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Abstract

Equivariant Graph Neural Networks (EGNNs) have demonstrated significant suc-
cess in modeling microscale systems, including those in chemistry, biology and
materials science. However, EGNNs face substantial computational challenges
due to the high cost of constructing edge features via spherical tensor products,
making them almost impractical for large-scale systems. To address this limitation,
we introduce E2Former, an equivariant and efficient transformer architecture that
incorporates a Wigner 65 convolution (Wigner 65 Conv). By shifting the com-
putational burden from edges to nodes, Wigner 65 Conv reduces the complexity
from O(|€]) to O(|V|) while preserving both the model’s expressive power and
rotational equivariance. We show that this approach achieves a 7x—-30x speedup
compared to conventional SO(3) convolutions. Furthermore, our empirical results
demonstrate that the derived E2Former mitigates the computational challenges of
existing approaches without compromising the ability to capture detailed geometric
information. This development could suggest a promising direction for scalable
molecular modeling.

1 Introduction

Molecular simulations underpin critical computational tasks across chemistry [31} 36} 38} 391,
biology [9]], and materials science [64], facilitating detailed exploration of microscopic processes.
Although quantum mechanical approaches such as Density Functional Theory (DFT) provide highly
accurate predictions [30} 137]], their computational complexity scales poorly with system size [56],
thus limiting practical applicability to small-scale problems. Machine Learning (ML) techniques
have emerged as promising alternatives, balancing computational efficiency and accuracy [3 14}
16]. ML-based models, particularly Equivariant Graph Neural Networks (EGNNSs), significantly
reduce simulation times, enabling molecular property predictions and dynamic simulations within
practical computational budgets [53 26| 25! [7} 23} 41]]. EGNN architectures explicitly encode
symmetry constraints—such as rotational and reflectional equivariances—through graph-based atomic
representations. This symmetry-awareness leads to strong inductive biases and improved sample
efficiency. EGNNs have evolved from rotationally invariant embedding methods like SchNet [|53]
to schemes incorporating bond and dihedral angles [26} 25]], scalarization techniques [52,163], and
spherical tensor-product frameworks such as E(3) and SE(3)-Transformers [57, 28} [23][41]]. Recent
refinements, including Gaunt Tensor Product [44]] eSCN convolutions [47, |42]], primarily focus on
enhancing computational efficiency.
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In this work, we specifically focus on spherical-equivariant EGNN architectures 57,123} 41]], which
leverage spherical harmonics and Clebsch—Gordan tensor products. These models—commonly
referred to as spherical EGNNs—have demonstrated state-of-the-art accuracy, especially for periodic
systems where symmetry constraints are critical [59} [10]. By encoding higher-order geometric corre-
lations through irreducible representations (irreps) with angular momentum L > 1, spherical EGNNs
offer expressive, data-efficient models capable of capturing complex geometric interactions [57,55].
Unfortunately, these gains come at a computational cost. The use of spherical tensor products for
feature construction incurs complexity driven by two factors: (i) the number of tensor products
required, which scales with the number of edges |£| in the molecular graph, and (ii) the computational
cost of each tensor product, which grows with the angular momentum cutoff L. Together, these lead to
runtime costs of O(|€|L%) or O(|€|L3) when implemented with the sparse eSCN convolution. This
scaling presents a significant bottleneck, limiting the use of spherical EGNNSs to small- or medium-
scale systems, despite their improved performance in principle. While recent spherical-scalarization
methods [52]163| 2] offer efficient alternatives by bypassing tensor products, they sacrifice theoretical
completeness [18]]. Tensor-product formulations, in contrast, preserve the full space of equivariant
functions between irreps. This trade-off motivates our effort to retain the expressive power of tensor
products while eliminating their prohibitive complexity.

Here, we introduce the Wigner 65 convolution (Wigner 65 Conv, Figure[I)), a spherical-equivariant
method that uses Wigner 65 symbols [40} 45} 120], provably reducing tensor product complexity to
O(]V|) while maintaining the exact expressive power and rotational equivariance.

Contributions. Our contributions can be summarized as follows: (1) We introduce the Wigner
6 convolution, a spherical-equivariant technique that reduces the computational complexity
from O(|€]) to O(]V|) , enabling the modeling of larger molecular systems without compromis-
ing the network’s expressive power or symmetry properties. As shown in Figure 2[b), our model
demonstrates better scaling behavior than the SO(3) convolution, achieving 7x to 30x speed-up
given the sparsity of the molecular graph. (2) We propose E2Former, an equivariant and efficient
Transformer architecture specifically designed for scalable molecular modeling. E2Former
leverages the Wigner 6 convolution to maintain rotational equivariance while significantly
enhancing computational efficiency. (3) Extensive experiments on benchmark datasets like
0C20, OC22, and SPICE show that E2Former achieves competitive accuracy in predicting
molecular energies and forces, while offering improved efficiency and scalability over existing
spherical-equivariant methods. (4) Finally, we pre-trained E2Former on a large-scale dataset and
evaluated its performance in molecular dynamics simulations, where it achieves high accuracy
with faster speed, outperforming state-of-the-art empirical potential methods and EGNNs. These
results suggest its potential to advance large-scale molecular simulations and to serve as a
foundational model for machine learning force fields.

2 Background and Preliminaries

Notation. Throughout this paper, we use ¢ and m to denote angular momentum quantum numbers

associated with spherical harmonics Y,%), where £ > 0 and —¢ < m < /. All spherical harmonics
are considered real-valued functions on R3. Positions of nodes in R? are represented as r, while
node-level irreducible features are denoted h; € R**¢, where s represents the spherical dimension
and c the feature dimension per spherical component (i.e. number of channels). The operation
[...]¢¥) is the projection operation which extracts only the ¢-th order irreducible component from a
representation or tensor product. Clebch-Gorden Tensor products of irreps are symbolized by ®
(without any superscripts), and its Wigner 65 counterpart is denoted by ®%7.

In this section, we establish the mathematical foundations necessary for constructing the Wigner-6;
Convolution. These include real-space solid spherical harmonics, tensor products of irreducible
representations (irreps), and Wigner 6 recoupling theory. We commence by defining the solid
spherical harmonics in real basis, which is commonly used in modern ML applications:

Definition 2.1 (Solid Spherical Harmonics in Real Basis). Letr = (z,y,2) € R3, r = |r| =
Vx? +y% + 22, and (r, 0, ¢) be the spherical coordinates with:

0= arccos(z) ) ¢ = atan2(y, x).
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Figure 1: (a) Overview of the Proposed Approach. Rather than performing tensor products over edges
by combining node features and distances, E2Former leverages two key concepts: binomial local
expansion and Wigner 65 recoupling. The former represents edge directions in terms of node positions,
while the latter reorders the sequence of tensor product operations. Together, the computational
complexity of the tensor product is reduced from O(|€|) to O(]V|). ® denotes the Clebsch-Gorden
tensor product, and ®57 denotes the CG tensor product where each path is parameterized by a weight
governed by the Wigner-67 coefficients. (b) Illustration of two equivalent ways to couple the tensor
product of three representations: sequentially coupling two tensors before the third (left) or reordering
the coupling sequence (right), with equivalence established via the Wigner 6; recoupling.

The (regular) solid spherical harmonics are homogeneous harmonic polynomials of degree ¢ defined
by:

RO = r'YO@F), t=1/r, >0, -(<m<d,
are real spherical harmonics on S2. Equivalently, in (7, 6, ¢),

K vt P (cos) cos(ma),  m > 0,

where Y,gf)

R (r,0,¢) = k(()e) rt Pée) (cosB), m =0,
ki) vt Pt} (cos) sin(|m|g), m <0,
with P‘(mz)| the associated Legendre polynomials and k%) normalization constants (chosen per the

convention used in this work). For example, in e3nn implementation, the real spherical harmonics
for ¢ = 2 take the following form in Cartesian coordinates: R%)(z,y,z) = zy, R (z,y,2) =
vz, RO (2,y,2) = 322 — (2® +y° + 2°), R (2,9, 2) = 22, R{? (2,9, 2) = 2> — . Under a rotation

g € SO(3), these functions transform according to: R%)(r) — Z(Z)/z_e Dfﬁ?m, (9) Rgﬁ),(r), where
Dgﬁ?m, (g) are the Wigner D-matrices. This transformation rule ensures that spherical harmonics of

fixed degree ¢ transform properly under the action of SO(3). One useful property of solid spherical
harmonics that will come in useful later is R™ (r;;) = R™M (r;) — RW(r;). It is also worth noting
that this equality holds universally if and only if £ = 1.

Next, we introduce the behavior of irreducible representations (irreps). A key principle is that the
tensor product of two irreps is generally reducible, meaning it decomposes into a direct sum of other



irreps. This decomposition mechanism is precisely what will allow us to relate the general irrep
RO (-) back to R (-).

Definition 2.2 (Tensor Products of Irreps). Let U (1) and U “2) be irreducible representations (irreps)
of SO(3). Their tensor product U (1) @ U(“2) decomposes into a direct sum of irreps: U“1) @ U(*2) =
@gjfff U (©). The decomposition is governed by the Clebsch-Gordan coefficients. Specifically,

the tensor product, projected onto a specific irreducible component U¢3), is denoted as:

lsm YA Y4
= Z O@;’»mi&mQU( Dy ), 2.1)

mi m2

[0 & )] (“e)

Limy,lama

Commutativity of the Clebsch—-Gordan Tensor Product. The tensor product of two irreducible
representations (irreps) U(®) and U®) of SO(3) is not strictly commutative as a bilinear operation on
vector spaces: U(®) @ U® is not identical to U(®) ® U(®), Nonetheless, this operation is effectively
commutative at the level of irreducible decompositions. Interchanging the order of the factors does
not change the set of irreps that appear, although it permutes the corresponding CG coefficients. In

particular, we have:
a+b

U@ oUu® ~pyh g yle) ~ @ UWw. (2.2)

j=la—b]

Associativity of the Clebsch—-Gordan Tensor Product. For irreducible representations (irreps) of
SO(3), the tensor product is associative up to a canonical isomorphism. Specifically, for any three
irreps U(a), U(b), and U(C), the following holds:

(U(a) ® U(b)) QU =yl g (U(b) ® U(C)).

While the set of resulting irreps is independent of the association order, the CG coefficients that
appear in the decomposition do depend on the chosen coupling scheme. Transitions between different
coupling orders are governed by Wigner 65 symbols, which express changes of basis without
modifying the underlying irreducible content.

Definition 2.3 (Wigner 65 Symbol). For three irreps U(®), U®), and U(©) of SO(3), one can couple
them either as U(®) @ (U®) @ U(©) oras (U @ U®)) @ U(®). The Wigner 65 symbol {Z 2 Sl}
relates these two coupling schemes through the identity:

@@ b d (d)
(a) ®) (e) — atbtctd : a (@) (b) (e)
{U ® [U QU ] } = Ed (-1) (2d+1)(2j+1){c ; j} [U QU ] QU™ .

(2.3)
To simplify notation, we abstract the recoupling process as follows:

U(a) ® (U(b) ® U(C)) — (U(‘l) ® U(b)) ®6j U(C)’ 2.4)

where ®57 denotes a CG tensor product accompanied by a re-indexing via Wigner 67 coefficients.

3 Wigner 65 Convolution

In this section, we introduce the SO(3)-Equivariant Node convolution and demonstrate how Wigner
67 recoupling facilitates an efficient node-wise computation.

Definition 3.1 (SO(3)-Equivariant Node Convolution). Let h; € R**¢ denote the irreducible feature
tensor of node ¢, where s indexes the irreducible representation (irrep) type and c indexes the channels
within each irrep. Let R(Z)(rij) denote the degree-¢ spherical harmonic evaluated at the relative
direction. The SO(3)-equivariant node convolution is via the CG tensor product between the source
irreps and the spherical harmonics: h; = 37, ;) i @ RO ().

We clarify that our formulation of the SO(3) convolution employs R(-) rather than Y (-). The two
formulations are related through a normalization factor. To realize the Y (-)-based variant, this
normalization factor can be absorbed into the attention coefficients, as detailed in Alg.



Wigner 65 convolution. Given the SO(3) convolution, we aim to demonstrate that the operation
admits a node-wise factorization via Wigner 65 symbols. In particular, we show that the SO(3)
convolution can be expressed as:

£
hi= > (b orR ) => ()" (€>(R<u><m>) & (Z b ® (R (r))) )
JEN (i) N~ ———  u=0 v — FEN (i)
ij-dependent i-dependent j-dependent

The blue-boxed factors R (%) (7;) aggregate all node-i—specific terms, whereas the red—boxed factors
h;, RU—v) (7;) isolate the node-j contribution. This separation removes explicit edge dependencies,
resulting in the number of tensor products in the network scaling with O(|V]). To build further
intuition, we draw an analogy to factorization techniques in kernelized attention mechanisms [[13]],
which achieve linear scaling by decoupling query-key interactions.

To establish this result, we introduce the concept of the Binomial Local Expansion. The expansion is
based on the key insight that any term R () () of arbitrary order £ can be expressed through iterative
tensor products of the first-order term, R(Y) (+). This effectively reduces the problem to the first-order
case, where we can apply the previously introduced relation R (r;;) = R (r;) — RM(r;) to
factor the edge-dependent expression into node-local terms.

Theorem 3.2 (Bionomial Local Expansion). Let { = u > 1. Every { = u spherical harmonic

RW (r;;) can be expressed as an irreducible subspace of the u-fold tensor product (R™M (r;;))®".
When expanded in terms of node-local terms, this satisfies:

RO (e, — 2‘: (1) (i) [(RW@)) & (RE(y))] ®

u=0

Proof Sketch. This spherical harmonic R (%) (r;;) could be constructed by projecting the ¢-fold tensor
product of the first-order harmonic R(l)(rij) onto the subspace transforming as the irreducible
representation (irrep) £ of SO(3). Recall that the projection operator is denoted by [...](*) and using
the identity R (r;;) = RMW(r;) — RM(r;), the objective could be rewritten as R\ (r;;) =
(RO (x;) = RO (x,)) )0,

We begin by expanding the tensor power (R (r;) — R (r;))®¢, which produces a sum of 2°
tensor products. Each term corresponds to an ordered sequence P € {i, j}*, where each factor
is either R (r;) or R((r;). Denote the corresponding tensor product as 7. For example, if
P = (i,j,4), then Tp = RMW(r;) @ R (r;) ® RM(r;). Initially, each ordering (¥, *,- - ,*)
defines a distinct term. Later, we will show that the projection operator renders the result invariant to
the ordering. We write the full expansion as: (R™) (r;)—RM) (r;))® = Zi:o(—l)e’“ > pem, TP
where II,, denotes the set of orderings containing exactly u factors of R() (r;) and £ — u factors of
R (r;). Applying the linear projection operator [...]® to this sum distributes the operator yields
[(RM (1) = R ()2 = Ty (=)™ Epe, [Tp]-

The key insight comes from angular momentum coupling theory. Combining ¢ systems with angular
momentum 1 yields components with total angular momentum ranging up to ¢. The subspace
associated with the highest possible angular momentum, L = ¢, is unique and corresponds to the fully
symmetric combination of the individual factors. The projector |...] (©) isolates precisely this unique,
symmetric component. As a result, the projected tensor [Tp]“) remains identical for all orderings
P € 11, indicating that the projection depends solely on the multiplicities of the factors R(Y) (r;)
and R() (rj) in Tp, rather than their ordering. The inner sum over the (5) identical projected terms
simplifies. Let Trep = (R (r;))®* @ (R (r;))®~) serve as a representative tensor product for
the class TL,,. Then: ) peyp [Tp]® = |, |[Trep]®@ = (O [(RD (r;))®* @ (RM(x;))2¢-0]@),

u
Substituting this simplification back into the expression for the projected tensor power yields:
(RO (r;) = RO (x)) 20 = 370 _o (=1 (D[R (r:))=* @ (RM)(x;)) 2=,

u=0

O



Theorem 3.3 (Node-Based Factorization via Wigner 65). SO(3) convolutions admit a factorization
that separates the dependence on the central node i from the aggregation over neighbors j, yielding
the form:

3 hj®R$£>(rij)=Xé:(—1>“(ﬁ> (RW@)) e | > mye (REIw)) |,

JEN () u=0 JEN (D)

where @57 denotes a CG tensor product where the path weight is parameterized by the corresponding
Wigner 65 coefficients.

Proof Sketch. We begin by substituting the spherical harmonic R%) (r;;) using the binomial local
expansion from into the original SO(3)-equivariant convolution expression, we obtain:

Y e i:(—l)f—“ <5) [R(“) (r;) @ R (rj)} “ G.1)
u=0

JEN (@)
By linearity of the tensor product, this expression becomes:

14

> =yt (2) > (hj ® [R(u)(l‘i) ® RUE—W (rj)] “)) , 3.2)

u=0 JEN (D)

To reorganize this expression in terms of node-dependent features, we apply Wigner 65 recoupling.
Letting A = h;, B = R“"%(r;),C = R™(r;), The recoupling identity states: A ® (B ® C) =
(A® B)®% C. Since CG tensor products commute effectively, we can swap B and C before applying
recoupling. This gives:

by @ (RO(r) @ RU(x))) = (by @ RU(x)) % RO (r,). (3.3)

Applying this recoupling within the sum, we arrive at the factorized form as claimed. Note that it
is safe to apply the recoupling within a projection operator. This constraint can be implemented by
fixing one of the intermediate coupling indices in the Wigner 65 symbol to £. O

We now formalize the key properties of the resulting Wigner 65 convolution. These results are stated
in the following lemmas. Proofs are provided in Appendix [E|and Appendix [F} respectively.

Lemma 3.4 (Equivariance of Wigner 65 Convolution). The Wigner 6 convolution operator (denoted
as F), is equivariant under the Euclidean group SE(3). That is, for any rigid transformation
g € SE(3), the output satisfies Flg - f] = D(g) - F[f].

Lemma 3.5 (Time Complexity of Wigner 65 Convolution). The time complexity of Wigner 6j
convolution is O((LSC + C?L?)|V|), where L is the degree cutoff and C'is the number of channels.

Model Architecture. Based on these, we propose E2Former, a modular architecture that alternates
between E2Attention and feed-forward layers (Appendix Fig.[5(a); additional architectural details
provided in the Appendix [H). At its core lies a convolution layer based on the Wigner 6 convolution,
which serves as a backend kernel to efficiently capture rotational symmetries. We highlight two
key design considerations underlying E2Former. First, we observe that the attention computation
constitutes only a small fraction of the overall runtime in an attention-based SO(3) convolution
(Figure 2] (a)). Leveraging this, we integrate the attention mechanism directly into the Wigner
67 convolution (Algorithm E]) As a result, while the resulting model is not strictly linear, the
number of tensor product operations scales linearly with input size, enabling efficient computation.
Second, E2Former is not defined solely by its use of Wigner 65 convolutions. Rather, it represents a
broader architectural principle that combines symmetry-aware design with practical engineering. The
efficiency gains afforded by the Wigner 6; kernel allow us to reallocate the computational budget
toward increased expressivity—e.g., by incorporating deeper layers, wider hidden dimensions, more
attention heads, and MACE higher-order interactions [[6]. This trade-off between symmetry-driven
modeling and architectural scalability is central to the design philosophy of E2Former.
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Figure 2: (a) Breaking down the runtime of attention-based SO(3) convolutions shows that message
construction is the slowest step. Calculating attention and combining messages take much less time.
(b) We compared the runtime of our Wigner 65 convolution (purple squares) against the standard
SO(3) convolution (blue circles). Our method was consistently faster across different graph sizes
(N), maximum angular momenta (L.« ), and sparsity levels (dense vs. sparse, see subplots b.i-iii).
Full experimental details are in Sec. 1] (c) Runtime on 1000-node graphs as a function of angular
momentum cutoff L (up to Lyax = 6). (d) Runtime on 1000-node graphs with fixed Lyax = 3,
varying the maximum number of neighbors from 64 to 512. In (b-d), both methods yield identical
outputs.

4 Results

4.1 Scaling Analysis of Wigner 6; Conv and SO(3) Conv

Here, we compare the runtime of Wigner 65 convolution (purple squares) and SO(3) convolution
(blue circles). The two implementations are mathematically equivalent and, by construction, produce
identical outputs given the same molecular graphs. Specifically, we compare different graph sizes NV,
maximum angular momenta Ly, ., and connectivity patterns. For dense graphs, defined as graphs
where every node is connected to all other nodes, at L.« = 3 (Fig. |Z| (b.i)), the quadratic scaling
of SO(3) convolution introduces a noticeable performance gap. Additionally, for sparse graphs,
defined here as graphs with k-nearest neighbor connectivity (k = 32), at Lyax = 2 and Lyyax = 3
(Figs.|2)(b.ii) and (b.iii)), Wigner 65 convolution scales consistently better than the SO(3) convolution.
Fig. [2c further shows the impact of increasing the angular momentum cutoff up to L, = 6 on
1000-node graphs, where our method consistently achieves approximately a 7x speed-up over the
baseline. Finally, Fig. 2d demonstrates that as the number of neighbors per node increases from 64
to 512 (with L. = 3), the speed-up from Wigner 65 convolution becomes even more pronounced.

4.2 E2Former Results

We evaluate E2Former which heavily utilizes the Wigner 65 convolution on three standard bench-
marks—two catalysis datasets (OC20, OC22) and a molecular conformer dataset (SPICE)—and find
that it achieves strong accuracy while maintaining computational efficiency.

4.2.1 Performance on the OC20 Dataset

Dataset Description. The OC20 dataset [10] comprises 1.2 million DFT relaxations computed using
the revised Perdew-Burke-Ernzerhof (RPBE) functional [29]. Each system, averaging 73 atoms,
represents an adsorbate molecule on a catalyst surface and is designed for the Structure-to-Energy-
and-Forces (S2EF) task. This task involves predicting the system’s energy and per-atom forces, with
performance evaluated based on the mean absolute error (MAE) of these predictions. Following



[27,141]], we use the 2M subset for training, and evaluate on the validation split. This choice also
reflects practical computational constraints, as training on the full dataset requires significant time and
resources. All reported results are taken directly from previous publications [27,41]. We compare
two model variants: the 33M-parameter version and the 67M-parameter version. A summary of
the results is presented in Table[I] E2Former demonstrates strong performance across all model
sizes, with 67M variant achieving results comparable to state-of-the-art methods. Notably, the Small
variant (33M parameters) maintains competitive accuracy while offering significant computational
advantages.

Table 1: Performance on the OC20-2M dataset. Results are reported in Energy (meV) and Force

(meV/A) mean absolute error (MAE). E2Former achieves competitive accuracy and computational
efficiency. Approximate training GPU hours are measured on 32G NVIDIA V100 GPUs. The best
results are bolded and the second best are highlighted with underline.

Model # Params (M)  Training GPU Hours  Inference Speed (samples/sec) Validation
Energy MAE (meV)  Force MAE (meV/A)

GemNet-dT 31 900 50 358 29.50
GemNet-OC 38 1500 38 286 25.70
SCN 126 3000 5 279 21.90
eSCN 51 2200 19 283 20.50
EquiformerV2 85 1800 19 285 20.46
E2Former 33M 33 800 62 215 21.90
E2Former 67M 67 1500 34 270 20.50

4.2.2 Performance on the OC22 Dataset

The OC22 dataset [59] is specifically designed for studying oxide electrocatalysis. In contrast to
0C20, OC22 features DFT total energies, which could serve as a general and versatile DFT surrogate,
enabling investigations beyond adsorption energies. We train on the OC22 S2EF-Total task and
measure energy and force MAE on the S2EF-Total validation splits. Table 2] summarizes our results
on the OC22 S2EF task. E2Former achieves competitive energy and force MAEs while enabling
rapid training and inference. Notably, it converges in just 1,500 GPU hours—only one-third of the
runtime required by the SOTA model.

Table 2: Performance on the OC22 S2EF task. Results are reported for Energy MAE (meV) and
Force MAE (meV/A) under In Distribution (ID) and Out-Of-Distribution (OOD) splits. Approximate
training GPU hours are measured on 32G NVIDIA V100 GPUs. The best results are bolded and the
second best are highlighted with underline.

Model # Params (M) Training GPU Hours  Energy MAE (meV) Force MAE (meV/A)
D 00D 1D OOD
GemNet-OC 39 - 545 1011 30.00 40.00
EquiformerV2 122 4500 433 629 22.88 30.70
E2Former 67M 67 1500 491 724 25.98 36.45

4.2.3 Performance on the SPICE Dataset

The SPICE dataset [19] comprises small organic molecules and encompasses a diverse array of
chemical species with neutral formal charges. The geometries were generated through molecular
dynamics simulations using classical force fields, followed by the sampling of various conformations.
High-fidelity labeling was achieved at the wB97M-D3(BJ)/def2-TZVPPD level of calculations.
This dataset includes configurations of up to 50 atoms. It was further augmented with larger molecules,
ranging from 50 to 90 atoms, derived from the QMugs dataset [32]], as well as water clusters obtained
from simulations of liquid water. Approximately 85% of the SPICE dataset was used for model
training, while 15% was allocated for model testing. We evaluate E2Former 33M on the SPICE
dataset and a summary of the results is provided in Table 3]

Table 3: Performance comparison on the SPICE dataset with actual training time and dataset sizes.

Results are reported in Energy (E, meV/atom) and Force (F, meV/A) MAE. Approximate training
GPU hours are measured on 80G NVIDIA A100 GPUs.

Dataset Name (Size) ~Training Time PubChem (33884) Monomers (889) Dimers (13896) Dipeptides (1025) SolvatedAminoAcids (52) ~ Water (84)  Qmugs (144) All
(gpu hours) E F E F E F E F E F E F E F E F
MACE Small 168 1.41 35.68 1.04 17.63 0.98 16.31 0.84 25.07 1.60 38.56 1.67 2853 103 4145 127 29.76
MACE Medium 240 0.91 20.57 0.63 9.36 0.58 9.02 0.52 14.27 1.21 23.26 0.76 1527 0.69 2358 080 17.03
MACE Large 336 0.88 14.75 0.59 6.58 0.54 6.62 0.42 10.19 0.98 19.43 0.83 1357 045 1693 077 12.26
E2Former 33M 70 0.67 8.9 0.49 7.1 0.43 4.01 0.51 5.63 1.1 19.2 096 1352 0.65 102 0.60 7.46




E2Former achieved state-of-the-art performance in most subsets, particularly in datasets with ample
data, such as PubChem and DEShaw370-Dimers. Furthermore, compared to the MACE-Large model,
E2Former achieves approximately a fivefold increase in training speed, thereby further validating its
efficiency.

4.3 Meomory and Efficiency Scaling

To further probe efficiency, we evaluated computational performance in an even more extreme case:
system scale. We benchmarked E2Former against MACE-Large and EquiformerV?2 on systems
containing up to 6,400 atoms (Table [). E2Former consistently achieved the highest throughput, with
its performance advantage becoming clearer as system size increased. At 3,200 atoms, E2Former
processes data nearly three times faster than MACE-Large. Crucially, E2Former was the only model
capable of handling simulations at the 6,400-atom scale, a size at which both MACE-Large and
EquiformerV?2 failed.

Table 4: Comparison of memory cost and efficiency on large-scale systems with up to 6,400 atoms.

Atom Number Memory Cost (GB) Training Efficiency (Samples/Second)
Equiformer V2-22M  MACE-Large-33M  E2Former-33M  Equiformer V2-22M  MACE-Large-33M  E2Former-33M
200 14.2 6 39 1.81 5.1 4.5
400 26.7 10.7 7.6 1.27 291 4.2
800 53 23 16 0.68 1.61 2.36
1600 - 38 20 0.83 0.81 2.46
3200 - 74 40 - 0.41 1.2
6400 - - 80 - - 0.59

5 Molecular Dynamics Simulation

In this section, we demonstrate the practical utility of E2Former in molecular dynamics simulations.
While machine learning methods are extensively used to predict molecular and material properties,
accurately simulating the behavior of systems over extended time periods remains a significant
challenge. This task requires not only precise predictions at each time step but also long-term stability
and performance comparable to established methods such as DFT and empirical potential models.
We began by pretraining

E2Former on a large in- ® ®)

. Power Spectrum Efficiency Comparson
house dataset derived from 100 — EaFomer 190
DeShaw (2M) [13] and GFN2XTB :gg: ]
GEMS [60] (2.7M), consti-  ®] ) T £ 160-
tuting a foundational model g, 1 “<J . - 1 ig-
on machine-learning force § [\ 2 10y
field. 40 3 081
£ 0.6+
20 \“‘/\"/\/\ “ 8 0.4 |--|
5.1 Small-scale 023
. . . T T T
Amino Acid Systems 0 = f\-
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To evaluate the model, we Frequency (em™") & &

first performed an NVT
(T" = 300 K) simulation of
an amino acid wrapped by
water molecules (The struc-
ture is shown in Fig. f{a)),
totaling 253 atoms. This
evaluation was conducted
on a system equipped with a
single NVIDIA A100 GPU
and an AMD EPYC 7V13 24-core CPU. Over the course of 10,000 simulation time steps (1fs per
step), we compared the trajectory ’s power spectrum obtained from E2Former, CUDA-accelerated
DFT [34]- namely, the MADFT software and state-of-the-art empirical potential methods GFN2-
xTB [3]]. Fig. f[a) illustrates the results. The evaluation demonstrates that E2Former exhibits
long-term stability in molecular simulations. The power spectrum shows that E2Former predictions
align closely with those of the DFT baseline. In contrast, empirical method shows significant devia-

Figure 3: (a) Power spectra comparison across computational methods:
E2Former (blue), GFN2-xTB (orange), and MADFT (green). The
graph corresponds to a simulation at NVT ensemble, temperature

= 300K, with a time step of 1 fs. A structural overlay of the
simulated system is displayed for context. (b) Efficiency comparison
showing computational time for E2Former, GFN2-xtb, and MADFT.
E2Former demonstrates the lowest computational time. The y-axis
denotes the computation time for a single frame.



tions in high-frequency regions, particularly near 3,000 and 3,500 frequencies. These high-frequency
components are critical as they provide insights into bond vibrations [14] and molecular stability [12],
underscoring the ability of E2Former to effectively extrapolate across the molecular potential energy
surface. To assess computational efficiency, we compare runtime across methods, which is depicted
in Fig. @b). E2Former achieves a computational speed approximately 1,000 times faster than DFT,
and around 2 times faster than GFN2-xTB.

5.2 Large-Scale 6000-atom Water Cluster 100-‘5“ Water Cluster Power Spectrum

— E2Former
MACE

To evaluate accuracy and efficiency at larger 80 MADFT
scales, we tested our model on a 6,000-atom Y
water cluster by analyzing atomic vibration pat-
terns. E2Former closely reproduced the ref-
erence DFT results, accurately capturing key 407
spectral features: low-frequency modes (be-

low 1000 cm~1), the H-O-H bending mode 207 \
(1650 cm~1), and O-H stretching vibrations. In NA )
contrast, MACE-Large exhibited larger devia- 0 0 500 1000 1500 2000 2500 3000 3500 4000
tions, particularly for high-frequency stretching Frequency (cm™ ")

modes. We further validated our approach on Figure 4: Power spectra comparison across com-
a more complex system—a Chignolin peptide ~putational methods: E2Former (blue), MACE (or-
solvated in water (approximately 2,000 atoms, ange), and MADFT (green).

Fig [6)—successfully optimizing its structure

while maintaining high force prediction accuracy (0.484 kcal/mol/A error).

60|

Power

6 Related Work

Invariant GNNs. Invariant geometric GNNs have driven state-of-the-art performance in predicting
molecular and crystalline properties [53} 150, [11} 26} 43| 25/ 162, 48] and have been instrumental in
advancing protein structure prediction [35]].

Cartesian Equivariant GNNs. Building on invariance, Cartesian equivariant GNNs explicitly model
transformations in R3, offering greater flexibility. These models have shown strong empirical results
in similar domains [33} 51} [17} 154 2]] and have recently evolved to include Cartesian equivariant
transformer layers [22]].

Spherical Equivariant GNNs. Complementing Cartesian approaches, spherical equivariant GNNs
leverage spherical tensors to naturally handle rotational symmetries, relying on the representation
theory of SO(3). Recent advancements include SO(3)- and SE(3)-equivariant transformer lay-
ers [23| 41]], efficient interatomic potential calculations [7, |6, 46], and optimizations that reduce
convolutions in SO(3) to SO(2) [47]. These improvements have enabled strong performance in di-
verse applications, including geometry, physics, and chemistry [57], dynamic molecular modeling [[1]],
and fluid mechanical modeling [158]].

7 Conclusion and Future Work

We introduced E2Former, an efficient and scalable Transformer architecture for molecular modeling.
By leveraging the Wigner 65 convolution, E2Former shifts computation from edges to nodes, reducing
complexity from O(|€]) to O(|V|) while maintaining rotational equivariance and expressive power.
E2Former demonstrated competitive performance across OC20, OC22, and SPICE benchmarks
with significantly improved computational efficiency. Its scalability makes it suited for large-scale
applications in biology, drug discovery, and materials science.

Future work could focus on optimizing E2Former for hardware accelerators and integrating kernelized
Euclidean attention [21]. Combining Wigner-6j Conv with SO(2) convolution could further bolster
the model’s efficiency. Scaling to the real-world all-atom protein systems will also be investigated.
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A Glossary of Notations

Table 5: Glossary of Notations

Symbol Description
€ Set of nodes (vertices) V and edges £ in a molecular graph.
V], €] Number of nodes and edges in the graph, respectively.
N Often used to denote V|, the number of atoms (nodes).
d Hidden feature dimension (number of channels) at each spherical degree.
s Spherical dimension: the number of irreps (from ¢ = 0 to £ = L).
L, Liax Maximum angular momentum (highest spherical degree).

Qg
cltama)

limy, bamy

by by A3
mip Mo Mms
voJ2 I3

Ja Js Je
D(Z)(R)

SO(3)
E2Former
Wigner 65 Conv

Angular momentum quantum numbers for spherical harmonics.

Real spherical harmonic of degree ¢ and order m, evaluated at position r.

An irreducible representation (irrep) of SO(3) at angular momentum £.

Feature representation of node 7, containing scalar/vector components up to spherical degree L.
Relative position vector from node 7 to node j.

Clebsch—Gordan (CG) tensor product of two irreps.

Wigner 6;-based tensor product (recoupling) of irreps, reorganizing the CG couplings.
Attention coefficient between node 7 and j in an equivariant attention layer.

Clebsch—Gordan coefficient coupling two irreps 1, {5 to an output irreps 3.

Wigner 3j symbol (equivalently related to Clebsch-Gordan coefficients).

Wigner 65 symbol, governing recoupling of three angular momenta in different orders.

Wigner D-matrix describing how spherical harmonics of degree ¢ transform under rotation R.

3D rotation group; E2Former is equivariant to transformations in SO(3).

The proposed Efficient and Equivariant Transformer architecture.

The core convolution module leveraging Wigner 6; recoupling to shift edge-based operations to nodes.
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B Attention-based Wigner 6; Convolution

We describe the algorithmic procedure for constructing the Attention-based Wigner 65 Convolution in-
troduced in the main text. Assume that attention coefficients a have been precomputed, either through
Query-Key inner products or via MLP-based attention mechanisms such as those in Equiformer
v2 [42]]. We begin by precomputing the spherical harmonics R“) up to a maximum degree L based
on the input positions r.

For each degree K = 0,..., L, we compute an attention-weighted tensor product between the
input features h and the corresponding spherical harmonics R(*). This intermediate representation
is then modulated by the attention weights «.. The resulting tensors are subsequently recoupled
using a Wigner 67 tensor product, where each recoupling path is parameterized by the Wigner 65
coefficients—offering a more flexible alternative to the standard Clebsch—Gordan coupling.

Finally, summing over all degrees k yields the output irreducible representations (irreps), which are
used to update the node embeddings.

Algorithm 1 Wigner 6;j-Based Attention

1: Input: Positions r € RY*3 input features h € RN*H*4%s attention weights a € RN *N*H (f
for number for heads, s for the number for spherical dimension, d for the number of hidden channels),
maximum order L

2: Output: Output features ho, € RY*Hxdxs

3: Step 1: Precompute Spherical Harmonics

4: for { =0to L do

5. RW « sH((,r)

6: end for

7: Step 2: Compute pairwise distances

8: Dij « |lri —rjfl2 (pairwise Euclidean distance)
9: Step 3: Compute Wigner 6; tp
10: for k = 0to L do
11:  Compute intermediate tensor product:

T}, + clebsch_gorden_tp(h, R*))
12: ozl(.ﬁ — aijn/(Dij)" (entrywise power normalization)

13:  Apply attention weights:
T}, + einsum(“ijh, jhds — ihds", o*), T})
14:  Recouple terms using Wigner 65 symbols:
Cy < Wigner6jTP(Ty, R“7H)

15:  Update output: hoy < hou + (—1)" (£)Cy
16: end for

Remark B.1. The upshot is that (i) the node-local spherical harmonics R(*) (7;) can be precomputed
once for each node 4, and (ii) the partial sum _; c;;(h; ® R="(7;)) can be treated as a single
node-based operation. Thus, the number of tensor products is controlled by |V| (the number of nodes)
rather than |€| (the number of edges). This is precisely the core reason E2Former achieves improved
scalability compared to conventional SO(3)-equivariant Transformers that do edge-level spherical
harmonic products.

C Wigner 3j and 65 Symbols

The Wigner 35 and 65 symbols are fundamental constructs in the representation theory of the
Lie group SU(2), intrinsically linked to the theory of angular momentum in quantum mechanics.
These symbols emerge as crucial transformation coefficients when decomposing tensor products of
irreducible representations of SU(2). They precisely encode the symmetry properties inherent in
such decompositions, thereby providing a powerful computational framework for problems involving
coupled representations.
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C.1 The Wigner 35 Symbol: Definition and Core Properties

The Wigner 35 symbol is denoted by

1 J2 U3 .1
mi mgy ms)’ '
where j; are representation labels (angular momenta) and m; are their respective components

(magnetic quantum numbers). For the symbol to be non-zero, two primary selection rules must be
satisfied:

1. Conservation of the m quantum number: mj + mo + mg = 0.

2. Triangle inequalities for the j quantum numbers: |j; — j2| < j3 < j1 + jio, and its cyclic
permutations. This ensures that the three angular momenta can form a closed vector triangle.

The explicit algebraic form of the 35 symbol (due to Racah) is given by:

J1 J2 J3 (—1)r—d2=ma
mip Mo M3

) = 5m1+m2+m370

« (J1 4+ J2 = 33)' (U1 — g2 + J3)N(—j1 + j2 + 73)!
(J1 + j2 +j3 + 1)!

3
o[ TGk + mae) G — ma)!
k=1

(1)
. EZ: 201+ J2 — Jz — 2 — ma — 2)!(j2 + m2 — 2)!
1

X — - - - , (C.2)
(js — jo +ma 4+ 2)!(jzs — j1 — ma2 + 2)!

where the summation over the integer z is constrained such that all factorial arguments remain
non-negative. The initial § factor enforces the m-conservation rule.

The 35 symbols possess several important symmetry properties:

* Even permutation of columns leaves the symbol unchanged: (‘] 1J2 33) =

mip MMz M3
J2J3 g1 _
mo M3 My

* Odd permutation of columns introduces a phase factor (—1)71+72+7s; (‘7 2 JiJs ) =

mo Mm™Tm1 M3
(_1)j1+j2+j3 jl j2 j3
mp mg M3 ’

* Time-reversal symmetry (negation of all m; values):

J1 J2 J3 _ (—1)iitiztis i J2 U3 (C3)
—my  —my  —mg my mg mgz)’ '

Furthermore, they satisfy crucial orthogonality relations, fundamental for their role as transformation
coefficients:

. Ji J2 s g1 Je Jz\ _ s
Z (2‘73+1) (m1 mo m3) <m1 mo mg>_53373§5m377”'3’ (C4)

miy,ma

where the sum is over all allowed m1, mo for fixed j1, jo. Another form is:

Z (2.73 + 1) <7,‘777‘11 7:I]’L22 533) <T‘Z,L1/1 7‘37/2/2 ,,3,33) = 5m1,m’15m2,7n’2~ (CS)

J3,ms3
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C.2 The Wigner 65 Symbol: Recoupling Coefficients

The Wigner 65 symbol, denoted {. .. }, addresses the recoupling of three angular momenta. It arises
when transforming between different sequential coupling schemes for combining three irreducible
representations of SU(2). For instance, coupling j; and js to an intermediate j12, then coupling j12
with j3 to a final J, versus coupling j» and j3 to jo3, then j; with jog to J.

It is defined through a sum over products of four 35 symbols:

Ji J2 Js Ek JGr—my) (J1 - J2 U3 Ji s Je
{14 J5 .76} Z Z mp M2 Mms3 mﬁ —ms Mg

7m5m
y (]4 J2 Jﬁ/) ( ja s JS/>’ (C.6)
mg My —Mg —my mg mjy

where the m and m’ indices are appropriately summed while respecting the 3j symbol selection rules
The 65 symbol is directly related to the Racah W -coefficient by a phase factor:

g2 sl _ j1+72+dat] o
. . . = (=1)71TI2TIaTIs |/ wic). C7
{34 Js ]6} (1) (J1j2757a3 J3Je) (C.7)

The Racah W-coefficient, W (abcd;ef), is the transformation coefficient between schemes
((a,b)e,d)c and (a, (b,d)f)c. Thus, the 65 symbol effectively captures the algebraic structure
of associativity in tensor products of representations.

Symmetries of the 65 symbol are extensive:

¢ Invariance under any permutation of its columns.

* Invariance under the exchange of upper and lower arguments in any two columns, e.g.:
Juv gz Jsl _ Jds Js 3
Ja Js  Je Ju J2 Je
These 24 symmetries reflect the tetrahedral symmetry associated with the symbol, often visualized
USing Yutsis graphs. Each set {j1>j27j3}a {jla j57 jﬁ}’ {j4a j2>j6}s and {j47j5’j3} must SatiSfy the
triangle inequalities for the 65 symbol to be non-zero.

An important orthogonality relation (one of several, including the Biedenharn-Elliott identity) is:

> (24 +1)(2js + 1) {ﬁ i gz} {ﬁ - §Z} 05,5 A1 Js: G6) Al 2 Jo ). (C:8)

J3
Here, A(a,b,c) = 1if a, b, ¢ satisfy the triangle inequalities, and 0 otherwise.
A remarkable connection to geometry is provided by the Ponzano—Regge asymptotic formula. For
large j values, it relates the 65 symbol to the geometry of a tetrahedron whose edge lengths are
g+ 3
S 1 6
Ju J2 J3
e Py cos Ok + C9
{34 Js ]6} V12V (;(]]H_ 2)0 4> €9

where V' is the volume of the tetrahedron and 6, are the dihedral angles. This formula bridges
quantum angular momentum algebra with semi-classical geometric concepts.
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D Main Theorem Proofs

D.1 Binominal Local Expansion

Claim D.1 (Multiplicity-One of V (Emex) [61,[8]). The irreducible representation V E=+=) appears
with multiplicity one in the decomposition of VW) @ - @ V) That is,

v g oV = PN VB, with Ny, =1.
L

max

Claim D.2 (Schur’s Lemma [24]). Let V, W be irreducible representations of a group G over an
algebraically closed field. If T : V. — W is a G-equivariant linear map, then either T' = 0, or
V =2 W and T is a scalar multiple of the identity.

Claim D.3 (Recoupling via Wigner 65 Symbols [49]). For any two CG coupling trees T and 7', the
associated contraction operations are related by a unitary transformation:

CT’ - RTN—T C'ra
where R,/ . is a product of Wigner 65 matrices acting on intermediate coupling channels.

Lemma D.4 (Ordering-Invariance of Maximally Coupled Representation). Let hgll), ceey h,(cl’“) €

VW) @ ... @ V) denote a sequence of irreducible features, where each V4 is the irreducible

representation of SO(3). Let Liyax = Zle l;. Then for any binary CG coupling tree T, the

projection of the coupled tensor onto the L.y subspace,

(Lmax)
l I
[CT (hgﬂ,...,h;k))} ,

is invariant to the choice of T.

Proof. The tensor product V) @ - .. ® V() admits a decomposition into irreducible components
of the form @@, N, V(E) where Ny, denotes the multiplicity of the spin-L representation. It is a
classical fact (Claim that the maximal total spin Ly.x := ), [; appears with multiplicity one.
Consequently, the subspace V (Zmax) is uniquely defined up to a basis, and any projection onto it is
one-dimensional in each magnetic subspace.

Each binary CG coupling tree 7 defines a recursive contraction C, via successive applications of the
Clebsch-Gordan tensor product. For any two such trees 7 and 7/, the corresponding coupled features
are related by a transformation C.» = R,/ -C., where R, . . is constructed from a sequence of
Wigner 65 symbols. This recoupling matrix is unitary (by Claim [D.3) and acts on the space of
intermediate angular momentum.

Since V (Fmax) appears with multiplicity one, Schur’s lemma ( Claim ) implies that any SO(3)-
equivariant transformation, such as R,/ ,, must act as a scalar on this subspace:

Rerr| iy = Arrr - 1d, - with [An | = 1.
By adopting a fixed phase convention (e.g., the Condon—Shortley convention for CG coefficients), we
can choose A,/ ; = 1, yielding

(Lmax) (Lmax)

l l l l
[CT(hgl),...,h;”)} _ [CT/(hgﬂ,...,h}j))

An equivalent interpretation is that ¥ (“max) can be realized as the totally symmetric, trace-free

subspace of the rank- L, tensor formed from the inputs h(lll), N hg’“) . Since full symmetrization
commutes with all permutations and parenthesizations, the final projected tensor is independent of
the coupling order. This concludes the proof. O

Theorem D.5 (Projection identity for spherical harmonics). Let r; := r; —r; € R?\ {0} and let
R(l)(f') denote the degree-l spherical harmonic. For every integer { > 0,

R (ri;) = {(R(l) (rij)) ®é} (€) ’

where (-)®* is the {-fold tensor product and the | - ]“) denotes the orthogonal projector onto the
irreducible SO(3) subspace of total angular momentum /.
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Proof. The function R( (r; ;) transforms according to the irreducible (vector) representation DM
of SO(3). Hence the tensor power satisfies

14
(RO () € ®“D<1> ~ @B o ecm,
=0

where m; is the multiplicity of D) in the Clebsch—-Gordan decomposition. Applying the projector
[- ] extracts the D) summand, yielding a rank-¢ tensor that transforms in the same irrep as R(*).

Because D) is irreducible, Schur’s lemma (Claim implies that any two non-zero intertwiners
from D to itself differ by a scalar. Thus the projected tensor must be proportional to the degree-¢

spherical harmonic:
(w0
To determine the constant ¢;, evaluate both sides on the north-pole direction Z = (0,0, 1). In the

Condon-Shortley convention Rg () =0and Rél) (Z) = /3/(4m), so the only non-vanishing com-
ponent of the tensor power corresponds to the highest-weight vector |£, £). A direct Clebsch-Gordan

(£)
=y R([) (rij)-

calculation (or induction on ¢) shows that its norm matches that of REZ)(é) = /(20 +1)/(4r),
fixing ¢, = 1. Since both sides transform identically under rotations, equality for one direction
implies equality for all directions, completing the proof. O

Theorem D.6 (Binomial Local Expansion). Let 7, 7; € R? denote the positions of two nodes i, j,
and let 735 = 75 — 7. For each integer { > 1, let R(‘Z)() denote the real-valued spherical harmonics
of order (. Then,

) ¢

ROy = | (RO - —RO@) 7| = S0 v

6) |:R(u) (Fj) ® R(E—u)(,,:»i) ,

u

where [-](e) denotes projection onto the irreducible subspace of total angular momentum { via
Clebsch—Gordan decomposition. Equality holds up to a normalization constant depending on the
basis choice for R\Y) and the CG convention.

Proof. By Theorem the spherical harmonic R (r; ;) can be constructed by projecting the ¢-fold
tensor product of first-order harmonics onto the irreducible subspace of total angular momentum /:

ROw) = (R () ~RO) "]

This expression follows from the identity r;; = r; — r; and the fact that R is linear in spatial
coordinates.
Expanding the tensor power via the multinomial binomial rule yields
(1) RN - e
(RO@) - RO @) =0 ( ) Y 7o,
u=0 Pell,

where each term T'p corresponds to a specific ordering P € II,, of the tensor product, containing
exactly u factors of R™(r;) and ¢ — u factors of R(Y) (r;). The total number of such orderings is

|Hu| = (i)
Applying the linear projection operator ['](5) to both sides gives:
(R0 - 2000) "] = () X e
’ ' u=0 u Pell,

At this point, we invoke the ordering-invariance lemma (Lemmal[D.4), which states that the projection
of a tensor product onto the highest angular momentum subspace (here, ¢) is invariant under permuta-
tion of the tensor factors. Therefore, the projected tensors [Tp]“) are identical for all P € II,,, and
depend only on the multiplicities of R(!)(r;) and R (r;) within the product.
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We may thus replace the sum over P € II,, with a multiplicity factor times a single representative
term. Letting Tyep := (RW(r;))®* @ (RW(r;))®~%), we obtain:

S 10 = () el = () [RO) 0 RO r=] .

u
Pell,

Finally, note that (R(!) (r))®* contains irreducible components of order up to w, and the highest such
component is R (") (r). Projecting the expression onto total angular momentum £ thus yields:

RO (i) = zé:(—l)é_“ (g) {R(“) (r;) @ R (ri)}

u
u=0

)

which concludes the derivation. O
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D.2 Wigner 65 Recoupling and Node-Based Factorization

Here, we formalize the proof of the Theorem [3.3]for completeness.

Setup: We consider a typical SO(3)-equivariant Transformer layer that performs message passing
from each node j in the neighborhood of 4 using the tensor product h; ® R (7i;). Symbolically,

R = 3 ai(h; @ RO()).
JEN (i)
Goal: To show that the expensive edge-based computation over (i, j) can be reorganized so that the

tensor product portion (or at least the dominating part of it) depends only on node ¢ and a separate
node j portion. This is achieved by:

RO () ﬁ[w")(m] &% [RU=9(),
u=0

together with a rearrangement (via Wigner 635) of h; inside the product.

Theorem D.7 (Node-Based Factorization via Wigner 63). Leth; € R be the feature of node j, and
let a;; be any scalar weight (e.g. an attention coefficient). In the SO(3)-equivariant layer:

S (b ® RO®)),
JEN(3)

we can reorganize R (735) into node-i and node-j parts by Theorem@and then apply Wigner 63
recoupling to obtain:

S (b & RO, = (- () [ReG] 8 (3 [y & REw)).

JEN(4) u=0 u JEN (1)

Proof. We commence with the definition of the SO(3)-equivariant node convolution for node .
Substituting the Binomial Local Expansion for R (%) (r;;) yields:

hi= > b (i(l)“‘ (5) [RO(rs) @ RE) (x)] (e)) , (D.1)

JEN (i) u=0

Invoking the linearity of the Clebsch-Gordan tensor product ® with respect to its second argument,
and subsequently interchanging the order of the finite summations (over j € N'(7) and u € [0, {]),
Eq. (D.I) is rewritten as:

h, = zé:(—l)f‘“ (i) > (hj ® [R“‘)(ri) @ RU-w (rj)} (l)) . (D.2)

JEN (i)
We now focus on the term within the summation over j:

©
Tju = by @ [RO(r) @ R ()] (D.3)

Let Uy = hj, Uc = R (r;), and Up = R~ (r;) represent the respective irreducible represen-
tations. The term T} ,, signifies a specific coupling scheme: Uc (irrep u) and Up (irrep £ — u) are
first coupled, and their product is projected onto the irreducible component transforming as irrep
¢, denoted [Uc @ Up]®). Subsequently, U, is coupled with this resulting tensor of irrep £. This
scheme corresponds to (U4 ® (Uc ® Ug)Ec2=*), where Lo = / is the fixed intermediate angular
momentum.

The theory of angular momentum recoupling, governed by Wigner 65 symbols (as per Definition [2.3]
), allows for the reordering of tensor product operations while preserving the final irreducible content.
We seek to transform 7T} ,, into a form where U4 and Up are coupled first. Specifically, we apply a
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recoupling to achieve the order Uc ®57 (U4 ®Ug). The transformation from (U, @ (Uc@Up)For=t)
to (Uc ® (Ua @ Ug)L4E) (for any resulting total angular momentum) is a standard result in Wigner-
Racah calculus. The operator ®57 denotes that the CG tensor product is performed with path weights
modified by the appropriate Wigner 65 symbol, which accounts for this change in coupling pathway.
Note that the intermediate coupling of R(*)(r;) and R(“~")(r;) results in a constrained irrep ¢
(governed by the projection operator); this gives rise to a constrained Wigner 65 coupling, where the
constraint (the intermediate angular momentum being ¢) is inherently managed by the 65 coefficients
encapsulated within the ®67 operation. Thus, we can write:

© .
hj ® {R(u) (I‘Z) ® R(Ziu) (I‘j)] = R(u) (I‘Z) ®6J (h] & R(Ziu) (I‘j)) . (D4)
Substituting Eq. into Eq. (D.2):
¢
—u e u j —u
h= (~1) (u) 3 (R( (1) @% (hj QR >(rj))) . (D.5)
JEN ()

The term R (%) (r;) is independent of the summation index j. The operation ®%/, like the standard
tensor product ®, is linear in its second argument with respect to summation. Thus, R(*) (r;)®% can
be factored out of the sum over j:

l

e " ; Y

hy =) (-1)* (u) R ) @9 [ Y hjoR ()| ]. (D.6)
u=0 JEN(3)

This expression is the factorized form of the SO(3)-equivariant node convolution as stated in the
theorem. O
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E Proof of Equivariance

We now formally establish that the Wigner 6j convolution is equivariant under the action of the
rotation group SO(3). Define the convolutional output as follows:

f(x) = zz: (R(“) (r;) ®% (% (hj ® R“*u)(rj)))) :

u=0
We analyze the transformation of this expression under the rotation R € SO(3). The transformed

output is:

f(R-x) = i (DURIR™ (x5) @ (aij (D@ (R)hy @ DU (RR (1)) ))

u=0
Let us define the intermediate quantity:
Su® > by @R (),
JEN ()
Under rotation, this transforms as:
> ay (D@ (R, @ DEIRRE () = (D(R) @ DE(R)) S
JEN (i)

Substituting into the convolution expression yields:

F(R-x) = ZZ: (D(“)(R)R(“)(ri) @b ((D(“)(R) ® D(Z—u)(g)) Su)) _

u=0

Since the Wigner 65 recoupling tensor ®% is SO(3)-equivariant (as the Wigner coefficients are
invariant under rotation), we may commute the group action:

DO(RR™ () & ((D(R) @ DU=(R)) S.) = Dout (B) (R () & 5., ).

where Doyt (R) denotes the output representation under SO(3). Therefore:

L
J(R-%) = >~ Dou(R) (R™(x:) €% 8,) = Dout(R)f ().

u=0

This completes the proof of SO(3)-equivariance.
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F Time Complexity

We analyze the computational complexity of the Wigner-6; convolution, with particular attention
to its dependence on the number of nodes V), the number of channels C, and the maximum angular
momentum L. The dominant cost stems from angular momentum coupling via tensor products and
Wigner-6; recoupling, while the linear self-mix step introduces an additional quadratic dependence on
C'. This analysis aligns with the derivations in Appendix C of the eSCN paper for SO(3) convolution.

Let V denote the total number of nodes (e.g., atoms), and C' the number of channels per irreducible
representation. The algorithm involves iterating over all valid angular momentum triplets (L1, Lo, L,)
up to order L, subject to triangle inequality constraints.

(1) Tensor Product: Each tensor product between irreps (L1, Ls) incurs a cost

O(C - Ly - L)
(2) Wigner-6; and CG Multiplication: The cost of recoupling the tensor via Wigner-6;
coefficients is
O(C-Ly-Ly- Ly,)
(3) Summation Step: The final projection onto L, includes a summation step costing
O(C - L,)

per valid triplet.

The summation step is implemented as follows:

outputs = self._sum_tensors([out for ins, out in zip(instructions, outputs)
if ins.i_out == i_out])

The per-node complexity of Wigner-6; convolution is therefore:

L L L
> > > (CLiLy+ CLyLy Ly + CL,) = O(CL)

L1=0L>=0L,=0

Linear Self-Mix. After the convolution, a channel-mixing layer (e.g., an MLP) acts independently
on each irrep. This operation mixes C' channels across each irrep of order L,, with complexity:

L
> O(C*L,) = 6(C°L?)
L,=0

Total Complexity. Summing over all nodes V), the total computational complexity is:

le(VICL + V[C?L?)

26



G Additional Lemmas

Lemma G.1 (Many—Body Reduction). Using Wigner 65 convolution, a multi-atomic cluster expan-
sion can be evaluated in O(|V|) time instead of O(|€]).

Proof. We decompose the MACE architecture into two computational stages and show that each
admits nodewise computation at O(|V]) cost.

Stage 1: SO(3)-Equivariant Convolution. The convolutional component of MACE computes, for
eachnode: € V,

Ai= Y hjoRO(ry),
JEN (D)
which has naive complexity O(|€|) over all nodes due to edge enumeration.

Stage 2: Self Tensor Product and Projection. The self tensor product (A;)®? and projection
[-](L) are purely local operations, independent of neighbors. Since they apply once per node, they
require O(|V|) total time.

Key Step: Nodewise Refactorization via Wigner 6;j. Using Theorem [3.3] we invoke the following
identity:

¢
Z hj & R(Z) (I‘ij) = ZR(U) (I‘Z) ®6j Z hj & R(Z—u) (I‘j) N
JEN (i) u=0 JEN ()
where ®% denotes a tensor contraction via Wigner 6 recoupling.

Define global moment tensors M(~%) := 3~ jevhj ® R~ (r;). These are precomputable in
O(]V]) time, and reused across all ¢ € V. The refactorized form becomes

£
v = ZR(U)(I.Z,) @69 M)
u=0

which is independent of the neighborhood structure and thus computable per node in constant time
(for fixed ¢).

Complexity. The precomputation of {M¢~%}£ _ costs O(|V|). The nodewise contractions via
®57 are constant-time per node for bounded /, yielding an overall convolutional cost of O(|V]).
Since the subsequent self tensor product and projection are already node-local, the total complexity
of MACE becomes O(|V]).

O
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H Technical Details Behind E2Former

[ Input 3D Graph ] () ( Jici ) 7
Embedding _ - i ,J’ \
[|r2scalar] [erScaIar] [ Linear ] .
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[Tyer m MatMul ]
E2Attention RBF
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Layer Norm

-’[ MatMul ]*

FFN

L xw

Layer Norm

(a) E2former architecture (b) E2Attention

Figure 5: Overview of the E2Former architecture. (a) The main network alternates E2Attention
blocks with feedforward layers, repeatedly refining node embeddings from a 3D molecular graph. (b)
Within each E2Attention block, scalarized queries/keys (via ir2scalar) are combined with distance-
dependent features (RBF) and convolutions (6 j-TP), updating the node embeddings equivariantly. (c)
The final readout incorporates atomic types and radial/spherical expansions (RBF, SH) into a gated
projection that produces the per-atom output y;.

In our development, we not only want mathematical integrity but also practical usefulness. Thus,
E2Former is not solely characterized by Wigner-6j conv, but rather as an architecture that integrates
both efficiency and significant engineering components. The benefit of Wigner-6; conv enables us to
reallocate the computational budget to increase expressivity elsewhere, such as adding more layers,
wider hidden dimensions, or more attention heads.

Architecture Overview. The E2FORMER architecture adheres to the general transformer paradigm,
commencing with an embedding layer that generates initial E(3)-equivariant node features. These
features are subsequently refined through a stack of E2former blocks, denoted as TransBlock
in our implementation. Each TransBlock employs a pre-normalization strategy, structured as:
Normalization — Transformer Layer — Residual Connection — Normalization — Equivariant
Feed-Forward Network (FFN) — Residual Connection.

Initial Embedding and Feature Representation. The generation of initial equivariant node

features, h§°>, for each node 7 (e.g., an atom) with input coordinates and type, is performed by an
Initial Equivariant Embedding module. This module constructs features by aggregating information
from the local neighborhood. Interatomic distances are encoded using radial basis functions (RBFs),
while relative positions, r; — r;, are represented using spherical harmonics, R%) (P; —Pi),uptoa

specified maximum degree I,,,.x. The resultant features, hEO), comprise a collection of irreducible
representations (irreps) of SO(3). Within each TransBlock, Equivariant Normalization layers are
applied before both the attention and FFN sub-layers. These layers operate by normalizing features
independently within each irrep channel, which is crucial for stabilizing training and enhancing model

performance.

Equivariant Feed-Forward Networks. Subsequent to the attention mechanism, node features are
processed by an Equivariant Feed-Forward Network. E2FORMER accommodates a variety of FFN
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types, configurable via the ffn_type parameter. These include standard equivariant Multi-Layer
Perceptrons (MLPs) that operate on spherical harmonic coefficients (e.g., FeedForwardNetwork_s2,
FeedForwardNetwork_s3, potentially incorporating grid-based non-linearities inspired by eSCN
and EquiformerV?2 [47,142])), as well as explicit many-body interaction modules [6] that integrate
equivariant two-body or three-body tensor products. This modular design permits tailored feature
processing contingent upon the specific demands of the task.

E2Attention Mechanism. The central component enabling feature interaction in E2ZFORMER is the
E2Attention mechanism, which builds upon the Wigner-6;5 Convolution to update node embeddings.
A key implementation consideration lies in the treatment of positional information. While many
spherical EGNNs normalize relative positions, this practice may discard essential directional cues in
Wigner-65 Convolution, which is inherently node-centric. To preserve relative geometric information,
we retain unnormalized absolute positions in the convolution, and instead apply normalization during
the attention coefficient computation.

All-Order Attention Paths. E2Attention explicitly models and adaptively aggregates contributions
from multiple spherical harmonic orders. Under the attn_type="all-order" configuration, the
mechanism includes a zero-order (scalar) path that captures isotropic interactions, a first-order (vector)
path using Wigner-6;5 Convolution configured for order-1 interactions, and higher-order paths (e.g.,
second-order for [ = 2) to model more complex anisotropic effects.

Computation of Attention Weights. Attention weights «;; are computed from projected scalar
queries and keys derived from h; and h;, enriched by radial basis function (RBF) embeddings of
|lr;;|| and optionally, learnable embeddings of atomic types z;, z;. Geometric information can be in-
corporated into attention in various ways, such as through the tp_type="dot_alpha" configuration,
which directly integrates spherical harmonics into the attention score computation.

Gated Aggregation of Orders. A critical component of E2Attention is the Gated Aggregation of

Orders. The contributions from the zero-order (ml(?)), first-order (m%)), and second-order (mz(»?))
pathways are adaptively combined via a learnable gating mechanism. Specifically, the scalar (I = 0)
components of the central node’s features h; are processed through a small MLP to produce gating

© 1 @

coefficients g, ', g, ', g;”’. The aggregated message from neighbor j to node i is given by

s = 6% om® + 40 omiY + o © m?)

The updated node feature h is then computed by summing the attention-weighted messages from all

neighbors:
I
hi_ E Q1M 5.
J
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Test Result for checkpoint_E0_B777000.pt - chignolin_ neutralized_ball
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Figure 6: Force MAE on a system of around 2000 atoms, where a chignolin peptide is wrapped with
water.

I Addtional Experiments

L1 QMO Results

We additionally evaluated our method on the QM9 dataset as a quality check. Due to computational
constraints, we report results on three representative energy metrics: Uy, HOMO, and LUMO.
E2Former demonstrates competitive performance compared to Equiformer V2 and its predecessor
Equiformer, while GotenNet [2] achieves the best overall results. Nonetheless, we emphasize that
our model is primarily designed for larger systems, whereas QM9 represents a relatively small-scale
benchmark.

Table 6: Performance on QM9 (Uy, HOMO, LUMO)

Method Uy HOMO LUMO
E2Former 6.43 14.2 13.6
GotenNet 3.37 13.4 12.2

Equiformer V2  6.17 14.4 13.3
Equiformer 6.59 154 14.7

LI.2 Comparison with Equiformer V2

To ensure a better comparison with the Equiformer V2 model, we aligned the experimental settings
between E2Former and Equiformer V2. Specifically, we adopted identical hyperparameters and
architecture configurations for both models, including the number of layers, maximum angular
momentum orders, and radial basis functions. This alignment guarantees a controlled comparison
and eliminates confounding factors arising from differing model capacities or training settings.

Table [7] summarizes the performance in terms of energy mean absolute error (E), force mean absolute
error (F), and inference speed (measured in samples per second). The results indicate that E2Former
not only achieves better accuracy on both energy and force predictions but also delivers significantly
faster inference speed under matched conditions.

Table 7: Comparison between E2Former and Equiformer V2 under identical hyperparameter settings.

Method E F  Number of Layers L,,.x Mpy.x Inference Speed (samples/sec)
E2Former 20.5 270 12 3 2 34
Equiformer V2 23.47 296 12 3 2 22
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J Hyperparameters

Table 8: Hyperparameter Configuration for E2Former on OC20, OC22, and SPICE

Hyperparameter E2Former 33M E2Former 67M Description

— General Training Settings —

optim.lr_initial 0.00015 0.0002 Initial learning rate for the optimizer.
optim.batch_size 128 for OC20/0C22 and 48 for SPICE 64 Training batch size.

— Model Architecture —

model.backbone.encoder_embed_dim 256 256 Embedding dimension for each node.
model.backbone.hidden_size 256 256 Hidden size for intermediate layers.
model.backbone.num_layers 6 12 Number of E2Former layers.
model.backbone.max_neighbors 20 20 Max neighbors per node for message passing.
model.backbone.irreps_node_embedding 256x0e+256x1e+256x2e+256x3e 256x0e+256x1e+256x2e+256x3e  Irreps for node embeddings up to £ = 3.
model.backbone.irreps_head 16x0e+16x1e+16x2e+16x3e 16x0e+16x1e+16x2e+16x3e Irreps for the final head up to £ =
model.backbone.attn_scalar_head 16 16 Size of scalar attention head projections.
model.backbone.num_attn_heads 32 32 Number of multi-head attentions per layer.
model.backbone .number_of _basis 256 256 Number of radial basis functions.
model.backbone.max_radius 12 for OC20/22 and 5 for SPICE 12 for OC20/22 and 5 for SPICE Cutoff radius for local neighborhood.
model.backbone.alpha_drop 0.05 Drop rate for alpha (e.g., attention dropout).
model.backbone.drop_path_rate 0.05 0.05 Stochastic depth/drop path rate.
model.backbone.basis_type gaussiansmear gaussiansmear Type of radial embedding (Gaussian smearing).
model.backbone.norm_layer layer_norm_sh layer_norm_sh Normalization layer type (LayerNorm in spherical basis).
model.backbone.attn_type all-order all-order Attention mechanism covering all spherical orders.
model.backbone.tp_type dot_alpha dot_alpha Type of tensor product (dot + learned scale).
model.backbone.ffn_type s2 s2 Type of feed-forward network in each block.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction directly align with the
core contributions: introducing the Wigner 65 convolution, reducing O(|€|) complexity to
O(]V]), and achieving competitive or superior performance on OC20, OC22, and SPICE.
See Sec. 1 (Introduction) and Sec. 4 (Results).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations, such as the reliance on spherical harmonics and potential ineffi-
ciency for very small graphs where edge-level operations dominate, are discussed in Sec. 5.
We also acknowledge assumptions of perfect molecular geometries.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical claims are accompanied by clearly stated assumptions (e.g.,
irrep decompositions under SO(3)) and full proofs in Appendix A. Proof sketches are
included in the main text (Sec. 3).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail all training protocols, datasets, and evaluation metrics in Sec. 4 and
Appendix B. Full experimental setup is sufficient to reproduce key results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized links in the supplemental material to the code reposi-
tory and data preprocessing scripts. Upon acceptance, we will release these publicly under
MIT license.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits, optimizer (AdamW), hyperparameter selection, and training epochs
are all included in Appendix B and Table 2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: This follows the community standards.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report GPU type (A100 40GB), average runtime per epoch, and total
compute usage per benchmark task (Appendix C).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The study complies with the NeurIPS Code of Ethics. No sensitive data or
personally identifiable information is used.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We discuss societal benefits in molecular simulation and drug design in
Introduction.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our released models and datasets are low-risk and not subject to misuse
concerns. No generative models or scraped data are involved.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use OC20, OC22, and SPICE datasets, each cited with license information.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or pretrained models are released. Only architectural code
and training recipes are shared.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human participants or crowdsourcing tasks.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research involving human subjects is conducted.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: LLMs were not used in the development of methods or experimental results.
Editing assistance may have been used, but not for scientific reasoning or generation.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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