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Abstract

Alignment with human preferences is commonly framed using a universal reward
function, even though human preferences are inherently heterogeneous. We for-
malize this heterogeneity by introducing user types and examine the limits of the
homogeneity assumption. We show that aligning to heterogeneous preferences
with a single policy is best achieved using the average reward across user types.
However, this requires additional information about annotators. We examine im-
provements under different information settings, focusing on direct alignment
methods. We find that minimal information can yield first-order improvements,
while full feedback from each user type leads to consistent learning of the optimal
policy. Surprisingly, however, no sample-efficient consistent direct loss exists in
this latter setting. These results reveal a fundamental tension between consistency
and sample efficiency in direct policy alignment.

1 Introduction

Human rewards and preferences are heterogeneous [1–5]. Despite this, learning from preference
data often bypasses this insight, relying on what we dub the preference homogeneity assumption.
This tension in assumptions is readily apparent in standard human-AI alignment methods—such
as reinforcement learning from human feedback (RLHF) [6–9] and direct preference optimization
(DPO) [10]—which assume a single reward function captures the interests of the entire population.

We study a heterogeneous population in which individuals belong to distinct user types, each defined
by its own reward function. Two main approaches address this setting [11]: personalizing policies
for each user type [12–17], or aggregating diverse rewards into a single objective and deploying
a universal policy [18, 19]. Our focus is on the latter, which is necessary when user types are
unobservable at inference time [20] or when the cost of maintaining specialized models is prohibitive.
A universal policy is also preferable when personalization undermines core values—such as truth or
safety—that benefit from broad consensus [21, 22].

One may notice that standard methods based on the preference homogeneity assumption implicitly
aggregate rewards. However, such aggregation can be undesirable or counterintuitive, leading to
unexpected behavior [23–25], as learning from heterogeneous preferences becomes unrealizable: A
single reward cannot capture the complexity of population preferences with multiple rewards [26, 11].

In the quest for a single policy that accommodates a heterogeneous population, we show that the only
aggregation of rewards across user types that yields a well-defined alignment problem is an affine
aggregation, with the average reward emerging as a natural choice. However, standard methods like
DPO do not maximize this user-weighted average reward. Building on insights by Siththaranjan et al.
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[20], we show that DPO implicitly maximizes Borda count, which comes with unexpected drawbacks,
e.g., the optimal solution depends on how alternative responses are sampled, even for infinite data.

We observe that learning the average reward over user types—or equivalently, a policy that maximizes
it—from anonymous data is impossible. Focusing on direct alignment methods [10, 27, 28] which
avoid explicit reward modeling, we study the benefits of using annotator data for a range of information
settings. We show that improving DPO with a first-order correction to its objective is possible with
minimal annotator information. Specifically, we design an approximate direct alignment method
when each preference data point is paired with another one labeled by the same user.

On the other hand, we find that there are limits to what is possible even with significant annotator
information. In particular, we propose a consistent loss function for direct alignment when we have
feedback on each data point from every user type. But this loss is sample-inefficient, using only data
where all annotators agreed. Surprisingly, we prove that no consistent loss uses the rest of the data.

In sum, the homogeneity assumption leads to undesirable outcomes when aligning a single AI agent to
diverse preferences. Our analysis shows that there is a limited class of reward aggregation that yields a
well-defined alignment objective, with average reward over user types emerging as the natural choice.
This requires some annotator data, though small amounts of data can yield significant improvements.
Our findings, however, uncover a fundamental tension between consistency and sample efficiency in
direct alignment: To achieve both, we must forgo the benefits of direct optimization and instead train
individualized reward models, which inevitably incurs significant training and storage costs.

2 Preliminaries

In the alignment problem, we consider a setting where a reward function r∗ evaluates a response y
to a query x by assigning a score r∗([x,y]). The goal is to design a policy that selects high-reward
responses for each query. Formally, a policy π defines a probability distribution over responses: given
a query x, it selects y with probability π(y | x). Typically, we begin with a reference policy πref ,
which acts as a prior over y [29], and for each x, aim to maximize

Ey∼π(·|x)
[
r∗([x,y])

]
− βDKL

(
π(· | x);πref(· | x)

)
, (1)

where DKL is the KL-divergence. We denote the optimal policy by π∗. In practice, πref is often a
pretrained (language) model, and the regularization parameter β controls deviation from it. Eq. (1)
often includes Ex, which is important in practice but does not affect π∗ in theory.

When r∗ is known, we can directly apply RL to maximize Eq. (1). In practice, however, r∗ is
often unknown and must be inferred from human feedback before applying RL, a process known
as RLHF. Although widely used, RLHF can be difficult to tune due to the complexities of RL. An
alternative gaining traction is direct alignment with preferences [30, 10, 27], which avoids explicit
reward modeling and instead trains the policy directly from human feedback.

Preference Model. Both direct alignment and RLHF rely on a model of human preference to relate
reward values with observed preference data. Consider the case where responses y1 and y2 are
generated for a given query x. We express the probability that y2 is preferred to y1 as

Pr(y2 ≻ y1 | x; r∗) = σ
(
r∗([x,y2])− r∗([x,y1])

)
, (2)

where σ is a non-decreasing function bounded between 0 and 1 [31–33]. A widely-used choice for σ
is the sigmoid function corresponding to the well-known Bradley-Terry (BT) model [34]. Related
work have explored smooth [35] or inconsistent preferences [36, 37], which are beyond our scope.

Direct Preference Optimization. Among direct alignment methods, DPO has become the de facto
standard. By exploiting a closed-form solution for maximizing Eq. (1), it directly relates any reward
to its optimal policy. Thereby, instead of estimating the reward explicitly, DPO trains a policy whose
induced reward best accounts for the observed preferences. Below, we derive this connection.

First, maximizing Eq. (1) has a well-known solution [38]. The optimal policy π∗ takes the form

π∗(y | x) = 1

Z(x)
πref(y | x) · exp

( 1

β
r∗([x,y])

)
. (3)
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Here, Z(x) =
∑

y′ πref(y
′ | x) · exp( 1β r

∗([x,y′])) is the partition function. Eq. (3) establishes a
direct relationship between policy ratios and reward differences as

r∗(y2)− r∗(y1) = β log
π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)
. (4)

Henceforth, we omit x when clear from context. This shows that the reward difference between two
responses is fully captured by the difference in their policy ratios, and motivates the definition of the
induced reward of a policy π as β log π(y)

πref (y)
or the reward function for which π is the optimal policy.

The difference in rewards of y1 and y2 is sufficient to express the likelihood of y2 ≻ y1 in Eq. (2).
Using Eq. (4), we can therefore write the likelihood as a function of π∗:

Pr(y2 ≻ y1 | π∗) = σ
(
β log

π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)

)
. (5)

For any policy π, we similarly define Pr(y2 ≻ y1 | π). To estimate π∗, we can then apply maximum
likelihood estimation: Given a dataset D of query-response pairs (x,yl,yw) with yw ≻ yl, DPO
maximizes the following log-likelihood (or equivalently, minimizes the cross-entropy loss):∑

(x,yl,yw)∈D

log Pr(yw ≻ yl | x;π) , (6)

3 Problem Formulation

The alignment problem is traditionally framed under a preference homogeneity assumption, where a
single reward is presumed to capture all individual interests. In practice, people’s preferences can
differ significantly. To better capture real-world settings, we formalize preference heterogeneity by
allowing reward functions to vary across user types as we detail below.

Heterogeneous Preference Model. The influential study of “individual choice behavior” by Luce
[32] and other foundational works on human decision-making in mathematical psychology such
as Shepard [39] focus on individual preference models. Luce [32] uses an axiomatic framework
to establish the existence of a value function—akin to a reward—for each individual, which, once
normalized, explains their choice probabilities (exp(r∗) in the BT model is one such value function).

In practice, individual identities are often unobserved. As a result, standard preference modeling
approaches assume a single reward function for the entire population. This homogeneity assumption
renders preference learning unrealizable: Even if a family of models can represent each individual’s
preferences, it may fail to capture aggregate population behavior. For instance, a mixture of BT
models cannot be represented by a single BT (we prove this in Prop. F.1 for completeness).

To fully account for heterogeneity, we need to define individual rewards. However, learning at scale
with this level of granularity is impractical, especially when working with finite data. Hence, we
group individuals into multiple user types, denoted by U , where individuals with the same type have
similar rewards, but this need not hold across types. Unless otherwise stated, we assume |U| > 1.

For a user of type u ∈ U , we denote their reward function by r∗(·;u), which assigns a score r∗(y;u)
to each response y. We model the preferences of users of type u as

Pr(y2 ≻ y1 | r∗, u) = σ
(
r∗(y2;u)− r∗(y1;u)

)
. (7)

The law of total expectation then implies that the population-level preferences follow

Pr(y2 ≻ y1 | r∗) = Eu

[
σ
(
r∗(y2;u)− r∗(y1;u)

)]
. (8)

The Extended Alignment Problem. Deriving a universal policy to serve a heterogeneous population
requires aggregation of diverse rewards. As we show next, an affine combination is the only form
of aggregation that guarantees a well-defined problem, i.e., a problem that yields the same optimal
policy for every reward that is consistent with the distribution of preferences.
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Proposition 3.1. Consider a differentiable aggregation function f : RU → R. Suppose that for every
reward r consistent with the preference distribution—meaning Pr(y2 ≻ y1 | r) = Pr(y2 ≻ y1 | r∗)
for all prompts and responses y1, y2 in the response space Y—the function f

(
(r(y;u))u∈U

)
induces

the same ordering over Y . If {(r(y;u))u∈U | y ∈ Y} has non-empty interior, then f must be affine.

See proof on page 25. This result rules out many commonly-used aggregations, such as Max-Min
[19] or Nash social welfare [40]. Among all the affine combinations, the expected reward across user
types emerges as a natural choice here. Any other affine combination would weigh people unequally,
which requires strong justifications and is rare in practice.

To summarize, our objective is to maximize

Ey∼π(·|x)
[
Eu

[
r∗([x,y];u)

]]
− βDKL

(
π(· | x);πref(· | x)

)
, (9)

for every prompt x. With this extended framework in mind, we next discuss why standard approaches
like RLHF or DPO do not necessarily yield the optimal policy.

4 Implications of the Preference Homogeneity Assumption

When preferences are heterogeneous, standard RLHF or DPO cannot yield the optimal policy π∗

that maximizes Eq. (9). If they could, the (user-weighted) expected reward would be learnable as
the induced reward of π∗. However, as we show in Prop. 5.1—and as noted in prior work in specific
cases [20, 41]—learning the expected reward from anonymous preferences is impossible.

To explain DPO’s failure in finding π∗, we extend its derivation to the heterogeneous setting in
Sec. 4.1, laying the groundwork to account for heterogeneity in DPO later on. In Sec. 4.2, we show
DPO’s policy aligns with Borda count and, in Sec. 4.3, highlight its limitations. While our analysis
focuses on DPO, similar insights extend to RLHF by substituting the policy with its induced reward.

4.1 Objective is Not the Expected Reward

We follow DPO’s derivation from Sec. 2 but with heterogeneous preferences. We show that the
closed-form connection between π∗ and r∗ is no longer sufficient to express the likelihood function.
Starting from Eq. (9), the optimal policy is

π∗(y) =
1

Z(x)
πref(y) · exp

( 1

β
Eu

[
r∗(y;u)

])
. (10)

Define ∆r∗(y1,y2;u) := r∗(y2;u)− r∗(y1;u). Using the above solution, the policy ratios of π∗

relate to the expected difference in rewards as

Eu

[
∆r∗(y1,y2;u)

]
= β log

π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)
. (11)

In the homogeneous case, ∆r∗ was sufficient to describe the likelihood of y2 ≻ y1. However, with
heterogeneous preferences, Eu[∆r

∗] alone does not suffice to write the likelihood function in Eq. (8).
Only under the following approximation can we express Pr(y2 ≻ y1 | r∗) in terms of policy ratios,
as in Eq. (5), and minimize DPO’s loss to recover π∗:

Eu

[
σ
(
∆r∗(y1,y2;u)

)]
≈ σ

(
Eu

[
∆r∗(y1,y2;u)

])
. (12)

4.2 Ordinal Consistency with Borda Count

If DPO were the answer, what would the question be? We partially answer this question by an
adaptation of a result from Siththaranjan et al. [20]. First, define the Borda count as follows.
Definition 4.1 (Normalized Borda count). For a prompt x, let D(· | x) denote the distribution of
alternative responses sampled for x. The Normalized Borda Count (NBC) of y at x is the probability
that an annotator with a random type prefers y over an alternative response y′ ∼ D(· | x):

NBC(y | x) := Ey′∼D(·|x)

[
Pr(y ≻ y′ | x; r∗)

]
. (13)

We next show that DPO’s policy ratios are ordinally consistent with the normalized Borda count.
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Proposition 4.2. Suppose responses to x in the preference dataset are drawn from D(·|x) and labeled
according to BT. In the population limit, where empirical averages converge to expectations, DPO’s
induced reward, or equivalently πDPO(·|x)

πref (·|x) , has the same ordering over responses as NBC(· | x).3

See proof on page 25. Prop. 4.2 also applies to the homogeneous setting. In this case, however, NBC
aligns with r∗. It is worth mentioning that DPO is not the only method consistent with NBC; identity
preference optimization (IPO) [42] uses NBC as its objective. We next highlight key differences
between NBC and the user-weighted expected reward along with DPO’s drawbacks in practice.

4.3 Practical Drawbacks

Borda count can significantly diverge from the user-weighted expected reward. This is studied under
distortion in social choice theory [43]. Notably, NBC in Eq. (13) depends on D. Thus, while data
collection is irrelevant to defining the optimal policy, it affects πDPO. Next, we illustrate two key
differences between π∗ and πDPO through examples. Unless otherwise stated, we assume D(· | x)
and πref(· | x) are uniform, and annotators follow BT. Refer to Appendix A for further drawbacks of
DPO (namely, minority suppression and IIA violation).

Mediocrity Promotion. Consider a summarization task with U = {A,B,C}, where all types are
equally represented. Type A strongly prefers longer summaries, type B strongly prefers shorter ones,
and type C slightly prefers medium-length summaries:

r∗(short;A) = 0, r∗(med;A) = 1, r∗(long;A) = 4 ,

r∗(short;B) = 4, r∗(med;B) = 1, r∗(long;B) = 0 ,

r∗(short;C) = 0, r∗(med;C) = 1, r∗(long;C) = 0 .

In this case, π∗(short) = π∗(long) > π∗(med), but, NBC(short) = NBC(long) < NBC(med).
Hence, DPO prefers medium-length summaries that are not strongly favored by any type.

Sensitivity to Preference Dataset Distribution. Suppose U = {A,B} and types are equally
represented. Given three possible responses, type A prefers y1 but type B prefers y2:

r∗(y1;A) = 6, r∗(y2;A) = 1, r∗(y3;A) = 4 ,

r∗(y1;B) = 3, r∗(y2;B) = 9, r∗(y3;B) = 4 .

One can verify that while D(y1) = D(y2), increasing D(y3) from 0.02 to 0.04 changes πDPO’s
preference from y2 to y1. DPO’s policy is also sensitive to the preference model. Consider a variation
of BT with a temperature of 2: σ2(z) := (1 + exp(−z/2))−1. For the same users and uniform
sampling of alternatives, increasing the temperature from 1 to 2 flips πDPO’s ranking over y1 and y2

while the preference model has no effect on π∗ as expected from the optimal policy.

We have to emphasize that the dependence of NBC, and consequently πDPO, on the dataset sampling
distribution D is not due to finite-sample limitations or insufficient offline dataset support. This issue
persists even with complete data coverage and in the limit of infinite data.

Real-World Examples. The examples above are not contrived; in real-world cases, NBC can
produce rankings different from π∗ and is sensitive to dataset distribution as extensively studied under
distortion of social choice rules. To show this with a real example, we use Pew Research Center
surveys and analyze a question to 5101 participants: “The next time you purchase a vehicle, how
likely are you to consider purchasing an electric vehicle?” (options from A: very likely to D: not at
all likely). We discuss how we select this question in Appendix B. Responses come from groups of
different political leanings: Republican (45%), Democratic (48%), and Neither/refused (7%).

Assuming the Luce-Shepard model [39] (see Eq. (18)), we estimate the reward for each group to
calculate NBC and a user-weighted average reward. To find NBC, we use two distributions for
alternatives: a uniform distribution DU and a slightly altered distribution Da with 0.2 total variation
distance (TV) from DU . As shown in Fig. 1, NBC (with DU ) ranks option C first despite its
mediocrity: it is the second or third preference for the three groups (see Fig. 7). In contrast, the user-
weighted average reward favors D: the first and second preference for Republicans and the no-lean

3We can view NBC(y | x) as an aggregation of rewards at y. One can verify that NBC meets the order
consistency condition of Prop. 3.1. However, it uses the reward value at y′ ̸= y to define the aggregated reward
at y and thus does not fall under Prop. 3.1. In fact, this interdependency causes the issues we discuss Sec. 4.3.
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groups, respectively. Notably, altering DU to Da flips NBC’s top ranking, highlighting its sensitivity
to dataset distribution. Similar discrepancies appear in other Pew surveys (see Appendix B).

1 2 3 4 5
Rank

Avg Reward

NBC (DU)

NBC (Da)

M
et

ric

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E A: Very likely
B: Somewhat likely
C: Not too likely
D: Not at all likely
E: Not purchasing

Figure 1: Ranking of different options in response to the question “The next time you purchase
a vehicle, how likely are you to seriously consider purchasing an EV?” To find NBC, we use two
distributions for alternatives: a uniform distribution DU and a slightly altered distribution Da with 0.2
TV distance from DU . NBC ranking is sensitive to the dataset distribution.

5 Approximate Direct Alignment with Minimal Annotator Information

The failure of standard alignment methods to recover the optimal policy π∗ raises a natural question:
is it even possible to identify π∗? Without annotator information, the answer is no. To show this, it
suffices to prove that the ranking based on the (user-weighted) expected reward is not learnable. This
implies that π∗ is also not learnable since its induced reward corresponds to the expected reward by
definition. We defer the formal definition of learnability to Def. F.2 in the appendix, and based on it,
we prove the following impossibility result:
Proposition 5.1. When the preference model σ(·) is continuous, the ranking based on the (user-
weighted) expected reward is not learnable (according to Def. F.2) without annotator information.

See proof on page 26. Siththaranjan et al. [20] (Theorem. 3.4) presented a version of Prop. 5.1 for
two alternatives and two types when σ(∆r) = 1{∆r > 0}. Procaccia et al. [41] (Theorem. 2.2)
generalized this to BT. Prop. 5.1 presents a fresh perspective by generalizing the impossibility to any
continuous preference model and presenting multiple proof strategies, including one that draws on a
robust version of Arrow’s theorem [44].

To circumvent the impossibility in Prop. 5.1, we must either relax the requirement of exactly
identifying π∗ or collect some information from the annotators. This section focuses on the former,
and the latter is the subject of Sec. 6. Next, we introduce an approximate alignment objective, along
with the required annotator information and algorithms to solve it.

5.1 First-Order Approximation

The approximation in Eq. (12) is equivalent to using a zeroth-order Taylor expansion of σ(·) around the
average reward to calculate the likelihood function. To improve it, we extend DPO by incorporating an
additional non-zero term from the expansion, which we call first-(non-zero)-order corrected DPO. The
derivation is as follows. Expanding σ

(
∆r∗(y1,y2;u)

)
around ∆r̄∗(y1,y2) := Eu

[
∆r∗(y1,y2;u)

]
up to the second order gives the approximation below for the likelihood:

Eu

[
σ
(
∆r∗(y1,y2;u)

)]
≈ σ

(
∆r̄∗(y1,y2)

)
+

1

2
σ′′(∆r̄∗(y1,y2)

)
·Varu

[
∆r∗(y1,y2;u)

]
. (14)

Here, the approximation omits O(Eu[(∆r
∗ − ∆r̄∗)3]). We can see from this equation that the

approximation in Eq. (12) is loose when σ is nonlinear and preferences have high variance.

To calculate Eq. (14), we can substitute ∆r̄∗ in by the difference in log policy ratios (Eq. (11)). We
then need to estimate the variance term. Sec. 5.3 offers a variance estimator. Once the variance is
estimated by a function V (y1,y2), first-order corrected DPO estimates Pr(y2 ≻ y1 | π) using

σ
(
h(y1,y2;π)

)
+
α

2
σ′′(h(y1,y2;π)

)
· V (y1,y2) .

Here, α > 0 determines the strength of correction, and

h(y1,y2;π) := β log
π(y2)

πref(y2)
− β log

π(y1)

πref(y1)
(15)
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denotes the difference of π’s induced rewards. Given Pr(y2 ≻ y1 | π) and a preference dataset D, we
can maximize the log-likelihood similar to Eq. (6). For numerical stability, we use a stable logarithm
l̃og(z) := log(max{z, ϵ}) in computations. Note that our theory suggests α = 1 while DPO uses
α = 0. Our empirical findings in Sec. 7.1 show that larger values of α improve the effectiveness of
the correction. We next discuss the estimation of V (y1,y2).

5.2 Impossibility without Annotator Information

If we limit our algorithms to M-estimators, which encompass most practical learning methods,
consistent estimation of the variance term is impossible with anonymous data:
Proposition 5.2. There exists no consistent M-estimator that without annotator information can
estimate V (x,y1,y2) := Varu

[
∆r∗(x,y1,y2;u)

]
.

See proof on page 28. While Prop. 5.1 already implies that π∗ is unlearnable without annotator
information, Prop. 5.2 goes further, showing that even a first-order improvement to DPO is practically
impossible. Next, we show how minimal annotation information can overcome this impossibility.

5.3 Using Paired Preferences

We can get around Prop. 5.2 by collecting minimal information on annotators. Consider a dataset D
of pairs of preferences in the form {(x,y1,y2, o), (x

′,y′
1,y

′
2, o

′)} where o = 1{y2 ≻ y1} and
o′ = 1{y′

2 ≻ y′
1} are labeled by the same person. Using D, we can train a joint likelihood

model J(x,y1,y2,x
′,y′

1,y
′
2) by minimizing cross-entropy between J and (o · o′) as the label. The

joint likelihood model consistently estimates

J(x,y1,y2,x
′,y′

1,y
′
2) = Eu

[
σ
(
∆r∗(x,y1,y2;u)

)
· σ

(
∆r∗(x′,y′

1,y
′
2;u)

)]
.

We next show that this is in fact sufficient to estimate the variance term:
Lemma 5.3. Using J1 and J2 as shorthands for J(x,y1,y2,x,y1,y2) and J(x,y1,y2,x,y2,y1),
we can use the following to consistently estimate the variance term:

V (y1,y2) =
J1 − (J1 + J2)

2

σ′
(
∆r̄∗(y1,y2)

)2 . (16)

See proof on page 28. Note that we can substitute ∆r̄∗(y1,y2) in terms of log policy ratios from
Eq. (11). Thus, we have all the elements to calculate V in Eq. (16). This completes our derivation of
first-order corrected DPO.

6 Direct Alignment with Maximum Annotator Information

Recall that learning the optimal policy π∗ from anonymous data is impossible, and an approximate
improvement to DPO requires minimal information about the annotations. But what if we collect
richer data? Can we design a direct alignment method that consistently learns the optimal policy? To
explore this, we consider a dataset where every sample is labeled by representatives of all user types.
We show that consistent direct alignment is possible in this setting but at the cost of sample efficiency.

Suppose user types are in a finite set U and equally represented. This assumption makes our negative
results stronger. Consider a rich data collection: For every query and candidate responses (x,y1,y2),
we collect one preference data point from each user type. Let o ∈ {0, 1}U be the vector that indicates
preferences where ou = 1 if y2 ≻ y1 by a user of type u, and 0 otherwise. Given such a dataset D
with query, responses, and preferences as (x,y1,y2,o), our goal is to design a loss

L(D;π) =
1

|D|
∑

(x,y1,y2,o)∈D

l(x,y1,y2,o;π) , (17)

such that argminπ L(D;π) is a consistent estimator of π∗. Designing such a loss is, in fact, possible.
For instance, suppose we only look into the agreement cases in D where o is either all one or
zero. Conditioned on agreement, we will show that the probability of y2 ≻ y1 is proportional
to exp

(∑
u ∆r

∗(y1,y2;u)
)
. We can express this likelihood directly in terms of log policy ratios

of π∗ (see Eq. (11)). We formally show this possibility through a temperature-adjusted DPO:
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Proposition 6.1. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


− log σ

(
|U| · h(y1,y2;π)

)
, o = 1 ,

− log σ
(
|U| · h(y2,y1;π)

)
, o = 0 ,

0 o.w.

Here, h is the difference of π’s induced rewards (Eq. (15)), and 1 (0) is the vector of all ones (zeros).

See proof on page 29. Consistent loss functions are not unique. We give another example in Prop. F.3,
and a systematic way to find such losses in Lemma G.2. In both examples, loss functions reduce to
the standard DPO loss when |U| = 1.

While the loss function in Prop. 6.1 benefits from consistency, it only uses samples where all user
types have agreed. In other words, it discards a sample with any disagreement. A natural question
arises: Can we design a loss function that uses all data, including those with disagreement, while
maintaining consistency? Surprisingly, the answer is no:

Theorem 6.2. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . If there are more
than three types of user and the preferences follow BT, any loss that allows a consistent estimation of
the optimal policy discards samples with disagreement, i.e., those with o /∈ {0,1}.

See proof on page 29. This theorem highlights a tension: To improve efficiency, one must compromise
either consistency or direct optimization. The approximate direct alignment method proposed in
Sec. 5 exemplifies forgoing consistency. Next, we discuss an alternative that favors consistency.

An Indirect Practical Solution: Averaging Personalized Rewards. The tradeoff between sample
efficiency and consistency arises from the requirement for direct optimization. To regain sample
efficiency, we may relax the requirement for direct alignment by training reward models while
still avoiding RL. Specifically, we can learn personalized reward models r(·;u) for different user
types u ∈ U , calculate a user-weighted expected reward, and use it to relabel a preference dataset.
A dataset labeled with this average reward makes any direct alignment method applicable and is
found effective in practice [45]. It is both consistent and sample-efficient when personalized reward
learning is feasible, but comes at the cost of additional training and memory for each user type.

7 Experiments

We provide empirical evidence for our claims throughout the paper. We first extend our sensitivity
example in Sec. 4.3 to a real-world preference dataset in Fig. 4. Using 19 Pew surveys, we find that
NBC rankings change under shifts from uniform sampling in 20% of cases. Notably, these changes
require only modest shifts: In half the cases, a total variation distance of less than 0.23 from uniform
is enough to alter the rankings. We defer the details to Appendix B.

In Sec. 7.1, we simulate DPO and our proposed improvements in a small-scale environment where
we can visualize and compare the resulting policies. Finally, we scale this experiment in Sec. 7.2 by
fine-tuning large language models, illustrating the extent of possible improvement over DPO.

Code for reproducing all results is publicly available at https://github.com/arashtne/dahp.

7.1 Synthetic Experiments

We generalize the discrete environment of Xu et al. [46] with multiple user types. This enables us
to visualize the differences between DPO’s policy and the optimal policy, as well as to evaluate the
effectiveness of applying a first-order correction (Sec. 5) and using a consistent loss function (Sec. 6).

Environment. A prompt x can take a value from 1 to n. There are also only n possible responses
to each x. The reward for responding y to x for a type u is r∗([x, y];u) = Ru(dist(x + u, y)),
where dist is a circular distance, and Ru is a linearly decreasing function floored at zero. We
set n = 40 and consider three equally represented types U = {−10, 0, 10} with BT annotators.

Since the reward (and thus the policies) depends only on y − x, we can reduce everything to a 1D
representation by setting δ := y − x and averaging over x. For example, for a policy π, define a 1D
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policy π(δ) := 1
n

∑
x∈[n] π(x+ δ | x). We also compute standard errors of these 1D representations

across x. Fig. 2(a) shows our choice of rewards as well as the expected reward across user types.

Policies. For a uniform πref and β = 1, Eq. (10) implies π∗(y | x) ∝ exp
(
1
3

∑
u∈U r

∗([x, y];u)
)
.

We generate a large dataset of preferences under uniform context and alternative distributions and use
the Adam optimizer to minimize the loss for different methods. For the first-order correction of DPO,
we additionally train a joint likelihood model J to estimate the variance term V from Eq. (16). We
use the loss from Prop. 6.1 as our choice for the consistent loss.

Results. Fig. 2(b) presents πDPO along with π∗ and NBC. Unlike the optimal policy which prefers δ
around −10 and 10, DPO prefers δ ≈ 0, and to a large extent is ordinally consistent with NBC.

Fig. 2(c) shows that increasing correction strength α brings the corrected DPO policy closer to π∗. In
particular, at α = 1, the corrected DPO already favors alternatives with δ ∈ {−10, 10}, consistent
with π∗. Furthermore, increasing α makes these alternatives even more favorable. In the full-
information setting, Fig. 2(d) shows that minimizing the consistent loss largely leads to π∗. Note that
minor deviations from theoretical derivations are likely due to limited data and imperfect optimization.

We have also simulated noisy annotations, where with a small probability, a random user provides the
annotation instead of the intended user type (see Appendix C). Our results show that consistent loss
minimization is largely robust to such noise, although this does not address its sample inefficiency in
settings with many user types.
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Figure 2: Rewards and policies in the synthetic setup.

7.2 Semi-Synthetic Experiments

While we have shown that DPO does not maximize the (user-weighted) average reward, the extent of
its deviation from the optimal policy remains unclear. To assess the potential gains from accounting
for heterogeneity, we compare DPO with a policy that minimizes the consistent loss function of
Prop. 6.1 in a more realistic setup. Specifically, we use LoRA [47] to fine-tune Llama-3-8B [48] for
both reward learning and direct alignment on two relabeled variations of the HH-RLHF dataset [49].
To simulate heterogeneous preferences, we define three user types with distinct length-based rewards
(see Appendix D for details and similar results using Qwen-2.5-7B).

Results. We use agreement with the ground-truth average reward on the test set as the success
metric. Using standard reward learning and DPO on an anonymous preference dataset—where each
sample is labeled by a random user type—the induced ranking agrees with the average reward in
89.6% and 67.4% of test cases, respectively (Fig. 3, blue). When we use a consistent loss with
full annotator information, agreement improves to 93.9% for reward learning and 71.7% for direct
alignment (Fig. 3, red). In summary, explicitly accounting for heterogeneity improves agreement
with the average reward by 4.3 percentage points, highlighting the substantial room for improvement
left by DPO.
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Figure 3: In the presence of preference labels from every user type, our proposed loss function
produces reward models (left) and aligned policies (right) that are more consistent with the average
reward across user types, compared to typical approaches that overlook heterogeneity. Bars show the
mean, and whiskers denote the second and third quartiles across five random seeds.

8 Related Work

Aligning models to “serve pluralistic human values” [25] can involve personalization to the user’s
specific reward [12–17] or aggregation of diverse rewards [18, 19]. The latter, which is the subject of
our study, can use insights from social choice theory [24, 23].

Closest to our work, EM-DPO [18] simultaneously learns the distribution of user types and their
corresponding policies. However, EM introduces significant complexities and lacks formal guarantees.
Moreover, the identifiability of types requires additional assumptions. MODPO [50] applies DPO
for each user type while utilizing estimated rewards from other user types to maximize a linear
combination of rewards. Neither method obtains a policy by directly minimizing a loss over preference
data. For a more extensive review of related work, refer to Appendix E.

9 Discussion and Conclusion

Aligning a single policy to the average reward across user types requires collecting annotator infor-
mation. This can range from minimal information such as linking two instances labeled by the same
annotator, to richer information like using questionnaires to infer annotator types. We improved DPO
using the former and introduced a consistent loss when annotators from all user types label every
data point. With additional assumptions, unsupervised methods might be able to identify annotator
types from anonymous datasets [51]. Further research should explore the additional structures that,
when used during data collection, can help with identifiability.

Our results revealed a tension between consistency and sample efficiency in direct alignment. Thus,
an alternative approach, i.e., individual reward training and aggregation, may be more practical for
addressing heterogeneity when individual rewards are identifiable.

We use the average reward as the natural choice among aggregations that give a well-defined alignment
problem. However, the choice of aggregation is inherently a social and policy question rather than
purely a technical one. In certain contexts, the policymaker might prefer to give higher weight to
disadvantaged people to address issues such as inequality. Additionally, in some cases, the very
existence of a reward function may be questionable, requiring objectives to be defined in terms of
choice probabilities rather than rewards.

We believe that trained policies should not be used to elicit or represent aggregate preferences, even
when reward aggregation is appropriate and estimation is consistent. While such policies may capture
certain patterns in user behavior, they do not necessarily reflect the underlying interests or values of
the population. In other words, we view the resulting policy as a functional tool for decision-making
rather than a true representation of users’ collective interests.

In summary, while preference heterogeneity is well recognized in mathematical psychology, standard
methods often bypass this complexity. As we showed, accounting for heterogeneity, even when the
goal remains the same as in the homogeneous setting—to derive a single policy— can render common
techniques inefficient or inapplicable. Understanding these limitations calls for new approaches that
explicitly incorporate heterogeneity while balancing efficiency, consistency, and practicality.
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A Additional Drawbacks of DPO under Heterogeneity

Violating Independence of Irrelevant Alternatives (IIA). Suppose U = {A,B} and types are
equally represented. Given two possible responses y1 and y2, typeA prefers y1 but typeB prefers y2:

r∗(y1;A) = 6, r∗(y2;A) = 1 ,

r∗(y1;B) = 3, r∗(y2;B) = 9 .

A direct calculation shows Eu[r
∗(y2)] > Eu[r

∗(y1)] and NBC(y2) > NBC(y1). So, both π∗

and πDPO prefer y2. Let’s consider another possible response y3 which is not the preferred response
for any user type:

r∗(y3;A) = r∗(y3;B) = 2 .

While π∗ still prefers y2 to y1, now NBC(y1) ≈ 0.62 > NBC(y2) ≈ 0.55, so, introducing an
irrelevant alternative can alter DPO’s ranking over existing alternatives.

Tyranny of Majority. Suppose U = {A,B} with type A shaping 90% of the population. Given two
responses y1,y2, type A slightly favors y2 but type B finds y2 offensive:

r∗(y1;A) = 0.5, r∗(y2;A) = 1 ,

r∗(y1;B) = 0.5, r∗(y2;B) = −10 .

In this case, π∗ prefers y1 even though type B is a minority. In contrast, we have NBC(y1) ≈
0.47,NBC(y2) ≈ 0.53, which implies that the majority dominates in DPO.

B PEW Surveys Experiments: Details and Additional Examples

In this section, we expand on our PEW surveys experiment where we used polling data on key
political and social issues to show: (i) how NBC rankings can differ from those maximizing the
average reward; (ii) How sensitive NBC is to the sampling distribution of the pairwise preference
data.

Data. We use several Pew Research Center surveys, specifically the American Trends Panel surveys
number 35, 52, 79, 83, 99, 109, 111, 112, 114, 119, 120, 121, 126, 127, 128, 129, 130, 131, and 132.
The choices are a mix of recent surveys and those relevant to science, technology, data and AI. Each
survey include questions asked to thousands of participants. We categorize participants by political
party leanings to define types. When processing the questions, we discard responses that are empty,
as well as discarding the option "Refused". We note that discarding the option "Refused" had no
effect on the results as it is not frequently chosen.

Reward Estimation. Although we observe how often each group selects a particular option, we
don’t directly observe respondents’ internal rewards. To estimate this, we apply the Luce-Shepherd
model [39, 32]:

Pr
(
option i is chosen from S

)
=

exp (r(i;u))∑
j∈S exp (r(j;u))

, (18)

where S is the set of options, and r(·;u) is the reward for type u. This allows us to estimate each
option’s reward (up to a constant additive term) for each type. From these estimates and observed
probabilities, we compute both the expected reward and the NBC metric, where in the latter we
assume the uniform probability for alternatives unless specified otherwise.

NBC Sensitivity to Sampling Distribution: Results. Recall from Sec. 4.2 that the common practice
of alignment assuming homogeneity results in ordinal consistency with NBC. Here, we analyze the
sensitivity of NBC to the distribution of pairwise preference datasets in real-world cases by using
Pew surveys [52], the same dataset used in Sec. 4.3. Specifically, we address two questions: (i)
Across the questions in the Pew surveys, how often would NBC rankings change when the sampling
distribution of alternatives varies (while retaining support over all alternatives)? (ii) How much must
the sampling distribution deviate from uniform to alter NBC rankings?

To answer these questions, we first estimate the reward of each option in each question (see Sec. 4.3
and Appendix B for further details). Given the rewards, we can calculate NBC under any sampling
distribution using Eq. (13).
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For question (i), among 1519 questions from 19 Pew surveys, NBC rankings change due to changing
the sampling distribution from uniform in 20% of cases (306 questions), with the preferred choice
changing in 136 cases. For question (ii), we find that a modest change in the sampling distribution
suffices; in half the cases, a total variation (TV) distance of less than 0.23 from uniform alters the
rankings. The cumulative distribution function (CDF) of the minimum TV distances required to
change NBC rankings is shown in Fig. 4. Further experimental details are in Appendix B.
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Figure 4: CDF of the minimum TV distances (from uniform) required to change the NBC order in
the Pew surveys. A change of 0.23 is sufficient to change the order in half the questions.

NBC Sensitivity to Sampling Distribution: Implementation Details. Above, discussed the
sensitivity of NBC rankings to the sampling distribution of pairwise preference data. Here, we
discuss the implementation details.

Recall that NBC is defined as:

NBC(y;D) := Ey′∼D(·)
[
Pr(y ≻ y′ | x; r)

]
.

To compute this, we first estimate the reward function r, then evaluate Pr(y ≻ y′; r) for all
(y,y′) ∈ Y × Y , where Y is the set of alternatives. Next, consider the feasibility of swapping the
ranking induced by the uniform distribution DU for alternatives yi and yj with a new distribution
Da, assuming NBC(yi;DU ) > NBC(yj ;DU ). This is equivalent to solving the following linear
program:

minimize
1

2
1⊤s,

subject to: q > ϵ1,

s ≥ 1

N
1− q,

s ≥ q− 1

N
1,

Piq < Pjq+ δ,

1⊤q = 1,

q > 0.

Here, N = |Y|, and labeling the alternatives as y1, . . . ,yN , we define Pij = Pr(yi ≻ yj ; r),
qi = Da(yi), and Pk as the k-th row of P. The parameter ϵ > 0 ensures support for all alternatives,
and δ > 0 controls the required magnitude of change in NBC beyond what is required for the swap.
We set ϵ = δ = 10−5.

To compute the minimum TV distance, we solve the program for all pairs (i, j) where
NBC(yi;DU ) > NBC(yj ;DU ) and record the smallest objective value. In this analysis, we group
respondents by political leaning (specifically, the column F_PARTYSUM_FINAL). We also note that in
this analysis we exclude survey questions with fewer than three options.

Additional Examples. We highlight some of the examples of discrepancies that we find in some of
the surveys listed above in Figures 5, 6, 7, 8, and 9. We note though that while we indeed find a few
examples of the discrepancy, NBC rankings is actually aligned with average reward rankings in most
cases. One possible explanation for this is that in many questions, the distributions of responses across
types were very similar, suggesting that a homogeneous reward model would have been appropriate,
causing NBC and average reward to align.
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Figure 5: Do you think the plans and policies of the Biden administration will make the country’s
response to the coronavirus outbreak: A: A lot better; B: A little better; C: Not much different; D: A
little worse; E: A lot worse
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Figure 6: How would you rate the job Joe Biden is doing responding to the coronavirus outbreak? A:
Excellent; B: Good; C: Only fair; D: Poor
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Figure 7: The next time you purchase a vehicle, how likely are you to seriously consider purchasing
an electric vehicle? A: Very likely; B: Somewhat likely; C: Not too likely; D: Not at all likely; E: I do
not expect to purchase a vehicle
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Figure 8: What is your overall opinion of Kamala Harris? A: Very favorable; B: Mostly favorable;
C: Mostly unfavorable; D: Very unfavorable; E: Never heard of this person.
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Figure 9: What is your overall opinion of Joe Biden? A: Very favorable; B: Mostly favorable; C:
Mostly unfavorable; D: Very unfavorable; E: Never heard of this person.

C Robustness to Noisy Preferences

We extend our analysis by simulating noisy user preferences in the synthetic setup of Sec. 7.1. For
a noise level n ≤ 1, each type-u user’s preference is replaced by that of a random user type with
probability n. We compare the learned policies under varying noise levels with the optimal policy
(OPT), reporting total variation (TV), Kendall’s τ , and Spearman’s r.

As shown in Table 1, the TV between the noisy πconsistent and OPT drops below that of DPO and OPT
only at high noise levels (n ≥ 0.7). Even in these cases, πconsistent remains ordinally closer to OPT
than DPO’s policy, suggesting that the benefits of consistency may be robust to annotation noise.

We note, however, that this result is limited to synthetic settings and does not address the sample
inefficiency of direct alignment methods which our key impossibility result still discourages their use
in settings with many user types.

Table 1: Comparison of DPO and πconsistent under different noise levels in the synthetic environment
(Sec. 7.1).

Metric DPO πconsistent under noise level n
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

TV 0.089 0.023 0.044 0.066 0.073 0.081 0.084 0.088 0.090
Kendall’s τ 0.526 0.933 0.888 0.757 0.710 0.668 0.649 0.618 0.563
Spearman’s r 0.676 0.989 0.976 0.912 0.863 0.814 0.811 0.762 0.727
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D Semi-Synthetic Experiments: Fine-Tuning Llama-3-8B and Qwen-2.5-7B
on HH-RLHF

Reward Models. Fig. 10 shows the three distinct rewards we use for the three user types along with
their average. In order to have a reliable ground-truth reward which we can rely on in evaluation, we
define these rewards as functions of the number of tokens in prompt-response combinations.

Anonymous Dataset. We use prompts and response pairs from both helpfulness and harmlessness
subsets of Anthropic’s HH-RLHF dataset [49] and relabel the chosen and rejected responses manually.
We filter for data points in which the sum of the number of tokens in the prompt and the number of
tokens in the longer response do not exceed 512. This leaves us with 160, 800 training and 17, 104
test data points. For every data point (a prompt with a pair of responses), we sample one of the three
user types uniformly at random. Given the type of user, we sample a preference based on BT [34] to
label the two alternatives.

Dataset with Maximum Annotator Information. We use prompts and response pairs from both
helpfulness and harmlessness subsets of Anthropic’s HH-RLHF dataset [49] and relabel the chosen
and rejected responses manually. We filter for data points in which the sum of the number of tokens
in the prompt and the number of tokens in the longer response do not exceed 512. This leaves us
with 160, 800 training and 17, 104 test data points. For every data point (a prompt with a pair of
responses), we keep sampling BT [34] preferences from all user types until they agree with each
other. Once the consensus is achieved, we stop sampling and use the agreed-upon preference as the
label for this data point.

Fine-Tuning Details. We fine-tune Llama-3-8B [48] base model with LoRA [47]. We fine-tune for
one epoch with a batch size of 2, and use a linear learning rate schedule that starts with 3× 10−5 and
decreases to zero. We use the Adam optimizer with a weight decay of 0.001 [53]. Regarding LoRA’s
hyper-parameters, we use the matrix rank of r = 8, α = 32, and the dropout probability of 0.1.

For direct alignment experiments, we use a uniform reference policy. When ignoring heterogeneity,
we do vanilla DPO over the anonymous dataset. When modeling heterogeneity, we use the loss
function we propose in Prop. 6.1 over the dataset with maximum annotator information. We use the
ordinal agreement between the ground-truth average reward and the reward induced by the aligned
policy as the measure of accuracy.

For the reward learning experiments, we fine-tune the Llama-3-8B as a reward model. When ignoring
heterogeneity, we assume BT and maximize the probability of the anonymous preference dataset
under the learned reward model. When modeling heterogeneity, we use the loss function in Prop. 6.1
over the dataset with maximum annotator information, but replace h(y1,y2;π) with the difference in
rewards, i.e., r(y2)− r(y1). We use the ordinal agreement between the ground-truth average reward
and the learned reward as the measure of accuracy.

Detailed Results. We conduct every experiment with five different random seeds. Fig. 3 shows the
average, 25th percentile, and 75th percentile of accuracy across the five random seeds. Tables 2 and 3
show the raw accuracy numbers across the five random seeds.
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Figure 10: Reward definition for three user types in semi-synthetic experiments (Sec. 7.2) based
on the length of prompt response combination. The first user type prefers long prompt response
combinations, the second user type prefers short prompt response combinations, and the third user
type prefers mid-length prompt response combinations. The dashed cyan line shows the average
reward across the three user types.

22



Table 2: Accuracy (%) in Alignment Experiments (Llama-3-8B)

SEED IGNORING HOMOGENEITY MODELING HETEROGENEITY

0 65.61 66.63
1 67.55 69.55
2 68.77 75.21
3 68.70 72.04
4 66.28 74.95

Table 3: Accuracy (%) in Reward Learning Experiments (Llama-3-8B)

SEED IGNORING HOMOGENEITY MODELING HETEROGENEITY

0 92.33 95.26
1 85.38 92.01
2 88.46 94.6
3 89.69 93.57
4 91.94 93.87

Table 4: Accuracy (%) in Alignment Experiments (Qwen-2.5-7B)

SEED IGNORING HOMOGENEITY MODELING HETEROGENEITY

0 68.66 72.1
1 63.68 69.77
2 62.48 68.87
3 63.80 71.57
4 60.06 66.72

AVERAGE 63.74 69.81

Fine-Tuning Qwen-2.5-7B. Using the same setup, we repeat the alignment experiment with Qwen-
2.5-7B. As shown in Table 4, incorporating annotator information and explicitly modeling hetero-
geneity in user types—via the loss function introduced in Sec. 6—improves average accuracy by
6%.

E Additional Related Work

The challenge of handling heterogeneous preferences in alignment has been recognized as a significant
problem in alignment research [54, 55, 24, 25]. This problem has attracted considerable attention
from researchers in the field. Here, we highlight a few representative works that address key directions
in tackling this challenge.

Analysis of DPO. Our study of how standard preference learning methods, such as DPO, behave in
the presence of heterogeneous preferences was inspired by Siththaranjan et al. [20]’s result, which
shows that RLHF aggregates preferences according to a well-known voting rule called Borda count.
Chakraborty et al. [19] highlights the impossibility of aligning with a singular reward model in
RLHF by providing a lower bound on the gap between the optimal policy and a subpopulation’s
optimal policy. Dumoulin et al. [26] adopts a density estimation perspective on learning from human
feedback to illustrate the challenges of preference learning from a population of annotators with
diverse viewpoints. Rosset et al. [56] and Gao et al. [57] point out the limitations of point-wise reward
models in expressing complex, intransitive preferences that may arise due to the aggregation of diverse
preferences. Additionally, frameworks that generalize DPO and unify different alignment methods
have been proposed to analyze current approaches and explore possible alternatives [58, 59, 42, 60].

Policy Personalization. Many works in the literature have proposed personalization as a solution to
the problem of pluralistic alignment. Poddar et al. [61] propose a latent variable formulation of the
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problem and learn rewards and policies conditioned on it. Chen et al. [62] use an ideal point model
for preferences and learn latent spaces representing different preferences. Mapping user information
to user representations, Li et al. [13] perform personalized DPO to jointly learn a user model and
a personalized language model. Balepur et al. [17] use abductive reasoning to infer user personas
and train models to tailor responses accordingly. Lee et al. [14] explore the possibility of steering a
language model to align with a user’s intentions through system messages. Dang et al. [63] extend
personalized alignment to text-to-image diffusion models. Jang et al. [12] perform personalized
alignment by decomposing preferences into multiple dimensions. Lau et al. [15] dynamically adapt
the model to individual preferences using in-context learning.

Preference Aggregation. Closely aligned with our goal of serving the entire population with a
single policy, several works have explored ways to aggregate diverse preferences. The rich literature
on social choice theory has proven to be a valuable source of inspiration for studying existing
preference learning approaches and proposing new ones [23, 64, 65, 24, 66]. Drawing insights from
social choice theory, robustness to approximate clones has been proposed as a desirable property of
RLHF algorithms, which current methods lack [41]. The Minimax Winner, a concept in preference
aggregation, has inspired the use of the proportion of wins as the reward for a particular trajectory to
align a model through self-play [67]. The impact of heterogeneity on strategic behavior in feedback
and its effects on aggregation are also explored in Park et al. [11], which further examines the use of
different social welfare functions for preference aggregation.

Methods. Solutions proposed to address different formulations of the problem span a wide range
of methods. Siththaranjan et al. [20] estimate a distribution of scores for alternatives to account for
heterogeneity as hidden context. Chidambaram et al. [18] propose an Expectation-Maximization
(EM) version of DPO to minimize a notion of worst-case regret. Multi-objective reinforcement
learning [68, 12] and its direct optimization variant [50] have also been proposed to align with diverse
preferences. Wang et al. [69] train a multi-objective reward model to capture diverse preferences.
Zhong et al. [70] use meta-learning to learn diverse preferences and aggregate them using different
social welfare functions. Li et al. [71] design an optimal-transport-based loss to calibrate their model
with the categorical distribution of preferences. Producing a Pareto front of models has also been
explored as a solution. Boldi et al. [72] employ an iterative process to select solutions, while Rame
et al. [73] interpolate the weights of independent networks linearly to achieve a Pareto-optimal
generalization across preferences.

Empirical Observations. Empirical studies of alignment methods have had a significant impact on
the study of preference learning. Zhang et al. [5] demonstrate the Bradley-Terry model’s failure to
distinguish between unanimous agreement among annotators and the majority opinion in cases of
diverging user preferences. Chen et al. [74] show that RLHF and DPO struggle to improve ranking
accuracy. Zeng et al. [75] study the role of model size and data size in the impact of diversified human
preferences. Bansal et al. [76] demonstrate the significant influence of feedback protocol choice on
alignment evaluation. Santurkar et al. [77] explore the opinions reflected by a language model, while
Bakker et al. [78] investigate a language model’s ability to generate consensus statements by training
it to predict individual preferences. Jiang et al. [79] propose individualistic alignment to predict an
individual’s values, and Zollo et al. [80] introduce the PersonalLLM benchmark to measure a model’s
adaptation to a particular user’s preferences.

F Additional Statements

Proposition F.1. There exists a mixture of BTs that a single BT cannot represent.

See proof on page 30.

Definition F.2 (Learnability). Denote by Dr,σ an i.i.d. sampled pairwise preference dataset labeled
by random users with reward r and preference model σ. Let r̄(y) := Eu[r(y;u)]. We say that
the ranking based on r̄ is (weakly) learnable if, for some ϵ > 0, there exists an algorithm with a
bounded sample complexity m, such that for every reward r, when given a dataset Dr,σ of size
|Dr,σ| ≥ m(ϵ, r̄), it outputs a ranking consistent with r̄ with a probability at least ϵ above the chance
level.
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Proposition F.3. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


−σ

(
h(y1,y2;π)

)
− I

(
σ
(
h(y1,y2;π)

))
, o = 1 ,

−σ
(
h(y2,y1;π)

)
− I

(
σ
(
h(y2,y1;π)

))
, o = 0 ,

0 o.w.

Here, we define I(θ) :=
∫ θ

1

(
1
θ′ − 1

)|U|
dθ′, and h is the difference of π’s induced rewards (Eq. (15)).

See proof on page 31.

G Missing Proofs

Proposition 3.1. Consider a differentiable aggregation function f : RU → R. Suppose that for every
reward r consistent with the preference distribution—meaning Pr(y2 ≻ y1 | r) = Pr(y2 ≻ y1 | r∗)
for all prompts and responses y1, y2 in the response space Y—the function f

(
(r(y;u))u∈U

)
induces

the same ordering over Y . If {(r(y;u))u∈U | y ∈ Y} has non-empty interior, then f must be affine.

Proof of Proposition 3.1. First of all, if a reward function r∗(y;u) can explain the preferences of
a user type u, any other reward function r(y;u) := r∗(y;u) + c(u) induces the same preference
distribution:

Pr(y2 ≻ y1 | r;u) = σ
(
r(y2;u)− r(y1;u)

)
= σ

(
r∗(y2;u)− r∗(y1;u)

)
= Pr(y2 ≻ y1 | r∗;u) .

Therefore, r∗ is identifiable up to a bias term that can depend on the context and user type.

Denote all the true rewards from different user types by a vector r∗(y) ∈ RU . Let Y be the set
of possible responses and R∗ = {r∗(y) | y ∈ Y} ⊆ RU be the set of possible rewards, which
by assumption has a non-empty interior. Consider a reward aggregation function f : RU → R.
Our observation above implies that f(r∗(y) + c) should induce a consistent ranking over y for
every c ∈ RU . This means that sign{f(r2 + c)− f(r1 + c)} does not depend on c. Hence, there
exists a function ψ such that

ψ(r2 − r1) = sign{f(r2 + c)− f(r1 + c)} ,

for every c ∈ RU and r1, r2 ∈ (R∗)2.

Consider an arbitrary r1 ∈ R∗. We claim ∇f(r1) = ∇f(r2) for every r2 ∈ R∗. The proof is by
contradiction: Suppose ∇f(r1) ̸= ∇f(r2). Since |U| > 1, there should exist ∆ ∈ RU such that
⟨∆,∇f(r1)⟩ ≥ 0 > ⟨∆,∇f(r2)⟩ (a similar argument holds for ⟨∆,∇f(r1)⟩ > 0 ≥ ⟨∆,∇f(r2)⟩
which we skip for brevity). Define r′1 = r1 + ϵ∆ and r′2 = r2 + ϵ∆, for a sufficiently small ϵ > 0.
We know r′1 and r′2 are in R∗ as R∗ has a non-empty interior. In the limit of ϵ→ 0+, we have

ψ(ϵ∆) = ψ(r′1 − r1) = sign{ϵ⟨∆,∇f(r1)⟩} = 1 ,

ψ(ϵ∆) = ψ(r′2 − r2) = sign{ϵ⟨∆,∇f(r2)⟩} = −1 ,

which is a contradiction. Therefore, ∇f should be constant everywhere in R∗, which means f can
only be an affine function in this domain.

Proposition 4.2. Suppose responses to x in the preference dataset are drawn from D(·|x) and labeled
according to BT. In the population limit, where empirical averages converge to expectations, DPO’s
induced reward, or equivalently πDPO(·|x)

πref (·|x) , has the same ordering over responses as NBC(· | x).4

Proof of Proposition 4.2. We start from DPO’s objective in Eq. (6). For notational simplicity, we
assume π(y | x) already contains a normalization by πref(y | x). In the limit of many data points,

4We can view NBC(y | x) as an aggregation of rewards at y. One can verify that NBC meets the order
consistency condition of Prop. 3.1. However, it uses the reward value at y′ ̸= y to define the aggregated reward
at y and thus does not fall under Prop. 3.1. In fact, this interdependency causes the issues we discuss Sec. 4.3.
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we can rewrite DPO’s objective as the minimization of a cross-entropy loss

LDPO(π) := −Ex,y,y′

[
σ̄
(
∆r∗(x,y′,y)

)
· log σ

(
β log

π(y | x)
π(y′ | x)

)
+
(
1− σ̄

(
∆r∗(x,y′,y)

))
· log

(
1− σ

(
β log

π(y | x)
π(y′ | x)

))]
,

where σ̄
(
∆r∗(x,y′,y)

)
is shorthand for Pr(y ≻ y′ | x; r∗) = Eu

[
σ
(
r∗([x,y];u) −

r∗([x,y′];u)
)]

. The minimizer of LDPO should meet the first-order condition: ∂LDPO

∂π(y|x) = 0,
for every x and y. Then, a direct calculation shows that the optimal policy π∗ meets

Ey′∼D(·|x)

[
σ
(
β log

π∗(y | x)
π∗(y′ | x)

)]
− Ey′∼D(·|x)

[
σ̄
(
∆r∗(x,y′,y)

)]
= 0 . (19)

Recognize that the second term is NBC(y | x):

NBC(y | x) = Ey′∼D(·|x)

[
Eu

[
σ
(
r∗([x,y];u)− r∗([x,y′];u)

)]]
.

In the absence of heterogeneity, we have σ̄ = σ, so setting β log π∗(y | x) = r∗([x,y]) + C(x) for
a normalizing C would solve Eq. (19). In general, we are not aware of any closed-form solution.
However, we can still infer the ordering the optimal policy induces from Eq. (19): Since the first term
is increasing in π∗(y | x), the optimal policy will be monotone in NBC(y | x). This completes the
proof.

Proposition 5.1. When the preference model σ(·) is continuous, the ranking based on the (user-
weighted) expected reward is not learnable (according to Def. F.2) without annotator information.

Proof of Proposition 5.1. We give three related proof strategies. The first strategy works for every
preference model. The second strategy draws on a connection to a robust version of Arrow’s
impossibility theorem [44]. The third strategy is inspired by Procaccia et al. [41]. We start with the
notation and definitions specific to this proof.

Notation and Definitions. Consider a fixed prompt x with a set of possible responses Y . Let R
denote a complete ranking over Y , where y2Ry1 indicates whether y2 ≻ y1 or vice versa. A profile
refers to a set of complete rankings. For a heterogeneous reward function r(y;u) and a prior P over
user types U , let Rr̄ be the ranking according to r̄(y) := Eu∼P [r(y;u)].

A pairwise preference dataset D consists of tuples (y1,y2, o), where o := 1{y2 ≻ y1}. We assume
that y1 and y2 are i.i.d. draws. When a random user with a reward function r labels each instance
in the dataset, we denote the resulting dataset by Dr. A pairwise learning algorithm A produces a
complete ranking over Y based on the pairwise preference dataset D.

Proof Strategy 1. Suppose there exists an algorithm A such that for some Y with |Y| ≥ 2, for
any reward function r and any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ on Y with a
probability of at least 1

|Y|! + ϵ.

Suppose r is a heterogeneous reward function that its expectation induces a complete ranking Rr̄

with no tie. Define a new heterogeneous reward function rγ as follows. Consider a new user
type 0 /∈ U . For some γ > 1, let rγ(y;u) = γ r(y;u) when u ̸= 0, and rγ(y; 0) = 0. Define
a new user distribution Pγ(u) := (1 − 1

γ )1{u = 0} + 1
γP(u). It is straightforward to verify

r̄γ := Eu∼Pγ [rγ(y;u)] = r̄. Therefore, with high probability, A outputs Rr̄γ = Rr̄ from Drγ for
every γ > 1:

Pr
(
A(Drγ ) = Rr̄

)
≥ 1

|Y|!
+ ϵ .

As we increase γ, for any continuous preference model σ, the pairwise preference dataset Drγ
approaches a uniform preference dataset Dunif labeled mostly by an indifferent annotator of type u =
0. So, we have

Pr
(
A(Dunif) = Rr̄

)
≥ 1

|Y|!
+ ϵ . (20)

This is true for every r. For different choices of r, agreements with Rr̄ are disjoint events. Since
there are |Y|! different rankings overall, the pigeonholed principle implies ϵ = 0.
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Proof Strategy 2. The proof is by contradiction. Suppose there exists an algorithm A that for any
reward function r and any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ with a probability of
at least 1− ϵ. We follow Friedgut et al. [44] and define a social choice function as a function that
yields an asymmetric relation on the alternatives given a profile. A social choice is rational if it is an
order relation on the alternatives, and is neutral if it is invariant under permutations of alternatives.

Let Y3 = {y1,y2,y3} be an arbitrary subset of Y with size 3. Next, we construct a neutral social
choice function f acting on Y3 that is independent of irrelevant alternatives (IIA). Here is how we
design f : Let Pr be a profile of size n ≥ nr̄ at the input, where every R ∈ Pr is an i.i.d. draw
from a Plackett–Luce (PL) ranking model with exp(r) as the weight of the alternatives. Note that
the marginal distribution induced by PL on any two alternatives follows BT. Create three pairwise
preference datasets Dr,12, Dr,23, and Dr,13 where Dr,ij = {yiRyj | R ∈ Pr}. The social function f
applies A to every dataset to obtain a relation over Y3. By construction, f is neutral and IIA.

By assumption, for every internal dataset Dr,ij we have Pr
(
A(Dr,ij) = Rr,ij

)
≥ 1− ϵ, where Rr,ij

is the projection of Rr̄ to only two alternatives yi and yj . Using union bound, we have

Pr
(
f(Pr) = Rr̄

)
≥ 1− 3ϵ .

Similar to strategy 1, we can define a new reward function rγ with r̄γ = r̄ such that the above holds
for every rγ with γ > 1. Then, by increasing γ, the profile Prγ approaches a uniformly distributed
profile Punif . In this case, since Rr̄ is an order relation, we have Pr

(
f is rational

)
≥ 1− 3ϵ. Then

Theorem 1.3 of Friedgut et al. [44] implies that for some global constant K,

Pr
(
f is dictatorship

)
≥ 1− 3Kϵ .

On the other hand, we know that the order that Rr̄ induces for different r is not a dictatorship, so, we
have

Pr
(
f is dictatorship

)
< 3ϵ .

Putting these together, we obtain a lower bound on ϵ:

ϵ ≥ 1

3(K + 1)
> 0 .

The rest of the proof is similar for the second and third strategies. We can use a boosting argument
to show that from any weak pairwise learner, we can obtain an arbitrarily strong weak learner
corresponding at the cost of collecting a larger dataset. We show this when for the weak learner ϵ < 1

2
but a weaker condition of choosing Rr̄ better than chance level is sufficient for our argument.
Consider a pairwise preference dataset Dr of size mnr̄. Partition Dr into m equal-size datasets.
Let Ri be the output of A on the ith dataset. Since samples in Dr are independently generated,
Ris err independently. Construct a meta-algorithm Amaj that outputs the majority winner of Ris. A
standard Hoeffding bound implies

Pr
(
Amaj(Dr) ̸= Rr̄

)
≤ exp

(
− 2(1/2− ϵ)2m

)
.

A simple calculation then shows that for any arbitrarily small ϵ′ > 0, by choosing m =
O
(
log( 1

ϵ′ ) (
1
2−ϵ)

−2
)

the majority-winner algorithm agrees withRr̄ with probability of at least 1−ϵ′.
This contradicts the lower bound we established earlier and completes the proof.

Proof Strategy 3. The proof is by contradiction and is inspired by Procaccia et al. [41]. This
proof requires at least four different user types. Suppose there are two equally represented user
types U = {A,B} who follow BT. For some arbitrary response y0 ∈ Y and 0 < τ < 1

3 , consider the
following reward function:

rτ (y;u) =


0 , y ̸= y0 ,

σ−1( 23 + τ) = log
2
3−τ
1
3+τ

, y = y0, u = A ,

σ−1( 23 − τ) = log
2
3+τ
1
3−τ

, y = y0, u = B .

(21)

One can see Pr(y0 ≻ y | rτ ) = 2
3 for every y ̸= y0. Therefore, rτ induces the same pairwise

preference distribution for every τ . On the other hand, r̄τ (y0) := Eu[rτ (y0;u)] = log
4
9−τ2

1
9−τ2 > 0 is

an increasing function of τ .
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Consider two arbitrary τ1 and τ2 such that 0 < τ1 < τ2 <
1
3 . Sample a pairwise preference dataset at

follows. Draw a random u and a random permutation ρ over Y . If ρ is not identity, ask an annotator
of type u with reward rτ1(·;u) to label this sample and permute the ranking with ρ. If ρ is identity,
ask an annotator of type u with reward rτ2(·;u) to label. This sampling is equivalent to sampling
from 2 ∗ |Y|! different user types. By symmetry, this pairwise preference dataset is distributionally
equivalent to a dataset Dunif with indifferent preferences. However, our construction implies that y0

has the highest expected reward and other alternatives have similar rewards:

r̄(y) =
1

|Y|

{
r̄τ1(y) , y ̸= y0 ,

r̄τ2(y) , y = y0 .

Denote the ranking based on r̄ above by R0.

Similar to the second strategy, suppose there exists an algorithm A that for any reward function r and
any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ with a probability of at least 1− ϵ. Collect a
preference dataset as explained above with at least nr̄ samples. Then, by assumption,

Pr
(
A(Dunif) = R0

)
≥ 1− ϵ .

Note that our choice of y0 could be any of the alternatives. Therefore, the above should be true when
any of the alternatives has the highest expected reward. This implies a lower bound on ϵ:

ϵ ≥ 1− 1

|Y|
> 0 .

The rest of the proof is similar to the second strategy.

Proposition 5.2. There exists no consistent M-estimator that without annotator information can
estimate V (x,y1,y2) := Varu

[
∆r∗(x,y1,y2;u)

]
.

Proof of Proposition 5.2. Consider a dataset D of context, candidate pairs, and preference repre-
sented as (x,y1,y2, o), where o = 1{y2 ≻ y1}, and y1,y2 are independently drawn. Then consider
an M-estimator
argmin

V

∑
(x,yl,yw)∈D

ρ(x,yl,yw;V ) =
∑

(x,y1,y2,o)∈D

o · ρ(x,y1,y2;V ) + (1− o) · ρ(x,y2,y1;V ) .

Under preference model of Eq. (2), for a reward r, we have E[o | x,y1,y2;u] = σ
(
∆r(x,y1,y2;u)

)
.

In the limit of a large dataset, the M -estimator solves

argmin
V

Ex,y1,y2,o,u

[
o · ρ(x,y1,y2;V ) + (1− o) · ρ(x,y2,y1;V )

]
= Ex,y1,y2,u

[
σ
(
∆r(x,y1,y2;u)

)
· ρ(x,y1,y2;V ) + σ

(
∆r(x,y2,y1;u)

)
· ρ(x,y2,y1;V )

]
(V has no o)

= Ex,y1,y2

[
Eu

[
σ
(
∆r(x,y1,y2;u)

)]
· ρ(x,y1,y2;V ) + Eu

[
σ
(
∆r(x,y2,y1;u)

)]
· ρ(x,y2,y1;V )

]
(V has no u)

= 2Ex,y1,y2

[
Eu

[
σ
(
∆r(x,y1,y2;u)

)]
· ρ(x,y1,y2;V )

]
. (y1,y2 are i.i.d)

Here, we used the fact that V does not depend on u. We also relied on the assumption that y1 and y2

are identically and independently distributed. The above equation suggests that regardless of how
ρ is designed, V (x,y1,y2) can only depend on u’s distribution through Eu

[
σ
(
∆r(x,y1,y2;u)

)]
.

Therefore, no consistent M-estimator can generally estimate Varu
[
∆r(x,y1,y2;u)

]
even with the

availability of infinite preference data.

Lemma 5.3. Using J1 and J2 as shorthands for J(x,y1,y2,x,y1,y2) and J(x,y1,y2,x,y2,y1),
we can use the following to consistently estimate the variance term:

V (y1,y2) =
J1 − (J1 + J2)

2

σ′
(
∆r̄∗(y1,y2)

)2 . (16)

Proof of Lemma 5.3. First of all, J can give us the likelihood itself:
J(x,y1,y2,x,y1,y2) + J(x,y1,y2,x,y2,y1)

= Eu

[
σ
(
∆r∗(y1,y2;u)

)2
+ σ

(
∆r∗(y1,y2;u)

)
· σ

(
∆r∗(y2,y1;u)

)]
= Eu

[
σ
(
∆r∗(y1,y2;u)

)]
.
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Here, we used the property σ
(
∆r∗(y2,y1;u)

)
= 1− σ

(
∆r∗(y1,y2;u)

)
. We also dropped x from

the notation for simplicity. Since J can give us both the first and second moments, we can use it to
find Varu

[
σ
(
∆r∗(x,y1,y2;u)

)]
as follows:

Varu
[
σ
(
∆r∗(x,y1,y2;u)

)]
= Eu

[
σ
(
∆r∗(x,y1,y2;u)

)2]− Eu

[
σ
(
∆r∗(x,y1,y2;u)

)]2
= J(x,y1,y2,x,y1,y2)−

(
J(x,y1,y2,x,y1,y2) + J(x,y1,y2,x,y2,y1)

)2
.

In the last piece of the proof, we connect Varu
[
σ(∆r∗)

]
with Varu

[
∆r∗

]
. The Taylor expansion of

σ(∆r∗) around ∆r̄∗ := Eu[∆r
∗] gives

Varu
[
σ(∆r∗)

]
= Varu

[
σ(∆r̄∗) + σ′(∆r̄∗) · (∆r∗ −∆r̄∗) +O

(
(∆r∗ −∆r̄∗)2

)]
= σ′(∆r̄∗)2 ·Varu

[
∆r∗

]
+O

(
Eu

[
(∆r∗ −∆r̄∗)3

])
.

We can neglect the third-order term in calculations as first-order correction uses up to O
(
Eu

[
(∆r∗ −

∆r̄∗)2
])

in its approximation.

Proposition 6.1. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


− log σ

(
|U| · h(y1,y2;π)

)
, o = 1 ,

− log σ
(
|U| · h(y2,y1;π)

)
, o = 0 ,

0 o.w.

Here, h is the difference of π’s induced rewards (Eq. (15)), and 1 (0) is the vector of all ones (zeros).

Proof of Proposition 6.1. The proof follows similar steps as the derivation of DPO. First of all,
conditioned on agreement, the likelihood of observing y2 ≻ y1 under the BT model is

Pr(y2 ≻ y1 | r∗, agreement) =
Πuσ

(
∆r∗(y1,y2;u)

)
Πuσ

(
∆r∗(y1,y2;u)

)
+Πuσ

(
∆r∗(y2,y1;u)

)
=

exp
(∑

u r
∗(y2;u)

)
exp

(∑
u r

∗(y1;u)
)
+ exp

(∑
u r

∗(y2;u)
)

= σ
(
|U| · Eu

[
∆r∗(y1,y2)

])
.

On the other hand, Eq. (11) allows us to write Eu

[
∆r∗(y1,y2)

]
with difference π’s induced rewards,

i.e., h:
Pr(y2 ≻ y1 | π∗, agreement) = σ

(
h(y1,y2;π

∗)
)
.

We can define the likelihood in this way for every policy π. Then, the proposed loss function is
equivalent to maximizing log-likelihood, which under mild conditions is a consistent estimator
for π∗.

Theorem 6.2. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . If there are more
than three types of user and the preferences follow BT, any loss that allows a consistent estimation of
the optimal policy discards samples with disagreement, i.e., those with o /∈ {0,1}.

Proof of Theorem 6.2. The proof involves three steps: First, the next lemma shows that any loss
function l in Eq. (17) with the desired consistency property can only depend on π through the
ratio π(y2|x)

π(y1|x) .

Lemma G.1. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . Then, for any l
that gives a consistent estimation of the optimal policy in Eq. (10), there exists an equivalent loss l̃
such that

l
(
x,y1,y2,o;π) = l̃

(
o;h(x,y1,y2;π)

)
,

where h is defined in Eq. (15).

29



See proof on page 32.

In the second step, we further limit the search space of l̃ (as introduced by Lemma G.1) to those that
meet certain first- and second-order conditions:

Lemma G.2. Any loss l̃ as in Lemma G.1 that leads to a consistent estimation of the optimal policy
meets ∑

o∈{0,1}U

∂l̃

∂θ

(
o; θ∗(z)

)
· χo

(
z
)
= 0 ,

∑
o∈{0,1}U

∂2 l̃

∂θ2
(
o; θ∗(z)

)
· χo

(
z
)
≥ 0 ,

for every z ∈ [0, 1]U . Here, we define

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou ,

and
θ∗(z) :=

1

|U|
∑
u∈U

σ−1(zu) .

See proof on page 33.

Finally, we show that when preferences follow the BT model and there are more than three user types,
all l̃(o; θ) terms corresponding to o /∈ 0,1 do not depend on θ. Therefore, these terms do not depend
on π and can be removed from the loss function, thereby completing the proof.

Lemma G.3. If |U| > 3, for any loss l̃ that meets the first-order condition of Lemma G.2, we have
∂l̃
∂θ (o; θ) = 0 for every o /∈ {0,1}.

See proof on page 33.

Proposition F.1. There exists a mixture of BTs that a single BT cannot represent.

Proof of Proposition F.1. Suppose the pairwise comparison distribution over a set of alternatives
(y1,y2,y3, . . . ) satisfies the Bradley-Terry (BT) model; i.e. Pr(yi ≻ yj) = σ

(
r∗(y2) − r∗(y1)

)
.

Then:

Pr(y1 ≻ y2) Pr(y2 ≻ y3) Pr(y3 ≻ y1) =

∏3
i=1 exp(r

∗(yi))∏3
i=1

(
exp(r∗(yi)) + exp(r∗(y(i+1) mod 3+1))

)
= Pr(y1 ≻ y3) Pr(y3 ≻ y2) Pr(y2 ≻ y1) .

Now, consider two BT models corresponding to u1 and u2, with a uniform mixture over them. For
the mixture:

Pr(yi ≻ yj) =
Pr(yi ≻ yj | u1) + Pr(yi ≻ yj | u2)

2
.

The probability of cyclic preferences in one direction is given by

Pr(y1 ≻ y2) Pr(y2 ≻ y3) Pr(y3 ≻ y1) =

∑
s∈{1,2}3

∏3
i=1 Pr(yi ≻ y(i+1) mod 3+1 | usi)

8
,

which is not necessarily equal to the probability of the cyclic preferences in the reverse direction:

Pr(y1 ≻ y3) Pr(y3 ≻ y2) Pr(y2 ≻ y1) =

∑
s∈{1,2}3

∏3
i=1 Pr(y(i+1) mod 3+1 ≻ yi | usi)

8
.

To verify this, consider specific examples such as Pr(yi ≻ yj | uk) =
exp(rik)

exp(rik)+exp(rjk)
with

r1 = (1, 2, 3) and r2 = (1, 2, 4). More generally, the BT assumption implies that, for a fixed
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reward r∗, the likelihood of a set of pairwise comparisons {(yp,1 > yp,2)}p∈[P ] is proportional to∏
i exp(r

∗(yi))
|{p∈[P ] |yp,1=i}| and depends only on the number of times each option is preferred in

the comparisons. However, as demonstrated above, this property does not hold for a mixture of BT
models.

Proposition F.3. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


−σ

(
h(y1,y2;π)

)
− I

(
σ
(
h(y1,y2;π)

))
, o = 1 ,

−σ
(
h(y2,y1;π)

)
− I

(
σ
(
h(y2,y1;π)

))
, o = 0 ,

0 o.w.

Here, we define I(θ) :=
∫ θ

1

(
1
θ′ − 1

)|U|
dθ′, and h is the difference of π’s induced rewards (Eq. (15)).

Proof of Proposition F.3. Recall Pr(ou = 1 | x,y1,y2) = σ
(
∆r∗(x,y1,y2;u)

)
. We use

zu(x,y1,y2) as a shorthand for this quantity and will drop the dependence on (x,y1,y2) whenever
it is clear from the context. We also use s as a shorthand for σ(h). In the limit of a very large dataset,
the proposed loss approaches

L(s) = −Ex,y1,y2

[( ∏
u∈U

zu
)(
s+ I(s)

)
+
( ∏
u∈U

(1− zu)
)(
1− s+ I(1− s)

)]
.

Note that we wrote L as a function of s instead of π since s is the only place that π appears. We first
show that L(s) has a unique global minimizer. To show an s is a global minimizer of L, it suffices to
show that s minimizes the term inside expectation for every (x,y1,y2). Such a minimizer meets the
first-order condition:( ∏

u∈U
zu
)(

1 + (
1

s
− 1)|U|

)
+
( ∏
u∈U

(1− zu)
)(

− 1− (
1

1− s
− 1)|U|

)
= 0 .

Here, we used dI
dθ = ( 1θ − 1)|U|. Define w := ( 1−s

s )|U|. Then, the above condition reduces to a
quadratic equation in terms of w:

1 + w −
( ∏
u∈U

(
1

zu
− 1)

)
(1 + w−1) = (1 + w−1)

[
w −

∏
u∈U

(
1

zu
− 1)

]
= 0 .

Solving for w, we obtain

s∗ =
1

1 +
(∏

u∈U (
1
zu

− 1)
) 1

|U|
.

For the BT model, a direct calculation then shows

s∗(x,y1,y2) = σ
( 1

|U|
∑
u∈U

∆r(x,y1,y2;u)
)
. (22)

In fact, s∗ is the only global minimizer of L(s). This is because L(s) is convex in s:

d2L
ds2

= Ex,y1,y2

[( ∏
u∈U

zu
)
· |U|
s2

(
1

s
− 1)|U|−1 +

( ∏
u∈U

(1− zu)
)
· |U|
(1− s)2

(
1

1− s
− 1)|U|−1

]
≥ 0 .

Finally, one can verify that the policy that results in s∗ (Eq. (22)) is the optimal policy π∗. This
completes the proof that the proposed loss is a consistent loss for π∗.

Lemma G.1. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . Then, for any l
that gives a consistent estimation of the optimal policy in Eq. (10), there exists an equivalent loss l̃
such that

l
(
x,y1,y2,o;π) = l̃

(
o;h(x,y1,y2;π)

)
,

where h is defined in Eq. (15).
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Proof of Lemma G.1. Since l only depends on (x,y1,y2) through π and πref , we overload the
notation and use l

(
o;π(y1 | x), π(y2 | x)

)
to denote the loss from (x,y1,y2,o). In the limit of

many data points, L(D;π) converges to
L(π) = Ex,y1,y2,o

[
l
(
o;π(y1 | x), π(y2 | x)

)]
.

Using Pr(ou = 1 | x,y1,y2) = σ
(
∆r∗(x,y1,y2;u)

)
, the tower rule implies

L(π) = Ex,y1,y2

[
Eo

[
l
(
o;π(y1 | x), π(y2 | x)

)
| x,y1,y2

]]
= Ex,y1,y2

[ ∑
o∈{0,1}U

l
(
o;π(y1 | x), π(y2 | x)

)
·
∏
u∈U

σ
(
∆r∗(x,y1,y2;u)

)ou(1− σ
(
∆r∗(x,y1,y2;u)

))1−ou
]
.

For notational simplicity, let’s define
zu(x,y1,y2) := σ

(
∆r∗(x,y1,y2;u)

)
,

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou .

Note that χo implicitly depends on (x,y1,y2) through z, which we drop from the notation when it
is clear from the context. Using this notation, we can rewrite the L(π)’s expansion as follows:

L(π) = Ex,y1,y2

[ ∑
o∈{0,1}U

l
(
o;π(y1 | x), π(y2 | x)

)
· χo

(
z(x,y1,y2)

)]
. (23)

Overloading notation, we can always equivalently represent
(
π(y1 | x), π(y2 | x)

)
as

(
π(y1,y2 |

x), π(y2 | y1,y2,x)
)
, that is, with the probability that either of the two responses is chosen and the

probability that the second one is preferred. Therefore, there exists a loss l′ such that
l
(
o;π(y1 | x), π(y2 | x)

)
= l′

(
o;π({y1,y2} | x), π(y2 | {y1,y2},x)

)
.

If π is optimal, π(y2 | y1,y2,x) should also be optimal. Since π(y2 | y1,y2,x) appears in only one
term of the expectation in Eq. (23), we can conclude that

argmin
θ′

∑
o∈{0,1}U

l′
(
o;π∗({y1,y2} | x), θ′

)
· χo

(
z(x,y1,y2)

)
is the optimal π(y2 | {y1,y2},x) for every optimal π({y1,y2} | x). On the other hand, a property
of the optimal policy π∗ is that

π∗(y2 | {y1,y2},x) =
π∗(y2 | x)
π∗(y1 | x)

=
πref(y2 | x)
πref(y1 | x)

· exp
( 1

β
Eu

[
∆r∗(x,y1,y2;u)

])
.

Therefore, for every optimal policy π∗({y1,y2} | x), we have
πref(y2 | x)
πref(y1 | x)

· exp
( 1

β
Eu

[
∆r∗(x,y1,y2;u)

])
=

argmin
θ′

∑
o∈{0,1}U

l′
(
o;π∗({y1,y2} | x), θ′

)
· χo

(
z(x,y1,y2)

)
.

(24)

Recall from the optimal policy (Eq. (10)) that we can modify the reward function for responses
other than (x,y1,y2) while keeping ∆r∗(x,y1,y2;u) constant. This allows arbitrary changes to
π∗({y1,y2} | x) without altering the rest of Eq. (24). So, we can argue that l′ does not depend
on π({y1,y2} | x) and we drop it from l′ notation. Define a new loss based on l′:

l̃(o; θ) := l′
(
o;
πref(y2 | x)
πref(y1 | x)

· exp
( 1
β
θ
))
.

Note that l̃ implicitly depends on (x,y1,y2) through πref which we dropped from notation. Using l̃,
we can write the original loss l as

l
(
o;π(y1 | x), π(y2 | x)

)
= l′

(
o;π(y2 | {y1,y2},x)

)
= l′

(
o;
π(y2 | x)
π(y1 | x)

)
= l̃

(
o;β log

π(y2 | x)
π(y1 | x)

− β log
πref(y2 | x)
πref(y1 | x)

)
= l̃

(
o;h(x,y1,y2;π)

)
.
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This completes the proof.

Lemma G.2. Any loss l̃ as in Lemma G.1 that leads to a consistent estimation of the optimal policy
meets ∑

o∈{0,1}U

∂l̃

∂θ

(
o; θ∗(z)

)
· χo

(
z
)
= 0 ,

∑
o∈{0,1}U

∂2 l̃

∂θ2
(
o; θ∗(z)

)
· χo

(
z
)
≥ 0 ,

for every z ∈ [0, 1]U . Here, we define

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou ,

and
θ∗(z) :=

1

|U|
∑
u∈U

σ−1(zu) .

Proof of Lemma G.2. We will refer to the proof of Lemma G.1 in this proof. Using l̃ in place of l′ in
Eq. (24), since exp(·) is monotone increasing, we have

Eu

[
∆r∗(x,y1,y2;u)

]
= argmin

θ

∑
o∈{0,1}U

l̃(o; θ) · χo

(
z
)
.

On the other hand, using the fact that user types in U are equiprobable, we can write

Eu

[
∆r∗(x,y1,y2;u)

]
=

1

|U|
∑
u∈U

σ−1(zu) .

Putting these together, it is necessary to have

1

|U|
∑
u∈U

σ−1(zu) = argmin
θ

∑
o∈{0,1}U

l̃(o; θ) · χo

(
z
)

for every z ∈ [0, 1]U . The rest of the proof is straightforward.

Lemma G.3. If |U| > 3, for any loss l̃ that meets the first-order condition of Lemma G.2, we have
∂l̃
∂θ (o; θ) = 0 for every o /∈ {0,1}.

Proof of Lemma G.3. First of all, for the BT model, a direct calculation shows

θ∗(z) :=
1

|U|
∑
u∈U

σ−1(zu) =
1

|U|
log

∏
u∈U

( zu
1− zu

)
=

1

|U|
log

(χ1

χ0

)
.

Since θ∗(z) depends on z only through χ0

χ1
, we denote ∂l̃

∂θ

(
o; θ∗

)
by g

(
o; χ0

χ1

)
. The proof has two

steps: In the first step, we relate g
(
o; χ0

χ1

)
to g

(
o⊕u′

; χ0

χ1

)
, where we define

o⊕u′
:=

{
ou , u ̸= u′ ,

1− ou , u = u′ .

Using this connection, in the second step, we will show that g
(
o; χ0

χ1

)
= 0 for any o ∈ {0,1} when

|U| ≥ 4.

Step 1. Consider any o /∈ {0,1}. When |U| ≥ 3, there exists u′ ∈ U such that o⊕u′
/∈ {0,1}. For

such o and u′, we define two non-empty sets

S1 := {u | u ∈ U , u ̸= u′, ou = 1} ,
S0 := {u | u ∈ U , u ̸= u′, ou = 0} .
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We set z such that ∏
u∈S1

zu =
∏
u∈S0

(1− zu) ,

zu → 1− , ∀u ∈ S1 ,

zu → 0+ , ∀u ∈ S0 .

(25)

For this choice of z, asymptotically, we have
χ0

χ1
=

1− zu′

zu′
,

χo = z
ou′
u′ (1− zu′)1−ou′ ,

χo⊕u′ = z
1−ou′
u′ (1− zu′)ou′ ,

χo′ = 0 , ∀o′ /∈ {o,o⊕u′
} .

Using the above, we can simplify the first-order condition in Lemma G.2 as

g
(
o;

1− zu′

zu′

)
· zou′

u′ (1− zu′)1−ou′ + g
(
o⊕u′

;
1− zu′

zu′

)
· z1−ou′

u′ (1− zu′)ou′ = 0 .

This condition should be held for every zu′ ∈ [0, 1]. Therefore, we can conclude

g(o⊕u′
;α) = −g(o;α) · α1−2ou′ , (26)

for every α ∈ R. This completes the first part of the proof.

Step 2. When o /∈ {0,1} and |U| ≥ 4, there exist distinct user types u′ and u′′ such that none of
o⊕u′

, o⊕u′′
, and o⊕(u′,u′′) are in {0,1}. Here, we used o⊕(u′,u′′) as a shorthand for (o⊕u′

)⊕u′′
.

For such o, u′, and u′′, we define two non-empty sets

S1 := {u | u ∈ U \ {u′, u′′}, ou = 1} ,
S0 := {u | u ∈ U \ {u′, u′′}, ou = 0} .

We set z according to Eq. (25). Then, asymptotically,

χo′ = 0 , ∀o′ /∈ {o,o⊕u′
,o⊕u′′

,o⊕(u′,u′′)} .
Using the above, we can simplify the first-order condition in Lemma G.2 as

g
(
o;
χ0

χ1

)
·χo+ g

(
o⊕u′

;
χ0

χ1

)
·χo⊕u′ + g

(
o⊕u′′

;
χ0

χ1

)
·χo⊕u′′ + g

(
o⊕(u′,u′′);

χ0

χ1

)
·χo⊕(u′,u′′) = 0 .

(27)
Because of the symmetry of this equation, we can assume without loss of generality that ou′ = 0 and
ou′′ = 1. Therefore, asymptotically, we have

χ0

χ1
=

(1− zu′

zu′

)(1− zu′′

zu′′

)
,

χo = (1− zu′) · zu′′ ,

χo⊕u′ = zu′ · zu′′ ,

χo⊕u′′ = (1− zu′) · (1− zu′′) ,

χo⊕(u′,u′′) = zu′ · (1− zu′′) .

Eq. (26) also implies

g(o⊕u′
;α) = −g(o;α) · α ,

g(o⊕u′′
;α) = −g(o;α) · α−1 ,

g(o⊕(u′,u′′);α) = g(o;α) .

Plugging these into Eq. (27) and simplifying equations, we obtain

g
(
o;

(1− zu′

zu′

)(1− zu′′

zu′′

))
· (2zu′ − 1)(2zu′′ − 1) = 0 .

This equation should be held for every zu′ and zu′′ . By appropriately setting zu′ and zu′′ , we can
conclude that g(o;α) should be zero for every α. This completes this proof.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction accurately reflect the paper’s contributions in the
subsequent sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of every result right after introducing it. We also
discuss general limitations in Sec. 9.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The statements of the theoretical results include all necessary assumptions,
except for general assumptions introduced in the problem formulation in Sec. 3. Each result
is also linked to its corresponding proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss all the details of the experiments either in the main text or the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have used publicly available data and provided their links. We have
provided an anonymized version of the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have covered the main details in the main text, and the rest of the details
are discussed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our results have come with confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We only do small-scale experiments running on a single GPU in a few days.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We extensively discuss the societal impacts of our work in various places.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not release any model and only used public data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not crowdsource or collect human subject data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only used LLMs for editing and writing improvement.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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