 additionally demonstrate directions of future
research for retrosynthetic modeling as a whole, many of which are echoed in other work [4]:

3. Machine learning models for retrosynthesis are generally unaware of possible side products
as a result of the generally available training data. Because these models are most commonly
trained on patent reaction datasets, models are not generally exposed to explicit examples
where multiple possible outcomes could occur. Indeed, the UPSTO-50K dataset has no
reactant sets which map to more than one molecule, limiting the ability of the model to learn
that multiple reactions may be possible for a single set of reactants. To improve the ability
of ML models to understand chemical processes, incorporating additional examples into
the training datasets may be beneficial, and with proper learning techniques, may lead to
improved performance.

4. Evaluating the performance of ML models on chemical retrosynthesis most commonly relies
on a) matching to patented reactions and b) analyzing individual case studies. Evaluating
models by matching to patented reactions limits the discovery of novel techniques and
pathways, as models may produce valid results that do not match patent data. In contrast,
evaluating individual case studies is more adaptable to understanding the model’s true
performance, but is a time consuming process requiring considerable chemical knowledge.
To enhance the development of ML models for chemical retrosynthesis, we must develop
new methods of analysis that take into account the abundance of viable reactions as well as
existing chemical knowledge.
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Further research in these four tasks would greatly benefit the application of diffusion models in
chemical retrosynthesis, as well as both diffusion modeling and retrosynthetic prediction models
individually.

4 Conclusion

Our ensemble of categorical diffusion models provides state-of-the-art top-1 accuracy as well as
competitive top-3 and top-5 accuracy. Additionally, we offer insight into the importance of length
prediction and length variation methods when training diffusion models for sequence prediction tasks.
We hope this work provides a suitable baseline and opens new avenues of exploration for a new
class of template-free retrosynthesis model which differs from current autoregressive approaches. In
future work, we plan to investigate additional methods of length prediction, as well as apply different
diffusion sampling techniques to improve the diversity of sampled molecules. Finally, we plan to
continue improving upon the diffusion model that comprise DiffER, introducing methods such as
adaptive noise scheduling [33] as well as other advancements in categorical diffusion models to
improve model performance.

Acknowledgments and Disclosure of Funding

This project was made possible, in part, by support from the National Science Foundation grant
no. IIS-2133650 and the National Library of Medicine grant no. 1R01LM014385. Any opinions,
findings and conclusions or recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding agency.

References
[1] Richard F Borch. Reductive amination with sodium cyanoborohydride: N, n-

dimethylcyclohexylamine: Cyclohexanamine, 4, 4-dimethyl-. Organic Syntheses, 52:124–124,
2003.

[2] Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity
and global attention. JACS Au, 1(10):1612–1620, 2021.

[3] Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

[4] Ziqi Chen, Oluwatosin R Ayinde, James R Fuchs, Huan Sun, and Xia Ning. G 2 retro as a
two-step graph generative models for retrosynthesis prediction. Communications Chemistry,
6(1):102, 2023.

[5] Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Computer-assisted
retrosynthesis based on molecular similarity. ACS central science, 3(12):1237–1245, 2017.

[6] Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
conditional graph logic network. Advances in Neural Information Processing Systems, 32, 2019.

[7] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

[8] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

[9] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq-v2:
Bridging discrete and continuous text spaces for accelerated seq2seq diffusion models. arXiv
preprint arXiv:2310.05793, 2023.

[10] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

9



[11] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in Neural
Information Processing Systems, 34:12454–12465, 2021.

[12] Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology,
3(1):015022, 2022.

[13] Eunji Kim, Dongseon Lee, Youngchun Kwon, Min Sik Park, and Youn-Suk Choi. Valid,
plausible, and diverse retrosynthesis using tied two-way transformers with latent variables.
Journal of Chemical Information and Modeling, 61(1):123–133, 2021.

[14] Ludwig Knorr. Synthese von furfuranderivaten aus dem diacetbernsteinsäureester. Berichte der
deutschen chemischen Gesellschaft, 17(2):2863–2870, 1884.

[15] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[16] Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang
Luu Nguyen, Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction
prediction using neural sequence-to-sequence models. ACS central science, 3(10):1103–1113,
2017.

[17] Daniel Lowe. Chemical reactions from US patents (1976-Sep2016). 6 2017.

[18] C Paal. Ueber die derivate des acetophenonacetessigesters und des acetonylacetessigesters.
Berichte der deutschen chemischen Gesellschaft, 17(2):2756–2767, 1884.

[19] Mikołaj Sacha, Mikołaj Błaz, Piotr Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski,
Rafał Loska, Paweł Włodarczyk-Pruszynski, and Stanisław Jastrzebski. Molecule edit graph
attention network: modeling chemical reactions as sequences of graph edits. Journal of
Chemical Information and Modeling, 61(7):3273–3284, 2021.

[20] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604–610, 2018.

[21] Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis
and reaction prediction. Chemistry–A European Journal, 23(25):5966–5971, 2017.

[22] Seung-Woo Seo, You Young Song, June Yong Yang, Seohui Bae, Hankook Lee, Jinwoo Shin,
Sung Ju Hwang, and Eunho Yang. Gta: Graph truncated attention for retrosynthesis. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 531–539,
2021.

[23] Yuning Shen, Julia E Borowski, Melissa A Hardy, Richmond Sarpong, Abigail G Doyle, and
Tim Cernak. Automation and computer-assisted planning for chemical synthesis. Nature
Reviews Methods Primers, 1(1):1–23, 2021.

[24] Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs
framework for retrosynthesis prediction. In International conference on machine learning,
pages 8818–8827. PMLR, 2020.

[25] Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, and Regina Barzilay.
Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing
Systems, 34:9405–9415, 2021.

[26] Dean Sumner, Jiazhen He, Amol Thakkar, Ola Engkvist, and Esben Jannik Bjerrum. Levenshtein
augmentation improves performance of smiles based deep-learning synthesis prediction. 2020.

[27] Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, and Bo Dai. Towards understanding ret-
rosynthesis by energy-based models. Advances in Neural Information Processing Systems,
34:10186–10194, 2021.

10



[28] Zhengkai Tu and Connor W Coley. Permutation invariant graph-to-sequence model for template-
free retrosynthesis and reaction prediction. Journal of chemical information and modeling,
62(15):3503–3513, 2022.

[29] Yue Wan, Chang-Yu Hsieh, Ben Liao, and Shengyu Zhang. Retroformer: Pushing the limits
of end-to-end retrosynthesis transformer. In International Conference on Machine Learning,
pages 22475–22490. PMLR, 2022.

[30] Xiaorui Wang, Yuquan Li, Jiezhong Qiu, Guangyong Chen, Huanxiang Liu, Benben Liao,
Chang-Yu Hsieh, and Xiaojun Yao. Retroprime: A diverse, plausible and transformer-based
method for single-step retrosynthesis predictions. Chemical Engineering Journal, 420:129845,
2021.

[31] David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

[32] Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, Jinyu Yang, Yang Yu, and
Junzhou Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in
Neural Information Processing Systems, 33:11248–11258, 2020.

[33] Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq: Text
diffusion with encoder-decoder transformers. arXiv preprint arXiv:2212.10325, 2022.

[34] Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu,
Tingjun Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical
reaction prediction. Chemical Science, 13(31):9023–9034, 2022.

A Appendix / supplemental material

A.1 Case Studies

We offer additional results in the form of a case study of four different reactions, the results of which can be
seen in Figures 3 and 4. We select four different reactions from the test dataset to highlight the successes and
limitations of the diffusion models. For each reaction, we report the top-3 reactants sampled from the diffusion
ensemble.

Reaction a (Fig. 3a) is a deprotection reaction in the forward direction in which the trifluoroacetamide protecting
group (Fig. 3ab) is reacted with sodium borohydride in an ethanol solution to produce a primary amine at at
the N1 position (Fig. 3aa). The diffusion ensemble does not predict this reactant, however, instead opting for
the reduction of a nitro group, predicted 89.4% of the time, (Fig. 3ac) at the N1 position. This is a widely used
and viable reaction involving metal catalyzed reduction of the nitro group using Fe, Zn, Pd or Ni. Similarly, the
third ranked choice (Fig. 3ae) is also a viable option involving a debenzylation reaction which is commonly
performed in the presence of a metal catalyst under a hydrogen atmosphere. The second choice reaction (Fig.
3ad), however, undergoes amide hydrolysis under harsh conditions such as a strong acid. While this is also a
viable synthesis, a harsh condition such as a strong acid would likely interact with the tert-butyl ester group
leading to unwanted side products. Notably, the diffusion ensemble does not predict the patented reactant,
primarily predicting the reduction of a nitro group 89.4% of the time. We hypothesize that this is a result of the
specific use-case of the ground-truth reaction, which is likely used in an industrial setting. Unlike the top-1 (Fig.
3ac) reactant, the ground-truth (Fig. 3ab) does not use the metal catalyzed reduction of a nitro group (top-1) or
debenzylation (top-3) under a hydrogen atmosphere because it is not a safe reaction on industrial scale. While
the top-1 or top-3 reactants may actually be more common in an academic lab setting, the ground-truth reactant
is likely preferable on a large-scale industrial setting.

Reaction b (Fig. 3b) is a common reduction reaction of a ketone at C1 (Fig. 3bb) with sodium borohydride
in a methanol solution to produce a secondary alcohol (Fig. 3ba). This same reaction is also predicted by the
diffusion models 38.3% of the time to give the second most popular predicted reactants (Fig. 3bd). The most
popular predicted reactants is an aldehyde and Grignard reagent, predicted 42.2% of the time, in which the
methylmagnesium bromide reacts with the aldehyde at position C1 (Fig. 3bc) to produce the desired product
in the forward reaction. However, the Grignard reagent (MeMgBr), which is a more nucleophilic reagent, is
likely to react with other functional groups present in the molecule as well, such as the two amides at C2 and
C4 or displace the fluorine at C5 via a nucleophilic aromatic substitution-like type reaction. In contrast, while
the ground-truth/second-most predicted reaction (Fig. 3bb/3bd) could lead to unwanted products, such as the
reduction the carbonyl groups at C2 and C4, these reactions are less likely to occur compared to the Grignard
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reaction under a proper choice of reagents such as sodium borohydride in ethanol. The top-3 reactant is predicted
just 9.7% of the time, and unlike the other proposed reactants, it does not interact with the C1 carbon. Instead, it
disconnects the molecule at the C1-N3 amide to reveal a C1 carboxylic acid and an N3 amine (Fig. 3be). The
amide bond can be constructed in the forward reaction using a suitable amide coupling reaction condition. Yet
again, this reaction is viable but would likely produce unwanted byproducts if other functional groups such as
the free secondary alcohol or the primary amide in the proposed reaction were not protected first.

Reaction c (Fig. 4c) is an ester hydrolysis in which the C1 ester (Fig. 4cb) is reacted with sodium hydroxide and
a water/ethanol mixture to produce a carboxylic acid (Fig. 4ca). This reaction is also predicted by the diffusion
ensemble a vast majority of the time, forming 61.3% of the sampled reactants (Fig. 4cc). The top-2 reactant is
also a viable alternative to the ground-truth reactant, just with a ethyl ester at C1 instead of a methyl ester, which
is also a common reaction. Interestingly, the top-3 reactant sampled by the diffusion models is a Paal-Knorr-type
pyrrole synthesis [18, 14] from an aniline (N2) and the diketone (C3-C6)(Fig. 4cd). The Paal-Knorr reactions
usually involves harsh conditions such as strong acids which may not be compatible with the ether or the lactam
functional groups [18, 14]. Also, the free C1 carboxylic acid may need to be protected as an ester before the
pyrrole synthesis to produce the ground-truth reactant molecule (Fig. 4cb) which would need to undergo the
aforementioned ester hydrolysis to produce the target molecule. Thus, 4cd could be viewed as one-step further
back in the retrosynthesis chain compared to the ground-truth/top-1 reactant.

Finally, reaction d (Fig. 4d) is a Borch reductive amination [1] between cyclobutanone and a secondary amine
in the presence of a reducing agent (Fig. 4db) to form a tertiary amine with a cyclobutyl group at N1 (Fig.
4db). The ground-truth reactants are the top-predicted reactants by DiffER, making up 74.3% of the predicted
reactants. Both the second and third most predicted reactants are amine alkylations involving halides, in which
an alkyl halide at C3 (Fig. 4dd/4de) reacts with the N1 amine to form a tertiary amine. Such N-alkylation
reactions are commonly used when reduction amination does not work, and are valid alternative reactions.
However, potential side reactions such as N-1 overalkylation or intramolecular N-4 alkylation would likely lead
to unwanted byproducts. As such, the ground-truth/top-1 reactants are preferred.

These case studies demonstrate that the diffusion models are capable of learning a variety of viable reactions
for organic synthesis, but like many other models, struggle to understand greater domain requirements or the
likelihood of byproducts, as exemplified in the top-1 reactant for reaction b (Fig. 3bc) and top-2/3 reactants
for reaction d (Fig. 4dd/4de). However, the models also demonstrate significant capability to properly utilize

a) 3aa, desired product 3ab, ground-truth reactants

3ac, top-1 reactants (89.4%) 3ad, top-2 reactants (3.0%) 3ae, top-3 reactants (1.5%)

b) 3ba, desired product 3bb, ground-truth reactants

3bc, top-1 reactants (42.2%) 3bd, top-2 reactants (38.3%) 3be, top-3 reactants (9.7%)

Figure 3: Top-3 reactants for target products a and bfrom the test set compared to patent reactants.
Values in parentheses indicated the percentage of time that reactant was sampled from the diffusion
models. Numbers next to atoms are labels used to refer to the atom. Colored regions indicate where
in the molecule a reaction is expected to occur.
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common and routine reactions (Fig. 3ac and Fig. 4cc) as well as more complex reactions such as ring formations
(Fig. 4ce). Even in cases where the ground-truth reactants were not predicted in the top-3 reactants, the diffusion
models produced suitable alternatives used in other reactions (Fig. 3ac) to accomplish the same goal. This
highlights a key difficulty in assessing the accuracy and performance of models for retrosynthesis; oftentimes,
multiple different reactions may be viable, and the use case for each reaction may depend on information not
present in the molecular structure, such as the case of reaction a. Metrics of ground-truth accuracy do not capture
the viability of a reaction, just that they match the patented reaction, which may lead to misrepresentation of the
model’s capabilities when a suitable alternative is predicted.

B Overview of Retrosynthesis Models Used for Comparison

We compare and report results against a variety of retrosynthesis models, as seen in Table 1. Models are grouped
according to their model type, which includes template-based, semi-template, and template-free models.

The template-based models we compare against are:

• Retrosim [5], which applies reaction templates derived from molecules similar to the target product,
and ranks reactions by similarity to existing reactions;

• Neuralsym [21], which utilizes multi-layer perceptrons with molecular fingerprints of the product to
predict applicable reaction templates;

• GLN [6], which uses graph neural networks to learn when and where in molecules reaction rules can
be applied, while scoring the feasibility of the reaction;

• LocalRetro [2], which focuses on the local environment of atoms in the product and classifies reaction
templates on an atomic level.

Each of these methods utilize reaction templates sourced from known reactions. The primary goals are to 1.)
select where in the molecule the reaction will take place and 2.) select which reaction template is applicable.

The semi-template models we compare against are:

c) 3ca, desired product 3cb, ground-truth reactants

3cc, top-1 reactants (61.3%) 3cd, top-2 reactants (18.7%) 3ce, top-3 reactants (16.7%)

d) 3da, desired product 3db, ground-truth reactants

3dc, top-1 reactants (74.3%) 3dd, top-2 reactants (11.5%) 3de, top-3 reactants (2.7%)

Figure 4: Top-3 reactants for target products c and dfrom the test set compared to patent reactants.
Values in parentheses indicated the percentage of time that reactant was sampled from the diffusion
models. Numbers next to atoms are labels used to refer to the atom. Colored regions indicate where
in the molecule a reaction is expected to occur.
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• G2Gs [24], which predicts reactions centers and sequentially completes synthons through the use of a
variational graph autoencoder;

• GraphRetro [25], which uses message-passing neural networks to classify reaction centers and com-
pletes synthons by predicting which leaving groups to add from among a pre-selected set;

• RetroXpert [32], which uses edge-enhanced graph attention networks to predict reaction centers and
completes synthons using a transformer network;

• RetroPrime [30], which uses two separate transformers, one to predict reaction centers, and the other
to map synthons to reactants;

• G2Retro [4], which uses a message passing network to predict three different types of reaction centers
and sequentially adds substructures on to the synthons until complete reactants are formed.

Each of these methods first divide the product into synthons and then transform the synthons into complete
reactants. The primary goals are to 1.) select where in the molecule the reaction will take place and 2.) complete
synthons formed from the divided product into complete molecules which will react as needed.

The template-free models we compare against are:

• Seq2Seq [16], which applies sequence-to-sequnece encoder-decoder recurrent neural networks to
predict reactant SMILES from the product SMILES;

• Levenshtein [26], which augments the training datasets of sequence-to-sequence recurrent neural
networks by ensuring that the source and target SMILES strings have similar subsequences;

• GTA [22], which incorporates graphical information in a sequence-to-sequence model by limiting the
self-attention layer using the adjacency matrix of the product molecular graph;

• Graph2SMILES [28], which leverages the permutation invariant nature of graph structures to re-
move variance that occurs when product is represented in SMILES form, and leverages transformer
architectures to predict the reactant SMILES;

• Dual-TF [27], which unifies graph-based and sequence-based methods to learn an energy-based model
which ranks possible reactants according to their energy score;

• MEGAN [19], which models one-step retrosynthesis as a series of graph edits, and trains a encoder-
decoder graph attention model to how to adapt the product in a set of reactants;

• Chemformer [12], which pretrains a transformer architecture on SMILES strings using a masking
approach and fine-tunes the model on product and reactant strings for retrosynthesis;

• Retroformer [29], which jointly processes the molecular sequence and graph and uses localized atten-
tion to relay information between the reaction center and global chemical context when constructing
reactants;

• Tied transformer [13], which uses two-way transformers to encourage diversity and grammatical
accuracy in predicted SMILES strings;

• R-SMILES [34], which restructures SMILES representations of products and reactants to have
significant structural overlap, and then uses neural machine translation architectures to map from
products to reactants.

Most of these methods utilize transformer architectures on SMILES strings, effectively translating from a product
string into a reactant string. Many methods also directly incorporate information from the molecular graph,
augmenting the SMILES strings with known structural information. The primary goal is to directly predict a
representation of the reactant from the product, while secondary goals are to ensure the validity and viability of
the predicted reactant representation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We explicitly comment on the methodology and results of our model, as well as the
overall goal of the work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a extensive discussion of the limitations of our model. This section is a
significant portion of our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: We do not present theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include a extensive methodology section describing our approach, and specifically
discuss the reproducibility of our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Datasets are widely used and publicly available and code will be included with the
submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specify all necessary experimental details at the end of our methods section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the cost of training ensemble models, we were not able to do a statistically
significant number of runs. However, we do include individual results for each of the ensemble models,
which offer some insight into the consistency of our diffusion approach.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Though not discussed extensively, we do include information on the hardware used for
training models.

Guidelines:

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this work meets the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This work does not have significant societal impact. Though there is certainly societal
impact in drug discovery, this work is aimed primarily and discovering retrosynthetic pathways for
target compounds, and thus the societal impact is not significant.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: We do not believe this paper poses significant risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Yes, any code utilized from other parties is properly used according to the licenses
involved.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: Code included with the submission is properly licensed.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

19

paperswithcode.com/datasets


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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