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Abstract

Gaussian Processes (GPs) are widely seen as the state-of-the-art surrogate models
for Bayesian optimization (BO) due to their ability to model uncertainty and their
performance on tasks where correlations are easily captured, such as those defined
by Euclidean metrics. However, the performance of GPs depends on the choice
of kernel, and kernel selection for complex correlation structures is often difficult.
While Bayesian neural networks are a promising direction for higher capacity sur-
rogate models, they have so far seen limited use due to a combination of cost of use
and poor performance. In this paper, we explore the potential of neural networks
with variational Bayesian last layers (VBLLs), which offer a simple and compu-
tationally lightweight approach to Bayesian uncertainty quantification in neural
networks. Our findings suggest that VBLL networks significantly outperform GPs
and other BNN architectures on tasks with complicated input correlations, and
match the performance of well-tuned GPs on established benchmark tasks. These
results highlight their promise as an alternative surrogate model for BO.

1 Introduction

Bayesian optimization (BO) has become an immensely popular method for optimizing black-box
functions that are expensive to evaluate, and has seen large success in a variety of applications [1–10].
In BO, the goal is to optimize some black-box objective f : X → R (where X ⊆ Rd) in as few
samples as possible whilst only having access to sequentially sampled, potentially noisy, data points
from the objective. Gaussian processes (GPs) have long been the de-facto surrogate models in BO
due to their well-calibrated uncertainty quantification and strong performance in small-data regimes.
However, their application becomes challenging in high-dimensional, non-stationary, and structured
data environments such as drug-discovery [10, 9] and materials science [5]. Here, often prohibitively
expensive or bespoke kernels are necessary to capture meaningful correlations between data points.
Furthermore, the scaling of GPs to large datasets typically associated with high-dimensional spaces
can be limiting–especially if combined with online hyperparameter estimation. To address these
challenges, integrating Bayesian Neural Networks (BNNs) into BO as alternative surrogate models
has gained increasing attention [11–14]. While BNNs inherently scale with data, challenges like
efficiently conditioning on new data and consistency across tasks persist. Our work demonstrates how
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Figure 1: Variational Bayesian last layer model as a surrogate model for BO on a toy example. The
VBLL model can capture in-between uncertainty and analytic posterior samples are easily obtained
through its parametric form making it a suitable surrogate for BO.

Variational Bayesian Last Layer (VBLL) neural networks [15] can address these issues and achieve
state-of-the-art performance with the same architecture across various optimization problems.

Contributions: In this work we investigate the use of VBLL neural networks [15] for the first time
in BO (cf. Fig. 1), and explore avenues for further improving these models. In particular, our main
contributions and findings are: (i) VBLL models outperform I-BNN models, a recently proposed
surrogate model [14], on smooth synthetic benchmarks; (ii) VBLL models outperform GPs on
problems with complex input correlations; (iii) VBLL models (and NN surrogate models generally)
are sensitive to the training strategy used. Finally, we discuss implications for future work.

1.1 Related Work and Background

Various flavors of Bayesian or partially-Bayesian networks have been explored for BO, including
mean field BNNs [13], networks trained via stochastic gradient Hamiltonian Monte Carlo [12, 16],
and last layer Laplace approximation BNNs [17, 18]. In [14], the authors find that infinite-width
BNNs (I-BNNs) [19–21], perform particularly well especially on high-dimensional, non-stationary
and non-Euclidean problems, a setting where standard GPs tend to struggle.

While BNNs are promising, they have often proven to be challenging to train and complex to
use in practice. Bayesian last layer networks—which consider uncertainty only over the output
layer—provide a simple (and often much easier to train) partially-Bayesian neural network model
[11, 22–26]. Concretely, the standard model for regression with Bayesian last layer networks and a
one-dimensional output is y = w⊤ϕθ(x) + ε, where w ∈ Rm, and ϕθ are the features learned by a
neural network backbone with parameters θ. The noise ε ∼ N (0,Σ) is assumed to be independent
and identically distributed. With this observation model, fixed features ϕθ, and a Gaussian prior
on the weights as p(w) = N (w̄, S), posterior inference for the weights is analytically tractable via
Bayesian linear regression, yielding the posterior p(w | X,Y ) = N (w̄, S) and posterior predictive

p(y | x,η,θ) = N (w̄⊤ϕθ(x), ϕθ(x)
⊤Sϕθ(x) + Σ) where η := (w̄, S). (1)

Since the predictive distribution is Gaussian, it pairs nicely with conventional acquisition functions in
Bayesian optimization and bandit tasks [11, 25].

Usually, such BLL models are trained using gradient descent on the exact (log) marginal likelihood
over all data points either via ∇θ log p(Y | X,θ) [23] (which is computationally expensive and
often unstable) or mini-batches [11] (which yields biased gradients and results in over-concentration
when the model is conditioned on all data). To increase efficiency, recent work [15, 27] developed a
deterministic variational lower bound to the exact marginal likelihood and proposed to optimize this
instead resulting in the variational Bayesian last layer (VBLL) model. Following [15, Theorem 1],
the variational lower bound for regression with BLLs (under the prior defined previously) is

log p(Y | X,θ) ≥
T∑
t

(
logN (yt | w̄⊤ϕt, Σ)−

1

2
ϕ⊤

t SϕtΣ
−1

)
−KL(q(w | η) ∥ p(w)) (2)

where ϕt := ϕθ(xt) and q(w | η) = N (w̄, S) is the variational posterior. The variational posterior
over the last layer is trained with the network weights θ yielding a lightweight Bayesian formulation.
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2 VBLLs for Bayesian Optimization

In this section we discuss necessary algorithmic design considerations in using VBLLs within BO.
In particular, we discuss network training (including accelerating training via continual learning),
choice and computation of acquisition function, and model hyperparameters. We expand on all design
decisions in the Appendix.

Training: Training of the BNNs usually follows standard neural network training, and uses a held-out
validation set to determine when to stop [27, 15]. In the low data regime of BO, such an approach
is not feasible as the training data size is prohibitively low, especially at the start of optimization.
We therefore employ early stopping for the VBLLs based on the training loss; details of training are
provided in Appendix B. The naive approach to training requires training a new network for each
new data point; we therefore further explore using continual learning for faster convergence. For this,
we initialize the VBLLs at iteration k + 1 with the variational posterior and weights of the backbone
from the previous iteration k as a warm start to the optimization.

Acquisition Functions: VBLLs have a Gaussian predictive distribution and thus most acquisition
functions that are straightforward to compute for GPs are also straightforward for VBLLs. However,
parametric VBLLs are also especially well suited for Thompson sampling compared to non-parametric
models like GPs1. For Thompson sampling, we simply sample from the variational posterior of w
at iteration k and then construct a sample from the predictive f̂i (cf. Fig. 1) as a generalized linear
model as

1 ŵi ∼ qk(w | η) 2 f̂i(x) := ŵ⊤
i ϕθ(x) (3)

This sample of the predictive can then be optimized directly using first-order methods, which differs
from classic Thompson sampling methods used for non-parametric GPs. For the analytic optimization
of the parametric sample, we use L-BFGS-B [31] leveraging the fact that we can also easily obtain
the gradient of f̂ . We initialize the optimization at multiple random initial conditions2 and choose the
best argmax as the next query location.

Hyperparameters: The VBLL models have several hyperparameters, some of which are similar to
GPs and some of which are substantially different. We include hyperparameter studies in Appendix E.
These cover the parameters of the noise covariance prior, which has a reasonably substantial impact
on the (point) noise covariance estimate, and comparisons of different neural network sizes.

3 Experiments

We evaluate the performance of the VBLL surrogate model on various standard benchmarks and
three more complex optimization problems, where the optimization landscape is non-stationary. For
experimental details, ablations of hyperparameters, and further results (including other acquisition
functions), we refer to Appendix D and E. The baselines for all benchmarks are the following:

GPs: As the de-facto standard in BO, we compare against GPs. As kernel, we choose a Matérn
kernel with ν = 2.5 and use individual lengthscales for all input dimensions that are optimized within
box constraints following recommended best practices [28, 32] (cf. Appendix A). We expect the
performance of GPs to be particularly good on stationary benchmarks.

I-BNNs: We compare against infinite-width Bayesian neural networks (I-BNNs) [33], which have
shown promising results in recent work [14]. As in Li et al. [14], we set the depth to 3 and initialize
the weight variance to 10 and the bias variance to 1.6. Note that this model is still non-parametric.

VBLL: For the VBLLs, we use 3 layers with 128 neurons and ELU activations for all experiments to
closely match the architectures of the baselines used in [14]. We compare two baselines: relearning

1Thompson sampling for GPs often involves drawing samples from high-dimensional posterior distributions
generated at pseudo-random input locations (e.g., using Sobol sequences) and then selecting the argmax of the
discrete samples as the next query locations [28]. It is worth noting that while it is possible to construct analytic
approximate posterior samples for GPs [29, 30], this approach is not yet commonly adopted in current practice.

2In the following, the number of random initial conditions will be set to the same number of random initial
conditions as for the standard optimization of the acquisition functions for a fair comparison.

3



−25

0

lo
g
E

I
B

es
t

va
lu

e
Branin (2D) −10

0

Ackley (2D) −10

−5

Ackley (5D)

GP I-BNN VBLL VBLL (CL)

1

2

3

Hartmann (6D)

20 40

Iteration

−25

0

T
S

B
es

t
va

lu
e

Branin (2D)

20 40

Iteration

−10

0

Ackley (2D)

50 100

Iteration

−10

0

Ackley (5D)

50 100

Iteration

1

2

3

Hartmann (6D)

Figure 2: Classic benchmarks. Performance of all surrogates for logEI (top) and TS (bottom).

both features and the variational posterior from scratch at each iteration, and relearning every 5
iterations and using continual learning (CL) in between.

In all subsequent experiments, we set the number of initial points equal to the input dimensionality
and the batch size to one. We compare the performance of all surrogates for the following acquisition
functions: (i) log expected improvement (logEI) [34], a numerically more stable version of standard
expected improvement, (ii) upper confidence bound (UCB) [35] with constant β = 2, (iii) and
Thompson sampling (TS) [36, 37]. The results for UCB are in Appendix D.

3.1 Problem Settings

Benchmark Problems: We begin by examining a set of standard benchmark problems commonly
used to assess the performance of BO algorithms [28, 34]. Figure 2 illustrates the performance of all
surrogates on these benchmark problems. It can be observed that, as expected, GPs perform well.
The BNN baselines also demonstrate strong performance on lower-dimensional problems, although
they do not match the performance of GPs on the Hartmann function. Interestingly, for TS, we notice
that on the Ackley5D benchmark, the VBLLs with analytic optimization of the Thompson samples
even surpass the performance of GPs. The continual learning baseline shows the same performance
as the standard VBLLs but with reduced compute.
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Figure 3: High-dimensional and non-stationary benchmarks. Performance of all surrogates for logEI
(top) and TS (bottom). VBLLs demonstrate strong performance on high-dimensional problems.

High-Dimensional and Non-Stationary Problems: GPs without tailored kernels often struggle in
high-dimensional and non-stationary environments [14]; areas where deep learning approaches are ex-
pected to excel. Our results on the 200D NNdraw benchmark [14], the real-world 25D Pestcontrol
benchmark [38], and the 12D Lunarlander benchmark [28] are shown in Fig. 3. On these bench-
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marks, VBLLs significantly outperform the other baselines; especially for TS. While GPs perform
well with logEI on NNdraw and the I-BNNs show good performance on Pestcontrol, the VBLLs
are consistently the best performing surrogate. Similar to the classic benchmarks, the continual
learning version of the VBLLs shows similar performance to the VBLLs.

4 Discussion

In this paper, we explored using the recently proposed VBLLs for BO. Our findings show that VBLLs
perform on par with GPs on standard low-dimensional benchmarks, yet significantly outperform
GPs in high-dimensional and non-stationary problems. Furthermore, VBLLs outperform I-BNNs,
a recently proposed BNN surrogate. In future work, we will explore concepts such as variational
continual learning [39] to reduce the computational time for VBLLs. Finding the optimal balance
between reinitializing the network and applying continual learning updates–whether through recur-
sive updates of the last layer or re-learning the variational posterior–will be crucial for effectively
integrating VBLLs into BO for real-world problems.
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A Further Details on the Baselines and Acquisition Functions

We implement all baselines and experiment in BoTorch [32] and GPyTorch [40]. As best-practice
in BO, we standardize the data to mean zero and a variance of one at each iteration. We further
transform the input space specified by the problem intro the hypercube X ∈ [0, 1]d. For completeness,
we again list all the baselines below and then discuss the optimization of the acquisition functions.

GPs: As kernel, we choose a Matérn kernel with ν = 2.5 and use individual lengthscales for all input
dimensions that are optimized at every iteration by minimizing the log marginal likelihood [41]. For
all lengthscales ℓi we use box constraints as ℓi ∈ [0.005, 4] [28].

I-BNNs: Infinite-width Bayesian neural networks (I-BNNs) [33] have shown promising results in
recent work [14]. As in Li et al. [14], we set the depth to 3 and initialize the weight variance to 10
and the bias variance to 1.6. Also as in Li et al. [14] we do not optimize the parameters of the kernel.

VBLL: For the VBLLs, we use 3 hidden layers with 128 neurons and ELU activation functions for
all experiments. We chose this architecture to closely match the ones of BNN baselines in [14]. For
the parameterization of the last layer, we adopt the formulation by Harrison et al. [15]. We relearn
the features as well as the variational posterior at each iteration unless specified otherwise.

Acquisition functions: We use 10 restarts and 512 raw samples for optimizing the acquisition
functions UCB and logEI for all models. For TS we optimize the analytic sample of the VBLLs with
§ random restart using L-BFGS-B [31] as the optimization method. For TS from the non-parametric
models, we use the same heuristic as in [28] and generate min{5000, max{2000, 200 · d}} pseudo-
random input points from a Sobol sequence and then sample from the high-dimensional multi-variate
normal. The next location is then the argmax of the sample path.

B Training and Optimization

For training the VBLL models, we closely follow Harrison et al. [15]. For all experiments, we use
AdamW [42] as our optimizer with a learning rate of 1e−3, set the weight decay for the backbone
(not including the parameters of the VBLL) to 1e−4, and use norm-based gradient clipping with a
value of 1. For the VBLL, we set the prior scale to 1 and the the Wishart scale to 0.01. A sensitivity
analysis of the Wishart scale on the performance and run time is in Appendix E. As mentioned in
Sec. 2, we employ early stopping for all VBLL models based on the training loss. We track the
average loss of a training epoch and if this average loss does not improve for a 100 epochs in a row,
we stop training and use the model parameters that yielded the lowest training loss.

C On Neural Network Thompson Sampling

We further investigated the use of using neural network based Thompson samples. With VBLLs,
we effectively maintain a distribution over plausible deterministic NNs that are in accordance with
the current data set and noise level. Instead of maintaining such a distribution and then sampling
from the variational posterior of the weights w, a straight-forward idea would be to directly train
a deterministic neural network using the same optimizer (including the same early stopping etc.),
and L2 loss, as well as L2 regularization for the backbone directly generating a MAP Thompson
sample. Note that with such an approach, one would no longer be able to leverage acquisition
functions that rely on good uncertainty quantification such as logEI or more sophisticated such as
information-theoretic acquisition functions based on entropy search such as MES [43], which may
require large ensembles (up to 100 NNs), making it computationally expensive. Still, we tested this
baseline and the results are summarized in Fig. 4.

Here MAP refers to the MAP Thompson sample baseline. We can observe that this simple baseline
performs surprisingly well but cannot match the performance of the other baselines. We also observe
that in relatively simple problems, such as Branin and Ackley2D, the variance is significantly larger
compared to the other baselines, which is undesirable in BO applications. We also compared this
baseline on the high-dimensional and real-world benchmarks and the results are shown in Fig. 5.

The MAP approach demonstrates superior performance on the NNdraw task. This is likely because the
Wishart scale in the VBLL baselines is not well-tuned for the NNdraw problem (cf. Sec. ). The data is
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Figure 4: Comparison of neural network Thompson sampling on synthetic benchmarks. The deter-
ministic MAP Thompson sample shows surprisingly good performance however also yields large
variance on simple benchmarks which is undesirable.
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Figure 5: Comparison of neural network Thompson sampling on high-dimensional and real-world
benchmarks. On these benchmarks, the MAP Thompson sample baseline shows mixed performance.
It performs better on NNdraw but exibits large variance for Lunarlander.

normalized to zero mean and a standard deviation of one; however, with a Wishart scale greater than
zero, the assumed noise in this normalized space affects the accuracy of the correlations between data
points–especially for the large value range in NNdraw. In contrast, the MAP baseline, by design, does
not account for noise, which may contribute to its better performance in this context. Additionally, the
MAP baseline exhibits slightly faster convergence on Pestcontrol. For Lunarlander, the MAP
approach shows considerable variance and fails to match the final performance of the VBLLs.

D Experiment Details and Full Results

In the following, we will list details about all the conducted experiments and give the full results for
all acquisition functions, i.e., UCB, logEI, and TS.

Branin: A standard two dimensional optimization benchmark with three global optima.
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Ackley: A standard optimization benchmark with various local optima (depending on the dimen-
sionality) and one global optimum. In out experiments, we compare the surrogates on a 2D and 5D
version and set the feasible set to the hypercube X = [−5, 10]d as in [28].
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Hartmann: A standard six dimensional benchmark with six local optima and one global optimum.
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NN draw: In this optimization problem, our goal is to find the global optimum of a function defined
by a sample from a neural network within the hypercube X = [0, 1]d. This benchmark was also
employed in [14]. We use a fully connected neural network with two hidden layers, each containing
50 nodes, and ReLU activation functions. The input size corresponds to the dimensionality of the
optimization problem (in our case, 200), and the output size is one. To generate a function, we sample
all weights from the standard normal distribution N (0, 1). For a fair comparison, we use the same
fixed seed across all baselines ensuring that the same objective function is used.
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Pest control: This optimization problem was also in [14] and aims to minimizing the spread of pests
while minimizing the prevention costs of treatment and was introduced in [38]. In this experiment, we
define the setting as a categorical optimization problem with 25 categorical variables corresponding
to stages of intervention, with 5 different values at each stage. As mentioned in [38], dynamics behind
this problem are highly complex resulting in involved correlations between the inputs.
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Lunar lander: Lunar lander is an environment from OpenAI gym. The objective is to maximize the
average final reward over 50 randomly generated environments. For this, 12 continuous parameters
of a controller have to be tuned as in [28].
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E Hyperparameter Sensitivity

The parametric VBLL surrogate has some hyperparameters such as the Wishart scale or the width
of the neural network backbone that have to be specified a-priori. In the following, we present
results on the hyperparameter sensitivity of the VBLL surrogate model and demonstrate that tuning
hyperparameters can improve empirical performance but also that the VBLL surrogate model is rather
robust for a wide range of specifications. In Sec. E.1, we will first consider the sensitivity with respect
to the Wishart scale and the reinitialization rate for continual learning. Following this, Sec. E.2 then
studies the sensitivity regarding the width of the neural network backbone. Lastly, Sec. E.3 considers
the robustness to different noise levels.

E.1 Wishart Scale and Continual Learning Sensitivity

We sweep a number of hyperparameters in the VBLLs in order to experiment with the hyperparameter
sensitivity of the VBLL models. In particular we sweep the Wishart Scale and the re-initialization
rate of the model. The re-initialization rate determines how often the VBLL model is re-initialized
rather than using CL on the backbone and the variational posterior.

The results of the hyperparameter sweep of the Wishart scale and reinitialization rate on Ackley (5D)
are in Fig. 6 and on Pestcontrol in Fig. 7. Please note that we have computed running averages on
these figures to make qualitative assessment easier. We find that both of these hyperparameters have
impact on BO performance, but that the VBLL models are not exceedingly brittle to the values of
these hyperparameters. These results also indicate that continual learning for VBLLs is an area of
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interest, not only to reduce fitting time, but also because there appears to be benefits to not always
re-initializing the neural network (see e.g., Fig. 6 (b) for reinitialization rates 3 and 5). Based on these
results we also hypothesise that tuning the Wishart scale appropriately for the problem at hand may
lead to increased model performance.

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

0 50

Iteration

0.0

0.5

1.0

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

0 50

Iteration

0.0

0.5

1.0

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

25

50

A
cc

u
m

.
F

it
T

im
e

1e-05 0.0001 0.001 0.01 0.1 1.0 1.5 2.0 5.0 10.0

(a) Sensitivity to the Wishart scale (noise free (top), noisy (bottom))

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

0.0

0.5

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40
A

cc
u

m
.

F
it

T
im

e

0 50

Iteration

−10

−5

0

B
es

t
va

lu
e

1 3 5 10 20 50

0 50

Iteration

0.0

0.5

N
ex

t
x

d
is

ta
n

ce

0 50

Iteration

0

20

40

A
cc

u
m

.
F

it
T

im
e

(b) Sensitivity to network reinitialization rate (noise free (top), noisy (bottom))

Figure 6: Hyperparameter sensitivity on the Ackley5D benchmark.
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Figure 7: Hyperparameter sensitivity on the Pestcontrol benchmark.

E.2 Model Width Ablation

To evaluate the impact of model width on the performance of both the MAP and VBLL Thompson
sampling methods, we conducted a series of experiments on the Ackley5D and Pestcontrol
benchmarks varying the model width.

As illustrated in Fig. 8 (a) and 9 (a), increasing the model capacity (width) of the MAP baseline
results in a significant increase in variance, especially pronounced in the Ackley5D benchmark. This
high variance suggests that the MAP method is highly sensitive to changes in model width, making it
challenging to tune effectively for consistent performance across different tasks.

In comparison, the VBLL method exhibits more robustness to model capacity, as shown in Fig. 8 (b)
and 9 (b). Despite increasing the model width, VBLL does not suffer from the high variance observed
in the MAP baseline. This robustness is advantageous in practical application where extensive model
tuning is unfeasible and hints that VBLL may also perform better when scaling to larger model sizes.
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(a) MAP Thompson sampling with varying model width

(b) VBLL Thompson sampling with varying model width

Figure 8: Comparison of neural network Thompson sampling methods on the Ackley5D benchmark
with varying model width. The models were trained with width of 64, 128 and 512 neurons.

(a) MAP Thompson sampling with varying model width

(b) VBLL Thompson sampling with varying model width

Figure 9: Comparison of neural network Thompson sampling methods on the Pestcontrol bench-
mark with varying model width. The models were trained with width of 64, 128 and 512 neurons.

14



E.3 Model Performance in the Presence of Noise

Lastly, we also benchmark the different surrogates on different noise levels. We again only consider
Ackley5D (Fig. 10) and Pestcontrol (Fig. 11). For these experiments, we use the same Wishart
scale of 0.01 for the VBLL baseline. We can observe that all models, besides the MAP baseline in
Ackley5D, are rather robust the change in noise level.

(a) Noisy objective with noise standard deviation of 0.01.

(b) Noisy objective with noise standard deviation of 0.1.

Figure 10: Performance comparison of baseline methods on Ackley5D benchmark with noise.

(a) Noisy objective with noise standard deviation of 0.01.

(b) Noisy objective with noise standard deviation of 0.1.

Figure 11: Performance comparison of baseline methods on Pestcontrol benchmark with noise.
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