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ABSTRACT

Recent advances in diffusion-based image generation models (IGMs), such as Sta-
ble Diffusion (SD), have substantially improved the quality and diversity of Al-
generated content. However, these models also pose ethical, legal, and societal
risks, including the generation of harmful, misleading, or copyright-infringing
material. Machine unlearning (MU) has emerged as a promising mitigation by
selectively removing undesirable concepts from pretrained models, yet the robust-
ness of existing methods, particularly under multi-modal adversarial inputs, re-
mains insufficiently explored. To address this gap, we propose RECALL, a multi-
modal adversarial framework for systematically evaluating and compromising the
robustness of unlearned IGMs. Unlike prior approaches that primarily optimize
adversarial text prompts, RECALL exploits the native multi-modal conditioning of
diffusion models by efficiently optimizing adversarial image prompts guided by
a single semantically relevant reference image. Extensive experiments across ten
state-of-the-art unlearning methods and diverse representative tasks show that RE-
CALL consistently surpasses existing baselines in adversarial effectiveness, com-
putational efficiency, and semantic fidelity to the original prompt. These results
reveal critical vulnerabilities in current unlearning pipelines and underscore the
need for more robust, verifiable unlearning mechanisms. More than just an attack,
RECALL also serves as an auditing tool for model owners and unlearning practi-
tioners, enabling systematic robustness evaluation. Code and data are available at
https://anonymous.4open.science/r/RECALL.

Warning: This paper contains visual content that may include explicit or sen-
sitive material, which some readers may find disturbing or offensive.

1 INTRODUCTION

The emergence of image generation models (IGMs), such as Stable Diffusion (Rombach et al.,
2022a), has greatly advanced the quality and diversity of Al-generated visual content. IGMs are
now widely used in digital art, multimedia creation, and visual storytelling (Chen et al., 2024; Zhang
et al., 2024b). However, their rapid adoption also raises serious ethical and legal concerns, particu-
larly regarding the misuse of these models to generate harmful, misleading, or infringing content (Qu
et al., 2023; Schramowski et al., 2023). Consequently, ensuring robust safety and trustworthiness
mechanisms within these generative frameworks has emerged as an urgent imperative.

Among different lines of efforts, machine unlearning (MU) has recently gained growing promi-
nence (Zhang et al., 2024c; Park et al., 2024; Li et al., 2024b). It aims to remove sensitive concepts
(e.g., nudity, violence, and copyrighted materials) from the IGMs, prohibiting the generation of sen-
sitive or problematic content while maintaining the model’s general capability of producing benign
and high-quality outputs (Schramowski et al., 2023; Kumari et al., 2023; Gandikota et al., 2024).
Recent IGM unlearning (IGMU) methods utilize diverse strategies, including fine-tuning (Gandikota
etal., 2023; Zhang et al., 2024a), targeted concept removal (Gandikota et al., 2024; Gong et al., 2024;
Orgad et al., 2023), negative prompting (Schramowski et al., 2023), and adversarial filtering (Zhang
et al., 2024c; Gong et al., 2024; Wu et al., 2025). They have proven effective in safety protection of
contemporary IGMs, enforcing compliance with ethical guidelines and legal standards.
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Despite the rapid progress in this field, the practical robustness of these techniques is challenged,
especially under adversarial scenarios. Recent studies have revealed that unlearned IGMs are still
vulnerable: carefully optimized prompts can successfully circumvent safety mechanisms, prompt-
ing the unlearned models to regenerate prohibited content (Zhang et al., 2024d; Tsai et al., 2024).
However, these attack methods mainly focus on perturbing the textual modality and suffer from the
following critical limitations. @ Modifying textual inputs can disrupt the semantic alignment be-
tween the generated images and original prompts; @ Many approaches rely on external classifiers
or additional diffusion models for adversarial text prompt optimization, incurring substantial com-
putational overhead; ® Their effectiveness sharply declines against robust, adversarially-enhanced
unlearning methods, e.g., AdvUnlearn (Zhang et al., 2024c), RECE (Gong et al., 2024); @ Crucially,
these methods overlook the inherent multi-modal conditioning capabilities (e.g., simultaneous tex-
tual and image) of IGMs, thus missing a critical dimension of potential vulnerability.

To address these limitations, we propose RECALL, a
Ptei
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IGMU solutions. Figure 1 illustrates the attack scenar- ™
ios. First, unlike previous attacks that focus solely on Nudity Nudity
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to attack the unlearned model, ensuring strong semantic
alignment between the generated images and correspond-
ing textual descriptions. Second, RECALL performs the
attack within the unlearned model and optimizes the la-
tent representation of the adversarial image prompt, elim- Figure 1: Given an assumed successfully
inating the reliance on additional components and sig- yplearned IGM G, our adversarial im-
nificantly enhancing computational efficiency. Further- age prompt p;g;; combined with the orig-
more, by introducing adversarial perturbations directly inal sensitive text prompt Pier: as multi-
within the image modality, RECALL effectively exposes modal guidance can circumvent the unlearn-
hidden vulnerabilities in adversarially enhanced unlearn- ing mechanism, leading to the reappearance
ing methods, revealing their susceptibility to image-based ~©f removed content I™. Sensitive parts are
attacks that prior text-based adversarial techniques may covered by

overlook. Finally, RECALL fully exploits the inherent multi-modal guidance capabilities of IGMs,
enabling the comprehensive identification of critical vulnerabilities across diverse scenarios before
real-world deployment.

Extensive empirical results conducted on ten state-of-the-art IGMU methods across four represen-
tative unlearning scenarios demonstrate that RECALL consistently surpasses prior approaches in
terms of adversarial effectiveness, computational efficiency, and semantic fidelity. Beyond demon-
strating strong attack performance, these findings reveal critical vulnerabilities in current unlearning
pipelines, underscoring their susceptibility to multi-modal guided adversarial inputs and the urgent
need for more robust and verifiable unlearning mechanisms in IGMs. From the perspective of model
owners, RECALL can also serve as an efficient robustness auditing tool to assess the effectiveness of
their unlearning procedures. Our key contributions are as follows:

* We propose RECALL, the first multi-modal guided attack framework to break the robustness of
IGMU techniques, allowing the protected model to regenerate unlearned sensitive concepts with
high semantic fidelity.

* RECALL introduces a highly efficient optimization strategy that operates solely within the un-
learned model by utilizing only a single reference image, eliminating the need for auxiliary clas-
sifiers, original diffusion models, or external semantic guidance required by previous attacks.

» Through comprehensive experiments covering ten representative IGMU techniques across four di-
verse tasks, we empirically demonstrate the vulnerabilities of existing unlearning solutions under
multi-modal attacks, revealing the urgent need for more robust safety unlearning.

2 RELATED WORK

Image Generation Models (IGMs). Diffusion-based IGMs, such as Stable Diffusion (SD) (Rom-
bach et al., 2022b), DALL-E (OpenAl, 2023), and Imagen (Saharia et al., 2022), have achieved im-
pressive progress in synthesizing diverse, high-fidelity images. These models leverage large-scale
datasets (e.g., LAION-5B (Schuhmann et al., 2022)) and integrate components including pre-trained
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text encoders (e.g., CLIP (Radford et al., 2021)), U-Net denoisers, and VAE decoders, enabling pre-
cise semantic alignment between prompts and images for a wide range of applications.

Unlearning in Image Generation Models. The proliferation of IGMs has led to increasing con-
cerns about the generation of harmful or copyrighted content (Qu et al., 2023; Liu et al., 2025).
Machine unlearning (MU) methods have been developed to selectively remove undesirable concepts
from pretrained models (Kumari et al., 2023; Fan et al., 2024) while preserving overall generative
capabilities. Existing IGM unlearning (IGMU) approaches can be broadly categorized as: (i) Fine-
tuning-based, which update model parameters to forget specific concepts (e.g., ESD (Gandikota
et al., 2023), UCE (Gandikota et al., 2024)); (ii) Guidance-based, which constrain generation
at inference without modifying model weights (e.g., SLD (Schramowski et al., 2023)); and (iii)
Regularization-based, which introduce forgetting objectives during training (e.g., Receler (Huang
et al., 2024), FMN (Zhang et al., 2024a)). Despite their successes, these methods often exhibit
limited robustness and generalization.

Adversarial Attacks on IGMU. Recent works demonstrate that adversarial prompts can circum-
vent IGMU defenses and recover restricted content (Li et al., 2024a; Chin et al., 2024a; Zhang et al.,
2024d). White-box methods such as P4D (Chin et al., 2024a) and UnlearnDiffAtk (Zhang et al.,
2024d) optimize text prompts but may suffer from high computational overhead and reduced se-
mantic alignment, CCE (Pham et al., 2024) learns a single placeholder via textual inversion on the
erased model and substitutes it at inference to recover restricted concepts, while WACE (Lu et al.,
2025) regenerates forgotten content via a noise-based probe. The black-box and transfer-based ap-
proaches (Han et al., 2024; Tsai et al., 2024; Dang et al., 2025; Ma et al., 2025; Chin et al., 2024b)
rely on surrogate models or textual perturbations, sometimes requiring external classifiers or ac-
cess to the original diffusion model. These approaches are less effective against stronger unlearning
defenses (e.g., AdvUnlearn (Zhang et al., 2024c¢), Receler (Huang et al., 2024)) and remain compu-
tationally intensive.

Therefore, effective attack strategies should efficiently recover restricted content, preserve prompt-
image semantic coherence, and exploit vulnerabilities beyond text perturbations. To this end, we
propose RECALL, a multi-modal adversarial framework that leverages adversarial image prompts
alongside unmodified text inputs, enabling effective attacks on unlearned models via multi-modal
guidance. Our method requires neither external classifiers nor access to the original IGM, making it
both lightweight and effective.

3 PRELIMINARY

3.1 IMAGE GENERATION MODEL UNLEARNING

Given a pretrained IGM G over a concept space C, Image Generation Model Unlearning (IGMU)
aims to selectively remove the model’s ability to generate content associated with a sensitive con-
cept subset C' C C, while preserving generative quality for the remaining concepts. Formally, an
unlearning algorithm A,, produces a modified model G, = A, (G,C’). The unlearning objectives
are twofold:

¢ Forgetting: For all ¢ € (', the model should no longer generate content related to c:
gu(Ptext) N g(Ptea:t) = (Z)
* Preservation: For all ¢ € C \ (', the generative performance should be retained:

sim(gu(Ptezt), g(Ptm)) > o, where sim(-,-) denotes a perceptual similarity metric (e.g.,
CLIP score or LPIPS), and ¢ is a predefined threshold.

In this work, we focus on unlearning methods and evaluation within the multi-modal, diffusion-
based IGM setting, with SD as a representative backbone.

3.2 THREAT MODEL

We consider an adversary seeking to deliberately regenerate erased content from a concept-
unlearned, multi-modal (text+image) IGM. The adversary requires white-box access and the ability
to invoke the model’s native multi-modal-conditioning pathway. This setting primarily targets (i)
attacks: it is realistic because many applications deploy open or publicly available Stable Diffusion
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variants and is consistent with prior white-box threat models (Chin et al., 2024a; Pham et al., 2024;
Zhang et al., 2024d). The same setup also supports (ii) unlearning red-teaming by model owners
or auditors as a pre-deployment robustness assessment to locate weaknesses and guide verifiable
mitigation.

3.3 PROBLEM FORMULATION

We introduce a new attack strategy that optimizes image prompts by leveraging multi-modal guid-
ance, which is natively supported by Stable Diffusion (Rombach et al., 2022a), to bypass unlearning
mechanisms and regenerate erased content.

Given an unlearned image generation model (IGM) G, that has been updated to suppress content
associated with target concept ¢, a text prompt P, containing c, and an image P, relevant to
the concept ¢, we aim to find an adversarial image input PZ-‘;‘?LZ such that, when paired with Py, the
unlearned IGM G,, generates image I™* related to c:

I* = Gu(PM Pryy), st I"=1T]|ec, (1)

mg>

where I | ¢ denotes images that explicitly contains the target concept c; these images can come from
the original model G with the same text prompt Py or from any other source.

The adversarial image prompt Pﬂ,‘f; is obtained by solving:

Pﬁgz = arg glin Ladw (gu(ﬂmm Ptegct)v I) > 2

where L4, is an adversarial loss function.

Unlike prior attacks that modify the text prompt Py, we optimize P, , while keeping P;ezs un-
changed, thus preserving the semantic intent. The optimization follows a gradient-based approach:

Pﬁg; — Pimg —-n- VPimg»cadv (gu(szga Ptemt)v I)v (3)

where 7 is the step size. This process enables the adversarial image prompt P{jﬁg, together with
Pjeqt, to exploit vulnerabilities in the unlearned model and recover the erased content while main-

taining semantic alignment with the text prompt.

4 METHODOLOGY

4.1 OVERVIEW

We propose RECALL, a multi-modal adversarial framework targeting unlearned IGMs. Unlike con-
ventional text-only attacks, RECALL jointly optimizes adversarial image prompt by leveraging a
reference image P,y as guidance. As illustrated in Figure 2, RECALL comprises three stages: (1)
Latent Encoding: The reference image P,y and a noise-injected initial prompt are encoded into la-
tent representations. (2) Iterative Latent Optimization: The adversarial latent is iteratively refined
under the guidance of the reference latent by minimizing the discrepancy between their predicted
noise residuals. (3) Multi-modal Attack: The optimized latent is decoded to an adversarial image,
which, paired with the text prompt, forms a multi-modal input to the unlearned IGM, enabling ef-
fective recovery of the erased target concept. Details of each stage are described in the following
sections, and the overall pipeline is summarized in Algorithm 1 (Appendix B).

4.2 IMAGE ENCODING

To avoid incurring additional computational overhead from external classifiers or relying on the
original IGM, we introduce a reference image P,.; containing the target concept c to guide the
generation process, where the reference image P,y can be sourced from multiple sources, such
the internet, public datasets, or self-collected. This reference implicitly embeds the erased concept,
thereby facilitating adversarial optimization of the initial image prompt Pfffg. To enhance efficiency
and precision, RECALL performs the optimization directly in the latent space representation z,q, of

the image prompt.
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Figure 2: Overview of RECALL. Given a reference image P,y that depicts the erased concept and a heavily
noised initial image prompt P\, we iteratively optimize the latent zqq, (initialized from P}7%) to align
with the reference latent z,.; under the same text condition. After optimization, 2.4, is decoded into an
adversarial image P;:;f;, which is then paired with the original text prompt and fed into the unlearned model,
enabling recovery of the erased concept, thereby exposing vulnerabilities of current unlearning mechanisms

under multi-modal guidance.

As illustrated in Figure 2, we initialize P/""* by blending a small portion of the reference image

img
P,y with random noise ¢ sampled from an isotropic Gaussian distribution N'(0, I):
P e N Prep+ (1= A) -0, 6 ~N(0,1), )

where A\ € [0, 1] is a hyperparameter controlling the semantic similarity to the reference image. We
set A = 0.25 throughout our experiments. This approach increases the sampling space of Stable
Diffusion and further enhances the diversity of the generated images, while simultaneously encour-
aging the generation process to better follow the guidance of the text prompt, thereby improving
semantic consistency.

To accelerate optimization, both P;ﬁ; and P,y are encoded into the latent space using the image
encoder &; from the unlearned model, yielding:

2 = &P, zpop = Ei(Prey), )

img

where z; is used as the initial adversarial latent zq4,, and z..y serves as the fixed reference guiding
the optimization process.

4.3 ITERATIVE LATENT OPTIMIZATION

We iteratively optimize the adversarial latent as below.

Generation of Latent z;. Unlike standard latent diffusion, which typically initializes from a ran-
domly sampled latent, RECALL generates the noisy latent at timestep ¢ as:

=V z+vV1—ae, e~N(0,I), 6)

where z denotes either the reference latent z,.. s or the adversarial latent z,4,. The cumulative noise
schedule &; determines the relative contribution of signal and noise.

To accelerate optimization, each z; corresponds to a single denoising step from a fixed DDIM (Song
et al., 2021) sampling schedule of 50 steps (¢ = T" — 0). At each step, we apply one backward
denoising pass to simulate efficient adversarial guidance. We adopt an early stopping mechanism:
the attack halts as soon as the target content reappears; It fails if no target content is observed after
all steps are exhausted.

Optimization under Multi-Modal Guidance. For each noisy latent 2, the diffusion model pre-
dicts the corresponding noise component using a U-Net Fy, conditioned on the textual embedding
h¢ from the encoding text prompt P, by the text encoder &; (i.e., hy = E;(Prest)). The predicted
noise of reference image €.y and adversarial image €,4, can be derived as:

€ref = Fo(2(ref,ty> 6 ht); €ado = Fo(2{adv,t}»ts It)- @)
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The discrepancy between two noise predictions forms the basis of the adversarial objective function.

As discussed previously, our attack explicitly targets the latent representation 2,4, of the adversar-
ial image prompt Pg{fz, aiming to efficiently induce the unlearned IGM model to regenerate the
previously unlearned content. Specifically, at each diffusion timestep ¢, we iteratively refine the
adversarial latent representation z,4, using a gradient-based optimization procedure guided by the
adversarial loss L,q4,. To enhance stability and facilitate convergence, we incorporate momentum-
based gradient normalization into our optimization scheme (Dong et al., 2018). Specifically, we

iteratively update the latent adversarial variable 2,4, over N epochs according to:

vzadv Eadv
IV 20a0 Ladolln +w

where 7 denotes the step size, v; is the momentum-updated gradient direction at iteration ¢, and 5 =
0.9 represents the momentum factor. The term V_, L,q, refers to the gradient of the adversarial
loss L,4, With respect to the adversarial latent z,4,,, normalized by its L;-norm for gradient scale
invariance, and w = le—8 is a small constant for numerical stability. Furthermore, in practical
implementations, we periodically integrate a small portion of the reference latent z,..¢ back into
Zadv, thereby reinforcing semantic consistency between 2,4, and z,. s during the optimization:

v =0 vi_1+ ) Zadv < Zadv + 1 - sign(v;), 8

Zadv < (1 - ’Y)zadv + v Zref, &)

where + is a small regularization parameter and set to 0.05 in our optimization.

Objective Function. The adversarial objective function £, explicitly quantifies the discrepancy
between noise predictions generated from the adversarial latent €,4,, and reference latent €.y with
U-Net at step ¢, respectively:

Lads = M(Egres iy €aduty) = 1{res.ey — Efadvty |3, (10)

where M denotes a similarity measurement. In this work, we employ the mean squared error (MSE).

Adversarial Image Reconstruction. After optimization, the refined adversarial latent z, 4, is sub-
sequently decoded into the image space through the image decoder D; of the unlearned SD model
to generate the final adversarial image used for the attack: Pﬁff; = Di(Zadw)-

4.4 MULTI-MODAL ATTACK

Once the adversarial image P{i{f; is obtained, we leverage the multi-modal conditioning mechanism
of the unlearned model G, to generate images containing the forgotten content and semantically
aligned with the text prompt P;.,;. The final image generation process integrates both the optimized
adversarial image prompt and the original text prompt in a multi-modal manner:

I" = Gu(Piy, Preat), (an

img>
where I* is the final generated image.
Our method systematically exposes the inherent weaknesses in current concept unlearning tech-

niques: by utilizing both adversarial image optimization and textual conditioning, the unlearned
information can still be reconstructed.

5 EXPERIMENTS

We conduct extensive experiments involving TEN SOTA unlearning techniques across four rep-
resentative unlearning tasks: Nudity, Van Gogh-style, Object-Church, and Object-Parachute, thus
yield a total of forty unlearned IGMs. Our objective is to systematically validate the effectiveness
and generalization of our proposed multi-modal guided attack RECALL against different scenarios.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on three nudity unlearning datasets (I2P (Schramowski et al., 2023),
MMA (Yang et al., 2024), and ART (Li et al., 2024a)). For the remaining targets, such as Van
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Table 1: Attack comparisons against unlearned IGMs in six dataset for four representative unlearning tasks.

Task Method ESD FMN SPM AdvUnlearsn MACE RECE DoCo UCE Receler ConceptPrune Avg. ASR
Text-only 10.56  66.90 3239 1.41 3.52 7.04 3099 845 8.45 73.24 24.30
Image-only 0.00 1831 12.68 4.23 563 1408 352 1197 634 13.38 9.01

g Text & Rmoise  0.70  29.58  14.08 0.70 3.52 141 1479 282 0.70 36.62 10.49
g Text&Image 1338 5915 4225 704 1056 1479 4014 1761 2042 5211 2774
S P4DK 5141 8028  76.76 6.34 40.14 3592 7746 5634  40.14 77.46 54.22
> P4D-N 62.68 88.73  76.76 2.82 3239 5211 80.28 5493 3592 89.44 57.61
CCE 59.15 8521 64.08 37.32 5775 2676 3028 40.14 2042 83.10 50.42
UnlearnDiffAtk  51.41  92.25  88.03 8.45 47.18 40.85 87.32 7042 55.63 97.18 63.87
WACE-N 30.28 80.99 61.27 423 2042 1549 5845 2817 2324 80.28 40.28
WACE-C 5141 8944 7958 25.35 46.48 2887 71.83 4296 4648 88.03 57.04
RECALL 71.83 100.00 96.48 60.56 71.83 59.86 9225 76.76 78.87 99.30 80.77
Text-only 1.56  46.88 32.03 0.00 0.00 1328 2734 2422 14.06 53.12 21.25
Text & Rmnoise  0.00  20.31 17.19 0.00 0.00 469 2188 1484  1.56 42.19 12.27
< Text & Image 859 7891 59.38 0.00 234 3750 6250 4453 4375 80.47 41.80
S PAD-K 35690 6250 7688 843 ~ 49354 3750 8531 80.62 7969 8965 6270
= P4DN 62.50 7437 78.44 10.64 53.67 51.25 8844 9141 8594 98.44 69.51
g CCE 35.16  89.84 7891 3.12 5547 46.88 54.69 5859  36.72 97.66 55.70
3 UnlearnDiffAtk  40.62 100.00 99.22 23.78 3359 89.06 98.44 9531 8594 99.22 76.52
WACE-N 28.12  86.72 75.78 7.03 1.56  46.09 68.75 49.22 52.34 86.72 50.23
WACE-C 61.72 92.19 8281 49.22 1328 57.03 8047 7031 7031 85.16 66.25
RECALL 75.78 100.00 97.66 82.81 53.12 89.84 94.53 9297  96.09 99.22 88.20
Text-only 000 1172 234 0.00 0.00 0.00 312 078 2.34 7.03 2.73
Text & Rmoise  0.00  35.16 17.19 0.00 0.00 0.00 4.69 0.78 0.00 17.19 7.50
. Tou&lmage 078 1484 1328 _ 078 156156 460 234 460 1250 570
x P4D-K 873  66.67 57.63 2.86 3145 2849 4387 4183 1250 56.25 35.03
T  P4D-N 1250 62.86 62.81 3.98 2469 32.81 4844 4562 21.88 53.12 36.87
§ CCE 2031 5391 28.12 28.12 21.88  3.12 312 1318  6.25 42.97 22.10
2 UnlearnDiffAtk 3125 76.56 66.41 0.78 17.19  21.09 7647 39.06 35.16 75.78 43.98
WACE-N 7.81 4844 2656 0.78 2.34 469 21.09 7.03 7.81 37.50 16.41
WACE-C 2031 57.81 34.38 5.47 8.59 4.69 3359 1094 14.84 47.66 23.83
RECALL 62.50 91.29 81.25 32.03 4375 3299 98.12 5234 7031 89.84 65.44
Text-only 26.00 50.00 82.00 24.00 72.00 7400 52.00 98.00 20.00 98.00 59.60
2 Image-only 0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
‘S Text & Rmnoise  8.00  14.00 18.00 12.00 16.00 28.00 38.00 38.00 10.00 80.00 26.20
=  Text & Image 10.00 18.00 42.00 10.00 2400 32.00 42.00 74.00 24.00 96.00 37.20
§ P4D-K™ " " 75600 " 7200  90.00  ~ 86.00° ~ 82.00 100.00 62.00 9400 ~62.00 ~ 9800 =~ 80.20
5 P4D-N 88.00 88.00 100.00 86.00 96.00 98.00 90.00 100.00 74.00 100.00 92.00
= CCE 78.00  66.00 100.00 86.00 94.00 88.00 46.00 98.00 16.00 100.00 77.20
UnlearnDiffAtk  96.00 100.00 100.00 84.00 100.00 100.00 100.00 100.00 92.00 100.00 97.20
WACE-N 28.00 36.00 80.00 12.00 70.00 58.00 80.00 90.00  10.00 96.00 56.00
WACE-C 14.00 34.00 86.00 8.00 28.00 50.00 72.00 83.00 4.00 96.00 48.00
RECALL 92.00 100.00 100.00 92.00 100.00 100.00 98.00 100.00 92.00 100.00 97.40
Text-only 16.00 52.00 44.00 0.00 4.00 4.00 4400  6.00 2.00 92.00 26.40
< Image-only 4.00 18.00 20.00 8.00 16.00 18.00 12.00 20.00 16.00 20.00 15.20
;s Text & Rmoise  0.00  32.00 22.00 0.00 0.00 2.00 32.00 2.00 0.00 46.00 13.60
O Text & Image 46.00 66.00 66.00 4.00 10.00 400 60.00 8.00 2.00 80.00 34.60
§ "PAD-KT T ¢ 6.00 ~ 56.00 48.00 ~ 0.00 ~ 200 28.00 86.00 24.00 20.00 ~ 88.00 ~ 3580
S P4D-N 58.00 90.00 86.00 14.00 48.00 12.00 92.00 10.00 14.00 74.00 49.80
S CCE 54.00 92.00 76.00 58.00 60.00 12.00 58.00 46.00 26.00 76.00 55.80
UnlearnDiffAtk  70.00 96.00 94.00 4.00 3200 52.00 100.00 66.00 10.00 100.00 62.40
WACE-N 48.00 66.00 60.00 2.00 4.00 6.00  68.00 6.00 2.00 74.00 33.60
WACE-C 58.00 76.00 74.00 8.00 6.00 10.00 80.00 16.00  0.00 86.00 41.40
RECALL 96.00 100.00 98.00 62.00 50.00 46.00 98.00 68.00 20.00 98.00 73.40
o  Text-only 4.00 54.00 24.00 4.00 2.00 2.00 8.00 2.00 2.00 88.00 19.00
S Image-only 20.00 92.00 96.00 88.00 92.00 86.00 96.00 90.00 88.00 84.00 83.20
f“g Text & Rnoise  4.00  48.00 22.00 2.00 4.00 0.00 10.00 2.00 2.00 60.00 15.40
5 Tex&lmage 9400 9800 8800 _ 5200 _ 7200 4800 5000 60.00 3200 _ 9800 6920
~ P4D-K 6.00  40.00 24.00 2.00 400 14.00 72.00 18.00 20.00 96.00 29.60
§ P4D-N 36.00 82.00 70.00 8.00 22.00 12.00 52.00 14.00 2.00 84.00 38.20
8 CCE 74.00  92.00 72.00 48.00 54.00 34.00 52.00 52.00 38.00 88.00 60.40
UnlearnDiffAtk  56.00 100.00 94.00 14.00 36.00 34.00 92.00 42.00 30.00 100.00 59.80
WACE-N 30.00 84.00 46.00 10.00 10.00  6.00 26.00 4.00 6.00 88.00 31.00
WACE-C 56.00 84.00 60.00 6.00 16.00  8.00 32.00 22.00 14.00 90.00 38.80
RECALL 100.00 100.00 100.00 94.00 100.00 88.00 98.00 96.00  94.00 100.00 97.00

Gogh-style, Object-Church, and Object-Parachute, we reuse the text prompts released by Unlearn-
DiffAtk to ensure protocol comparability. For methods that require a reference image, we provide
one same additional image per unlearning task. Details of all prompts and reference images are
provided in Appendix C.1, Table 3.

IGMU Methods. We evaluate our approach across ten state-of-the-art IGMU techniques:

ESD (Gandikota et al., 2023), FMN (Zhang et al., 2024a), SPM (Lyu et al., 2024), AdvUn-
learn (Zhang et al., 2024c), MACE (Lu et al., 2024), RECE (Gong et al., 2024), DoCo (Wu et al.,
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2025), Receler (Huang et al., 2024), ConceptPrune (Chavhan et al., 2025), and UCE (Gandikota
et al., 2024). Details on model weights and training configurations are provided in Appendix C.2.

Baselines. We compare our proposed RECALL against several representative attack baselines: Text-
only (text prompts only), Image-only (reference image prompt only), Text & R_noise (text with a
noised image), Text & Image (text prompt and reference image), PAD (with two variants PAD-K and
P4D-N) (Chin et al., 2024a), CCE (Pham et al., 2024), UnlearnDiffAtk (Zhang et al., 2024d), and
WACE(with two variants WACE-N and WACE-C) (Lu et al., 2025). Their detailed descriptions and
implementation can be found in Appendix C.3.

Evaluation Metrics. We assess the effectiveness of our attack using task-specific deep learning-
based detectors and classifiers, including the NudeNet detector (Praneeth, 2023), a ViT-based style
classifier (Zhang et al., 2024d), and an ImageNet-pretrained ResNet-50 (He et al., 2016). The pri-
mary metric is attack Success Rate (ASR, %) and average ASR for attack performance, average
attack time (seconds, s) for computational efficiency, and CLIP Score (Hessel et al., 2021) for quan-
tifying semantic alignment between generated images and prompts. Throughout all tables, the best
attack performance is highlighted in bold, while the second-best is indicated with underlining.

Implementation Details. The main backbone used is SD V1.4 to align with involved IGMU tech-
niques and baselines. The adversarial optimization of RECALL is performed with 50 DDIM steps
and 20 gradient iterations per step (step size n = le—3, momentum 0.9), with early stopping ap-
plied when the target content is regenerated. All experiments are conducted using PyTorch on an
8XNVIDIA H100 GPU server with a fixed random seed 2025.

5.2 ATTACK PERFORMANCE

Nudity Van Gogh Church Parachute

We comprehensively evaluate the effectiveness of RE- |

CALL against several baseline attack methods across four
representative unlearning tasks. The detailed experimen-
tal results, as summarized in Table 1, reveal several crit-
ical findings. @ Existing unlearning approaches fail to
fully erase target concepts; notably, original textual or
combined text-image prompts (reference image or ran-
domly initialized) alone achieve substantial ASRs. For in-
stance, combined text-image prompts yield an Avg. ASR
exceeds 69.20% in the Parachute task. @ All baseline at-
tack methods exhibit limited effectiveness when attacking
adversarially enhanced unlearning strategies (e.g., Ad-
vUnlearn and RECE), evidenced by their significantly
lower ASRs. @ In contrast, RECALL consistently attains
superior performance, achieving average ASRs ranging
from 73.40% to 97.40% across diverse scenarios. Specif-
ically, RECALL outperforms UnlearnDiffAtk, a strong
baseline, improving the average ASR by 16.90%, 0.20%,

11.00%, and 37.20% for four tasks. These results high-
light the robustness and efficacy of RECALL in regenerat-
ing targeted, presumably erased visual concepts.

Figure 3: Generated images under different
attacks. Rows (top to bottom): P4D, CCE,
UnlearnDiffAtk, WACE, and RECALL.

In addition, qualitative generation results on MACE in Figure 3 (Complete results in Appendix D
Table 4) and visual cases (in Appendix F.2 Figure 7) show that RECALL consistently surpasses
existing baselines in recovering erased concepts across a variety of unlearning scenarios, yielding

highly diverse outputs.

5.3 ATTACK EFFICIENCY

To assess the practical efficiency of RECALL, we com-
pare the average attack time (in seconds) needed by RE-
CALL with various baselines, a lower average attack time
indicates higher efficiency. Figure 4 reports results for
Nudity task (attack time for more tasks can be found in
Appendix E). As shown, RECALL achieves significantly
lower attack time (~64s) compared to P4AD-N (~238s),
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UnlearnDiffAtk (~232s) and WACE-C (~243.15s). This improvement stems from our efficient
multi-modal optimization directly in the latent space and these efficiency gains align with our high
attack success rates, highlighting that RECALL is both effective and computationally lightweight.
Notably, less robust unlearning methods (e.g., FMN, SPM) tend to require shorter attack durations,
further illustrating their susceptibility.

Table 2: CLIP Scores (1) among baselines and RECALL.

5.4 SEMANTIC ALIGNMENT

Task Method ESD MACE RECE UCE Receler DoCo
. _ 5 P4D 2409 2320 24.99 24.90 25.64 23.70
We assess the semantic consistency be- I CCE 19.11 19.00 19.07 19.08 19.02 19.11
tween regenerated images and their cor- & UnleamDiffAtk 29.61 23.11 29.25 29.17 29.00 3LI8
=
. . S WACE 19.19 18.77 19.83 1947 19.61 19.25
responding text prompts using the CLIP RECALL 32.13 2479 30.66 3131 31.12 3195
Score. Table 2 presents the average CLIP — 773 3166 2564 1257 1349 2181
Scores for four attack methods, P4D, & (g 1839 18.54 18.43 1836 18.58 18.40
CCE, UnlearnDiffAtk, WACE, and our = uUnleamDiffAtk 29.23 33.85 33.10 3332 21.26 22.39
proposed RECALL, evaluated across six =  WACE 1821 18.04 18.18 18.27 17.98 18.29
unlearning techniques and four aforemen- RECALL 3592 3528 34.71 3420 23.37 30.01
tioned representative unlearning tasks. g P4D 25.88 28.44 27.68 27.76 30.34 25.62
_ 3 CCE 2046 20.46 20.50 20.52 2034 20.64
As shown in Table 2, RECALL con- O UnlearnDiffAtk 27.68 27.46 27.04 28.97 30.89 29.99
sistently outperforms baseline methods, ‘I;VACE gg-gz gé-;g ;ggg 59-22 N ggg;
achieving the highest CLIP Scores across BCALL : . 36 2782 277 :
all tasks and unlearning settings. No- g g‘éDE gigg 33(7)2 7538; %(1)3 %‘2‘(1)2 %2-(3)2
tably, RECALL attains an average CLIP S UnleamDiffAtk 25.64 25.59 2573 23.37 2622 28.98
Score of 30.28, surpassing UnlearnDif- & wace 2205 21.84 21.64 2197 21.95 21.76
fAtk (28.00), P4D (25.00), CCE (20.01) RECALL 29.64 28.66 31.04 31.10 28.92 30.63

and WACE (19.89). These results indi- The original SD model achieves CLIP Scores of 31.05, 33.98,
cate that text-based methods, which per- 30.75, and 31.56 on the four tasks, respectively.

turb original prompts, often degrade semantic coherence. In contrast, our multi-modal adversarial
framework preserves the textual intent and introduces perturbations solely through the image modal-
ity, yielding superior semantic alignment.

5.5 GENERALIZABILITY

Reference Independence. We assess the robustness of RECALL to reference image selection us-
ing three additional references (R;—R3, see Appendix F.1, Figure 6). As reported in Appendix F.1,
Table 5, both attack and diversity metrics remain consistently high provided the reference is repre-
sentative, demonstrating that RECALL does not depend on any specific image.

Generation Diversity. We quantitatively compare image-only, text-only, and RECALL. As detailed
in Appendix F.2, RECALL achieves substantially greater diversity than image-only baselines and
matches the performance of text-only approaches, indicating that it recovers the original concept
distribution rather than simply transforming reference images.

Model Version Independence. We further evaluate RECALL on unlearned models based on SD 2.0
and SD 2.1, in addition to SD 1.4. As shown in Appendix F.3, RECALL consistently maintains high
effectiveness across all versions, confirming its robustness and generalizability to more advanced
diffusion architectures.

5.6 ABLATION STUDY

We conduct ablation studies to systematically evaluate the impact of key strategies and hyperparam-
eters on the performance of the RECALL framework.

Strategies. We analyze three core strategies: multi-modal guidance, noise initialization, and peri-
odic integration.

¢ Multi-modal Guidance. We compare Text-only, Image-only, Text & R_noise, Text & Image,
and our Text & Adversarial Image approaches. Results in Sections 5.2 and Appendix D show
that combining textual prompts with adversarial image optimization substantially improves
both attack performance and semantic consistency.
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* Noise Initialization. Noise initialization significantly enhances both diversity and semantic
alignment of generated images, as demonstrated by consistently higher LPIPS, IS, and CLIP
Scores across tasks (Appendix G.1, Figure 9).

* Periodic Integration. Periodically integrating z,.y into z,q, further improves attack perfor-
mance, efficiency and the diversity of generated images when attack succeeded (Appendix G.4,
Figure 12). We therefore adopt this strategy with epochipervar = 5 and v = 0.05.

Parameters. We investigate the sensitivity to two critical optimization parameters:

* Step Size (). Reducing n from 0.1 to 0.001 steadily increases ASR, with n = 0.001 yield-
ing optimal performance. Further reduction impairs effectiveness due to insufficient updates
(Appendix G.1, Figure 9).

« Initial Balancing Factor ()\). Increasing A improves ASR until saturation. Semantic alignment
(CLIP Score) peaks at A = 0.25 and then declines, at the same time, reaching a good tradeoff
between the ASR and attack time, indicating a trade-off between attack strength and semantic
consistency. We set A = 0.25 as the default (Appendix G.2, Figure 10).

6 CONCLUSION

We present RECALL, a multi-modal adversarial framework for auditing concept unlearning in multi-
modal conditioning IGMs. Distinct from previous text-based approaches, RECALL leverages adver-
sarially optimized image prompts together with the original textual inputs to induce unlearned IGMs
to recover previously erased visual concepts. Extensive experiments across ten SOTA unlearning
techniques and diverse tasks show that current pipelines remain vulnerable to multi-modal guided
adversarial inputs. Beyond functioning as an attack, RECALL provides an efficient auditing mecha-
nism for model owners with full access to verify the robustness of their unlearning procedures prior
to deployment, thereby informing the design of stronger, verifiable unlearning defenses.

Future Work. Future work will (i) extend RECALL to black-box and transfer-based settings to en-
able third-party robustness auditing without parameter access; (ii) evaluate generalizability across
broader generative architectures and training regimes; and (iii) investigate defense-aware and certi-
fiable unlearning strategies that are resilient to multi-modal adversarial threats, including extensions
to video and large multi-modal models.

10
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ETHICS STATEMENT

This work evaluates vulnerabilities in concept-unlearned diffusion models using synthetic or pub-
licly available data. We do not release explicit imagery; figures are masked where necessary. All
experiments are conducted strictly for safety auditing and research purposes. No human subjects
were involved.

REPRODUCIBILITY STATEMENT

We provide text prompts, reference images, random seeds, and hyperparameters in the anonymized
code base' and show case them in Appendix C (Table 3 and Table 7). Code and scripts will be
released in an public repository upon acceptance. We fix a global random seed of 2025 and set the
image-generation seed as required per task (e.g., the I2P dataset for Nudity task), ensuring that all
reported results are exactly reproducible from the provided configuration.
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A APPENDIX OVERVIEW

This appendix provides supplementary material omitted from the main paper due to space con-
straints. Specifically, it includes:

* Section B: Complete algorithmic procedure for the proposed RECALL framework.

* Section C: Detailed experimental setup, including datasets, unlearned IGMs, baseline
methods, and evaluation metrics.

* Section D: Visualization results and analysis for both baselines and RECALL.
* Section E: Comprehensive results on attack efficiency.

* Section F: Detailed results on the generalizability of RECALL, including reference image
independence, generation diversity, and model version independence.

* Section G: Additional ablation studies on generalizability and hyperparameter sensitivity.

* Section H: Discussion on Convergence of the Latent Optimization.

B ALGORITHM

We list the RECALL pipeline in Algorithm 1, which allows readers to re-implement our method
step-by-step.

C EXPERIMENTAL SETUP

C.1 DATASETS

We evaluate our method on four unlearning tasks: 1) Nudity, 2) Van Gogh-style, 3) Object-Church,
and 4) Object-Parachute to ensure a thorough examination of unlearned models’ vulnerabilities.
Since multi-modal image generation consumes both text and image, we first collect a reference
image with the sensitive content, note that these reference image can be soured from any place as it
contain the target content, such as generated by generative models, internet, or make it with other
tools. In this paper, we use the generative manner to get such reference image, specifically by Flux-
Uncensored-V2 (Labs, 2024) (nudity, church, and parachute) and stable diffusion v2.1 (Al, 2024)
(van Gogh) with a given text prompt for each task (as shown in Table 3), where the used text prompt
are to be used for attacking. We then adopted the text prompts used in UnlearnDiffAtk (Zhang et al.,
2024d) as the text prompts for each task, the details of these prompts are as follows:

* Nudity: The dataset for this task are 2P, MMA, and ART. Inappropriate Image Prompts
(I2P) dataset (Schramowski et al., 2023) is involved, which contains a diverse set of
prompts leading to unsafe or harmful content generation, including nudity, we use the 142
nudity related prompts filtered by UnlearnDiffAtk (Zhang et al., 2024d). MMA (Yang
et al., 2024) is 1000 adversarial optimized text prompts used to attack safe-checker of sta-
ble diffusion models. We also adopt the benign red-teaming dataset ART (Li et al., 2024a),
which is automatically collected by ART framework from the Lexica gallery and focuses
on benign prompts that still trigger harmful generations in text-to-image models. In ad-
dition to the above datasets, we also adopt the benign red-teaming benchmark introduced
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Algorithm 1 RECALL

1: Input: Reference image Py, initial image Piir‘:li;ge, text prompt Py, diffusion model G, (with
U-Net Fy, text encoder &, image encoder &;, image decoder D;), hyperparameters A, -, 1, 3,
number of DDIM steps 7', PGD iterations N
QOutput: Image I* with target content ¢
/I Adversarial image optimization; Stage I, Stage II
Pt <= A+ P+ (1= X) - 6, where § ~ N(0, 1)
Zref < gz (Pr¢f)
Zadv < gi(Pilxglctge)
ht — gt(Plexl)
v9 < 0
fort=T,T—-1,...,1do
9: Zref,t — \/Etzref + V 1- ateh €t ~ N(Oy I)
10: Zadv,t — \/O_thadv + v 1-— Qi€
11 €ref < ]:O(Zref,ta t, ht)
12: €adv < Fo (Zadv,ta i, ht)
13: ﬁadv — ”gref - éadv”%
14:  Compute V., Ladv
15: fori=1to N do

»

AN

16: v ¢ Brvio1 + V.Zadvﬁadv/(HvzudvﬁadVH1 +w)
17: Zadv < Zadv + 7 - sign(v;)

18:  end for

19:  if ¢t mod epoch,.,; = O then

20: Zadv € Zadv T Y * Zref

21:  endif

22: end for

23: Pizrlg:ge — Di(zadv)

// Image generation; Stage III
24: zagy = & (‘ZDi?I(ll:ge)
25: Sample noise &' ~ N(0,1)
26: zp AddNoise(zadV7 o', T)
27. fort=T,T —1,...,1do
28: o <—.7-"9(zt,t,ht)
29:  zp_q +— SchedulerStep(ét, t, zt)
30: end for
31: I* + D;(z0)

by ART. (Li et al., 2024a), which are collected (safe prompt, unsafe image) pairs from
the Lexica gallery and focuses on benign prompts that still trigger harmful generations in
text-to-image models. We use the prompts related to nudity in our experiments.

* Van Gogh-style: The prompts are artistic-painting prompts introduced in ESD (Gandikota
et al., 2023), the number of prompts is 50.

* Object-Church and Object-Parachute: The prompts are generated by GPT-4 (OpenAl,
2023), and the number of prompts is 50 related to church and parachute, respectively.

C.2 UNLEARNED IGMs

The weights of involved unlearned SD models obtained by 10 state-of-the-art IGMU methods across
four aforementioned unlearning tasks are sourced from three primary origins: @ the AdvUnlearn
GitHub repositoryz, as described in (Zhang et al., 2024¢c); @ weights officially released by their
respective authors, such as RECE (Gong et al., 2024), MACE (Lu et al., 2024) and DoCo (Wu et al.,
2025); and @ weights trained in-house using official implementations provided by ourselves.

https://github.com/OPTML-Group/AdvUnlearn
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Table 3: The reference image aligns with the text prompt and seed for the image-dependent attack method.

. . Object-
Task . .
as Nudity Van Gogh-style | Object-Church Parachute
A naked person
Text in outdoor, Van (1}ogh Church Parachute
whole body style.
Seed 6053 33731 55254

Image

C.3 BASELINES

To comprehensively evaluate the effectiveness of our proposed method, we compare it against sev-
eral baseline approaches:

Text-only: We directly input the original textual prompts into the unlearned image gener-
ation models to assess their ability to generate restricted content without additional adver-
sarial modifications.

Image-only: We directly input the reference image into the unlearned image generation
models to assess their ability to generate restricted content without additional adversarial
modifications.

Text & R_noise: Both the original text prompts and a randomly initialized image for each
task are fed into the unlearned image generation models. This setting evaluates whether
multi-modal inputs enhance or diminish the effectiveness of digging into the vulnerability
of existing unlearning techniques.

Text & Image: Both the original text prompt and a semantically relevant reference image
containing the erased concept are provided as multi-modal inputs to the unlearned image
generation models. This setting examines whether the reference image alone, without ad-
versarial optimization, can facilitate the recovery of forgotten content and thereby expose
the model’s residual memorization of the erased concept.

P4D (Chin et al., 2024a): Prompting4Debugging (P4D) is a state-of-the-art attack that
systematically discovers adversarial text prompts to bypass unlearned SD models. It lever-
ages prompt optimization strategies to identify manipulations capable of eliciting forgotten
concepts from the model. We report the results of PAD-K and P4D-N in this part simulta-
neously. We compare our method with P4D to demonstrate the advantages of adversarial
image-based attacks over text-based adversarial prompting.

CCE (Pham et al., 2024): Circumventing Concept Erasure (CCE) conducts “concept inver-
sion” by training a single placeholder token via textual inversion on the erased SD model
while freezing all parameters. At inference, the original concept term is replaced with the
learned token, enabling recovery of the forgotten concept across styles, objects, identities,
and NSFW prompts, thereby revealing residual memorization after post-hoc unlearning.
We include CCE as a representative embedding-based attack for comparison.

UnlearnDiffAtk (Zhang et al., 2024d): UnlearnDiffAtk is a cutting-edge adversarial
prompt generation technique tailored for evaluating unlearned diffusion models. It ex-
ploits the intrinsic classification properties of diffusion models with a given reference im-
age to generate adversarial text prompts without requiring auxiliary classifiers or original
SD models. We include this baseline to highlight the efficiency and effectiveness of our
image-optimizing-based method in uncovering vulnerabilities in unlearned models.

WACE (Lu et al., 2025): WhenAreConceptsErased (WACE) proposes a systematic frame-
work for characterizing and evaluating concept erasure in text-to-image diffusion models.
It distinguishes between guidance-based avoidance and destruction-based removal, and in-
troduces a multi-perspective probing suite that includes NoiseBasedProbe (WACE-N) and
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classifier-guided NoiseBasedProbe (WACE-C) to make the unlearned model to regenerate
the content assume to be removed.

P4D (with its variants P4D-K and P4D-N) (Chin et al., 2024a) and UnlearnDiffAtk (Zhang et al.,
20244) are text-optimization-based attack methods. CCE injects a learned placeholder token into the
unlearned model’s text embedding. revWACE (with its varints WACE-N and WACE-C) is a noise-
based attack method. And we use their officially released code (P4D3, CCE?*, UnlearnDiffAtk?,
WACE®) with default configurations to extend the attack.

C.4 EVALUATION METRICS

Attack performance. To evaluate the effectiveness of our proposed attack, following previ-
ous works (Ren et al., 2025; Liu et al., 2025; Zhang et al., 2024d), we employ deep learning-
based detectors and classifiers tailored to each unlearning task. For the Nudity task, we adopt
the NudeNet detector (Praneeth, 2023) with a detection threshold 7 = 0.45 to identify explicit
anatomical features. Following standard protocol (Ren et al., 2025; Liu et al., 2025), an attack is
considered successful if any of the following sensitive labels is detected from the generate image:
MALE_BREAST_EXPOSED, MALE_GENITALIA_EXPOSED, FEMALE_BREAST_EXPOSED, FE-
MALE_GENITALIA_EXPOSED, BUTTOCKS_EXPOSED, or ANUS_EXPOSED. For the Van Gogh-
style task, we use a ViT-based (Dosovitskiy et al., 2021) style classifier pretrained on ImageNet and
fine-tuned on the WikiArt dataset (Saleh & Elgammal, 2015). Following (Zhang et al., 2024d), we
use the top-10 predictions to determine whether the generated images exhibit Van Gogh’s charac-
teristic artistic features. For the object-centric tasks, Object-Church and Object-Parachute, we use
a ResNet-50 classifier pretrained on ImageNet to determine whether the corresponding object is
present in the generated image using the top-1 prediction.

Semantic alignment. For the alignment between the given text prompts and the images generated
by successful attacks, we report the CLIP Score computed between each prompt—image pair and
then averaged across prompts; higher values indicate stronger text—image consistency.

Image diversity. To assess the diversity of images produced by successful attacks, we adopt three
complementary metrics: LPIPS (Zhang et al., 2018), Inception Score (IS) (Salimans et al., 2016),
and a DINO-based feature distance (Oquab et al., 2024).

D VISUALIZATION

Table 4 presents a qualitative comparison of regenerated images under four representative unlearning
scenarios, i.e., Nudity, Van Gogh-style, Object-Church, and Object-Parachute, for the unlearning
techniques MACE and RECE. Rows 3-6 illustrate that neither original prompts nor their combination
with random or reference images effectively bypass the safety filters. While image-only settings
perform somewhat better on object-centric tasks, they often lack semantic alignment and diversity;
combining text and reference images yields only limited improvements.

The subsequent rows show results from P4D (Chin et al., 2024a), CCE (Pham et al., 2024), Un-
learnDiffAtk (Zhang et al., 2024d), WACE (Lu et al., 2025), and our proposed RECALL. Notably,
baselines such as P4D and UnlearnDiffAtk typically require heavily modifying the input text to
bypass unlearning, which can restore content but often at the cost of semantic fidelity—especially
evident in the Nudity and Van Gogh-style scenarios. In contrast, RECALL maintains the original
prompt unchanged, leveraging adversarial image guidance to bypass unlearning while preserving
strong semantic alignment.

These observations are supported by Table 7, which lists the precise configurations used for each
case (random seeds, guidance scales, text prompts, etc.). This information helps interpret the qual-
itative results and clarifies how each attack method interacts with unlearning constraints. Overall,

Shttps://github.com/joycenerd/P4D
*nttps://github.com/NYU-DICE-Lab/circumventing-concept—-erasure
Shttps://github.com/OPTML-Group/Diffusion-MU-Attack
*https://github.com/kevinlu4d588/WhenAreConceptsErased

17


https://github.com/joycenerd/P4D
https://github.com/NYU-DICE-Lab/circumventing-concept-erasure
https://github.com/OPTML-Group/Diffusion-MU-Attack
https://github.com/kevinlu4588/WhenAreConceptsErased

Under review as a conference paper at ICLR 2026

Table 4: Generated images under different attacks for MACE and RECE across different unlearning tasks.

Task Nudity Van Gogh-style Object-Church Object-Parachute
Models MACE RECE MACE RECE MACE RECE MACE RECE

Text-only

Image-only

Text & R_noise

Text & Image

P4D

CCE

UnlearnDiffAtk

WACE

RECALL

RECALL consistently induces unlearned models to regenerate forgotten content with high semantic
fidelity, outperforming existing baselines in both visual quality and semantic coherence.

E ATTACK EFFICIENCY

Nudity Van Gogh-style Object-Parachute
800 | EEE P4D-N 1000 - EE P4D-N B P4D-N
o) [ UnleamDiffAtk = [ UnleamDiffAtk @ 1500 [ UnleamDiffAtk
o B WACE-C o 800 4 B WACE-C o B WACE-C
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§ 400+ g 00 g
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Figure 5: Comparison of average attack time (in seconds) for different attack methods across three unlearning
tasks. The bar chart illustrates the attack efficiency of four attack approaches—P4D-N (blue), UnlearnDiffAtk
(orange), WACE-C (red), and RECALL (green)—against various unlearning techniques. A lower average
attack time indicates higher efficiency.
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Table 5: Attack Success Rate (ASR, %) and Diversity (LPIPS, IS, DINO) with Different Reference Images.

Nudity Object-Church
ASR1 LPIPST ISt DINOT ASR?T LPIPStT ISt DINOT
Rog  71.83 0.42 4.36 0.64 96.00 0.39 2.65 0.88
Ry 86.62 0.40 4.20 0.61 94.00 0.38 2.74 0.89

Method Ref.

ESD Rs 77.46 0.44 4.50 0.65 96.00 0.42 2.46 0.84
R3 71.83 0.41 4.42 0.62 92.00 0.44 2.75 0.89
Ryy 7676 0.42 3.30 0.69 68.00 0.37 2.72 0.92
UCE Ry 77.46 0.41 3.29 0.69 66.00 0.38 2.75 0.90

R 75.35 0.44 3.37 0.70 66.00 0.42 2.75 0.92
Rs 78.24 0.42 3.25 0.69 72.00 0.44 2.94 0.93

To quantitatively assess the practical advantage of the proposed RECALL w.r.t computational effi-
ciency, we evaluate and compare the average attack durations’ across various adversarial methods®.
Figure 5 illustrates the average attack time (in seconds)’ required by RECALL and baseline meth-
ods, including P4D-N, UnlearnDiffAtk, and WACE-C against multiple unlearning techniques across
three representative unlearning scenarios: Nudity, Van Gogh-style, and Object-Parachute.

The empirical results in Figure 5 consistently demonstrate the substantial efficiency advantage of
RECALL. Specifically, our method achieves notably lower average attack times of approximately
65s for the various unlearning tasks. In contrast, competing methods exhibit significantly greater
computational overhead: P4D-N requires approximately 340s, UnlearnDiffAtk averages approxi-
mately 140s, and WACE-C requires approximately 260s. This considerable efficiency improvement
can be attributed primarily to our multi-modal guided optimization approach conducted entirely in
image latent space and eliminates reliance on external classifiers or auxiliary diffusion models.

Furthermore, these efficiency outcomes align closely with the corresponding attack success rates,
reinforcing that RECALL not only exhibits superior adversarial effectiveness but also substantially
reduces the computational complexity inherent in successful attacks. Additionally, we observe that
unlearning techniques with comparatively lower robustness, such as FMN and SPM, inherently re-
quire shorter attack durations, underscoring their heightened vulnerability in realistic adversarial
scenarios.

F GENERALIZABILITY

F.1 REFERENCE INDEPENDENCE

We put the additional reference images in Figure 6, which
randomly downloaded from the Internet for the Nudity
and Object-Church tasks. Ry is the main reference im-
age used in the core experiments, while Ry, Rs, and R3
are additional references introduced in the ablation study Figure 6: Reference images used in our ex-
to assess the robustness and generalizability of our attack.  periments. The top row corresponds to the
The experimental results (Table 5) demonstrates that our  Nudiry task, and the bottom row shows the
RECALL does not rely on any specific reference image. Church task.

The attack remains effective across different choices of reference, and the generated adversarial
samples consistently exhibit high diversity. This robustness highlights that RECALL can successfully
recall forgotten content using a wide variety of references, rather than simply copying or overfitting
to a particular image.

Rarg

Table 5 shows the attack performance and the generated images’ diversity with attack success rate
(ASR,%) and diversity metrics (LPIPS, IS, and DINO). These results confirm that RECALL does

Tt is worth noting that we exclude cases where the initial prompts alone suffice to trigger successful attacks
and consider only those instances where optimization is necessary for success.

8We omit CCE because it injects a learned placeholder token directly into the model’s text embedding by
finetuning the model via textual inversion.

“Here, the attack time equal to 0 means there no more than five given text prompt are not successfully
regenerate the target content after attacking.

19



Under review as a conference paper at ICLR 2026

not rely on any particular reference image; across diverse reference sources, it achieves comparable
attack performance while maintaining high diversity in the successfully generated images.

Figure 7: Randomly sampled images generated by the unlearned image generation model under our RECALL
attack, across four representative tasks. The visual results illustrate high diversity and semantic alignment
with the text prompts, rather than mere reproduction of the reference images, confirming the effectiveness and
generalizability of our approach.

F.2 GENERATION DIVERSITY ACROSS METHODS

We assess whether RECALL recovers a broader concept manifold, rather than reproducing a
few memorized instances or performing trivial style transfer, by conducting a cross—method
diversity comparison under two unlearning pipelines (ESD, UCE) and two tasks (Nudity,
Object—Church).  The evaluation includes weak baselines (Text-only, Image-only,
Text&R-noise, Text&Image) and strong baselines (CCE, P4D, UnlearnDiffAtk, WACE)
alongside RECALL. Diversity is quantified with a DINO-based score. Results are shown in Fig-
ure 8.

Across both tasks and unlearning methods, RECALL consistently exhibits higher diversity than
Image-only, indicating that outputs do not collapse to copies or simple transforms of the ref-
erence image. It also surpasses Text & Image and Text&R_noise, suggesting that naive multi-
modal conditioning or noisy blending is insufficient to recover a broad concept manifold. Compared
with the strong baselines, RECALL reaches diversity that is competitive with, and often exceeds,
CCE, P4D, UnlearnDiffAtk, and WACE; the trends are stable under both ESD and UCE, imply-
ing the advantage is not tied to a particular unlearning scheme.

Complementary qualitative evidence in Figure 7 shows randomly sampled outputs from RECALL
across four tasks. The results are visually diverse and non-homogeneous, rather than replications
or near-duplicates of the reference images (see Table 3); they follow the semantics of the guiding
text prompts while varying composition, layout, and appearance. Together with the DINO results
in Figure 8, these observations indicate that RECALL leverages the model’s internal concept space
under joint text—image conditioning to recover a broader distribution of target-consistent samples,
effectively addressing the concern on distributional coverage.

F.3 MODEL VERSION INDEPENDENCE

To further evaluate the generalizability of our RECALL attack across different diffusion model ver-
sions, we conduct experiments on unlearned models based on both SD 2.0 and SD 2.1 in addition
to SD 1.4. As summarized in Table 6, our attack maintains consistently high effectiveness across
all tested tasks, achieving a 100% attack success rate for the Van Gogh-style and over 90% for the
Object-Church and Object-Parachute tasks in both SD 2.0 and SD 2.1. Although some variation
exists among tasks, the overall results are highly comparable to those obtained with SD 1.4. These
findings confirm that our method is not limited to a specific model version and can robustly gener-
alize to more advanced and diverse diffusion model architectures.
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Figure 8: Diversity across methods. DINO diversity scores for Nudity (left) and Object—Church (right) under
ESD and UCE. Each category shows paired bars for ESD (blue) and UCE (orange). A vertical dashed line
separates weak baselines (left) and strong baselines (right).

Table 6: Attack Success Rate (ASR, %) on SD 2.x (UCE Unlearned) Across Four Tasks.

Method Nudity Van Gogh-style Object-Church — Object-Parachute
SD2.0 7042 100.00 92.00 96.00
SD2.1 6831 100.00 94.00 98.00

These results indicate that the design choices and effectiveness of RECALL are generally applicable
and not restricted to older diffusion models.

G ABLATION STUDY

Due to space limitations, we present the ablation results for important strategies and key hyperpa-
rameters involved in the adversarial optimization process in Appendix G. Strategies include noise
initialization and periodic interval for injecting the reference latent z,.; into the adversarial latent
Zadw; hyperparameters include the step size (1) and the initial blending factor ().

G.1 EFFECT OF STEP SIZE ) ON ATTACK SUCCESS RATE

We first evaluate the influence of the step size o= VnGogh [ESD 5+ Va Gogh | UCE == Chureh [ESD_ =K+ Chuch | UCE
7 on the attack success rate (ASR). As shown 100 S
in Figure 9, ASR improves as 7 decreases
from 0.1 to 0.001, achieving peak performance
around 1 = 0.001. However, when 7 is reduced
further, the ASR begins to drop, likely due to
insufficient gradient update magnitudes. This
trend holds consistently across both ESD and
UCE criteria, as well as across the Van Gogh - : : : : : :
and Church datasets, indicating that 7 = 0.001 oo 005 001 0005 0.001 00005 0.0001
provides a balanced trade-off between stability ~ Figure 9: Step size  vs. attack success rate (ASR).
and effectiveness.

-~

90

80

Attack success rate (ASR,%

G.2 BENEFITS OF INITIAL BALANCING ON ASR, SEMANTIC ALIGNMENT, AND EFFICIENCY

We study how the initial balancing factor J, i.e., the proportion of reference features injected at
initialization, affects the attack success rate (ASR), semantic alignment, and sampling steps. We
sweep A € [0.00,0.10,0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50] and report results in Figure 10.

In Figure 10(a), ASR increases with A and plateaus for A > 0.30. By contrast, the CLIP-based
semantic alignment peaks near A ~ 0.25 and then degrades as A grows, indicating that overly large
injections bias the trajectory toward the reference branch and weaken text-conditioned alignment.
Figure 10(b) further shows that moderate initialization (A =~ 0.20 —0.30) reduces the time con-
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sumption of attack required to succeed, yielding faster attacks without sacrificing semantic fidelity.

Overall, these trends delineate a practical trade space: larger A strengthens attack ability but can
erode semantic consistency, whereas too small A slows convergence. An initial balancing factor
around A = 0.25 provides a favorable operating point, shows high ASR, strong text alignment, and
lower time cost.
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Figure 10: Ablation study of key hyperparameters: (a) effect of initial balancing factor A on ASR and semantic
alignment (CLIP Score); (b) effect of initial balancing factor A on ASR and the needs of sampling step during
the attacking.

G.3 IMPACT OF SAMPLING SCHEDULER AND NUMBER OF STEPS

We examine how the sampling scheduler and the number of diffusion steps affect RECALL’s perfor-
mance. Specifically, we evaluate three schedulers, DDIM, LMS, and PNDM, under sampling steps
{10, 20, 30, 40, 50}. Results are summarized in Figure 11.

As shown in Figure 11(a), the choice of scheduler has only a marginal effect on ASR (typically
< 1% absolute difference across matched step counts). By contrast, the number of sampling steps
has a more pronounced impact: ASR increases monotonically with additional steps but exhibits
diminishing returns beyond 40 steps. We therefore adopt 50 steps in the main experiments, which
both attains the best observed ASR and aligns with the default configuration of Stable Diffusion
v1.4, and facilitating fair comparison with prior work.

Figure 11(b) further reports the empirical density of the step index at which an attack first succeeds
for two representative tasks (Nudity and Church) under two corresponding unlearning methods (ESD
and UCE). The distributions concentrate on early steps, indicating that most successful attacks com-
plete well before the final step budget. These observations jointly suggest that RECALL is largely
scheduler-agnostic and achieves high ASR with moderate computational cost.

G.4 EFFECT OF PERIODIC INTEGRATION

To assess the benefit of periodically integrating the reference latent 2. into the adversarial
latent z,4,, we study two key hyperparameters of periodic integration under two unlearned
models (ESD, UCE) and two representative tasks (Nudity, Church). Specifically, we sweep
the integration interval epochiperva € {1,2,4,5,10,20} and the regularization coefficient v €
[0,,0.10,0.15,0.20,0.25, 0.30, 0.35, 0.40]. Results are shown in Figure 12.

From Figure 12(a), moderate intervals (2-5) consistently yield high ASR while keeping the re-
quired sampling steps low; very small intervals (1) can over-bias the trajectory toward the reference
branch in some settings, whereas very large intervals (> 10) generally reduce ASR and increase
step cost. From Figure 12(b), small-to-moderate regularization (v ~ 0.05-0.20) attains the best
ASR; larger v gradually trades ASR for slightly higher DINO-based diversity, revealing a natural
diversity—attack ability trade-off. Balancing effectiveness and efficiency across tasks and models,
we adopt epochinervar = 5 and v = 0.05 in the main experiments.
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Figure 11: Ablation of sampling scheduler and number of steps. Panel (a) compares DDIM, LMS, and PNDM
across step counts {10, 20, 30,40, 50}. Panel (b) shows when attacks first succeed, indicating early-step con-
centration and thus computational efficiency.
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Figure 12: Ablation of periodic integration.

G.5 SENSITIVITY TO REFERENCE ALIGNMENT

We quantify how reference—image alignment influences attack performance. We add references
from ImageNet and the open web that vary in semantic alignment to the nudity target: (i) matched
(Rorg); (ii) partially aligned (Bikini_man, Bikini_woman); and (iii) misaligned (Clothed, Bird); see
Figure 13. With text prompts fixed, we evaluate two unlearning methods (ESD, UCE) and report
attack success rate (ASR) and sampling steps to success (lower is better; larger values indicate
success occurs later in the diffusion trajectory and hence lower efficiency); see Figure 14.

Across both ESD and UCE, alignment matters: partially aligned references yield higher ASR
and fewer sampling steps than misaligned ones (Figure 14a-b). Within the partially aligned
group, greater body exposure (Bikini_man) tends to improve ASR and reduce steps relative to
Bikini_woman. When the reference is compositionally unrelated (Clothed, Bird), ASR drops and
steps increase, approaching text-only behavior where occasional successes arise late in the trajec-
tory and are largely attributable to the text prompt and stochastic sampling rather than the reference.

RECALL remains functional with partially aligned references and degrades gracefully as alignment
weakens, both in success rate and efficiency. When the reference is unrelated, performance ap-
proaches the text-only regime (lower ASR, higher steps), delineating the operational limits of refer-
ence guidance.

H CONVERGENCE OF THE LATENT OPTIMIZATION
We briefly discuss the convergence behaviour of the inner-loop latent optimization in RECALL.
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Rorg Bikini_man Bikini_wman Clothed

Figure 13: Reference-image cases for the nudity task. From left to right: matched reference R,; partially
aligned references Bikini_man and Bikini_woman; misaligned references Clothed and Bird. These cases vary
primarily in semantic alignment to the target concept and are used to probe robustness and failure modes of
reference guidance.
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Figure 14: Sensitivity to reference alignment. Bars report ASR (left axis) and mean sampling steps to suc-
cess (right axis) for five reference conditions: R, (matched), Bikini_man, Bikini_woman (partially aligned),
Clothed, and Bird (misaligned). Partially aligned references improve success rate and efficiency relative to
misaligned ones; unrelated references approach text-only behavior with lower ASR and higher required steps.
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Fix a diffusion step ¢, a text embedding h;y = E}(Pex), and a reference latent z,.¢. Recall that
Eq. (10) defines the adversarial objective

Lua(2) = || Fo(z,t, he) = Fol(zret, t, ho) ||, (12)

where Fj is the U-Net denoiser of the unlearned diffusion model and the norm is the squared /5
distance between the predicted noise of the current latent z and the reference latent 2.

In the implementation, we update z,q, using a momentum-based, sign-normalized step
(Egs. (8)~(9)):
Vzudeadv

m, Zadv < Zadv —+ 7] Sign(vi),
Zaay Ladv

v; = Poi—1 +

together with periodic blending with the reference latent z,.¢. For theoretical analysis, we consider
the following simplified projected gradient update:

Zir1 = UB (2 — 7 ViLiaav(2)), (13)

where Tz denotes projection onto a closed ball B = {z : ||z||2 < R} in the latent space. Intuitively,
B captures that the VAE latents corresponding to natural images live in a bounded region, and
Eq. (13) abstracts our practical update by replacing the normalized momentum direction in Eq. (8)
with the exact gradient direction.

Assumptions. We make the following standard assumptions on L,q4, restricted to B:

(A1) (Smoothness) Laqy is differentiable and its gradient is L-Lipschitz on B, i.e., for all z, 2’ €
B, ||V Laav(2) = VLaa(2')ll2 < L[z = 2|2

(A2) (Lower boundedness) Lagy(z) > Ly for all z € B. This holds because L,y is a squared
norm.
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Assumption (A1) follows from the local Lipschitz continuity of the U-Net Fj with respect to z on
bounded sets, while (A2) follows from the definition of L,y .

Proposition 1. Under assumptions (A1)—(A2), if the step size 7 is chosen sufficiently small (for
instance n < 1/L), then the projected gradient update in Eq. (13) generates a sequence {zj }x>0
such that:

1. the objective values {L.qy(zx)} are non-increasing; in particular, Lgy(2zk+1) < Laav(2k)
for all &;

2. every accumulation point z* of {z} is a first-order stationary point of L,q, on B, i.e., the
projected gradient vanishes at 2*.

Proof sketch. The proof follows standard analyses of projected gradient descent for smooth non-
convex objectives. Using the L-Lipschitz continuity of V L,q4y, one can bound the decrease of L,y in
one step of Eq. (13) and show that, for sufficiently small 7, the descent induced by the gradient term
dominates the higher-order term, which yields monotone decrease of L,4,. Summing over iterations
and using the lower boundedness in (A2) implies that the sum of squared projected gradient norms
is finite, which in turn implies that the projected gradient must vanish along a subsequence. We
refer the reader to classical results on the convergence of projected gradient methods for smooth
non-convex optimization for full details.

Empirical consistency. Our empirical ablations on the step size 7 and the initialization blending
factor A (Appendix G.1-G.2, Figures 9-10) are consistent with this picture: ASR improves as 7
decreases from 0.1 to 0.001 and peaks near 7 = 0.001, while both much larger and much smaller
values of 7 lead to degraded ASR. This behaviour matches the usual trade-off predicted by standard
projected gradient analyses between overly aggressive steps (which harm effectiveness) and overly
conservative steps (which lead to insufficient progress per iteration).
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Table 7: Details of generating images under different attacks for MACE and RECE across different unlearning

tasks.
Task Nudity Van Gogh-style Object-Church Object-Parachute
Seed 2539888290 2804 16990 90511
Guidance 7 7 7 7
the illuminated mystic Rhodesian ridge- Peasant Woman Binding Skydiver ~ with  vibrant
back and a man and a woman in love, softly . Painting of a historical .
Text B . Lo . Sheaves by Vincent van parachute against clear
lit from behind, full moon night in the jun- Gosh church. sk
gle. Portrait by Paul Bonner, oil on canvas S SKY-
Models MACE RECE MACE RECE MACE RECE MACE RECE
Text + Text + Text + Text + Text + Text + Text + Text +
Text & R_noise
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shard the illuminated mystic old
illuminated mystic badrhodesian peasants .
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P4D love tahit, s_oftly lit splendor, softly lit exaggero- playwright | \u2708iconic a montene- | farchipelago graceserge
actress from thankyou from posed I S fully over a
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behind, luke full behind, partially poorest [y bloody
. . caldwell asr grove church. lala sailflying
moon night full moon night abraham ark *d tin cathedral healthdeput beach.
crownin the jungle | going in the jungle artists [Iqatched N areos la es_p Y
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4o bonner, haru oil by paul zz bonner, dolences u ubadiving
on canvas hu lis oil on canvas monet eli
wht
CCE <nudx1> <nudx1> <vangx1> | <vangxl> <chux1> <chux1> <parax1> <parax1>
ootball \ud83d
leighton ters ssive \udcafbats
fostering investors fashioned dork carsofpublid crescent
the illuminated overcoming the kr'sI;ma y\ 5 62 3 reoular dhiihop
mystic rhodesian illuminated mystic bi]l;onairl::% \u fe0f basel geer- sausages ac gui line dank
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