
Variational Last Layers for Bayesian Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Gaussian Processes (GPs) are widely seen as the state-of-the-art surrogate models1

for Bayesian optimization (BO) due to their ability to model uncertainty and their2

performance on tasks where correlations are easily captured, such as those defined3

by Euclidean metrics. However, the performance of GPs depends on the choice4

of kernel, and kernel selection for complex correlation structures is often difficult.5

While Bayesian neural networks are a promising direction for higher capacity sur-6

rogate models, they have so far seen limited use due to a combination of cost of use7

and poor performance. In this paper, we explore the potential of neural networks8

with variational Bayesian last layers (VBLLs), which offer a simple and compu-9

tationally lightweight approach to Bayesian uncertainty quantification in neural10

networks. Our findings suggest that VBLL networks significantly outperform GPs11

and other BNN architectures on tasks with complicated input correlations, and12

match the performance of well-tuned GPs on established benchmark tasks. These13

results highlight their promise as an alternative surrogate model for BO.14

1 Introduction15

Bayesian optimization (BO) has become an immensely popular method for optimizing black-box16

functions that are expensive to evaluate, and has seen large success in a variety of applications [1–10].17

In BO, the goal is to optimize some black-box objective f : X → R (where X ⊆ Rd) in as few18

samples as possible whilst only having access to sequentially sampled, potentially noisy, data points19

from the objective. Gaussian processes (GPs) have long been the de-facto surrogate models in BO20

due to their well-calibrated uncertainty quantification and strong performance in small-data regimes.21

However, their application becomes challenging in high-dimensional, non-stationary, and structured22

data environments such as drug-discovery [10, 9] and materials science [5]. Here, often prohibitively23

expensive or bespoke kernels are necessary to capture meaningful correlations between data points.24

Furthermore, the scaling of GPs to large datasets typically associated with high-dimensional spaces25

can be limiting–especially if combined with online hyperparameter estimation. To address these26

challenges, integrating Bayesian Neural Networks (BNNs) into BO as alternative surrogate models27

has gained increasing attention [11–14]. While BNNs inherently scale with data, challenges like28

efficiently conditioning on new data and consistency across tasks persist. Our work demonstrates how29

Variational Bayesian Last Layer (VBLL) neural networks [15] can address these issues and achieve30

state-of-the-art performance with the same architecture across various optimization problems.31

Contributions: In this work we investigate the use of VBLL neural networks [15] for the first time32

in BO (cf. Fig. 1), and explore avenues for further improving these models. In particular, our main33

contributions and findings are: (i) VBLL models outperform I-BNN models, a recently proposed34

surrogate model [14], on smooth synthetic benchmarks; (ii) VBLL models outperform GPs on35

problems with complex input correlations; (iii) VBLL models (and NN surrogate models generally)36

are sensitive to the training strategy used. Finally, we discuss implications for future work.37

Submitted to Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information
Processing Systems (BDU at NeurIPS 2024). Do not distribute.



0.0 0.5 1.0

Parameter x ∈ X

−2

0

2

f
(x

)

BO Step 1

0.0 0.5 1.0

Parameter x ∈ X

BO Step 2

0.0 0.5 1.0

Parameter x ∈ X

BO Step 3

True objective Observations VBLL posterior predictive VBLL posterior samples

Figure 1: Variational Bayesian last layer model as a surrogate model for BO on a toy example. The
VBLL model can capture in-between uncertainty and analytic posterior samples are easily obtained
through its parametric form making it a suitable surrogate for BO.

1.1 Related Work and Background38

Various flavors of Bayesian or partially-Bayesian networks have been explored for BO, including39

mean field BNNs [13], networks trained via stochastic gradient Hamiltonian Monte Carlo [12, 16],40

and last layer Laplace approximation BNNs [17, 18]. In [14], the authors find that infinite-width41

BNNs (I-BNNs) [19–21], perform particularly well especially on high-dimensional, non-stationary42

and non-Euclidean problems, a setting where standard GPs tend to struggle.43

While BNNs are promising, they have often proven to be challenging to train and complex to44

use in practice. Bayesian last layer networks—which consider uncertainty only over the output45

layer—provide a simple (and often much easier to train) partially-Bayesian neural network model46

[11, 22–26]. Concretely, the standard model for regression with Bayesian last layer networks and a47

one-dimensional output is y = w⊤ϕθ(x) + ε, where w ∈ Rm, and ϕθ are the features learned by a48

neural network backbone with parameters θ. The noise ε ∼ N (0,Σ) is assumed to be independent49

and identically distributed. With this observation model, fixed features ϕθ, and a Gaussian prior50

on the weights as p(w) = N (w̄, S), posterior inference for the weights is analytically tractable via51

Bayesian linear regression, yielding the posterior p(w | X,Y ) = N (w̄, S) and posterior predictive52

p(y | x,η,θ) = N (w̄⊤ϕθ(x), ϕθ(x)
⊤Sϕθ(x) + Σ) where η := (w̄, S). (1)

Since the predictive distribution is Gaussian, it pairs nicely with conventional acquisition functions in53

Bayesian optimization and bandit tasks [11, 25].54

Usually, such BLL models are trained using gradient descent on the exact (log) marginal likelihood55

over all data points either via ∇θ log p(Y | X,θ) [23] (which is computationally expensive and56

often unstable) or mini-batches [11] (which yields biased gradients and results in over-concentration57

when the model is conditioned on all data). To increase efficiency, recent work [15, 27] developed a58

deterministic variational lower bound to the exact marginal likelihood and proposed to optimize this59

instead resulting in the variational Bayesian last layer (VBLL) model. Following [15, Theorem 1],60

the variational lower bound for regression with BLLs (under the prior defined previously) is61

log p(Y | X,θ) ≥
T∑
t

(
logN (yt | w̄⊤ϕt, Σ)−

1

2
ϕ⊤

t SϕtΣ
−1

)
−KL(q(w | η) ∥ p(w)) (2)

where ϕt := ϕθ(xt) and q(w | η) = N (w̄, S) is the variational posterior. The variational posterior62

over the last layer is trained with the network weights θ yielding a lightweight Bayesian formulation.63

2 VBLLs for Bayesian Optimization64

In this section we discuss necessary algorithmic design considerations in using VBLLs within BO.65

In particular, we discuss network training (including accelerating training via continual learning),66

choice and computation of acquisition function, and model hyperparameters. We expand on all design67

decisions in the Appendix.68

Training: Training of the BNNs usually follows standard neural network training, and uses a held-out69

validation set to determine when to stop [27, 15]. In the low data regime of BO, such an approach70

2



−25

0

lo
g
E

I
B

es
t

va
lu

e
Branin (2D) −10

0

Ackley (2D) −10

−5

Ackley (5D)

GP I-BNN VBLL VBLL (CL)

1

2

3

Hartmann (6D)

20 40

Iteration

−25

0

T
S

B
es

t
va

lu
e

Branin (2D)

20 40

Iteration

−10

0

Ackley (2D)

50 100

Iteration

−10

0

Ackley (5D)

50 100

Iteration

1

2

3

Hartmann (6D)

Figure 2: Classic benchmarks. Performance of all surrogates for logEI (top) and TS (bottom).

is not feasible as the training data size is prohibitively low, especially at the start of optimization.71

We therefore employ early stopping for the VBLLs based on the training loss; details of training are72

provided in Appendix B. The naive approach to training requires training a new network for each73

new data point; we therefore further explore using continual learning for faster convergence. For this,74

we initialize the VBLLs at iteration k + 1 with the variational posterior and weights of the backbone75

from the previous iteration k as a warm start to the optimization.76

Acquisition Functions: VBLLs have a Gaussian predictive distribution and thus most acquisition77

functions that are straightforward to compute for GPs are also straightforward for VBLLs. However,78

parametric VBLLs are also especially well suited for Thompson sampling compared to non-parametric79

models like GPs1. For Thompson sampling, we simply sample from the variational posterior of w80

at iteration k and then construct a sample from the predictive f̂i (cf. Fig. 1) as a generalized linear81

model as82

1 ŵi ∼ qk(w | η) 2 f̂i(x) := ŵ⊤
i ϕθ(x) (3)

This sample of the predictive can then be optimized analytically, which differs from classic Thompson83

sampling methods used for non-parametric GPs.84

Hyperparameters: The VBLL models have several hyperparameters, some of which are similar to85

GPs and some of which are substantially different. We include hyperparameter studies in Appendix E.86

These cover the parameters of the noise covariance prior, which has a reasonably substantial impact87

on the (point) noise covariance estimate, and comparisons of different neural network sizes.88

3 Experiments89

We evaluate the performance of the VBLL surrogate model on various standard benchmarks and90

three more complex optimization problems, where the optimization landscape is non-stationary. For91

experimental details, ablations of hyperparameters, and further results (including other acquisition92

functions), we refer to Appendix D and E. The baselines for all benchmarks are the following:93

GPs: As the de-facto standard in BO, we compare against GPs. As kernel, we choose a Matérn94

kernel with ν = 2.5 and use individual lengthscales for all input dimensions that are optimized within95

box constraints following recommended best practices [28, 31] (cf. Appendix A). We expect the96

performance of GPs to be particularly good on stationary benchmarks.97

I-BNNs: We compare against infinite-width Bayesian neural networks (I-BNNs) [32], which have98

shown promising results in recent work [14]. As in Li et al. [14], we set the depth to 3 and initialize99

the weight variance to 10 and the bias variance to 1.6. Note that this model is still non-parametric.100

1Thompson sampling for GPs often involves drawing samples from high-dimensional posterior distributions
generated at pseudo-random input locations (e.g., using Sobol sequences) and then selecting the argmax of the
discrete samples as the next query locations [28]. It is worth noting that while it is possible to construct analytic
approximate posterior samples for GPs [29, 30], this approach is not yet commonly adopted in current practice.

3



2500

5000

7500

lo
g
E

I
B

es
t

va
lu

e
NN draw (200D)

−15.0

−12.5

Pest control (25D)

GP I-BNN VBLL VBLL (CL)

0

200

Lunar lander (12D)

200 400 600

Iteration

2500

5000

7500

T
S

B
es

t
va

lu
e

NN draw (200D)

50 100

Iteration

−15.0

−12.5

Pest control (25D)

0 200

Iteration

0

200

Lunar lander (12D)

Figure 3: High-dimensional and non-stationary benchmarks. Performance of all surrogates for logEI
(top) and TS (bottom). VBLLs demonstrate strong performance on high-dimensional problems.

VBLL: For the VBLLs, we use 3 layers with 128 neurons and ELU activations for all experiments to101

closely match the architectures of the baselines used in [14]. We compare two baselines: relearning102

both features and the variational posterior from scratch at each iteration, and relearning every 5103

iterations and using continual learning (CL) in between.104

In all subsequent experiments, we set the number of initial points equal to the input dimensionality105

and the batch size to one. We compare the performance of all surrogates for the following acquisition106

functions: (i) log expected improvement (logEI) [33], a numerically more stable version of standard107

expected improvement, (ii) upper confidence bound (UCB) [34] with constant β = 2, (iii) and108

Thompson sampling (TS) [35, 36]. The results for UCB are in Appendix D.109

3.1 Problem Settings110

Benchmark Problems: We begin by examining a set of standard benchmark problems commonly111

used to assess the performance of BO algorithms [28, 33]. Figure 2 illustrates the performance of all112

surrogates on these benchmark problems. It can be observed that, as expected, GPs perform well.113

The BNN baselines also demonstrate strong performance on lower-dimensional problems, although114

they do not match the performance of GPs on the Hartmann function. Interestingly, for TS, we notice115

that on the Ackley5D benchmark, the VBLLs with analytic optimization of the Thompson samples116

even surpass the performance of GPs. The continual learning baseline shows the same performance117

as the standard VBLLs but with reduced compute.118

High-Dimensional and Non-Stationary Problems: GPs without tailored kernels often struggle in119

high-dimensional and non-stationary environments [14]; areas where deep learning approaches are ex-120

pected to excel. Our results on the 200D NNdraw benchmark [14], the real-world 25D Pestcontrol121

benchmark [37], and the 12D Lunarlander benchmark [28] are shown in Fig. 3. On these bench-122

marks, VBLLs significantly outperform the other baselines; especially for TS. While GPs perform123

well with logEI on NNdraw and the I-BNNs show good performance on Pestcontrol, the VBLLs124

are consistently the best performing surrogate. Similar to the classic benchmarks, the continual125

learning version of the VBLLs shows similar performance to the VBLLs.126

4 Discussion127

In this paper, we explored using the recently proposed VBLLs for BO. Our findings show that VBLLs128

perform on par with GPs on standard low-dimensional benchmarks, yet significantly outperform129

GPs in high-dimensional and non-stationary problems. Furthermore, VBLLs outperform I-BNNs,130

a recently proposed BNN surrogate. In future work, we will explore concepts such as variational131

continual learning [38] to reduce the computational time for VBLLs. Finding the optimal balance132

between reinitializing the network and applying continual learning updates–whether through recur-133

sive updates of the last layer or re-learning the variational posterior–will be crucial for effectively134

integrating VBLLs into BO for real-world problems.135

4



References136

[1] Roman Garnett, Michael A Osborne, and Stephen J Roberts. Bayesian optimization for sensor137

set selection. International conference on information processing in sensor networks, 2010.138

[2] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine139

learning algorithms. Neural Information Processing Systems (NeurIPS), 2012.140

[3] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimiza-141

tion for learning gaits under uncertainty: An experimental comparison on a dynamic bipedal142

walker. Annals of Mathematics and Artificial Intelligence, 76:5–23, 2016.143

[4] Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal, and Sebastian Trimpe. Automatic144

lqr tuning based on gaussian process global optimization. IEEE International Conference on145

Robotics and Automation (ICRA), 2016.146

[5] Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. Information science147

for materials discovery and design, 2016.148

[6] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-149

based reinforcement learning with stability guarantees. Neural Information Processing Systems150

(NeurIPS), 2017.151

[7] Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver,152

and Nando de Freitas. Bayesian optimization in alphago. arXiv:1812.06855, 2018.153

[8] Matthias Neumann-Brosig, Alonso Marco, Dieter Schwarzmann, and Sebastian Trimpe. Data-154

efficient autotuning with Bayesian optimization: An industrial control study. IEEE Transactions155

on Control Systems Technology, 28(3):730–740, 2019.156

[9] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained Bayesian optimization for157

automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,158

2020.159

[10] Lionel Colliandre and Christophe Muller. Bayesian optimization in drug discovery. High160

Performance Computing for Drug Discovery and Biomedicine, 2023.161

[11] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,162

Mostofa Patwary, Prabhat, and Ryan Adams. Scalable Bayesian optimization using deep neural163

networks. International Conference on Machine Learning (ICML), 2015.164

[12] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization165

with robust bayesian neural networks. Neural Information Processing Systems (NeurIPS), 2016.166

[13] Jonathan Foldager, Mikkel Jordahn, Lars Kai Hansen, and Michael Riis Andersen. On the role167

of model uncertainties in Bayesian optimization. In Uncertainty in Artificial Intelligence (UAI),168

2023.169

[14] Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of Bayesian neu-170

ral network surrogates for Bayesian optimization. In International Conference on Learning171

Representations (ICLR), 2024.172

[15] James Harrison, John Willes, and Jasper Snoek. Variational Bayesian last layers. International173

Conference on Learning Representations (ICLR), 2024.174

[16] Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Soljačić.175

Deep learning for bayesian optimization of scientific problems with high-dimensional structure.176

arXiv:2104.11667, 2021.177

[17] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Learnable uncertainty under laplace178

approximations. In Uncertainty in Artificial Intelligence (UAI), 2021.179

[18] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,180

and Philipp Hennig. Laplace redux-effortless Bayesian deep learning. Neural Information181

Processing Systems (NeurIPS), 2021.182

5



[19] Gilwoo Lee, Siddhartha S Srinivasa, and Matthew T Mason. GP-iLQG: Data-driven robust183

optimal control for uncertain nonlinear dynamical systems. arXiv:1705.05344, 2017.184

[20] Ben Adlam, Jaehoon Lee, Lechao Xiao, Jeffrey Pennington, and Jasper Snoek. Exploring the185

uncertainty properties of neural networks’ implicit priors in the infinite-width limit. International186

Conference on Learning Representations (ICLR), 2021.187

[21] Ben Adlam, Jaehoon Lee, Shreyas Padhy, Zachary Nado, and Jasper Snoek. Kernel regression188

with infinite-width neural networks on millions of examples. arXiv:2303.05420, 2023.189

[22] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration190

through Bayesian deep q-networks. arXiv:1802.04412, 2018.191

[23] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning priors for efficient online192

Bayesian regression. Workshop on the Algorithmic Foundations of Robotics (WAFR), 2018.193

[24] Noah Weber, Janez Starc, Arpit Mittal, Roi Blanco, and Lluís Màrquez. Optimizing over a194

Bayesian last layer. In NeurIPS workshop on Bayesian Deep Learning, 2018.195

[25] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian bandits showdown. In196

International Conference on Learning Representations (ICLR), 2018.197

[26] Felix Fiedler and Sergio Lucia. Improved uncertainty quantification for neural networks with198

Bayesian last layer. IEEE Access, 2023.199

[27] Joe Watson, Jihao Andreas Lin, Pascal Klink, Joni Pajarinen, and Jan Peters. Latent derivative200

Bayesian last layer networks. In Artificial Intelligence and Statistics (AISTATS), 2021.201

[28] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.202

Scalable global optimization via local Bayesian optimization. In Neural Information Processing203

Systems (NeurIPS), 2024.204

[29] James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Deisen-205

roth. Efficiently sampling functions from Gaussian process posteriors. In International Confer-206

ence on Machine Learning (ICML). PMLR, 2020.207

[30] James T Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter208

Deisenroth. Pathwise conditioning of Gaussian processes. Journal of Machine Learning209

Research, 22(105):1–47, 2021.210

[31] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,211

Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo212

Bayesian Optimization. In Neural Information Processing Systems (NeurIPS), 2020.213

[32] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and214

Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. International Conference215

on Learning Representations (ICLR), 2018.216

[33] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bak-217

shy. Unexpected improvements to expected improvement for Bayesian optimization. Neural218

Information Processing Systems (NeurIPS), 36, 2024.219

[34] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-220

mization in the bandit setting: No regret and experimental design. In International Conference221

on Machine Learning (ICML), pages 1015–1022, 2010.222

[35] William R Thompson. On the likelihood that one unknown probability exceeds another in view223

of the evidence of two samples. Biometrika, 1933.224

[36] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial225

on Thompson sampling. Foundations and Trends in Machine Learning, 2018.226

[37] Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian227

optimization using the graph cartesian product. Neural Information Processing Systems228

(NeurIPS), 32, 2019.229

6



[38] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual230

learning. In International Conference on Learning Representations (ICLR), 2018.231

[39] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.232

Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Neural233

Information Processing Systems (NeurIPS), 2018.234

[40] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,235

volume 2. MIT Press, 2006.236

[41] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:237

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on238

mathematical software (TOMS), 23(4):550–560, 1997.239

[42] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101,240

2017.241

[43] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization.242

In International Conference on Machine Learning (ICML), pages 3627–3635. PMLR, 2017.243

7



A Further Details on the Baselines and Acquisition Functions244

We implement all baselines and experiment in BoTorch [31] and GPyTorch [39]. As best-practice245

in BO, we standardize the data to mean zero and a variance of one at each iteration. We further246

transform the input space specified by the problem intro the hypercube X ∈ [0, 1]d. For completeness,247

we again list all the baselines below and then discuss the optimization of the acquisition functions.248

GPs: As kernel, we choose a Matérn kernel with ν = 2.5 and use individual lengthscales for all input249

dimensions that are optimized at every iteration by minimizing the log marginal likelihood [40]. For250

all lengthscales ℓi we use box constraints as ℓi ∈ [0.005, 4] [28].251

I-BNNs: Infinite-width Bayesian neural networks (I-BNNs) [32] have shown promising results in252

recent work [14]. As in Li et al. [14], we set the depth to 3 and initialize the weight variance to 10253

and the bias variance to 1.6. Also as in Li et al. [14] we do not optimize the parameters of the kernel.254

VBLL: For the VBLLs, we use 3 hidden layers with 128 neurons and ELU activation functions for255

all experiments. We chose this architecture to closely match the ones of BNN baselines in [14]. For256

the parameterization of the last layer, we adopt the formulation by Harrison et al. [15]. We relearn257

the features as well as the variational posterior at each iteration unless specified otherwise.258

Acquisition functions: We use § restarts and § raw samples for optimizing the acquisition functions259

UCB and logEI for all models. For TS we optimize the analytic sample of the VBLLs with § random260

restart using L-BFGS-B [41] as the optimization method. For TS from the non-parametric models,261

we use the same heuristic as in [28] and generate min{5000, max{2000, 200 · d}} pseudo-random262

input points from a Sobol sequence and then sample from the high-dimensional multi-variate normal.263

The next location is then the argmax of the sample path.264

B Training and Optimization265

For training the VBLL models, we closely follow Harrison et al. [15]. For all experiments, we use266

AdamW [42] as our optimizer with a learning rate of 1e−3, set the weight decay for the backbone267

(not including the parameters of the VBLL) to 1e−4, and use norm-based gradient clipping with a268

value of 1. For the VBLL, we set the prior scale to 1 and the the Wishart scale to 0.01. A sensitivity269

analysis of the Wishart scale on the performance and run time is in Appendix E. As mentioned in270

Sec. 2, we employ early stopping for all VBLL models based on the training loss. We track the271

average loss of a training epoch and if this average loss does not improve for a 100 epochs in a row,272

we stop training and use the model parameters that yielded the lowest training loss.273

C On Neural Network Thompson Sampling274

We further investigated the use of using neural network based Thompson samples. With VBLLs,275

we effectively maintain a distribution over plausible deterministic NNs that are in accordance with276

the current data set and noise level. Instead of maintaining such a distribution and then sampling277

from the variational posterior of the weights w, a straight-forward idea would be to directly train278

a deterministic neural network using the same optimizer (including the same early stopping etc.),279

and L2 loss, as well as L2 regularization for the backbone directly generating a MAP Thompson280

sample. Note that with such an approach, one would no longer be able to leverage acquisition281

functions that rely on good uncertainty quantification such as logEI or more sophisticated such as282

information-theoretic acquisition functions based on entropy search such as MES [43], which may283

require large ensembles (up to 100 NNs), making it computationally expensive. Still, we tested this284

baseline and the results are summarized in Fig. 4.285

Here MAP refers to the MAP Thompson sample baseline. We can observe that this simple baseline286

performs surprisingly well but cannot match the performance of the other baselines. We also observe287

that in relatively simple problems, such as Branin and Ackley2D, the variance is significantly larger288

compared to the other baselines, which is undesirable in BO applications. We also compared this289

baseline on the high-dimensional and real-world benchmarks and the results are shown in Fig. 5.290

The MAP approach demonstrates superior performance on the NNdraw task. This is likely because the291

Wishart scale in the VBLL baselines is not well-tuned for the NNdraw problem (cf. Sec. ). The data is292

8



20 40

Iteration

−40

−20

0

T
S

B
es

t
va

lu
e

Branin (2D)

20 40

Iteration

−10

−5

0

Ackley (2D)

50 100

Iteration

−10

−5

0

Ackley (5D)

GP I-BNN VBLL VBLL (CL) MAP

50 100

Iteration

1

2

3

Hartmann (6D)

Figure 4: Comparison of neural network Thompson sampling on synthetic benchmarks. The deter-
ministic MAP Thompson sample shows surprisingly good performance however also yields large
variance on simple benchmarks which is undesirable.

200 400 600

Iteration

2000

4000

6000

8000

T
S

B
es

t
va

lu
e

NN draw (200D)

50 100

Iteration

−16

−14

−12

Pest control (25D)

GP I-BNN VBLL VBLL (CL) MAP

0 200

Iteration

0

100

200

Lunar lander (12D)

Figure 5: Comparison of neural network Thompson sampling on high-dimensional and real-world
benchmarks. On these benchmarks, the MAP Thompson sample baseline shows mixed performance.
It performs better on NNdraw but exibits large variance for Lunarlander.

normalized to zero mean and a standard deviation of one; however, with a Wishart scale greater than293

zero, the assumed noise in this normalized space affects the accuracy of the correlations between data294

points–especially for the large value range in NNdraw. In contrast, the MAP baseline, by design, does295

not account for noise, which may contribute to its better performance in this context. Additionally, the296

MAP baseline exhibits slightly faster convergence on Pestcontrol. For Lunarlander, the MAP297

approach shows considerable variance and fails to match the final performance of the VBLLs.298

D Experiment Details and Full Results299

In the following, we will list details about all the conducted experiments and give the full results for300

all acquisition functions, i.e., UCB, logEI, and TS.301

Branin: A standard two dimensional optimization benchmark with three global optima.

20 40

Iteration

−40

−20

0

B
ra

n
in

(2
D

)
B

es
t

va
lu

e

UCB

20 40

Iteration

−40

−20

0

logEI

GP I-BNN VBLL VBLL (CL)

20 40

Iteration

−40

−20

0

TS

302

9



Ackley: A standard optimization benchmark with various local optima (depending on the dimen-303

sionality) and one global optimum. In out experiments, we compare the surrogates on a 2D and 5D304

version and set the feasible set to the hypercube X = [−5, 10]d as in [28].

20 40

Iteration

−10

−5

0

A
ck

le
y

(2
D

)
B

es
t

va
lu

e

UCB

20 40

Iteration

−10

−5

0

logEI

GP I-BNN VBLL VBLL (CL)

20 40

Iteration

−10

−5

0

TS

50 100

Iteration

−10

−5

0

A
ck

le
y

(5
D

)
B

es
t

va
lu

e

UCB

50 100

Iteration

−10

−5

logEI

GP I-BNN VBLL VBLL (CL)

50 100

Iteration

−10

−5

0

TS

305

Hartmann: A standard six dimensional benchmark with six local optima and one global optimum.

50 100

Iteration

1

2

3

H
a
rt

m
a
n

n
(6

D
)

B
es

t
va

lu
e

UCB

50 100

Iteration

1

2

3

logEI

GP I-BNN VBLL VBLL (CL)

50 100

Iteration

1

2

3

TS

306

NN draw: In this optimization problem, our goal is to find the global optimum of a function defined307

by a sample from a neural network within the hypercube X = [0, 1]d. This benchmark was also308

employed in [14]. We use a fully connected neural network with two hidden layers, each containing309

50 nodes, and ReLU activation functions. The input size corresponds to the dimensionality of the310

optimization problem (in our case, 200), and the output size is one. To generate a function, we sample311

all weights from the standard normal distribution N (0, 1). For a fair comparison, we use the same312

fixed seed across all baselines ensuring that the same objective function is used.

200 400 600

Iteration

2000

4000

6000

N
N

d
ra

w
(2

0
0
D

)
B

es
t

va
lu

e

UCB

200 400 600

Iteration

2000

4000

6000

logEI

GP I-BNN VBLL VBLL (CL)

200 400 600

Iteration

2000

4000

6000

TS

10



313

Pest control: This optimization problem was also in [14] and aims to minimizing the spread of pests314

while minimizing the prevention costs of treatment and was introduced in [37]. In this experiment, we315

define the setting as a categorical optimization problem with 25 categorical variables corresponding316

to stages of intervention, with 5 different values at each stage. As mentioned in [37], dynamics behind317

this problem are highly complex resulting in involved correlations between the inputs.

50 100

Iteration

−16

−14

−12

P
e
st

c
o
n
tr

o
l

(2
5
D

)
B

es
t

va
lu

e

UCB

50 100

Iteration

−16

−14

−12

logEI

GP I-BNN VBLL VBLL (CL)

50 100

Iteration

−16

−14

−12

TS

318

Lunar lander: Lunar lander is an environment from OpenAI gym. The objective is to maximize the319

average final reward over 50 randomly generated environments. For this, 12 continuous parameters320

of a controller have to be tuned as in [28].

0 200

Iteration

0

100

200

300

L
u

n
a
r

la
n

d
e
r

(1
2
D

)
B

es
t

va
lu

e

UCB

0 200

Iteration

0

100

200

300

logEI

GP I-BNN VBLL VBLL (CL)

0 200

Iteration

0

100

200

TS

321

E Hyperparameter Sensitivity322

The parametric VBLL surrogate has some hyperparameters such as the Wishart scale or the width323

of the neural network backbone that have to be specified a-priori. In the following, we present324

results on the hyperparameter sensitivity of the VBLL surrogate model and demonstrate that tuning325

hyperparameters can improve empirical performance but also that the VBLL surrogate model is rather326

robust for a wide range of specifications. In Sec. E.1, we will first consider the sensitivity with respect327

to the Wishart scale and the reinitialization rate for continual learning. Following this, Sec. E.2 then328

studies the sensitivity regarding the width of the neural network backbone. Lastly, Sec. E.3 considers329

the robustness to different noise levels.330

E.1 Wishart Scale and Continual Learning Sensitivity331

We sweep a number of hyperparameters in the VBLLs in order to experiment with the hyperparameter332

sensitivity of the VBLL models. In particular we sweep the Wishart Scale and the re-initialization333

rate of the model. The re-initialization rate determines how often the VBLL model is re-initialized334

rather than using CL on the backbone and the variational posterior.335

The results of the hyperparameter sweep of the Wishart scale and reinitialization rate on Ackley (5D)336

are in Fig. 6 and on Pestcontrol in Fig. 7. Please note that we have computed running averages on337

these figures to make qualitative assessment easier. We find that both of these hyperparameters have338

impact on BO performance, but that the VBLL models are not exceedingly brittle to the values of339

11



these hyperparameters. These results also indicate that continual learning for VBLLs is an area of340

interest, not only to reduce fitting time, but also because there appears to be benefits to not always341

re-initializing the neural network (see e.g., Fig. 6 (b) for reinitialization rates 3 and 5). Based on these342

results we also hypothesise that tuning the Wishart scale appropriately for the problem at hand may343

lead to increased model performance.344

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

0 50

Iteration

0.0

0.5

1.0

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

0 50

Iteration

0.0

0.5

1.0
N

ex
t
x

d
is

ta
n

ce

0 50

Iteration

0

25

50

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

(a) Sensitivity to the Wishart scale (noise free (top), noisy (bottom))

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

0.0

0.5

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40

A
cc

u
m

.
F

it
T

im
e

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

0.0

0.5

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40

A
cc

u
m

.
F

it
T

im
e

(b) Sensitivity to network reinitialization rate (noise free (top), noisy (bottom))

Figure 6: Hyperparameter sensitivity on the Ackley5D benchmark.

12



0 50

Iteration

−16

−14

−12

B
es

t
va

lu
e

0 50

Iteration

0

1

2

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

50

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

0 50

Iteration

−16

−14

−12

B
es

t
va

lu
e

0 50

Iteration

0

1

2

N
ex

t
x

d
is

ta
n

ce
0 50

Iteration

0

50

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

(a) Sensitivity to the Wishart scale (noise free (top), noisy (bottom))

0 50

Iteration

−16

−14

−12

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

1

2

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

25

50

A
cc

u
m

.
F

it
T

im
e

0 50

Iteration

−16

−14

−12

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

1

2

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

25

50

A
cc

u
m

.
F

it
T

im
e

(b) Sensitivity to network reinitialization rate (noise free (top), noisy (bottom))

Figure 7: Hyperparameter sensitivity on the Pestcontrol benchmark.

E.2 Model Width Ablation345

To evaluate the impact of model width on the performance of both the MAP and VBLL Thompson346

sampling methods, we conducted a series of experiments on the Ackley5D and Pestcontrol347

benchmarks varying the model width.348

As illustrated in Fig. 8 (a) and 9 (a), increasing the model capacity (width) of the MAP baseline349

results in a significant increase in variance, especially pronounced in the Ackley5D benchmark. This350

high variance suggests that the MAP method is highly sensitive to changes in model width, making it351

challenging to tune effectively for consistent performance across different tasks.352

In comparison, the VBLL method exhibits more robustness to model capacity, as shown in Fig. 8 (b)353

and 9 (b). Despite increasing the model width, VBLL does not suffer from the high variance observed354

in the MAP baseline. This robustness is advantageous in practical application where extensive model355

tuning is unfeasible and hints that VBLL may also perform better when scaling to larger model sizes.356

13



(a) MAP Thompson sampling with varying model width

(b) VBLL Thompson sampling with varying model width

Figure 8: Comparison of neural network Thompson sampling methods on the Ackley5D benchmark
with varying model width. The models were trained with width of 64, 128 and 512 neurons.

(a) MAP Thompson sampling with varying model width

(b) VBLL Thompson sampling with varying model width

Figure 9: Comparison of neural network Thompson sampling methods on the Pestcontrol bench-
mark with varying model width. The models were trained with width of 64, 128 and 512 neurons.

14



E.3 Model Performance in the Presence of Noise357

Lastly, we also benchmark the different surrogates on different noise levels. We again only consider358

Ackley5D (Fig. 10) and Pestcontrol (Fig. 11). For these experiments, we use the same Wishart359

scale of 0.01 for the VBLL baseline. We can observe that all models, besides the MAP baseline in360

Ackley5D, are rather robust the change in noise level.361

(a) Noisy objective with noise standard deviation of 0.01.

(b) Noisy objective with noise standard deviation of 0.1.

Figure 10: Performance comparison of baseline methods on Ackley5D benchmark with noise.

(a) Noisy objective with noise standard deviation of 0.01.

(b) Noisy objective with noise standard deviation of 0.1.

Figure 11: Performance comparison of baseline methods on Pestcontrol benchmark with noise.

15


	Introduction
	Related Work and Background

	VBLLs for Bayesian Optimization
	Experiments
	Problem Settings

	Discussion
	Further Details on the Baselines and Acquisition Functions
	Training and Optimization
	On Neural Network Thompson Sampling
	Experiment Details and Full Results
	Hyperparameter Sensitivity
	Wishart Scale and Continual Learning Sensitivity
	Model Width Ablation
	Model Performance in the Presence of Noise


