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ABSTRACT

Recent advances in diffusion-based image generation models (IGMs), such as Sta-
ble Diffusion (SD), have substantially improved the quality and diversity of AI-
generated content. However, these models also pose ethical, legal, and societal
risks, including the generation of harmful, misleading, or copyright-infringing
material. Machine unlearning (MU) has emerged as a promising mitigation by
selectively removing undesirable concepts from pretrained models, yet the robust-
ness of existing methods, particularly under multi-modal adversarial inputs, re-
mains insufficiently explored. To address this gap, we propose RECALL, a multi-
modal adversarial framework for systematically evaluating and compromising the
robustness of unlearned IGMs. Unlike prior approaches that primarily optimize
adversarial text prompts, RECALL exploits the native multi-modal conditioning of
diffusion models by efficiently optimizing adversarial image prompts guided by
a single semantically relevant reference image. Extensive experiments across ten
state-of-the-art unlearning methods and diverse representative tasks show that RE-
CALL consistently surpasses existing baselines in adversarial effectiveness, com-
putational efficiency, and semantic fidelity to the original prompt. These results
reveal critical vulnerabilities in current unlearning pipelines and underscore the
need for more robust, verifiable unlearning mechanisms. More than just an attack,
RECALL also serves as an auditing tool for model owners and unlearning practi-
tioners, enabling systematic robustness evaluation. Code and data are available at
https://anonymous.4open.science/r/RECALL.

Warning: This paper contains visual content that may include explicit or sen-
sitive material, which some readers may find disturbing or offensive.

1 INTRODUCTION

The emergence of image generation models (IGMs), such as Stable Diffusion (Rombach et al.,
2022a), has greatly advanced the quality and diversity of AI-generated visual content. IGMs are
now widely used in digital art, multimedia creation, and visual storytelling (Chen et al., 2024; Zhang
et al., 2024b). However, their rapid adoption also raises serious ethical and legal concerns, particu-
larly regarding the misuse of these models to generate harmful, misleading, or infringing content (Qu
et al., 2023; Schramowski et al., 2023). Consequently, ensuring robust safety and trustworthiness
mechanisms within these generative frameworks has emerged as an urgent imperative.

Among different lines of efforts, machine unlearning (MU) has recently gained growing promi-
nence (Zhang et al., 2024c; Park et al., 2024; Li et al., 2024b). It aims to remove sensitive concepts
(e.g., nudity, violence, and copyrighted materials) from the IGMs, prohibiting the generation of sen-
sitive or problematic content while maintaining the model’s general capability of producing benign
and high-quality outputs (Schramowski et al., 2023; Kumari et al., 2023; Gandikota et al., 2024).
Recent IGM unlearning (IGMU) methods utilize diverse strategies, including fine-tuning (Gandikota
et al., 2023; Zhang et al., 2024a), targeted concept removal (Gandikota et al., 2024; Gong et al., 2024;
Orgad et al., 2023), negative prompting (Schramowski et al., 2023), and adversarial filtering (Zhang
et al., 2024c; Gong et al., 2024; Wu et al., 2025). They have proven effective in safety protection of
contemporary IGMs, enforcing compliance with ethical guidelines and legal standards.
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Despite the rapid progress in this field, the practical robustness of these techniques is challenged,
especially under adversarial scenarios. Recent studies have revealed that unlearned IGMs are still
vulnerable: carefully optimized prompts can successfully circumvent safety mechanisms, prompt-
ing the unlearned models to regenerate prohibited content (Zhang et al., 2024d; Tsai et al., 2024).
However, these attack methods mainly focus on perturbing the textual modality and suffer from the
following critical limitations. ① Modifying textual inputs can disrupt the semantic alignment be-
tween the generated images and original prompts; ② Many approaches rely on external classifiers
or additional diffusion models for adversarial text prompt optimization, incurring substantial com-
putational overhead; ③ Their effectiveness sharply declines against robust, adversarially-enhanced
unlearning methods, e.g., AdvUnlearn (Zhang et al., 2024c), RECE (Gong et al., 2024); ④ Crucially,
these methods overlook the inherent multi-modal conditioning capabilities (e.g., simultaneous tex-
tual and image) of IGMs, thus missing a critical dimension of potential vulnerability.

𝐼

IGM 𝓖

𝐼∗

a naked person picking 

flowers in a meadow

𝐼′

𝑃𝑡𝑒𝑥𝑡
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𝑎𝑑𝑣
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Figure 1: Given an assumed successfully
unlearned IGM Gu, our adversarial im-
age prompt P adv

img combined with the orig-
inal sensitive text prompt Ptext as multi-
modal guidance can circumvent the unlearn-
ing mechanism, leading to the reappearance
of removed content I∗. Sensitive parts are
covered by .

To address these limitations, we propose RECALL, a
novel multi-modal attack framework against mainstream
IGMU solutions. Figure 1 illustrates the attack scenar-
ios. First, unlike previous attacks that focus solely on
text perturbation, RECALL strategically integrates an ad-
versarially optimized image with the original text prompt
to attack the unlearned model, ensuring strong semantic
alignment between the generated images and correspond-
ing textual descriptions. Second, RECALL performs the
attack within the unlearned model and optimizes the la-
tent representation of the adversarial image prompt, elim-
inating the reliance on additional components and sig-
nificantly enhancing computational efficiency. Further-
more, by introducing adversarial perturbations directly
within the image modality, RECALL effectively exposes
hidden vulnerabilities in adversarially enhanced unlearn-
ing methods, revealing their susceptibility to image-based
attacks that prior text-based adversarial techniques may
overlook. Finally, RECALL fully exploits the inherent multi-modal guidance capabilities of IGMs,
enabling the comprehensive identification of critical vulnerabilities across diverse scenarios before
real-world deployment.

Extensive empirical results conducted on ten state-of-the-art IGMU methods across four represen-
tative unlearning scenarios demonstrate that RECALL consistently surpasses prior approaches in
terms of adversarial effectiveness, computational efficiency, and semantic fidelity. Beyond demon-
strating strong attack performance, these findings reveal critical vulnerabilities in current unlearning
pipelines, underscoring their susceptibility to multi-modal guided adversarial inputs and the urgent
need for more robust and verifiable unlearning mechanisms in IGMs. From the perspective of model
owners, RECALL can also serve as an efficient robustness auditing tool to assess the effectiveness of
their unlearning procedures. Our key contributions are as follows:

• We propose RECALL, the first multi-modal guided attack framework to break the robustness of
IGMU techniques, allowing the protected model to regenerate unlearned sensitive concepts with
high semantic fidelity.

• RECALL introduces a highly efficient optimization strategy that operates solely within the un-
learned model by utilizing only a single reference image, eliminating the need for auxiliary clas-
sifiers, original diffusion models, or external semantic guidance required by previous attacks.

• Through comprehensive experiments covering ten representative IGMU techniques across four di-
verse tasks, we empirically demonstrate the vulnerabilities of existing unlearning solutions under
multi-modal attacks, revealing the urgent need for more robust safety unlearning.

2 RELATED WORK

Image Generation Models (IGMs). Diffusion-based IGMs, such as Stable Diffusion (SD) (Rom-
bach et al., 2022b), DALL·E (OpenAI, 2023), and Imagen (Saharia et al., 2022), have achieved im-
pressive progress in synthesizing diverse, high-fidelity images. These models leverage large-scale
datasets (e.g., LAION-5B (Schuhmann et al., 2022)) and integrate components including pre-trained
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text encoders (e.g., CLIP (Radford et al., 2021)), U-Net denoisers, and VAE decoders, enabling pre-
cise semantic alignment between prompts and images for a wide range of applications.

Unlearning in Image Generation Models. The proliferation of IGMs has led to increasing con-
cerns about the generation of harmful or copyrighted content (Qu et al., 2023; Liu et al., 2025).
Machine unlearning (MU) methods have been developed to selectively remove undesirable concepts
from pretrained models (Kumari et al., 2023; Fan et al., 2024) while preserving overall generative
capabilities. Existing IGM unlearning (IGMU) approaches can be broadly categorized as: (i) Fine-
tuning-based, which update model parameters to forget specific concepts (e.g., ESD (Gandikota
et al., 2023), UCE (Gandikota et al., 2024)); (ii) Guidance-based, which constrain generation
at inference without modifying model weights (e.g., SLD (Schramowski et al., 2023)); and (iii)
Regularization-based, which introduce forgetting objectives during training (e.g., Receler (Huang
et al., 2024), FMN (Zhang et al., 2024a)). Despite their successes, these methods often exhibit
limited robustness and generalization.

Adversarial Attacks on IGMU. Recent works demonstrate that adversarial prompts can circum-
vent IGMU defenses and recover restricted content (Li et al., 2024a; Chin et al., 2024a; Zhang et al.,
2024d). White-box methods such as P4D (Chin et al., 2024a) and UnlearnDiffAtk (Zhang et al.,
2024d) optimize text prompts but may suffer from high computational overhead and reduced se-
mantic alignment, CCE (Pham et al., 2024) learns a single placeholder via textual inversion on the
erased model and substitutes it at inference to recover restricted concepts, while WACE (Lu et al.,
2025) regenerates forgotten content via a noise-based probe. The black-box and transfer-based ap-
proaches (Han et al., 2024; Tsai et al., 2024; Dang et al., 2025; Ma et al., 2025; Chin et al., 2024b)
rely on surrogate models or textual perturbations, sometimes requiring external classifiers or ac-
cess to the original diffusion model. These approaches are less effective against stronger unlearning
defenses (e.g., AdvUnlearn (Zhang et al., 2024c), Receler (Huang et al., 2024)) and remain compu-
tationally intensive.

Therefore, effective attack strategies should efficiently recover restricted content, preserve prompt-
image semantic coherence, and exploit vulnerabilities beyond text perturbations. To this end, we
propose RECALL, a multi-modal adversarial framework that leverages adversarial image prompts
alongside unmodified text inputs, enabling effective attacks on unlearned models via multi-modal
guidance. Our method requires neither external classifiers nor access to the original IGM, making it
both lightweight and effective.

3 PRELIMINARY

3.1 IMAGE GENERATION MODEL UNLEARNING

Given a pretrained IGM G over a concept space C, Image Generation Model Unlearning (IGMU)
aims to selectively remove the model’s ability to generate content associated with a sensitive con-
cept subset C′ ⊆ C, while preserving generative quality for the remaining concepts. Formally, an
unlearning algorithm Au produces a modified model Gu = Au(G, C′). The unlearning objectives
are twofold:

• Forgetting: For all c ∈ C′, the model should no longer generate content related to c:
Gu(Ptext) ∩ G(Ptext) = ∅.

• Preservation: For all c ∈ C \ C′, the generative performance should be retained:
sim

(
Gu(Ptext),G(Ptext)

)
≥ σ, where sim(·, ·) denotes a perceptual similarity metric (e.g.,

CLIP score or LPIPS), and σ is a predefined threshold.

In this work, we focus on unlearning methods and evaluation within the multi-modal, diffusion-
based IGM setting, with SD as a representative backbone.

3.2 THREAT MODEL

We consider an adversary seeking to deliberately regenerate erased content from a concept-
unlearned, multi-modal (text+image) IGM. The adversary requires white-box access and the ability
to invoke the model’s native multi-modal-conditioning pathway. This setting primarily targets (i)
attacks: it is realistic because many applications deploy open or publicly available Stable Diffusion

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

variants and is consistent with prior white-box threat models (Chin et al., 2024a; Pham et al., 2024;
Zhang et al., 2024d). The same setup also supports (ii) unlearning red-teaming by model owners
or auditors as a pre-deployment robustness assessment to locate weaknesses and guide verifiable
mitigation.

3.3 PROBLEM FORMULATION

We introduce a new attack strategy that optimizes image prompts by leveraging multi-modal guid-
ance, which is natively supported by Stable Diffusion (Rombach et al., 2022a), to bypass unlearning
mechanisms and regenerate erased content.

Given an unlearned image generation model (IGM) Gu that has been updated to suppress content
associated with target concept c, a text prompt Ptext containing c, and an image Pimg relevant to
the concept c, we aim to find an adversarial image input P adv

img such that, when paired with Ptext, the
unlearned IGM Gu generates image I∗ related to c:

I∗ = Gu(P adv
img, Ptext), s.t. I∗ ≈ I | c, (1)

where I | c denotes images that explicitly contains the target concept c; these images can come from
the original model G with the same text prompt Ptext or from any other source.

The adversarial image prompt P adv
img is obtained by solving:

P adv
img = arg min

Pimg

Ladv (Gu(Pimg, Ptext), I) , (2)

where Ladv is an adversarial loss function.

Unlike prior attacks that modify the text prompt Ptext, we optimize Pimg while keeping Ptext un-
changed, thus preserving the semantic intent. The optimization follows a gradient-based approach:

P adv
img ← Pimg − η · ∇Pimg

Ladv(Gu(Pimg, Ptext), I), (3)

where η is the step size. This process enables the adversarial image prompt P adv
img , together with

Ptext, to exploit vulnerabilities in the unlearned model and recover the erased content while main-
taining semantic alignment with the text prompt.

4 METHODOLOGY

4.1 OVERVIEW

We propose RECALL, a multi-modal adversarial framework targeting unlearned IGMs. Unlike con-
ventional text-only attacks, RECALL jointly optimizes adversarial image prompt by leveraging a
reference image Pref as guidance. As illustrated in Figure 2, RECALL comprises three stages: (1)
Latent Encoding: The reference image Pref and a noise-injected initial prompt are encoded into la-
tent representations. (2) Iterative Latent Optimization: The adversarial latent is iteratively refined
under the guidance of the reference latent by minimizing the discrepancy between their predicted
noise residuals. (3) Multi-modal Attack: The optimized latent is decoded to an adversarial image,
which, paired with the text prompt, forms a multi-modal input to the unlearned IGM, enabling ef-
fective recovery of the erased target concept. Details of each stage are described in the following
sections, and the overall pipeline is summarized in Algorithm 1 (Appendix B).

4.2 IMAGE ENCODING

To avoid incurring additional computational overhead from external classifiers or relying on the
original IGM, we introduce a reference image Pref containing the target concept c to guide the
generation process, where the reference image Pref can be sourced from multiple sources, such
the internet, public datasets, or self-collected. This reference implicitly embeds the erased concept,
thereby facilitating adversarial optimization of the initial image prompt P init

img . To enhance efficiency
and precision, RECALL performs the optimization directly in the latent space representation zadv of
the image prompt.

4
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Figure 2: Overview of RECALL. Given a reference image Pref that depicts the erased concept and a heavily
noised initial image prompt P init

img , we iteratively optimize the latent zadv (initialized from P init
img ) to align

with the reference latent zref under the same text condition. After optimization, zadv is decoded into an
adversarial image P adv

img , which is then paired with the original text prompt and fed into the unlearned model,
enabling recovery of the erased concept, thereby exposing vulnerabilities of current unlearning mechanisms
under multi-modal guidance.

As illustrated in Figure 2, we initialize P init
img by blending a small portion of the reference image

Pref with random noise δ sampled from an isotropic Gaussian distribution N (0, I):

P init
img ← λ · Pref + (1− λ) · δ, δ ∼ N (0, I), (4)

where λ ∈ [0, 1] is a hyperparameter controlling the semantic similarity to the reference image. We
set λ = 0.25 throughout our experiments. This approach increases the sampling space of Stable
Diffusion and further enhances the diversity of the generated images, while simultaneously encour-
aging the generation process to better follow the guidance of the text prompt, thereby improving
semantic consistency.

To accelerate optimization, both P init
img and Pref are encoded into the latent space using the image

encoder Ei from the unlearned model, yielding:

zi = Ei(P init
img ), zref = Ei(Pref ), (5)

where zi is used as the initial adversarial latent zadv , and zref serves as the fixed reference guiding
the optimization process.

4.3 ITERATIVE LATENT OPTIMIZATION

We iteratively optimize the adversarial latent as below.

Generation of Latent zt. Unlike standard latent diffusion, which typically initializes from a ran-
domly sampled latent, RECALL generates the noisy latent at timestep t as:

zt =
√
ᾱt z +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (6)

where z denotes either the reference latent zref or the adversarial latent zadv . The cumulative noise
schedule ᾱt determines the relative contribution of signal and noise.

To accelerate optimization, each zt corresponds to a single denoising step from a fixed DDIM (Song
et al., 2021) sampling schedule of 50 steps (t = T → 0). At each step, we apply one backward
denoising pass to simulate efficient adversarial guidance. We adopt an early stopping mechanism:
the attack halts as soon as the target content reappears; It fails if no target content is observed after
all steps are exhausted.

Optimization under Multi-Modal Guidance. For each noisy latent zt, the diffusion model pre-
dicts the corresponding noise component using a U-Net Fθ, conditioned on the textual embedding
ht from the encoding text prompt Ptext by the text encoder Et (i.e., ht = Et(Ptext)). The predicted
noise of reference image ϵ̂ref and adversarial image ϵ̂adv can be derived as:

ϵ̂ref = Fθ(z{ref,t}, t, ht); ϵ̂adv = Fθ(z{adv,t}, t, ht). (7)

5
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The discrepancy between two noise predictions forms the basis of the adversarial objective function.

As discussed previously, our attack explicitly targets the latent representation zadv of the adversar-
ial image prompt P adv

img , aiming to efficiently induce the unlearned IGM model to regenerate the
previously unlearned content. Specifically, at each diffusion timestep t, we iteratively refine the
adversarial latent representation zadv using a gradient-based optimization procedure guided by the
adversarial loss Ladv . To enhance stability and facilitate convergence, we incorporate momentum-
based gradient normalization into our optimization scheme (Dong et al., 2018). Specifically, we
iteratively update the latent adversarial variable zadv over N epochs according to:

vi = β · vi−1 +
∇zadv

Ladv

∥∇zadv
Ladv∥1 + ω

, zadv ← zadv + η · sign(vi), (8)

where η denotes the step size, vi is the momentum-updated gradient direction at iteration i, and β =
0.9 represents the momentum factor. The term ∇zadv

Ladv refers to the gradient of the adversarial
loss Ladv with respect to the adversarial latent zadv , normalized by its L1-norm for gradient scale
invariance, and ω = 1e−8 is a small constant for numerical stability. Furthermore, in practical
implementations, we periodically integrate a small portion of the reference latent zref back into
zadv , thereby reinforcing semantic consistency between zadv and zref during the optimization:

zadv ← (1− γ)zadv + γ · zref , (9)

where γ is a small regularization parameter and set to 0.05 in our optimization.

Objective Function. The adversarial objective function Ladv explicitly quantifies the discrepancy
between noise predictions generated from the adversarial latent ϵ̂adv and reference latent ϵ̂ref with
U-Net at step t, respectively:

Ladv =M(ϵ̂{ref,t}, ϵ̂{adv,t}) = ∥ϵ̂{ref,t} − ϵ̂{adv,t}∥22, (10)

whereM denotes a similarity measurement. In this work, we employ the mean squared error (MSE).

Adversarial Image Reconstruction. After optimization, the refined adversarial latent zadv is sub-
sequently decoded into the image space through the image decoder Di of the unlearned SD model
to generate the final adversarial image used for the attack: P adv

img = Di(zadv).

4.4 MULTI-MODAL ATTACK

Once the adversarial image P adv
img is obtained, we leverage the multi-modal conditioning mechanism

of the unlearned model Gu to generate images containing the forgotten content and semantically
aligned with the text prompt Ptext. The final image generation process integrates both the optimized
adversarial image prompt and the original text prompt in a multi-modal manner:

I∗ = Gu(P adv
img, Ptext), (11)

where I∗ is the final generated image.

Our method systematically exposes the inherent weaknesses in current concept unlearning tech-
niques: by utilizing both adversarial image optimization and textual conditioning, the unlearned
information can still be reconstructed.

5 EXPERIMENTS

We conduct extensive experiments involving TEN SOTA unlearning techniques across four rep-
resentative unlearning tasks: Nudity, Van Gogh-style, Object-Church, and Object-Parachute, thus
yield a total of forty unlearned IGMs. Our objective is to systematically validate the effectiveness
and generalization of our proposed multi-modal guided attack RECALL against different scenarios.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on three nudity unlearning datasets (I2P (Schramowski et al., 2023),
MMA (Yang et al., 2024), and ART (Li et al., 2024a)). For the remaining targets, such as Van

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Attack comparisons against unlearned IGMs in six dataset for four representative unlearning tasks.
Task Method ESD FMN SPM AdvUnlearn MACE RECE DoCo UCE Receler ConceptPrune Avg. ASR

N
ud

ity
-I

2P
Text-only 10.56 66.90 32.39 1.41 3.52 7.04 30.99 8.45 8.45 73.24 24.30
Image-only 0.00 18.31 12.68 4.23 5.63 14.08 3.52 11.97 6.34 13.38 9.01
Text & R noise 0.70 29.58 14.08 0.70 3.52 1.41 14.79 2.82 0.70 36.62 10.49
Text & Image 13.38 59.15 42.25 7.04 10.56 14.79 40.14 17.61 20.42 52.11 27.74
P4D-K 51.41 80.28 76.76 6.34 40.14 35.92 77.46 56.34 40.14 77.46 54.22
P4D-N 62.68 88.73 76.76 2.82 32.39 52.11 80.28 54.93 35.92 89.44 57.61
CCE 59.15 85.21 64.08 37.32 57.75 26.76 30.28 40.14 20.42 83.10 50.42
UnlearnDiffAtk 51.41 92.25 88.03 8.45 47.18 40.85 87.32 70.42 55.63 97.18 63.87
WACE-N 30.28 80.99 61.27 4.23 20.42 15.49 58.45 28.17 23.24 80.28 40.28
WACE-C 51.41 89.44 79.58 25.35 46.48 28.87 71.83 42.96 46.48 88.03 57.04
RECALL 71.83 100.00 96.48 60.56 71.83 59.86 92.25 76.76 78.87 99.30 80.77

N
ud

ity
-M

M
A

Text-only 1.56 46.88 32.03 0.00 0.00 13.28 27.34 24.22 14.06 53.12 21.25
Text & R noise 0.00 20.31 17.19 0.00 0.00 4.69 21.88 14.84 1.56 42.19 12.27
Text & Image 8.59 78.91 59.38 0.00 2.34 37.50 62.50 44.53 43.75 80.47 41.80
P4D-K 56.90 62.50 76.88 8.43 49.54 37.50 85.31 80.62 79.69 89.65 62.70
P4D-N 62.50 74.37 78.44 10.64 53.67 51.25 88.44 91.41 85.94 98.44 69.51
CCE 35.16 89.84 78.91 3.12 55.47 46.88 54.69 58.59 36.72 97.66 55.70
UnlearnDiffAtk 40.62 100.00 99.22 23.78 33.59 89.06 98.44 95.31 85.94 99.22 76.52
WACE-N 28.12 86.72 75.78 7.03 1.56 46.09 68.75 49.22 52.34 86.72 50.23
WACE-C 61.72 92.19 82.81 49.22 13.28 57.03 80.47 70.31 70.31 85.16 66.25
RECALL 75.78 100.00 97.66 82.81 53.12 89.84 94.53 92.97 96.09 99.22 88.20

N
ud

ity
-A

R
T

Text-only 0.00 11.72 2.34 0.00 0.00 0.00 3.12 0.78 2.34 7.03 2.73
Text & R noise 0.00 35.16 17.19 0.00 0.00 0.00 4.69 0.78 0.00 17.19 7.50
Text & Image 0.78 14.84 13.28 0.78 1.56 1.56 4.69 2.34 4.69 12.50 5.70
P4D-K 8.73 66.67 57.63 2.86 31.45 28.49 43.87 41.83 12.50 56.25 35.03
P4D-N 12.50 62.86 62.81 3.98 24.69 32.81 48.44 45.62 21.88 53.12 36.87
CCE 20.31 53.91 28.12 28.12 21.88 3.12 3.12 13.18 6.25 42.97 22.10
UnlearnDiffAtk 31.25 76.56 66.41 0.78 17.19 21.09 76.47 39.06 35.16 75.78 43.98
WACE-N 7.81 48.44 26.56 0.78 2.34 4.69 21.09 7.03 7.81 37.50 16.41
WACE-C 20.31 57.81 34.38 5.47 8.59 4.69 33.59 10.94 14.84 47.66 23.83
RECALL 62.50 91.29 81.25 32.03 43.75 32.99 98.12 52.34 70.31 89.84 65.44

Va
n

G
og

h-
st

yl
e

Text-only 26.00 50.00 82.00 24.00 72.00 74.00 52.00 98.00 20.00 98.00 59.60
Image-only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Text & R noise 8.00 14.00 18.00 12.00 16.00 28.00 38.00 38.00 10.00 80.00 26.20
Text & Image 10.00 18.00 42.00 10.00 24.00 32.00 42.00 74.00 24.00 96.00 37.20
P4D-K 56.00 72.00 90.00 86.00 82.00 100.00 62.00 94.00 62.00 98.00 80.20
P4D-N 88.00 88.00 100.00 86.00 96.00 98.00 90.00 100.00 74.00 100.00 92.00
CCE 78.00 66.00 100.00 86.00 94.00 88.00 46.00 98.00 16.00 100.00 77.20
UnlearnDiffAtk 96.00 100.00 100.00 84.00 100.00 100.00 100.00 100.00 92.00 100.00 97.20
WACE-N 28.00 36.00 80.00 12.00 70.00 58.00 80.00 90.00 10.00 96.00 56.00
WACE-C 14.00 34.00 86.00 8.00 28.00 50.00 72.00 88.00 4.00 96.00 48.00
RECALL 92.00 100.00 100.00 92.00 100.00 100.00 98.00 100.00 92.00 100.00 97.40

O
bj

ec
t-

C
hu

rc
h

Text-only 16.00 52.00 44.00 0.00 4.00 4.00 44.00 6.00 2.00 92.00 26.40
Image-only 4.00 18.00 20.00 8.00 16.00 18.00 12.00 20.00 16.00 20.00 15.20
Text & R noise 0.00 32.00 22.00 0.00 0.00 2.00 32.00 2.00 0.00 46.00 13.60
Text & Image 46.00 66.00 66.00 4.00 10.00 4.00 60.00 8.00 2.00 80.00 34.60
P4D-K 6.00 56.00 48.00 0.00 2.00 28.00 86.00 24.00 20.00 88.00 35.80
P4D-N 58.00 90.00 86.00 14.00 48.00 12.00 92.00 10.00 14.00 74.00 49.80
CCE 54.00 92.00 76.00 58.00 60.00 12.00 58.00 46.00 26.00 76.00 55.80
UnlearnDiffAtk 70.00 96.00 94.00 4.00 32.00 52.00 100.00 66.00 10.00 100.00 62.40
WACE-N 48.00 66.00 60.00 2.00 4.00 6.00 68.00 6.00 2.00 74.00 33.60
WACE-C 58.00 76.00 74.00 8.00 6.00 10.00 80.00 16.00 0.00 86.00 41.40
RECALL 96.00 100.00 98.00 62.00 50.00 46.00 98.00 68.00 20.00 98.00 73.40

O
bj

ec
t-

Pa
ra

ch
ut

e Text-only 4.00 54.00 24.00 4.00 2.00 2.00 8.00 2.00 2.00 88.00 19.00
Image-only 20.00 92.00 96.00 88.00 92.00 86.00 96.00 90.00 88.00 84.00 83.20
Text & R noise 4.00 48.00 22.00 2.00 4.00 0.00 10.00 2.00 2.00 60.00 15.40
Text & Image 94.00 98.00 88.00 52.00 72.00 48.00 50.00 60.00 32.00 98.00 69.20
P4D-K 6.00 40.00 24.00 2.00 4.00 14.00 72.00 18.00 20.00 96.00 29.60
P4D-N 36.00 82.00 70.00 8.00 22.00 12.00 52.00 14.00 2.00 84.00 38.20
CCE 74.00 92.00 72.00 48.00 54.00 34.00 52.00 52.00 38.00 88.00 60.40
UnlearnDiffAtk 56.00 100.00 94.00 14.00 36.00 34.00 92.00 42.00 30.00 100.00 59.80
WACE-N 30.00 84.00 46.00 10.00 10.00 6.00 26.00 4.00 6.00 88.00 31.00
WACE-C 56.00 84.00 60.00 6.00 16.00 8.00 32.00 22.00 14.00 90.00 38.80
RECALL 100.00 100.00 100.00 94.00 100.00 88.00 98.00 96.00 94.00 100.00 97.00

Gogh-style, Object-Church, and Object-Parachute, we reuse the text prompts released by Unlearn-
DiffAtk to ensure protocol comparability. For methods that require a reference image, we provide
one same additional image per unlearning task. Details of all prompts and reference images are
provided in Appendix C.1, Table 3.

IGMU Methods. We evaluate our approach across ten state-of-the-art IGMU techniques:
ESD (Gandikota et al., 2023), FMN (Zhang et al., 2024a), SPM (Lyu et al., 2024), AdvUn-
learn (Zhang et al., 2024c), MACE (Lu et al., 2024), RECE (Gong et al., 2024), DoCo (Wu et al.,
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2025), Receler (Huang et al., 2024), ConceptPrune (Chavhan et al., 2025), and UCE (Gandikota
et al., 2024). Details on model weights and training configurations are provided in Appendix C.2.

Baselines. We compare our proposed RECALL against several representative attack baselines: Text-
only (text prompts only), Image-only (reference image prompt only), Text & R noise (text with a
noised image), Text & Image (text prompt and reference image), P4D (with two variants P4D-K and
P4D-N) (Chin et al., 2024a), CCE (Pham et al., 2024), UnlearnDiffAtk (Zhang et al., 2024d), and
WACE(with two variants WACE-N and WACE-C) (Lu et al., 2025). Their detailed descriptions and
implementation can be found in Appendix C.3.

Evaluation Metrics. We assess the effectiveness of our attack using task-specific deep learning-
based detectors and classifiers, including the NudeNet detector (Praneeth, 2023), a ViT-based style
classifier (Zhang et al., 2024d), and an ImageNet-pretrained ResNet-50 (He et al., 2016). The pri-
mary metric is attack Success Rate (ASR, %) and average ASR for attack performance, average
attack time (seconds, s) for computational efficiency, and CLIP Score (Hessel et al., 2021) for quan-
tifying semantic alignment between generated images and prompts. Throughout all tables, the best
attack performance is highlighted in bold, while the second-best is indicated with underlining.

Implementation Details. The main backbone used is SD V1.4 to align with involved IGMU tech-
niques and baselines. The adversarial optimization of RECALL is performed with 50 DDIM steps
and 20 gradient iterations per step (step size η = 1e−3, momentum 0.9), with early stopping ap-
plied when the target content is regenerated. All experiments are conducted using PyTorch on an
8×NVIDIA H100 GPU server with a fixed random seed 2025.

5.2 ATTACK PERFORMANCE

Nudity Van Gogh Church Parachute

P4D

UnlearnDiffAtk

RECALL

CCE

WACE

Figure 3: Generated images under different
attacks. Rows (top to bottom): P4D, CCE,
UnlearnDiffAtk, WACE, and RECALL.

We comprehensively evaluate the effectiveness of RE-
CALL against several baseline attack methods across four
representative unlearning tasks. The detailed experimen-
tal results, as summarized in Table 1, reveal several crit-
ical findings. ① Existing unlearning approaches fail to
fully erase target concepts; notably, original textual or
combined text-image prompts (reference image or ran-
domly initialized) alone achieve substantial ASRs. For in-
stance, combined text-image prompts yield an Avg. ASR
exceeds 69.20% in the Parachute task. ② All baseline at-
tack methods exhibit limited effectiveness when attacking
adversarially enhanced unlearning strategies (e.g., Ad-
vUnlearn and RECE), evidenced by their significantly
lower ASRs. ③ In contrast, RECALL consistently attains
superior performance, achieving average ASRs ranging
from 73.40% to 97.40% across diverse scenarios. Specif-
ically, RECALL outperforms UnlearnDiffAtk, a strong
baseline, improving the average ASR by 16.90%, 0.20%,
11.00%, and 37.20% for four tasks. These results high-
light the robustness and efficacy of RECALL in regenerat-
ing targeted, presumably erased visual concepts.

In addition, qualitative generation results on MACE in Figure 3 (Complete results in Appendix D
Table 4) and visual cases (in Appendix F.2 Figure 7) show that RECALL consistently surpasses
existing baselines in recovering erased concepts across a variety of unlearning scenarios, yielding
highly diverse outputs.

5.3 ATTACK EFFICIENCY
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Figure 4: Comparison of average attack time
for different attack methods for Nudity task.

To assess the practical efficiency of RECALL, we com-
pare the average attack time (in seconds) needed by RE-
CALL with various baselines, a lower average attack time
indicates higher efficiency. Figure 4 reports results for
Nudity task (attack time for more tasks can be found in
Appendix E). As shown, RECALL achieves significantly
lower attack time (∼64s) compared to P4D-N (∼238s),
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UnlearnDiffAtk (∼232s) and WACE-C (∼243.15s). This improvement stems from our efficient
multi-modal optimization directly in the latent space and these efficiency gains align with our high
attack success rates, highlighting that RECALL is both effective and computationally lightweight.
Notably, less robust unlearning methods (e.g., FMN, SPM) tend to require shorter attack durations,
further illustrating their susceptibility.

5.4 SEMANTIC ALIGNMENT
Table 2: CLIP Scores (↑) among baselines and RECALL.

Task Method ESD MACE RECE UCE Receler DoCo

N
ud

ity
-I

2P P4D 24.09 23.20 24.99 24.90 25.64 23.70
CCE 19.11 19.00 19.07 19.08 19.02 19.11
UnlearnDiffAtk 29.61 23.11 29.25 29.17 29.00 31.18
WACE 19.19 18.77 19.83 19.47 19.61 19.25
RECALL 32.13 24.79 30.66 31.31 31.12 31.95

Va
n

G
og

h P4D 17.73 31.66 25.64 22.57 13.49 21.81
CCE 18.39 18.54 18.43 18.36 18.58 18.40
UnlearnDiffAtk 29.23 33.85 33.10 33.32 21.26 22.39
WACE 18.21 18.04 18.18 18.27 17.98 18.29
RECALL 35.92 35.28 34.71 34.20 23.37 30.01

C
hu

rc
h P4D 25.88 28.44 27.68 27.76 30.34 25.62

CCE 20.46 20.46 20.50 20.52 20.34 20.64
UnlearnDiffAtk 27.68 27.46 27.04 28.97 30.89 29.99
WACE 20.09 21.16 19.40 19.88 – 20.53
RECALL 27.94 28.94 28.36 27.82 27.73 30.37

Pa
ra

ch
ut

e P4D 23.50 23.73 28.01 27.13 24.18 28.37
CCE 21.92 22.03 22.09 22.03 22.03 22.06
UnlearnDiffAtk 25.64 25.59 25.73 23.37 26.22 28.98
WACE 22.05 21.84 21.64 21.97 21.95 21.76
RECALL 29.64 28.66 31.04 31.10 28.92 30.63

The original SD model achieves CLIP Scores of 31.05, 33.98,
30.75, and 31.56 on the four tasks, respectively.

We assess the semantic consistency be-
tween regenerated images and their cor-
responding text prompts using the CLIP
Score. Table 2 presents the average CLIP
Scores for four attack methods, P4D,
CCE, UnlearnDiffAtk, WACE, and our
proposed RECALL, evaluated across six
unlearning techniques and four aforemen-
tioned representative unlearning tasks.

As shown in Table 2, RECALL con-
sistently outperforms baseline methods,
achieving the highest CLIP Scores across
all tasks and unlearning settings. No-
tably, RECALL attains an average CLIP
Score of 30.28, surpassing UnlearnDif-
fAtk (28.00), P4D (25.00), CCE (20.01)
and WACE (19.89). These results indi-
cate that text-based methods, which per-
turb original prompts, often degrade semantic coherence. In contrast, our multi-modal adversarial
framework preserves the textual intent and introduces perturbations solely through the image modal-
ity, yielding superior semantic alignment.

5.5 GENERALIZABILITY

Reference Independence. We assess the robustness of RECALL to reference image selection us-
ing three additional references (R1–R3, see Appendix F.1, Figure 6). As reported in Appendix F.1,
Table 5, both attack and diversity metrics remain consistently high provided the reference is repre-
sentative, demonstrating that RECALL does not depend on any specific image.

Generation Diversity. We quantitatively compare image-only, text-only, and RECALL. As detailed
in Appendix F.2, RECALL achieves substantially greater diversity than image-only baselines and
matches the performance of text-only approaches, indicating that it recovers the original concept
distribution rather than simply transforming reference images.

Model Version Independence. We further evaluate RECALL on unlearned models based on SD 2.0
and SD 2.1, in addition to SD 1.4. As shown in Appendix F.3, RECALL consistently maintains high
effectiveness across all versions, confirming its robustness and generalizability to more advanced
diffusion architectures.

5.6 ABLATION STUDY

We conduct ablation studies to systematically evaluate the impact of key strategies and hyperparam-
eters on the performance of the RECALL framework.

Strategies. We analyze three core strategies: multi-modal guidance, noise initialization, and peri-
odic integration.

• Multi-modal Guidance. We compare Text-only, Image-only, Text & R noise, Text & Image,
and our Text & Adversarial Image approaches. Results in Sections 5.2 and Appendix D show
that combining textual prompts with adversarial image optimization substantially improves
both attack performance and semantic consistency.

9
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• Noise Initialization. Noise initialization significantly enhances both diversity and semantic
alignment of generated images, as demonstrated by consistently higher LPIPS, IS, and CLIP
Scores across tasks (Appendix G.1, Figure 9).

• Periodic Integration. Periodically integrating zref into zadv further improves attack perfor-
mance, efficiency and the diversity of generated images when attack succeeded (Appendix G.4,
Figure 12). We therefore adopt this strategy with epochinterval = 5 and γ = 0.05.

Parameters. We investigate the sensitivity to two critical optimization parameters:

• Step Size (η). Reducing η from 0.1 to 0.001 steadily increases ASR, with η = 0.001 yield-
ing optimal performance. Further reduction impairs effectiveness due to insufficient updates
(Appendix G.1, Figure 9).

• Initial Balancing Factor (λ). Increasing λ improves ASR until saturation. Semantic alignment
(CLIP Score) peaks at λ = 0.25 and then declines, at the same time, reaching a good tradeoff
between the ASR and attack time, indicating a trade-off between attack strength and semantic
consistency. We set λ = 0.25 as the default (Appendix G.2, Figure 10).

6 CONCLUSION

We present RECALL, a multi-modal adversarial framework for auditing concept unlearning in multi-
modal conditioning IGMs. Distinct from previous text-based approaches, RECALL leverages adver-
sarially optimized image prompts together with the original textual inputs to induce unlearned IGMs
to recover previously erased visual concepts. Extensive experiments across ten SOTA unlearning
techniques and diverse tasks show that current pipelines remain vulnerable to multi-modal guided
adversarial inputs. Beyond functioning as an attack, RECALL provides an efficient auditing mecha-
nism for model owners with full access to verify the robustness of their unlearning procedures prior
to deployment, thereby informing the design of stronger, verifiable unlearning defenses.

Future Work. Future work will (i) extend RECALL to black-box and transfer-based settings to en-
able third-party robustness auditing without parameter access; (ii) evaluate generalizability across
broader generative architectures and training regimes; and (iii) investigate defense-aware and certi-
fiable unlearning strategies that are resilient to multi-modal adversarial threats, including extensions
to video and large multi-modal models.

10
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ETHICS STATEMENT

This work evaluates vulnerabilities in concept-unlearned diffusion models using synthetic or pub-
licly available data. We do not release explicit imagery; figures are masked where necessary. All
experiments are conducted strictly for safety auditing and research purposes. No human subjects
were involved.

REPRODUCIBILITY STATEMENT

We provide text prompts, reference images, random seeds, and hyperparameters in the anonymized
code base1 and show case them in Appendix C (Table 3 and Table 7). Code and scripts will be
released in an public repository upon acceptance. We fix a global random seed of 2025 and set the
image-generation seed as required per task (e.g., the I2P dataset for Nudity task), ensuring that all
reported results are exactly reproducible from the provided configuration.
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A APPENDIX OVERVIEW

This appendix provides supplementary material omitted from the main paper due to space con-
straints. Specifically, it includes:

• Section B: Complete algorithmic procedure for the proposed RECALL framework.
• Section C: Detailed experimental setup, including datasets, unlearned IGMs, baseline

methods, and evaluation metrics.
• Section D: Visualization results and analysis for both baselines and RECALL.
• Section E: Comprehensive results on attack efficiency.
• Section F: Detailed results on the generalizability of RECALL, including reference image

independence, generation diversity, and model version independence.
• Section G: Additional ablation studies on generalizability and hyperparameter sensitivity.
• Section H: Discussion on Convergence of the Latent Optimization.

B ALGORITHM

We list the RECALL pipeline in Algorithm 1, which allows readers to re-implement our method
step-by-step.

C EXPERIMENTAL SETUP

C.1 DATASETS

We evaluate our method on four unlearning tasks: 1) Nudity, 2) Van Gogh-style, 3) Object-Church,
and 4) Object-Parachute to ensure a thorough examination of unlearned models’ vulnerabilities.
Since multi-modal image generation consumes both text and image, we first collect a reference
image with the sensitive content, note that these reference image can be soured from any place as it
contain the target content, such as generated by generative models, internet, or make it with other
tools. In this paper, we use the generative manner to get such reference image, specifically by Flux-
Uncensored-V2 (Labs, 2024) (nudity, church, and parachute) and stable diffusion v2.1 (AI, 2024)
(van Gogh) with a given text prompt for each task (as shown in Table 3), where the used text prompt
are to be used for attacking. We then adopted the text prompts used in UnlearnDiffAtk (Zhang et al.,
2024d) as the text prompts for each task, the details of these prompts are as follows:

• Nudity: The dataset for this task are I2P, MMA, and ART. Inappropriate Image Prompts
(I2P) dataset (Schramowski et al., 2023) is involved, which contains a diverse set of
prompts leading to unsafe or harmful content generation, including nudity, we use the 142
nudity related prompts filtered by UnlearnDiffAtk (Zhang et al., 2024d). MMA (Yang
et al., 2024) is 1000 adversarial optimized text prompts used to attack safe-checker of sta-
ble diffusion models. We also adopt the benign red-teaming dataset ART (Li et al., 2024a),
which is automatically collected by ART framework from the Lexica gallery and focuses
on benign prompts that still trigger harmful generations in text-to-image models. In ad-
dition to the above datasets, we also adopt the benign red-teaming benchmark introduced
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Algorithm 1 RECALL

1: Input: Reference image Pref, initial image P init
image, text prompt Ptext, diffusion model Gu (with

U-Net Fθ, text encoder Et, image encoder Ei, image decoder Di), hyperparameters λ, γ, η, β,
number of DDIM steps T , PGD iterations N

2: Output: Image I∗ with target content t
// Adversarial image optimization; Stage I, Stage II

3: P init
image ← λ · Pref + (1− λ) · δ, where δ ∼ N (0, I)

4: zref ← Ei(Pref)
5: zadv ← Ei(P init

image)

6: ht ← Et(Ptext)
7: v0 ← 0
8: for t = T, T−1, . . . , 1 do
9: zref,t ←

√
ᾱtzref +

√
1− ᾱtϵt, ϵt ∼ N (0, I)

10: zadv,t ←
√
ᾱtzadv +

√
1− ᾱtϵt

11: ϵ̂ref ← Fθ(zref,t, t, ht)
12: ϵ̂adv ← Fθ(zadv,t, t, ht)
13: Ladv ← ∥ϵ̂ref − ϵ̂adv∥22
14: Compute ∇zadvLadv
15: for i = 1 to N do
16: vi ← β · vi−1 +∇zadvLadv/(∥∇zadvLadv∥1 + ω)
17: zadv ← zadv + η · sign(vi)
18: end for
19: if t mod epochinterval = 0 then
20: zadv ← zadv + γ · zref
21: end if
22: end for
23: P adv

image ← Di(zadv)
// Image generation; Stage III

24: zadv ← Ei
(
P adv

image

)
25: Sample noise δ′ ∼ N (0, I)
26: zT ← AddNoise

(
zadv, δ

′, T
)

27: for t = T, T − 1, . . . , 1 do
28: ε̂t ← Fθ

(
zt, t, ht

)
29: zt−1 ← SchedulerStep

(
ε̂t, t, zt

)
30: end for
31: I∗ ← Di(z0)

by ART. (Li et al., 2024a), which are collected (safe prompt, unsafe image) pairs from
the Lexica gallery and focuses on benign prompts that still trigger harmful generations in
text-to-image models. We use the prompts related to nudity in our experiments.

• Van Gogh-style: The prompts are artistic-painting prompts introduced in ESD (Gandikota
et al., 2023), the number of prompts is 50.

• Object-Church and Object-Parachute: The prompts are generated by GPT-4 (OpenAI,
2023), and the number of prompts is 50 related to church and parachute, respectively.

C.2 UNLEARNED IGMS

The weights of involved unlearned SD models obtained by 10 state-of-the-art IGMU methods across
four aforementioned unlearning tasks are sourced from three primary origins: ① the AdvUnlearn
GitHub repository2, as described in (Zhang et al., 2024c); ② weights officially released by their
respective authors, such as RECE (Gong et al., 2024), MACE (Lu et al., 2024) and DoCo (Wu et al.,
2025); and ③ weights trained in-house using official implementations provided by ourselves.

2https://github.com/OPTML-Group/AdvUnlearn
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Table 3: The reference image aligns with the text prompt and seed for the image-dependent attack method.

Task Nudity Van Gogh-style Object-Church Object-
Parachute

Text
A naked person

in outdoor,
whole body

Van Gogh
style. Church Parachute

Seed 6053 10710 33731 55254

Image

C.3 BASELINES

To comprehensively evaluate the effectiveness of our proposed method, we compare it against sev-
eral baseline approaches:

• Text-only: We directly input the original textual prompts into the unlearned image gener-
ation models to assess their ability to generate restricted content without additional adver-
sarial modifications.

• Image-only: We directly input the reference image into the unlearned image generation
models to assess their ability to generate restricted content without additional adversarial
modifications.

• Text & R noise: Both the original text prompts and a randomly initialized image for each
task are fed into the unlearned image generation models. This setting evaluates whether
multi-modal inputs enhance or diminish the effectiveness of digging into the vulnerability
of existing unlearning techniques.

• Text & Image: Both the original text prompt and a semantically relevant reference image
containing the erased concept are provided as multi-modal inputs to the unlearned image
generation models. This setting examines whether the reference image alone, without ad-
versarial optimization, can facilitate the recovery of forgotten content and thereby expose
the model’s residual memorization of the erased concept.

• P4D (Chin et al., 2024a): Prompting4Debugging (P4D) is a state-of-the-art attack that
systematically discovers adversarial text prompts to bypass unlearned SD models. It lever-
ages prompt optimization strategies to identify manipulations capable of eliciting forgotten
concepts from the model. We report the results of P4D-K and P4D-N in this part simulta-
neously. We compare our method with P4D to demonstrate the advantages of adversarial
image-based attacks over text-based adversarial prompting.

• CCE (Pham et al., 2024): Circumventing Concept Erasure (CCE) conducts “concept inver-
sion” by training a single placeholder token via textual inversion on the erased SD model
while freezing all parameters. At inference, the original concept term is replaced with the
learned token, enabling recovery of the forgotten concept across styles, objects, identities,
and NSFW prompts, thereby revealing residual memorization after post-hoc unlearning.
We include CCE as a representative embedding-based attack for comparison.

• UnlearnDiffAtk (Zhang et al., 2024d): UnlearnDiffAtk is a cutting-edge adversarial
prompt generation technique tailored for evaluating unlearned diffusion models. It ex-
ploits the intrinsic classification properties of diffusion models with a given reference im-
age to generate adversarial text prompts without requiring auxiliary classifiers or original
SD models. We include this baseline to highlight the efficiency and effectiveness of our
image-optimizing-based method in uncovering vulnerabilities in unlearned models.

• WACE (Lu et al., 2025): WhenAreConceptsErased (WACE) proposes a systematic frame-
work for characterizing and evaluating concept erasure in text-to-image diffusion models.
It distinguishes between guidance-based avoidance and destruction-based removal, and in-
troduces a multi-perspective probing suite that includes NoiseBasedProbe (WACE-N) and
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classifier-guided NoiseBasedProbe (WACE-C) to make the unlearned model to regenerate
the content assume to be removed.

P4D (with its variants P4D-K and P4D-N) (Chin et al., 2024a) and UnlearnDiffAtk (Zhang et al.,
2024d) are text-optimization-based attack methods. CCE injects a learned placeholder token into the
unlearned model’s text embedding. revWACE (with its varints WACE-N and WACE-C) is a noise-
based attack method. And we use their officially released code (P4D3, CCE4, UnlearnDiffAtk5,
WACE6) with default configurations to extend the attack.

C.4 EVALUATION METRICS

Attack performance. To evaluate the effectiveness of our proposed attack, following previ-
ous works (Ren et al., 2025; Liu et al., 2025; Zhang et al., 2024d), we employ deep learning-
based detectors and classifiers tailored to each unlearning task. For the Nudity task, we adopt
the NudeNet detector (Praneeth, 2023) with a detection threshold τ = 0.45 to identify explicit
anatomical features. Following standard protocol (Ren et al., 2025; Liu et al., 2025), an attack is
considered successful if any of the following sensitive labels is detected from the generate image:
MALE BREAST EXPOSED, MALE GENITALIA EXPOSED, FEMALE BREAST EXPOSED, FE-
MALE GENITALIA EXPOSED, BUTTOCKS EXPOSED, or ANUS EXPOSED. For the Van Gogh-
style task, we use a ViT-based (Dosovitskiy et al., 2021) style classifier pretrained on ImageNet and
fine-tuned on the WikiArt dataset (Saleh & Elgammal, 2015). Following (Zhang et al., 2024d), we
use the top-10 predictions to determine whether the generated images exhibit Van Gogh’s charac-
teristic artistic features. For the object-centric tasks, Object-Church and Object-Parachute, we use
a ResNet-50 classifier pretrained on ImageNet to determine whether the corresponding object is
present in the generated image using the top-1 prediction.

Semantic alignment. For the alignment between the given text prompts and the images generated
by successful attacks, we report the CLIP Score computed between each prompt–image pair and
then averaged across prompts; higher values indicate stronger text–image consistency.

Image diversity. To assess the diversity of images produced by successful attacks, we adopt three
complementary metrics: LPIPS (Zhang et al., 2018), Inception Score (IS) (Salimans et al., 2016),
and a DINO-based feature distance (Oquab et al., 2024).

D VISUALIZATION

Table 4 presents a qualitative comparison of regenerated images under four representative unlearning
scenarios, i.e., Nudity, Van Gogh-style, Object-Church, and Object-Parachute, for the unlearning
techniques MACE and RECE. Rows 3–6 illustrate that neither original prompts nor their combination
with random or reference images effectively bypass the safety filters. While image-only settings
perform somewhat better on object-centric tasks, they often lack semantic alignment and diversity;
combining text and reference images yields only limited improvements.

The subsequent rows show results from P4D (Chin et al., 2024a), CCE (Pham et al., 2024), Un-
learnDiffAtk (Zhang et al., 2024d), WACE (Lu et al., 2025), and our proposed RECALL. Notably,
baselines such as P4D and UnlearnDiffAtk typically require heavily modifying the input text to
bypass unlearning, which can restore content but often at the cost of semantic fidelity—especially
evident in the Nudity and Van Gogh-style scenarios. In contrast, RECALL maintains the original
prompt unchanged, leveraging adversarial image guidance to bypass unlearning while preserving
strong semantic alignment.

These observations are supported by Table 7, which lists the precise configurations used for each
case (random seeds, guidance scales, text prompts, etc.). This information helps interpret the qual-
itative results and clarifies how each attack method interacts with unlearning constraints. Overall,

3https://github.com/joycenerd/P4D
4https://github.com/NYU-DICE-Lab/circumventing-concept-erasure
5https://github.com/OPTML-Group/Diffusion-MU-Attack
6https://github.com/kevinlu4588/WhenAreConceptsErased
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Table 4: Generated images under different attacks for MACE and RECE across different unlearning tasks.

Task Nudity Van Gogh-style Object-Church Object-Parachute

Models MACE RECE MACE RECE MACE RECE MACE RECE

Text-only

Image-only

Text & R noise

Text & Image

P4D

CCE

UnlearnDiffAtk

WACE

RECALL

RECALL consistently induces unlearned models to regenerate forgotten content with high semantic
fidelity, outperforming existing baselines in both visual quality and semantic coherence.

E ATTACK EFFICIENCY

ESD
FMN

SPM

AdvUnlea
rn
MACE

RECE
DoCo

UCE
Rece

ler

ConcptPrune

0

200

400

600

800

Av
g.

 A
tta

ck
 T

im
e 

(s
)

Nudity
P4D-N
UnlearnDiffAtk
WACE-C
RECALL

ESD
FMN

SPM

AdvUnlea
rn
MACE

RECE
DoCo

UCE
Rece

ler

ConcptPrune

0

200

400

600

800

1000

Av
g.

 A
tta

ck
 T

im
e 

(s
)

Van Gogh-style
P4D-N
UnlearnDiffAtk
WACE-C
RECALL

ESD
FMN

SPM

AdvUnlea
rn
MACE

RECE
DoCo

UCE
Rece

ler

ConcptPrune

0

500

1000

1500

Av
g.

 A
tta

ck
 T

im
e 

(s
)

Object-Parachute
P4D-N
UnlearnDiffAtk
WACE-C
RECALL

Figure 5: Comparison of average attack time (in seconds) for different attack methods across three unlearning
tasks. The bar chart illustrates the attack efficiency of four attack approaches—P4D-N (blue), UnlearnDiffAtk
(orange), WACE-C (red), and RECALL (green)—against various unlearning techniques. A lower average
attack time indicates higher efficiency.
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Table 5: Attack Success Rate (ASR, %) and Diversity (LPIPS, IS, DINO) with Different Reference Images.

Method Ref. Nudity Object-Church
ASR ↑ LPIPS ↑ IS ↑ DINO ↑ ASR ↑ LPIPS ↑ IS ↑ DINO ↑

ESD

Rorg 71.83 0.42 4.36 0.64 96.00 0.39 2.65 0.88
R1 86.62 0.40 4.20 0.61 94.00 0.38 2.74 0.89
R2 77.46 0.44 4.50 0.65 96.00 0.42 2.46 0.84
R3 71.83 0.41 4.42 0.62 92.00 0.44 2.75 0.89

UCE

Rorg 76.76 0.42 3.30 0.69 68.00 0.37 2.72 0.92
R1 77.46 0.41 3.29 0.69 66.00 0.38 2.75 0.90
R2 75.35 0.44 3.37 0.70 66.00 0.42 2.75 0.92
R3 78.24 0.42 3.25 0.69 72.00 0.44 2.94 0.93

To quantitatively assess the practical advantage of the proposed RECALL w.r.t computational effi-
ciency, we evaluate and compare the average attack durations7 across various adversarial methods8.
Figure 5 illustrates the average attack time (in seconds)9 required by RECALL and baseline meth-
ods, including P4D-N, UnlearnDiffAtk, and WACE-C against multiple unlearning techniques across
three representative unlearning scenarios: Nudity, Van Gogh-style, and Object-Parachute.

The empirical results in Figure 5 consistently demonstrate the substantial efficiency advantage of
RECALL. Specifically, our method achieves notably lower average attack times of approximately
65s for the various unlearning tasks. In contrast, competing methods exhibit significantly greater
computational overhead: P4D-N requires approximately 340s, UnlearnDiffAtk averages approxi-
mately 140s, and WACE-C requires approximately 260s. This considerable efficiency improvement
can be attributed primarily to our multi-modal guided optimization approach conducted entirely in
image latent space and eliminates reliance on external classifiers or auxiliary diffusion models.

Furthermore, these efficiency outcomes align closely with the corresponding attack success rates,
reinforcing that RECALL not only exhibits superior adversarial effectiveness but also substantially
reduces the computational complexity inherent in successful attacks. Additionally, we observe that
unlearning techniques with comparatively lower robustness, such as FMN and SPM, inherently re-
quire shorter attack durations, underscoring their heightened vulnerability in realistic adversarial
scenarios.

F GENERALIZABILITY

F.1 REFERENCE INDEPENDENCE
𝑅𝑜𝑟𝑔 𝑅1 𝑅2 𝑅3

𝑅𝑜𝑟𝑔 𝑅1 𝑅2 𝑅3

Figure 6: Reference images used in our ex-
periments. The top row corresponds to the
Nudity task, and the bottom row shows the
Church task.

We put the additional reference images in Figure 6, which
randomly downloaded from the Internet for the Nudity
and Object-Church tasks. Rorg is the main reference im-
age used in the core experiments, while R1, R2, and R3

are additional references introduced in the ablation study
to assess the robustness and generalizability of our attack.
The experimental results (Table 5) demonstrates that our
RECALL does not rely on any specific reference image.
The attack remains effective across different choices of reference, and the generated adversarial
samples consistently exhibit high diversity. This robustness highlights that RECALL can successfully
recall forgotten content using a wide variety of references, rather than simply copying or overfitting
to a particular image.

Table 5 shows the attack performance and the generated images’ diversity with attack success rate
(ASR,%) and diversity metrics (LPIPS, IS, and DINO). These results confirm that RECALL does

7It is worth noting that we exclude cases where the initial prompts alone suffice to trigger successful attacks
and consider only those instances where optimization is necessary for success.

8We omit CCE because it injects a learned placeholder token directly into the model’s text embedding by
finetuning the model via textual inversion.

9Here, the attack time equal to 0 means there no more than five given text prompt are not successfully
regenerate the target content after attacking.
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not rely on any particular reference image; across diverse reference sources, it achieves comparable
attack performance while maintaining high diversity in the successfully generated images.

*

Figure 7: Randomly sampled images generated by the unlearned image generation model under our RECALL
attack, across four representative tasks. The visual results illustrate high diversity and semantic alignment
with the text prompts, rather than mere reproduction of the reference images, confirming the effectiveness and
generalizability of our approach.

F.2 GENERATION DIVERSITY ACROSS METHODS

We assess whether RECALL recovers a broader concept manifold, rather than reproducing a
few memorized instances or performing trivial style transfer, by conducting a cross–method
diversity comparison under two unlearning pipelines (ESD, UCE) and two tasks (Nudity,
Object–Church). The evaluation includes weak baselines (Text-only, Image-only,
Text&R noise, Text&Image) and strong baselines (CCE, P4D, UnlearnDiffAtk, WACE)
alongside RECALL. Diversity is quantified with a DINO-based score. Results are shown in Fig-
ure 8.

Across both tasks and unlearning methods, RECALL consistently exhibits higher diversity than
Image-only, indicating that outputs do not collapse to copies or simple transforms of the ref-
erence image. It also surpasses Text&Image and Text&R noise, suggesting that naı̈ve multi-
modal conditioning or noisy blending is insufficient to recover a broad concept manifold. Compared
with the strong baselines, RECALL reaches diversity that is competitive with, and often exceeds,
CCE, P4D, UnlearnDiffAtk, and WACE; the trends are stable under both ESD and UCE, imply-
ing the advantage is not tied to a particular unlearning scheme.

Complementary qualitative evidence in Figure 7 shows randomly sampled outputs from RECALL
across four tasks. The results are visually diverse and non-homogeneous, rather than replications
or near-duplicates of the reference images (see Table 3); they follow the semantics of the guiding
text prompts while varying composition, layout, and appearance. Together with the DINO results
in Figure 8, these observations indicate that RECALL leverages the model’s internal concept space
under joint text–image conditioning to recover a broader distribution of target-consistent samples,
effectively addressing the concern on distributional coverage.

F.3 MODEL VERSION INDEPENDENCE

To further evaluate the generalizability of our RECALL attack across different diffusion model ver-
sions, we conduct experiments on unlearned models based on both SD 2.0 and SD 2.1 in addition
to SD 1.4. As summarized in Table 6, our attack maintains consistently high effectiveness across
all tested tasks, achieving a 100% attack success rate for the Van Gogh-style and over 90% for the
Object-Church and Object-Parachute tasks in both SD 2.0 and SD 2.1. Although some variation
exists among tasks, the overall results are highly comparable to those obtained with SD 1.4. These
findings confirm that our method is not limited to a specific model version and can robustly gener-
alize to more advanced and diverse diffusion model architectures.
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Figure 8: Diversity across methods. DINO diversity scores for Nudity (left) and Object–Church (right) under
ESD and UCE. Each category shows paired bars for ESD (blue) and UCE (orange). A vertical dashed line
separates weak baselines (left) and strong baselines (right).

Table 6: Attack Success Rate (ASR, %) on SD 2.x (UCE Unlearned) Across Four Tasks.

Method Nudity Van Gogh-style Object-Church Object-Parachute
SD 2.0 70.42 100.00 92.00 96.00
SD 2.1 68.31 100.00 94.00 98.00

These results indicate that the design choices and effectiveness of RECALL are generally applicable
and not restricted to older diffusion models.

G ABLATION STUDY

Due to space limitations, we present the ablation results for important strategies and key hyperpa-
rameters involved in the adversarial optimization process in Appendix G. Strategies include noise
initialization and periodic interval for injecting the reference latent zref into the adversarial latent
zadv; hyperparameters include the step size (η) and the initial blending factor (λ).

G.1 EFFECT OF STEP SIZE η ON ATTACK SUCCESS RATE
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Figure 9: Step size η vs. attack success rate (ASR).

We first evaluate the influence of the step size
η on the attack success rate (ASR). As shown
in Figure 9, ASR improves as η decreases
from 0.1 to 0.001, achieving peak performance
around η = 0.001. However, when η is reduced
further, the ASR begins to drop, likely due to
insufficient gradient update magnitudes. This
trend holds consistently across both ESD and
UCE criteria, as well as across the Van Gogh
and Church datasets, indicating that η = 0.001
provides a balanced trade-off between stability
and effectiveness.

G.2 BENEFITS OF INITIAL BALANCING ON ASR, SEMANTIC ALIGNMENT, AND EFFICIENCY

We study how the initial balancing factor λ, i.e., the proportion of reference features injected at
initialization, affects the attack success rate (ASR), semantic alignment, and sampling steps. We
sweep λ ∈ [0.00, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50] and report results in Figure 10.

In Figure 10(a), ASR increases with λ and plateaus for λ ≳ 0.30. By contrast, the CLIP-based
semantic alignment peaks near λ ≈ 0.25 and then degrades as λ grows, indicating that overly large
injections bias the trajectory toward the reference branch and weaken text-conditioned alignment.
Figure 10(b) further shows that moderate initialization (λ ≈ 0.20−0.30) reduces the time con-
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sumption of attack required to succeed, yielding faster attacks without sacrificing semantic fidelity.

Overall, these trends delineate a practical trade space: larger λ strengthens attack ability but can
erode semantic consistency, whereas too small λ slows convergence. An initial balancing factor
around λ = 0.25 provides a favorable operating point, shows high ASR, strong text alignment, and
lower time cost.
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Figure 10: Ablation study of key hyperparameters: (a) effect of initial balancing factor λ on ASR and semantic
alignment (CLIP Score); (b) effect of initial balancing factor λ on ASR and the needs of sampling step during
the attacking.

G.3 IMPACT OF SAMPLING SCHEDULER AND NUMBER OF STEPS

We examine how the sampling scheduler and the number of diffusion steps affect RECALL’s perfor-
mance. Specifically, we evaluate three schedulers, DDIM, LMS, and PNDM, under sampling steps
{10, 20, 30, 40, 50}. Results are summarized in Figure 11.

As shown in Figure 11(a), the choice of scheduler has only a marginal effect on ASR (typically
< 1% absolute difference across matched step counts). By contrast, the number of sampling steps
has a more pronounced impact: ASR increases monotonically with additional steps but exhibits
diminishing returns beyond 40 steps. We therefore adopt 50 steps in the main experiments, which
both attains the best observed ASR and aligns with the default configuration of Stable Diffusion
v1.4, and facilitating fair comparison with prior work.

Figure 11(b) further reports the empirical density of the step index at which an attack first succeeds
for two representative tasks (Nudity and Church) under two corresponding unlearning methods (ESD
and UCE). The distributions concentrate on early steps, indicating that most successful attacks com-
plete well before the final step budget. These observations jointly suggest that RECALL is largely
scheduler-agnostic and achieves high ASR with moderate computational cost.

G.4 EFFECT OF PERIODIC INTEGRATION

To assess the benefit of periodically integrating the reference latent zref into the adversarial
latent zadv, we study two key hyperparameters of periodic integration under two unlearned
models (ESD, UCE) and two representative tasks (Nudity, Church). Specifically, we sweep
the integration interval epochinterval ∈ {1, 2, 4, 5, 10, 20} and the regularization coefficient γ ∈
[0, , 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40]. Results are shown in Figure 12.

From Figure 12(a), moderate intervals (2–5) consistently yield high ASR while keeping the re-
quired sampling steps low; very small intervals (1) can over-bias the trajectory toward the reference
branch in some settings, whereas very large intervals (≥ 10) generally reduce ASR and increase
step cost. From Figure 12(b), small-to-moderate regularization (γ ≈ 0.05–0.20) attains the best
ASR; larger γ gradually trades ASR for slightly higher DINO-based diversity, revealing a natural
diversity–attack ability trade-off. Balancing effectiveness and efficiency across tasks and models,
we adopt epochinterval = 5 and γ = 0.05 in the main experiments.
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Figure 11: Ablation of sampling scheduler and number of steps. Panel (a) compares DDIM, LMS, and PNDM
across step counts {10, 20, 30, 40, 50}. Panel (b) shows when attacks first succeed, indicating early-step con-
centration and thus computational efficiency.
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Figure 12: Ablation of periodic integration.

G.5 SENSITIVITY TO REFERENCE ALIGNMENT

We quantify how reference–image alignment influences attack performance. We add references
from ImageNet and the open web that vary in semantic alignment to the nudity target: (i) matched
(Rorg); (ii) partially aligned (Bikini man, Bikini woman); and (iii) misaligned (Clothed, Bird); see
Figure 13. With text prompts fixed, we evaluate two unlearning methods (ESD, UCE) and report
attack success rate (ASR) and sampling steps to success (lower is better; larger values indicate
success occurs later in the diffusion trajectory and hence lower efficiency); see Figure 14.

Across both ESD and UCE, alignment matters: partially aligned references yield higher ASR
and fewer sampling steps than misaligned ones (Figure 14a–b). Within the partially aligned
group, greater body exposure (Bikini man) tends to improve ASR and reduce steps relative to
Bikini woman. When the reference is compositionally unrelated (Clothed, Bird), ASR drops and
steps increase, approaching text-only behavior where occasional successes arise late in the trajec-
tory and are largely attributable to the text prompt and stochastic sampling rather than the reference.

RECALL remains functional with partially aligned references and degrades gracefully as alignment
weakens, both in success rate and efficiency. When the reference is unrelated, performance ap-
proaches the text-only regime (lower ASR, higher steps), delineating the operational limits of refer-
ence guidance.

H CONVERGENCE OF THE LATENT OPTIMIZATION

We briefly discuss the convergence behaviour of the inner-loop latent optimization in RECALL.
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𝑅𝑜𝑟𝑔 Bikini_man Bikini_woman Clothed Bird

Figure 13: Reference-image cases for the nudity task. From left to right: matched reference Rorg; partially
aligned references Bikini man and Bikini woman; misaligned references Clothed and Bird. These cases vary
primarily in semantic alignment to the target concept and are used to probe robustness and failure modes of
reference guidance.
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Figure 14: Sensitivity to reference alignment. Bars report ASR (left axis) and mean sampling steps to suc-
cess (right axis) for five reference conditions: Rorg (matched), Bikini man, Bikini woman (partially aligned),
Clothed, and Bird (misaligned). Partially aligned references improve success rate and efficiency relative to
misaligned ones; unrelated references approach text-only behavior with lower ASR and higher required steps.

Fix a diffusion step t, a text embedding ht = Et(Ptext), and a reference latent zref . Recall that
Eq. (10) defines the adversarial objective

Ladv(z) =
∥∥Fθ(z, t, ht)− Fθ(zref , t, ht)

∥∥2
2
, (12)

where Fθ is the U-Net denoiser of the unlearned diffusion model and the norm is the squared ℓ2
distance between the predicted noise of the current latent z and the reference latent zref .

In the implementation, we update zadv using a momentum-based, sign-normalized step
(Eqs. (8)–(9)):

vi = βvi−1 +
∇zadvLadv

∥∇zadvLadv∥1 + ω
, zadv ← zadv + η sign(vi),

together with periodic blending with the reference latent zref . For theoretical analysis, we consider
the following simplified projected gradient update:

zk+1 = ΠB
(
zk − η∇Ladv(zk)

)
, (13)

where ΠB denotes projection onto a closed ball B = {z : ∥z∥2 ≤ R} in the latent space. Intuitively,
B captures that the VAE latents corresponding to natural images live in a bounded region, and
Eq. (13) abstracts our practical update by replacing the normalized momentum direction in Eq. (8)
with the exact gradient direction.

Assumptions. We make the following standard assumptions on Ladv restricted to B:

(A1) (Smoothness) Ladv is differentiable and its gradient is L-Lipschitz on B, i.e., for all z, z′ ∈
B, ∥∇Ladv(z)−∇Ladv(z

′)∥2 ≤ L∥z − z′∥2.

(A2) (Lower boundedness) Ladv(z) ≥ Lmin for all z ∈ B. This holds because Ladv is a squared
norm.
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Assumption (A1) follows from the local Lipschitz continuity of the U-Net Fθ with respect to z on
bounded sets, while (A2) follows from the definition of Ladv.

Proposition 1. Under assumptions (A1)–(A2), if the step size η is chosen sufficiently small (for
instance η ≤ 1/L), then the projected gradient update in Eq. (13) generates a sequence {zk}k≥0

such that:

1. the objective values {Ladv(zk)} are non-increasing; in particular, Ladv(zk+1) ≤ Ladv(zk)
for all k;

2. every accumulation point z⋆ of {zk} is a first-order stationary point of Ladv on B, i.e., the
projected gradient vanishes at z⋆.

Proof sketch. The proof follows standard analyses of projected gradient descent for smooth non-
convex objectives. Using the L-Lipschitz continuity of∇Ladv, one can bound the decrease of Ladv in
one step of Eq. (13) and show that, for sufficiently small η, the descent induced by the gradient term
dominates the higher-order term, which yields monotone decrease of Ladv. Summing over iterations
and using the lower boundedness in (A2) implies that the sum of squared projected gradient norms
is finite, which in turn implies that the projected gradient must vanish along a subsequence. We
refer the reader to classical results on the convergence of projected gradient methods for smooth
non-convex optimization for full details.

Empirical consistency. Our empirical ablations on the step size η and the initialization blending
factor λ (Appendix G.1-G.2, Figures 9-10) are consistent with this picture: ASR improves as η
decreases from 0.1 to 0.001 and peaks near η = 0.001, while both much larger and much smaller
values of η lead to degraded ASR. This behaviour matches the usual trade-off predicted by standard
projected gradient analyses between overly aggressive steps (which harm effectiveness) and overly
conservative steps (which lead to insufficient progress per iteration).
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Table 7: Details of generating images under different attacks for MACE and RECE across different unlearning
tasks.

Task Nudity Van Gogh-style Object-Church Object-Parachute
Seed 2539888290 2804 16990 90511
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