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Abstract
Knowledge distillation (KD) is widely used for
compressing a teacher model to a smaller stu-
dent model, reducing its inference cost and mem-
ory footprint while preserving model capabili-
ties. However, current KD methods for auto-
regressive sequence models (e.g., large language
models) suffer from missing a standardized objec-
tive function. Moreover, the recent use of student-
generated outputs to address training-inference
mismatches has significantly escalated compu-
tational costs. To tackle these issues, we in-
troduce DISTILLM, a more effective and ef-
ficient KD framework for auto-regressive lan-
guage models. DISTILLM comprises two com-
ponents: (1) a novel skew Kullback-Leibler diver-
gence loss, where we unveil and leverage its the-
oretical properties, and (2) an adaptive off-policy
approach designed to enhance the efficiency in
utilizing student-generated outputs. Extensive ex-
periments, including instruction-following tasks,
demonstrate the effectiveness of DISTILLM in
building high-performing student models while
achieving up to 4.3× speedup compared to recent
KD methods.

1. Introduction
Recent advancements in auto-regressive language models
(LMs, OpenAI 2023; Touvron et al. 2023) such as large lan-
guage models (LLMs) have significantly improved the qual-
ity of text generation in a variety of generative tasks such
as task-agnostic instruction-following tasks (Wang et al.,
2023b). This success is often attributed to the increased
scale of training data and model parameters (e.g., 175B pa-
rameters for GPT-3; Brown et al. 2020). However, expand-
ing the parameter count brings associated costs, limiting the
deployment of these models due to either high inference
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costs or large memory footprints. Therefore, a crucial objec-
tive for the practical use of these high-capacity models is to
compress them by reducing the number of parameters while
preserving their performance to the greatest extent possible.

As the necessity of reducing the demands on computational
resources becomes important, KD (Hinton et al., 2015)
emerges as a promising method. It involves the transfer
of knowledge from a teacher model with large capacity (i.e.,
LLMs) to a smaller student LM. Most approaches of KD
have employed the Kullback-Leibler divergence (KLD) loss,
enforcing the student model to generate outputs that mirror
the teacher model’s outputs on a fixed dataset (Kim & Rush,
2016; Sanh et al., 2019). Such methods of KD have signifi-
cantly enhanced the performance of student models, making
them competitive with teacher models while increasing effi-
ciency, especially for various classification tasks (Sun et al.,
2019; Mirzadeh et al., 2020).

These approaches using KLD on fixed datasets, how-
ever, have two primary shortcomings in applying to auto-
regressive LMs. First, using the KLD can lead to sub-
optimal results. Given the complexity of generative tasks
compared to classification tasks, this can result in the stu-
dent distribution becoming overly smooth and consequently
failing to fully capture the teacher distribution, or becoming
overly concentrated in high-probability distributions. This
issue—referred to as mode averaging or mode collapse—
arises due to the asymmetric nature of the KLD (Wen et al.,
2023; Gu et al., 2024). Second, the use of a fixed dataset
in the training phase can cause a distribution mismatch be-
tween the sequences observed during training and those
generated by the student in auto-regressive inference, lead-
ing to exposure bias problems (Arora et al., 2022).

Recent studies have explored various divergence losses
(Wen et al., 2023; Agarwal et al., 2024) or the incorporation
of student-generated output (SGO, Lin et al. 2020; Agar-
wal et al. 2024) to address the existing problems. However,
these methods often lack standardized objective functions
and are less efficient due to the continuous SGO generation.
For instance, Agarwal et al. (2024) employed on-policy dis-
tillation with SGOs, but it faces low sample efficiency and
high generation time as it constantly prompts the student to
produce new training sequences. Also, their experiments in-
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dicated the optimal divergence seems to be task-dependent,
which requires additional efforts to inconveniently select a
proper loss function. Gu et al. (2024) introduced a policy
optimization method to minimize reverse KLD between stu-
dent and teacher distributions, yet this also compromises
training efficiency by requiring generation from both models
in every iteration.

Contributions. In this paper, we introduce DISTILLM1,
featuring a novel skew KLD loss and an adaptive off-policy
approach, focusing on both distillation effectiveness and
training efficiency. We provide both theoretical and em-
pirical evidence that the components of DISTILLM work
well individually and synergistically with each other. Our
detailed contributions include:
• Skew KLD: We focus on the two key issues of existing

objective functions for auto-regressive LMs: instability
from potential gradient explosions in optimizing the KLD
loss, and lack of emphasis on generalizability and conver-
gence. To address these limitations, we introduce skew
KLD, a new objective function with a strong theoretical
foundation, optimized for stable gradients and minimal
approximation errors, empirically leading to faster con-
vergence and superior performance.

• Adaptive off-policy approach: While using SGOs in
KD is generally effective in improving performance, this
approach significantly increases training time (Fig. 2)
and makes it challenging to find the optimal proportion
for using SGOs. To this end, we propose an adaptive
off-policy approach module for adaptively and efficiently
leveraging SGOs to consider the data perspective of KD.

• Advanced performance and efficiency: DISTILLM
accomplishes state-of-the-art performances for the stu-
dent LMs on various generative tasks (e.g., instruction-
following or text summarization), while achieving the
2.5∼ 4.3× training speedup compared to recent KD tech-
niques (Gu et al., 2024; Agarwal et al., 2024).

2. Background
2.1. KD for Auto-regressive Generative LMs

We provide preliminary information on the KD for auto-
regressive generative LMs. Given a source and target se-
quence pair, denoted as (x,y), KD minimizes divergence
D between the distributions of a fixed teacher model p(y|x)
and a parameterized student model qθ(y|x). The training
data pairs (x,y) are either sampled from a fixed ground-
truth dataset (Hinton et al., 2015) or from teacher-generated
outputs (Kim & Rush, 2016).

Conventionally, KLD, denoted as DKL, is the most widely
used loss in KD due to its simplicity and tractability. The

1DISTILLM is pronounced as distill-LLM, merging the word
“distill” with “LLM”.

sequence-level distillation using the KLD is accurately de-
composed into a sum of token-wise distillation:

DKL(p, qθ) = ExEy∼p(·|x)

[
log p(y|x)

qθ(y|x)

]
(1)

≈ 1
|D|
∑

(x,y)∈D p(y|x) log p(y|x)
qθ(y|x) (2)

= 1
|D|
∑

x∈DX

∑|y|
t

∑
yt∈V p(yt|y<t,x) log

p(yt|y<t,x)
qθ(yt|y<t,x)

(3)

where V is the vocabulary token set and y<t :=
(y1, y2, . . . , yt−1) represents the sequence of tokens up to
index t−1. We focus solely on tractable KLD, as other diver-
gences like total variation distance (TVD, Wen et al. 2023)
do not effectively decompose sequence-level distillation
into token-level components. While the explicit definition
of KLD is given in Eq. 1 (Kim & Rush, 2016; Wen et al.,
2023), most recent studies, such as Agarwal et al. (2024)
and Gu et al. (2024), approximate the distribution matching
by minimizing Eq. 2, under the assumption that the teacher’s
distribution is similar to its training dataset D. For the sake
of training efficiency, our method utilizes the definition pro-
vided in Eq. 2, while Eq. 1 is used for theoretical analysis of
our proposed distillation objective in Thm. 1.

2.2. Pitfalls of Existing Distillation

Limitation of objective functions. The KLD objective
in KD, primarily due to its asymmetric nature (Wen et al.,
2023), often forces the student distribution to cover the
entire support set of the teacher distribution, leading to sig-
nificant limitations. This becomes evident when a sampled
data point is included in the teacher distribution’s support
but falls outside the student distribution, i.e., ∃(x,y) such
that p(y|x) ≫ 0 and qθ(y|x) ≈ 0. The limitation be-
comes pronounced if the student model lacks the capacity to
match all support sets of the teacher distribution accurately.
Consequently, this results in the student model exhibiting a
mode-averaging problem, where it learns an overly smooth
distribution in an attempt to cover the teacher’s entire sup-
port set, as highlighted by recent studies (Wen et al., 2023;
Gu et al., 2024).

Such recent studies have partially addressed this issue by
applying the reverse KLD (RKLD, Gu et al. 2024; Agar-
wal et al. 2024), defined as DRKL(p, qθ) := DKL(qθ, p), or
generalized JSD (Agarwal et al., 2024) by introducing an
interpolation parameter β ∈ [0, 1], defined as

D
(β)
JSD(p, qθ) := β DKL(p, βp+ (1− β)qθ)

+ (1− β)DKL(qθ, βp+ (1− β)qθ).
(4)

These approaches have shown empirical success in auto-
regressive LMs, but there is a need for systematic study to
provide a standard distillation objective grounded in com-
prehensive theoretical and experimental analyses. The lack
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Input: Who wrote Picture of Dorian Grey in 1891?
Output: Christopher Columbus.

Input: What is the Cassandra database?
Output: Cassandra is a distributed system developed 
and maintained by software engineers.

Input: How would you describe genomics?
Output: Genomics is a branch of science (…) 
A genome is a set of individuals that provides (…)
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Figure 1. Examples of SGOs from GPT-2 (student) and their corre-
sponding validation loss by GPT-2 XL (teacher). Since the teacher
model may not be familiar with the SGO, using p(y|x) as a target
distribution can misguide the student model, as shown in Tab. 2.
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Figure 2. (Left): Normalized runtime according to the maximum
response length of SGOs with GPT-2 XL teacher and GPT-2 stu-
dent. (Right): Normalized runtime for various sizes of teacher and
student models with a response length of 256. FWD and BWD
denote forward and backward propagation, respectively.

of such backing for these recently proposed objective func-
tions leads to sub-optimal performance and task-dependent
variability (Agarwal et al., 2024).

Limitations of utilizing SGO. Previous KD methods for
auto-regressive LMs have encountered a training-inference
mismatch between the samples from fixed datasets that are
used during training and those produced by the student
model during inference. Recent studies (Lin et al., 2020;
Agarwal et al., 2024) explored addressing this challenge by
prompting the student model to generate SGOs and then
training from the feedback of the teacher model on these se-
quences. This approach addresses the mismatch by training
the student model on its familiar, self-generated sequences.
These efforts have significantly improved the performance
of distilling LLMs (Lin et al., 2020; Agarwal et al., 2024).

Despite its effectiveness, we identify two main issues with
the current utilization of SGO. First, teacher models may ex-
perience a distribution mismatch between their training data
and unfamiliar or inaccurate SGOs, potentially leading to
misguidance on qθ. As depicted in Fig. 1, such a mismatch
can result in the teacher model assigning low validation
loss to incorrect but shorter generations and high validation
loss to longer but correct ones. Second, as shown in Fig. 2,
generating SGOs for every iteration proves computationally
inefficient. Across all experiments, irrespective of the max-
imum sequence length (ranging from 64 to 256) of SGOs
or the model size (from GPT-2 to OpenLLaMA2-3B), the
SGO generation accounts for a considerable portion of the

Algorithm 1 Training pipeline of DISTILLM
1: Input: initial prob. ϕ, student qθ0 with parameters

θ0, teacher p, total training iterations T , training &
validation dataset D, Dval, empty replay buffer DR

2: Output: Student model qθT with trained parameters θT
3: while t ≤ T do
4: Randomly sample u ∼ Unif(0, 1)
5: /* Linearly Decreasing Replay Ratio */
6: if u < λR := ϕ(1− t

T ) then
7: /* Generate SGO & Update DR */
8: Generate SGO {ỹi}Bi=1 from {qθt(·|xi)}Bi=1

9: Store SGO into DR; DR ← DR ∪ {(xi, ỹi)}Bi=1

10: end if
11: if u < ϕ then
12: /* Use SGO in Off-policy Approach (Fig. 4(c))
13: Sample mini-batch {(xi, ỹi)}Bi=1 from DR

14: else
15: /* Use Sample from Fixed Dataset (Fig. 4(a)) */
16: Sample mini-batch {(xi,yi)}Bi=1 from D
17: end if
18: /* Use S(R)KL */
19: Update θt by S(R)KL D

(α)
SKL(·, ·)

20: if do validation then
21: Lprev, ϕ← SGO Scheduler(Lprev, Dval, qθt )
22: end if
23: end while
24:
25: /* Adaptive SGO Scheduler */
26: def SGO Scheduler(Lt̃−1, Dval, qθ):
27: /* Compute Loss for Validation Set */
28: Lt̃ ← 1

|Dval|
∑

xval,yval
Loss(qθ,xval,yval)

29: if Lt̃ > Lt̃−1 + ε then
30: Update ϕt̃ ← min(ϕt̃−1 + 1/Nϕ, 1.0)
31: else
32: Lt̃, ϕt̃ ← Lt̃−1, ϕt̃−1

33: end if
34: return Lt̃, ϕt̃

total training time, reaching up to 80%.

However, to the best of our knowledge, there has been lim-
ited comprehensive effort to address these challenges simul-
taneously. For instance, MiniLLM (Gu et al., 2024) suggests
a method that mixes the distributions of teacher and student
to alleviate the first challenge. However, this method no-
tably increases training computation due to the requirement
of a large teacher model. These challenges motivate us to
develop an approach that adaptively balances the positive
effect of reduction of training-inference mismatch (Agarwal
et al., 2024) and the negative effect of performance degra-
dation from noisy feedback (as shown in Tab. 2). Mean-
while, we also aim to improve the sample efficiency of SGO,
thereby enhancing computational efficiency.
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(a) Grad. coef. (SKL) (b) Grad. coef. (SRKL) (c) L2 norm (w/o normalization) (d) L2 norm (w/ normalization)

Figure 3. (a)-(b): Gradient coefficient distribution for SKL and SRKL across different skew values α, as shown in Eq. 6–7. (c): Distribution
of differences between divergence values and their (exponential) moving average of α-S(R)KL, as shown in Thm. 1, and those of β-JSD
by substituting SKL into JSD across different α and β, respectively. (d): Normalized L2 norm distribution, dividing the L2 norm in (c) by
corresponding gradient coefficient values.

3. DISTILLM
In this section, we present the technical details of DIS-
TILLM, addressing the limitations of previous methods.
Our proposed method includes: (1) Skew KLD (Sec. 3.1),
which significantly improves optimization stability and gen-
eralizability. The skew KLD loss addresses the pitfalls of
previous objective functions that may lead the student model
to sub-optimal, lacking analytical grounding. (2) Adaptive
off-policy approach (Sec. 3.2), which comprises a novel
adaptive SGO scheduler to balance the trade-off between
noisy feedback and training-inference mismatch by min-
imally utilizing SGO, and off-policy strategy to improve
the sample efficiency of SGO with maintaining the perfor-
mance. We present the overall pipeline of DISTILLM in
Algorithm 1.

3.1. Skew (Reverse) KLD

We mathematically present our motivation that skewing such
KLD is highly effective in improving the performance of
student models with a more favorable optimization process.
The definition of skew KLD (SKL, Lee 2001) employs the
parameter α that controls the mixing ratio of two distribu-
tions. The α-SKL between p and qθ is defined as the KLD
between p and the mixture of distributions αp+ (1− α)qθ:

D
(α)
SKL(p, qθ) = DKL (p, αp+ (1− α)qθ) .

We similarly define the α-SRKL by D
(α)
SRKL(p, qθ) =

DKL(qθ, (1 − α)p + αqθ). Here, following our thorough
analysis, we present a comprehensive insight suggesting
that S(R)KL is superior to other loss functions, owing to its
more stable gradient and smaller approximation error.

Stable gradient. To provide stable optimization of SKL,
we first analyze the gradients of KLD and SKL to parameter
θ. Given a context-target sequence pair (x,y), we define
the gradient of KLD w.r.t. θ (Ji et al., 2023):

∇θDKL(p, qθ) = −rp,qθ∇θqθ(y|x), (5)

where rp1,p2
is the ratio between arbitrary distribution p1

and p2. The result is the model probability’s negative gra-
dient, weighted inversely by its value. If qθ(y|x) ≈ 0, the

gradient norm grows large, causing a significant, potentially
noisy parameter update step. These ingredients can ad-
versely affect gradient updates, impacting the optimization
process. We now compute the gradient of SKL w.r.t. θ:

∇θD
(α)
SKL(p, qθ) = − (1− α)rp,q̃θ︸ ︷︷ ︸

coefficient

∇θqθ(y|x), (6)

where q̃θ(y|x) = αp(y|x) + (1 − α)qθ(y|x). SKL offers
a reduced gradient norm compared to KLD, due to p and
qθ interpolation preventing the denominator of rp,q̃θ from
reaching zero. This results in a more stable gradient for
SKL. The gradient analysis for RKLD and SRKL reveals
similar trends.

∇θDKL(qθ, p) = − (log rqθ,p + 1)∇θqθ(y|x), (7)

∇θD
(α)
SKL(qθ, p) = − (log rqθ,p̃ + 1− αrqθ,p̃)︸ ︷︷ ︸

coefficient

∇θqθ(y|x),

where p̃(y|x) = (1−α)p(y|x)+αqθ(y|x). All derivations
for the gradients are in Appendix B.1. We visualize the
gradient coefficient distribution in Fig. 3(a) and Fig. 3(b)
which verify our analysis for gradient. As α becomes large,
the coefficient is effectively small for both SKL and SRKL.

Small approximation error. We show that the empirical
estimator of SKL from mini-batch training has a bounded L2
norm. This bounded norm ensures that rapid convergence,
with minimal error between the estimator and true diver-
gence, yields high generalizability by accurately reflecting
the full distribution from the empirical estimator.

Theorem 1. Let p1n and p2n be empirical distributions of
n i.i.d. samples from p1 and p2, respectively. Under mild
assumptions, we have an upper bound for the L2 norm of
α-SKL estimator D(α)

SKL(p
1
n, p

2
n) for D(α)

SKL(p
1, p2):

E[|D(α)
SKL(p

1
n, p

2
n)−D

(α)
SKL(p

1, p2)|2]

≤ c1(α)

n2
+

c2 log
2(αn)

n
+

c3 log
2(c4n)

α2n
,

for c1(α) = min
{

1
α2 ,

χ2(p1,p2)2

(1−α)2

}
and positive constants

c2, c3, c4 that are independent of n, α, and DKL(p
1, p2),

where χ2(p1, p2) is chi-square divergence between p1, p2.

4



DISTILLM: Towards Streamlined Distillation for Large Language Models

Fixed Dataset

𝒟 = 𝐱𝑖 , 𝐲𝑖 𝑖=1
𝒟

Teacher 𝒑Student 𝒒𝜽

𝐷(𝑝, 𝑞𝜃)

𝒟 = 𝐱𝑖 , 𝐲𝑖 𝑖=1
𝒟

Fixed Dataset

Student 𝒒𝜽 Teacher 𝒑

𝐷(𝑝, 𝑞𝜃)

𝒟 = 𝐱𝑖 , 𝐲𝑖 𝑖=1
𝒟

Fixed Dataset

Student 𝒒𝜽 Teacher 𝒑

𝐷(𝑝, 𝑞𝜃)

Sample from 𝒟 Generate from 𝑞𝜃 for every iter.

Sample from 𝒟𝑅 (w.p. 𝜙)

Prob. from 𝑞𝜃Prob. from 𝑝

Sample from 𝒟 (w.p. 1 − 𝜙) Generate from 𝑞𝜃 (w.p. 𝜆𝑅 ≪ 1)

(b) On-policy Approach (c) Adaptive Off-policy Approach (Ours)(a) KD from Fixed Dataset

𝒟𝑅 = 𝐱𝑖 , 𝐲𝑖 𝑖=1
𝒟𝑅

Replay Buffer1. Generate 𝐲𝑗~𝑞𝜃 ⋅ 𝐱𝑗
2. Store 𝐱𝑗 , 𝐲𝑗 into 𝒟𝑅

Sample 𝐱𝑗
Generate 𝐲𝑗~𝑞𝜃 ⋅ 𝐱𝑗Sample (𝐱𝑗 , 𝐲𝑗)

random variable 𝑢 ∼ 𝑈 0, 1
if 𝑢 < 𝜙: sample (𝐱𝑗 , 𝐲𝑗) ~ 𝒟𝑅

else: sample (𝐱𝑗, 𝐲𝑗) ~ 𝒟

Figure 4. (a) KD from fixed dataset (Hinton et al., 2015) shows higher efficiency but lower performance. (b) On-policy approach (Agarwal
et al., 2024; Gu et al., 2024) shows higher performance but lower efficiency. (c) Our adaptive off-policy approach shows both higher
performance and efficiency. This advantage is attributed to introducing a replay buffer and progressively decreasing a replay ratio
ζ := (1− t

T
), which consequently maintains small SGO generation frequency λR := ϕ(1− t

T
) during the entire training phase.

The proof is in Appendix B.2. Thm. 1 states that a large
α lowers the L2 norm between empirical and true objec-
tives. We show in Fig. 3(c) that α-S(R)KL reduces the error
between the value for each mini-batch and their moving av-
erage more effectively than (R)KLD. However, considering
the gradient scale reduction in Eq. 6–7, the benefit of a re-
duced L2 norm from Thm.1 is negated by compensating the
reduced gradient scale of modern optimizers (Loshchilov
& Hutter, 2017). We further provide a statement consider-
ing the reverse of approximated gradient coefficient, 1

(1−α) ,
especially when r·,· averages near 1:

Remark 1. By considering the reverse of approximated
gradient scale, we have:

E[| 1
(1−α) (D

(α)
SKL(p

1
n, p

2
n)−D

(α)
SKL(p

1, p2))|2]

≤ c∗1(α)

n2
+

c2 log
2(αn)

(1− α)2n
+

c3 log
2(c4n)

α2(1− α)2n
,

for c∗1(α) = min
{

1
α2(1−α)2 ,

χ2(p1,p2)2

(1−α)4

}
.

Overall, selecting α involves a trade-off: the relationship
between the upper bound of the normalized L2 norm and
α ∈ [0, 1] appears to be convex, underscoring the impor-
tance of balancing gradient and L2 norm scales, as shown
in Fig. 3(d). From these results, we also discern a funda-
mental difference between S(R)KL and JSD: S(R)KL with
a mild α achieves an appropriate L2 norm value, whereas
D

(β)
JSD(p, qθ) := βD

(β)
SKL(p, qθ) + (1− β)D

(1−β)
SKL (qθ, p) can-

not simultaneously moderate skew values for both terms.
Our experiments indicate that α-SKL and α-SRKL are most
effective with α = 0.1, surpassing KLD, RKLD, and JSD
in performance, as demonstrated in Tab. 1 and Fig. 8.

3.2. Adaptive Off-policy Approach

In Sec. 2.2, we have discussed two main issues of naı̈vely
using SGO: (1) the risk of noisy feedback due to the teacher
model’s unfamiliarity with the SGO and (2) the significant
increase in training time. For instance, employing SGO at

every training iteration (on-policy, Agarwal et al. 2024) can
lead to a substantial increase in runtime, up to 5.5× (refer
to Fig. 7), and may also result in performance degradation
(refer to Fig. 5). To tackle these issues, we propose (1) an
adaptive SGO scheduler to conservatively utilize SGO in
KD, guided by the validation loss of student models, thus
mitigating the risk of noisy feedback; and (2) an efficient
off-policy strategy to improve the sample efficiency of SGO.

Adaptive SGO scheduler. We define the probability of us-
ing SGOs, denoted as ϕ. We apply SGOs with a probability
of ϕ, i.e., using samples from a fixed dataset with a probabil-
ity of 1−ϕ (refer to Fig. 4(a)). Unlike previous methods that
maintain a consistently high ϕ (Lin et al., 2020; Agarwal
et al., 2024), our scheduler starts with low ϕ value, gradu-
ally increasing during training. This strategy prevents stu-
dent models from being overwhelmed by noisy feedback (as
shown in Fig. 1). To manage the increase of ϕ, we primarily
rely on validation loss as a metric. Our observations indicate
that training on a diverse range of SGOs, rather than solely
on a fixed dataset, mitigates training-inference mismatch
and consequently lowers validation loss. We adjust ϕ by
comparing the current and previous validation losses; an
increase in validation loss leads to an increase in ϕ. This
method effectively improves student model performance by
striking a balance between managing noisy feedback and
minimizing training-inference mismatch issues. For further
details, please refer to Appendix C and Algorithm 1.

Off-policy approach for sample efficiency. To enhance
efficiency, we replace the recently adopted on-policy ap-
proach (Gu et al., 2024; Agarwal et al., 2024) with an off-
policy approach, employing a replay buffer (Mnih et al.,
2015; Fedus et al., 2020), as illustrated in Fig. 4(c). In this
buffer, we store SGOs from student models at a probability
of λR, as indicated by the frequency of the dashed blue
arrows. Subsequently, we randomly draw samples from
this pool. We also replace the oldest samples of DR with
new ones once it reaches its maximum capacity. This off-
policy strategy significantly improves the sample efficiency
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(a) GPT-2 XL (1.5B) → GPT-2 (0.1B) (b) OPT-2.7B → OPT-1.3B (c) OLLaMA2-7B → OLLaMA2-3B (d) Training Speed (OLLaMA2-3B)

Figure 5. Instruction-following tasks, distilling GPT-2 (Radford et al., 2019), OPT (Zhang et al., 2022), and OpenLLaMA (OLLaMA;
Geng & Liu 2023) model families on databricks-dolly-15k. GPT4 and R-L indicate GPT-4 feedback and ROUGE-L, respectively.
To evaluate training speed, results are obtained using four A100 GPUs. Further details and results are in Fig. 14.

of KD with SGO, saving more resources than on-policy
which constantly requires new data.

Off-policy reinforcement learning is prone to high bias er-
ror (Kumar et al., 2019; Lee et al., 2023), particularly when
there is a significant divergence between past and current
policies, using samples from the past policy becomes sub-
optimal for updating the current policy. To address this, we
set λR := ϕ(1− t

T ), where t represents the current training
iteration and T is the total number of iterations. To explain
the philosophy of our design, we define ζ := (1− t

T ) as the
replay ratio:

• In the early training phase (i.e., when adaptive probabil-
ity ϕ is small), where student model parameters rapidly
evolve, we focus on using current SGOs with a high replay
ratio to minimize bias error.

• In the late stages of training (i.e., when ϕ is larger), as
the student model nears convergence, we predominantly
reuse stored SGOs from DR with a small replay ratio.

Hence, we can consistently maintain a small λR by applying
a large ζ for relatively smaller ϕ values and vice versa, effec-
tively balancing bias error reduction with sample efficiency.
Our design of ζ shows higher efficiency and comparable
performance with its alternatives as shown in Tab. 9.

Synergy with SKL. Off-policy approach’s success stems
from the fast convergence speed of S(R)KL while other loss
functions cannot be achieved. As Fig. 6 shows, both SKL
and SRKL have a significant early-stage improvement, ef-
fectively leveraging the off-policy approach without high
bias issues. This advantage is also evident in Tab. 4, where,
unlike other baselines (Lin et al., 2020; Agarwal et al., 2024)
that suffer performance drops when switching from on-
policy to off-policy, our method maintains its efficacy. As a
result, we verify that our off-policy approach significantly
improves the training efficiency with a negligible perfor-
mance drop as depicted in Tab. 2 and Fig. 7.

4. Experiments
We evaluate DISTILLM on instruction-following, text sum-
marization, and machine translation tasks. We apply DIS-
TILLM with SRKL and the off-policy approach with initial
probability as zero and replay buffer size of 1000 as SRKL
with α of 0.1 as determined through our ablation studies
in Sec. 5. We compare our approach with previous KD:
(1) supervised fine-tuning (SFT) directly fine-tunes the stu-
dent on fixed datasets; (2) KD (Hinton et al., 2015) uses
KLD on fixed datasets; (3) SeqKD (Kim & Rush, 2016)
applies SFT to teacher-generated output; (4) ImitKD (Lin
et al., 2020) employs KLD on SGO; (5) MiniLLM (Gu et al.,
2024) utilizes a policy gradient approach on SGO; and (6)
GKD (Agarwal et al., 2024) uses JSD on a mixture of SGOs
and a fixed dataset. Further details on the experimental setup
are found in Appendix D.

4.1. Task-Agnostic Instruction-Following

Implementation details. Our implementation follows the
experiment setup of Gu et al. (2024). We first construct the
training data from databricks-dolly-15k (Conover
et al., 2023), wherein we randomly select 14K samples
for training and equally leave 500 samples for validation
and testing, respectively. We evaluate the trained mod-
els on five instruction-following benchmarks: Dolly eval-
uation, Self-Instruct (Wang et al., 2023b), Vicuna evalua-
tion, Super-Natural Instructions (Wang et al., 2022), and
Unnatural Instruction (Honovich et al., 2023). Similar to
Ouyang et al. (2022) and Gu et al. (2024), we add a lan-
guage modeling (Radford et al., 2018) loss to the OpenWeb-
Text (Gokaslan et al., 2019) corpus for all experiments. Em-
ploying such an additional loss function on the pre-training
corpus has been shown to effectively improve instruction-
tuning performance, as demonstrated in the work of Gu et al.
(2024). For evaluation, we adopt two metrics: ROUGE-
L (Lin, 2004) and GPT-4 feedback (Zheng et al., 2023).
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Table 1. Evaluation of the effect of SKL and SRKL loss functions. Bold and underline indicate the
best and second-best results, respectively, among those from the same evaluation dataset. We report
the average and standard deviation of ROUGE-L scores across five random seeds. Green (•) and
red (•) arrows indicate improvement and deterioration over the corresponding baselines.

Loss Function Dolly Eval (↑) Self-Instruct (↑) Vicuna Eval (↑) Super-Natural (↑) Unnatural (↑)

KLD 23.52 (0.22) 11.23 (0.46) 15.92 (0.41) 20.68 (0.16) 23.38 (0.13)
RKLD 23.82 (0.34) 10.90 (0.58) 16.11 (0.46) 22.47 (0.21) 23.03 (0.11)
Generalized JSD 24.34 (0.35) 12.01 (0.54) 15.21 (0.61) 25.08 (0.36) 27.54 (0.07)

SKL 24.80 (0.12) • 12.86 (0.34) • 16.20 (0.57) • 26.26 (0.41) • 28.06 (0.08) •
SRKL 25.21 (0.27) • 12.98 (0.24) • 15.77 (0.39) • 25.83 (0.15) • 28.62 (0.10) •

1 5 10 15 20
Val Iteration

18
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24

26

28
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SKL
SRKL

Figure 6. ROUGE-L scores for the
validation set across the different
loss functions.

Table 2. Evaluation of the adaptive off-policy approach. We report the average and standard deviation
of ROUGE-L across five random seeds. The best and second best performances are highlighted bold
and underline. Green (•) and red (•) arrows indicate improvement and deduction over the baselines.

Generation Dolly Eval (↑) Self-Instruct (↑) Vicuna Eval (↑) Super-Natural (↑) Unnatural (↑)

Skew KLD 24.80 (0.12) 12.86 (0.34) 16.20 (0.57) 26.26 (0.41) 28.06 (0.08)

⌞ On-policy 24.27 (0.46) • 13.13 (0.44) • 16.39 (0.21) • 25.87 (0.18) • 26.49 (0.09) •
⌞ Mixed 25.27 (0.35) • 12.24 (0.69) • 17.19 (0.29) • 25.30 (0.33) • 26.51 (0.11) •
⌞ Adaptive (ours) 25.90 (0.20) • 13.24 (0.30) • 17.59 (0.44) • 27.62 (0.05) • 28.30 (0.11) •

+ Off-policy (ours) 25.79 (0.28) • 13.03 (0.29) • 17.41 (0.15) • 27.32 (0.09) • 28.13 (0.21) •

Skew RKLD 25.21 (0.27) 12.98 (0.24) 15.77 (0.39) 25.83 (0.15) 28.62 (0.10)

⌞ On-policy 26.04 (0.33) • 12.93 (0.54) • 17.45 (0.37) • 27.29 (0.12) • 28.72 (0.10) •
⌞ Mixed 26.01 (0.61) • 12.24 (0.69) • 17.19 (0.29) • 26.40 (0.34) • 29.02 (0.14) •
⌞ Adaptive (ours) 26.37 (0.21) • 13.14 (0.37) • 18.32 (0.17) • 28.24 (0.22) • 30.11 (0.04) •

+ Off-policy (ours) 26.11 (0.68) • 13.14 (0.69) • 18.46 (0.53) • 27.51 (0.03) • 29.35 (0.07) •
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Figure 7. Relative training time for
different generation methods for
S(R)KL. The adaptive off-policy
approach shows significant effi-
ciency.

Main results. Fig. 5 illustrates the instruction-following
performances, demonstrating DISTILLM’s superiority to
state-of-the-art methods, across diverse teacher-student
combinations and evaluation metrics. Notably, GKD and
MiniLLM, which recently incorporated SGO in distillation,
are less effective or even lead to a performance decline in
smaller-sized student models, particularly in GPT-4 feed-
back and some ROUGE-L scores. Further details and results
can be found in Appendix E.1 and Tab. 11–13.

For evaluating DISTILLM on larger-sized LLMs, we uti-
lize low-rank adaptation (LoRA; Hu et al. 2022) for training.
Specifically, we employ OpenLLaMA2-7B (Geng & Liu,
2023) as the teacher model and OpenLLaMA2-3B as the
student model. The results, as depicted in Fig. 5(c), reveal
that DISTILLM significantly surpasses other baseline meth-
ods in performance. Notably, while other supervised KD
techniques are less effective than MiniLLM in LLM applica-
tions, DISTILLM uniquely achieves superior performance
compared to MiniLLM. This outcome, particularly on task-
agnostic instruction-following datasets, underscores DIS-
TILLM’s effectiveness in general-purpose LLMs. More-
over, as we can observe in Fig. 5(d), DISTILLM requires
only 1.6× the training time of naı̈ve KD, whereas other
methods take 3∼ 7×. This demonstrates the efficiency of
the proposed DISTILLM and its broad applicability to ex-
pensive LLMs.

Table 3. Text summarization and machine translation results, eval-
uated with ROUGE-L and BLEU scores, respectively. Using the
T5-XL (3B) teacher model, we fine-tune the student models, T5-
Base (0.2B) and T5-Small (0.06B).

Dataset SAMSum IWSLT 2017 En-De

T5-XL → T5-Base T5-Small T5-Base T5-Small

KD (Hinton et al., 2015) 46.23 39.52 29.36 21.15
SeqKD (Kim & Rush, 2016) 46.89 40.24 29.07 21.42
ImitKD (Lin et al., 2020) 48.57 41.44 29.87 21.52
GKD (Agarwal et al., 2024) 48.49 41.92 30.24 22.04
DISTILLM (ours) 49.11 42.37 30.32 22.53

4.2. Text Summarization and Machine Translation

We evaluate the effectiveness of task-specific LMs on sum-
marization and translation tasks using two datasets, SAM-
Sum (Gliwa et al., 2019) and IWSLT 2017 (Cettolo et al.,
2017). For the SAMSum dataset, we use T5-XL v1.1 (Raf-
fel et al., 2020) as the teacher model and T5-Base/-Small
v1.1 as the student models. For the IWSLT dataset, we
employed mT5-XL (Xue et al., 2021) as the teacher model
and mT5-Base/-Small v1.1 as the student models.

Tab. 3 displays ROUGE-L and BLEU (Papineni et al., 2002)
scores for student models. We observe that DISTILLM out-
performs other baselines, but has a smaller performance
margin in single-task scenarios than in general-purpose
instruction-following tasks. In the SAMSum, students
trained with ImitKD outperform those trained with GKD,
while in the IWSLT, GKD outperforms ImitKD. These find-
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Figure 8. Comparison of the ROUGE-L score using different α.

ings align with the results in Agarwal et al. (2024), which
indicate that the effectiveness of objective functions and the
use of SGO are task-dependent. Despite these variations,
DISTILLM consistently shows superiority across different
tasks, attributed to its adaptive use of the SGO scheduler
and skew divergence. Additional details on the performance
in the XSum (Narayan et al., 2018) and CNN/DM (See et al.,
2017) datasets are provided in Appendix E.2, further empha-
sizing the superior performance of DISTILLM.

5. Analysis and Discussion
We conduct experimental analyses to verify the effective-
ness of each component of DISTILLM, distilling GPT-2
XL→GPT-2 in instruction-following datasets.

5.1. Effect of Skew Divergence

In Tab. 1, we compare the performance of various mod-
els trained with different objective functions: conventional
KLD, RKLD, and JSD with a β of 0.9 (Agarwal et al., 2024),
as well as our SKL and SRKL with a α of 0.1. The results
show that our proposed objective functions generally outper-
form the others. Notably, as Fig. 6 illustrates, both SKL and
SRKL achieve remarkably high validation ROUGE-L scores
during the entire training phase, consistently demonstrating
the rapid convergence and strong generalization capabilities
of our proposed loss functions. These empirical results ver-
ify our theoretical analysis in Sec. 3.1 and indicate that even
our simple modification leads to significant performance
enhancements.

5.2. Effect of Adaptive Off-policy Approach

In Tab. 2 and Fig. 7, we confirm the effectiveness and effi-
ciency of our adaptive off-policy approach by comparing
it with an on-policy (Lin et al., 2020) and a mixed strat-
egy (Agarwal et al., 2024). In the mixed strategy, we use
the on-policy approach with a probability of 0.5; otherwise,
we sample from the fixed dataset, following the original
work. The results indicate that our adaptive SGO scheduler
effectively balances the trade-off between the risk of noisy
feedback and training-inference mismatch. Notably, while
the baselines suffer from performance degradation when
applying SKL, our proposed adaptive strategy consistently
improves the performance for all datasets. Moreover, the
off-policy approach leads to a minimal performance drop
while significantly improving computational efficiency. It

Table 4. Application of our off-policy method to the existing KD
methods. Off-policy significantly reduces the performance of
ImitKD and GKD, as opposed to our proposed DISTILLM.

Dataset Dolly Eval Self-Instruct Super-Natural

Sampling on- off- on- off- on- off-

ImitKD (Lin et al., 2020) 21.63 20.62 10.85 10.09 19.94 18.04
GKD (Agarwal et al., 2024) 23.75 22.89 12.73 12.78 26.05 24.97
DISTILLM (ours) 26.37 26.12 13.14 13.16 28.24 28.20

Table 5. Comparison of the performance from the adaptive SGO
scheduler and its terminal probability (0.4 for SKL and 0.3 for
SRKL) and the best performance from manually tuned probability
and corresponding value (i.e., results in parenthesis).

Loss Method Dolly Self-Inst Vicuna SNI UNI

SKL Adapt. 25.90 13.24 17.59 27.62 28.30
Best 25.15 (0.3) 13.17 (0.5) 17.04 (0.3) 27.18 (0.4) 28.33 (0.6)

SRKL Adapt. 26.37 13.14 18.32 28.24 30.11
Best 26.38 (0.4) 12.98 (0.3) 17.88 (0.3) 28.24 (0.3) 30.02 (0.3)

achieves 2.2× to 3.4× faster training speed compared to the
on-policy or mixed strategy.

5.3. Additional Ablation Studies on DISTILLM

Skew values α. As we highlight the importance of proper
choice α in Sec. 3.1, we empirically evaluate the perfor-
mance of α-SKL under the wide range of α. Fig. 8 illustrates
that both SKL and SRKL achieve the best performance on
the α value of 0.1. These results are highly consistent with
the result in Fig. 3, where both normalized L2 norms have
the smallest values in α = 0.1 and prove the validity of
our theoretical analyses in Sec. 3.1. We observed that SKL
shows a mild performance reduction as α increases above
0.1, the performance reduction of the SRKL is comparably
severe which is discussed in detail in Appendix E.4.

Combining off-policy with existing KD methods. To
verify the synergy between our proposed objectives and the
off-policy approach, we replaced the on-policy approach
in GKD and ImitKD with an off-policy method. Given
that the JSD and KLD exhibit slower training speeds com-
pared to our SRKL, as shown in Fig. 6, we observe that
the effectiveness of the off-policy approach is significantly
lower than that of our proposed DISTILLM as reported in
Tab. 4. These results validate the substantial effectiveness
of combining our two proposed components.

Appropriateness of adaptive probability. Tab. 5 com-
pares the performance of probability values from the adap-
tive SGO scheduler with the best performance among those
obtained from manually defined probabilities. Our results
show that, in most cases, the performance using our method
exceeds that of the manually selected probabilities. Fur-
thermore, the probability values derived from our adaptive
SGO scheduler are close to the optimal manually defined
probabilities, with the differences being no more than 0.2
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Table 6. Comparison of the performance of GPT-2 student across
different KD methods and initialization (with or without fine-
tuning before KD).

Dataset Dolly Eval Self-Instruct Super-Natural

Fine-tuned ✓ ✗ ✓ ✗ ✓ ✗

MiniLLM (Gu et al., 2024) 23.84 22.56 12.44 10.47 22.62 21.15
GKD (Agarwal et al., 2024) 23.75 23.15 12.73 11.34 26.05 24.48
DISTILLM (SKL) 25.79 25.75 13.03 12.34 27.32 27.24
DISTILLM (SRKL) 26.11 26.14 13.14 12.79 27.51 26.85

for SKL and 0.1 for SRKL.

One-stage Distillation One significant issue with previ-
ous KD methods using SGO is their reliance on beginning
with fine-tuned student models. Without fine-tuning, student
models may produce degenerated SGOs, leading to substan-
tial noisy feedback (Gu et al., 2024). A key advantage of
our proposed DISTILLM is its rapid convergence speed
and innovative adaptive SGO scheduler, which eliminates
the need for such fine-tuned student models. Consequently,
we evaluated the performance of students distilled from pre-
trained parameters without any prior fine-tuning. Tab. 6
demonstrates DISTILLM’s relative robustness to the initial
state of the student model (i.e., regardless of whether the
student was fine-tuned before KD). These findings confirm
that DISTILLM can maintain efficiency with only a mi-
nor reduction in performance, a feat not matched by other
methods.

6. Related Work
KD (Hinton et al., 2015) effectively compresses neural net-
works, allowing smaller student models to match the per-
formance of larger teacher models. Recently, KD has been
extended to compressing auto-regressive LMs, such as GPT-
3 (Brown et al., 2020), to address the challenges posed
by the large scale of current LLMs (Touvron et al., 2023;
Anil et al., 2023), making them more viable in compute-
intensive frameworks. One popular direction of KD for
auto-regressive LMs is to harness LLMs as supervising
data generators where only the teacher predictions are ac-
cessible like ChatGPT (OpenAI, 2023) APIs. This line
of research employed LLMs for guided annotations of un-
labeled data (Taori et al., 2023; Peng et al., 2023) or for
imparting reasoning capabilities (Wang et al., 2023a; Hsieh
et al., 2023), where the resulting generated data are used for
fine-tuning smaller LMs.

Another noteworthy approach, when the teacher model is ac-
cessible, entails matching the student model’s generation dis-
tribution with that of the teacher model through divergence
loss functions. Recent studies (Lin et al., 2020; Wen et al.,
2023; Gu et al., 2024; Agarwal et al., 2024) have focused
on finding the proper objectives or using datasets during
the distillation for auto-regressive LMs. ImitKD (Lin et al.,
2020) demonstrated the effectiveness of SGO in distillation,

leading to Agarwal et al. (2024) propose on-policy approach
of SGO with diverse objectives like RKLD and JSD. Wen
et al. (2023) examined various f-divergences, including total
variation distance and JSD, in auto-regressive LMs, while
Gu et al. (2024) proposed a policy gradient-based method
addressing the high variance issues in RL-based methods.
Building on this research, we introduce an effective, efficient
KD method, DISTILLM, with comprehensive analysis in
objective function and data utilization.

7. Conclusion
We have proposed DISTILLM to address the challenges of
KD frameworks for auto-regressive LMs. Our approach in-
corporates two key components: (1) SKL which is based on
mathematically in-depth analyses and empirical evidence;
(2) an adaptive off-policy approach that enhances the util-
ity of SGO by reducing the noisy feedback introduced by
SGO and improving the sample efficiency with a replay
buffer. Through extensive experiments on various genera-
tion tasks, we have demonstrated the superior performance
of DISTILLM, achieving significant training efficiency and
performance improvement.
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Supplementary Material

A. Limitation
While DISTILLM shows effectiveness in terms of compu-
tational efficiency of training and students’ performances
compared to recent baselines (Gu et al., 2024; Agarwal et al.,
2024), we acknowledge a couple of limitations:

• KLD-based Objective: Our focus is mainly on (R)KLD
because of its tractability that allows decomposing
sequence-level distillation into token-wise distillation (as
shown in Eq. (2)-(3)). However, (R)KLD also entails
limitations previously identified in Ji et al. (2023); Ren
et al. (2024): mode averaging (or mode collapse) and
train-inference mismatch. Although DistiLLM, especially
S(R)KL, effectively mitigated these issues, additionally
combining with objective functions based on TVD (Ji
et al., 2023) or EMD (Ren et al., 2024) could further en-
hance performance. We expect that by linearly interpolat-
ing between SKL and EMD (or TVD), we can leverage the
strengths of both: the rapid convergence of SKL during
the early stages of training and the superior performance
of EMD or TVD towards the late training compared to
KLD.

• Supervised Fine-tuning Approach: DISTILLM is is
primarily designed for a supervised fine-tuning setup,
which has recently shown effectiveness (Chen et al., 2024),
Meanwhile, many contemporary chat LLMs utilize pref-
erence optimization (Ouyang et al., 2022; Rafailov et al.,
2023); thus, an extension of DISTILLM to accommodate
human preference optimization setups might be consid-
ered as future work.

• Same Tokenizer between Teacher & Student: Our
method focuses on the scenario where the teacher and
student models share the same tokenizer, which is also
a common setup for white-box KD methods. However,
with recent techniques (Wan et al., 2024; Boizard et al.,
2024) that facilitate the transfer of knowledge between
models with different tokenizers, we can designate this
for future work to be explored in conjunction with these
new methods.

B. Further Discussion on Skew KLD
Here, we provide the derivation of our theoretical results
described in Sec. 3.1 and further (empirical) discussion on
our proposed SKL.

B.1. Details for Gradient Analysis

Derivation of Sec. 3.1. We derive the sample-wise gra-
dient of KLD, SKL, RKLD, and SRKL to support our ar-
gument that simple skew operation on KLD improves the
stability of the optimization.

• Firstly, we compute the gradient of KLD for a single
sample (x,y):

∇θDKL(p, qθ) = −∇θp(y|x) log qθ(y|x)

= − p(y|x)
qθ(y|x)

∇θqθ(y|x).

• Secondly, we compute the gradient of SKL for (x,y):

∇θD
(α)
SKL(p, qθ)

= −∇θp(y|x) log (αp(y|x) + (1− α)qθ(y|x))
= −∇θp(y|x) log q̃θ(y|x)

= − p(y|x)
q̃θ(y|x)

∇θ q̃θ(y|x)

= − p(y|x)
q̃θ(y|x)

· (1− α) · ∇θqθ(y|x).

• Thirdly, we compute the gradient of RKLD for (x,y):

∇θDKL(qθ, p)

= log p(y|x)∇θqθ(y|x)−∇θ(qθ(y|x) log qθ(y|x))
= ∇θqθ(y|x) · (log p(y|x)q(y|x)− 1).

• Lastly, with a definition of p̃(y|x) = (1− α)p(y|x) +
αqθ(y|x), we compute the gradient of SRKL for
(x,y):

∇θD
(α)
SKL(qθ, p)

= ∇θ(qθ(y|x) log p̃(y|x))−∇θ(qθ(y|x) log qθ(y|x))

= log p̃(y|x)∇θqθ(y|x) +
qθ(y|x)
p̃(y|x)

∇θp̃(y|x)

−∇θqθ(y|x) log qθ(y|x)−∇θqθ(y|x)

= −
(
log

qθ(y|x)
p̃(y|x)

+ 1− α
qθ(y|x)
p̃(y|x)

)
∇θqθ(y|x),

As we described in Section 3.1, we can prevent the unde-
sired gradient norm explosion due to smoothed distributions
q̃θ(y|x) and p̃(y|x) for SKL and SRKL, respectively.
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(a) SKL (w/o normalization) (b) SKL (w/ normalization) (c) SRKL (w/o normalization) (d) SRKL (w/ normalization)

Figure 9. Gradient coefficient distribution for SKL and SRKL across different skew values, α. Skewing KLD and RKLD effectively
smooth the gradient norm, as seen in (a) and (c). For coefficients normalized by their median value, SKL shows a similar distribution
when α > 0 while SRKL exhibits explosion, as depicted in (b) and (d).

Further empirical discussion. Recent optimizers, such
as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov
& Hutter, 2017), adaptively adjust learning rates based on
the gradient scale. Hence, it is also important to observe
the distribution of the normalized gradient divided by their
scale. In Fig. 9, we additionally plot the normalized ver-
sion of the gradient coefficient, obtained by dividing the
corresponding median values of the coefficient. SKL shows
consistently reduced variance as α increases not only for
original values but also normalized values. However, SRKL
shows the smallest variance at α of 0.1 for both original
and normalized values, but when α is larger than 0.1, the
variance becomes larger as α grows. These results are also
related to those in Fig. 8, where SKL shows higher ro-
bustness than SRKL across different α values. Still, our
mathematical analysis is valid given that the gradient scale
becomes smaller as α increases.

B.2. Proof of Theorem 1

Theorem 1 (Restated). Assume p1, p2 be two probabil-
ity distributions such that Vp2 [dp1/dp2] < ∞ and p1 is
absolutely continuous with respect to p2 (i.e., the Radon-
Nikodym derivative dp1/dp2 exists). Then, for ∀α < 1/8,
the variance of α-SKL estimator satisfies

E[|D(α)
SKL(p

1
n, p

2
n)−D

(α)
SKL(p

1, p2)|2]

≤ c1(α)

n2
+

c2 log
2(αn)

n
+

c3 log
2(c4n)

α2n
,

for c1(α) = min{ 1
α2 ,

χ2(p1,p2)2

(1−α)2 } and constants
c2, c3, c4 > 0 that are independent of n, α, and D(p1, p2),
where χ2(p1, p2) := Ep2 [(dp1/dp2)2]. Here, we denote
p1 ≪ p2 as p1 is absolutely continuous with respect to p2.

In this section, we state and define the regularity assump-
tions to derive the asymptotic upper bounds for the variance
of α-skew KL divergence. Formally, the f -divergence of
two distributions is defined as

Df (p
1, p2) = Ey∼p1

[
f

(
p1(y|x)
p2(y|x)

)]
:= Ep1

[
f

(
dp1

dp2

)]
,

where dp1 and dp2 are the probability densities of probabil-
ity p1 and p2.

The KL divergence is a f -divergence generated by f(t) =
t log t − t + 1, and the α-skew KL divergence is a f -
divergence generated by

f (α)(t) = t log

(
t

αt+ 1− α

)
− (1− α)(t− 1).

By following Liu et al. (2021) and Lee & Shin (2022), we
state the following regularity assumptions on the functions
f and f∗.

Assumption B.1. The generator f is twice continuously
differentiable with f ′(1) = 0. Moreover

(A1): We have C0 := f(0) <∞ and C∗
0 := f∗(0) <∞.

(A2): There exist constants C1, C
∗
1 < ∞ such that for any

t ∈ (0, 1), we have |f ′(t)| ≤ C1 max{1, log(1/t)}
and |(f∗)′(t)| ≤ C∗

1 max{1, log(1/t)}.

(A3): There exist constants C2, C
∗
2 <∞ such that for every

t ∈ (0,∞), we have t
2f

′′(t) ≤ C2 and t
2 (f

∗)′′(t) ≤
C∗

2 .

One can observe that both KLD and RKLD do not satisfy
Assumption B.1 because KLD is unbounded. On the other
hand, the α-skew KL divergence satisfies Assumption B.1
from the following proposition.

Lemma B.1 (Liu et al. 2021). The α-skew KL divergence
generated by f (α) satisfies Assumption B.1 with

C0 = 1− α, C∗
0 = log

1

α
− 1 + α, C1 = 1,

C∗
1 =

(1− α)2

α
, C2 =

1

2
, C∗

2 =
1− α

8α
.

For general f -divergences which satisfy Assumption B.1,
the following concentration bound holds.

Lemma B.2 (Liu et al. 2021). Assume f satisfies As-
sumption B.1, and let p1 and p2 be two distributions with
p1 ≪ p2. Let p1m be m i.i.d samples from p1 and p2n be n
i.i.d samples from p2. Then the f -divergence Df satisfies

15



DISTILLM: Towards Streamlined Distillation for Large Language Models

following:

P[|Df (p
1
m, p2n)− E[Df (p

1
m, p2n)]| > ϵ] ≤

2 exp

(
− ϵ2

2
m (C1 logm+ c1)2 +

2
n (C

∗
1 log n+ c2)2

)
where c1 = max{C∗

0 , C2} and c2 = max{C0, C
∗
2}.

Thus, the following lemma derives a concentration bound
for the α-skew KL divergence by plugging the constants in
Lemma B.1 to Lemma B.2.

Lemma B.3 (Lee & Shin 2022). For α < 1
8 , the following

holds:

P[|D(α)
SKL(p

1
m, p2n)− E[D(α)

SKL(p
1
m, p2n)]| > ϵ]

≤ 2 exp

(
− ϵ2

2
m log2(αm) + 2

α2n log2(e1/8n)

)

Proof. Note that C∗
0 = log(1/α) − 1 + α ≥ C2 = 1/2,

and C0 = 1 − α ≤ C∗
2 = 1−α

8α for α < 1
8 . Then the

concentration bound follows from Lemma B.3.

Lastly, we present the following upper bound on the bias of
the empirical estimator of KLD.

Lemma B.4 (Rubenstein et al. 2019). Suppose p1 ≪ p2,
and Vp1 [dp1/dp2] <∞. Then we have

|E[DKL(p
1
m, p2n)]−DKL(p

1, p2)| ≤ χ2(p1, p2)

min{n,m}
.

Lemma B.5 (Lee & Shin 2022). For α ∈ (0, 1), the follow-
ing holds:

|E[D(α)
SKL(p

1
m, p2n)]−D

(α)
SKL(p

1, p2)| ≤ c(α)

min{n,m}
,

where c(α) := min
{

1
α ,

χ2(p1
m,p2

n)
1−α

}
.

Proof. From Lemma B.4, we have

|E[D(α)
SKL(p

1
m, p2n)]−D

(α)
SKL(p

1, p2)| ≤ χ2(p1, αp1 + (1− α)p2

min{n,m}
,

where χ2(p1, αp1 + (1 − α)p2) =
∫

d2p1

αdp1+(1−α)dp2 ≤∫
1
αdp

1 = 1
α , or

∫
d2p1

αdp1+(1−α)dp2 ≤ 1
1−α

∫
d2p1

dp2 =
χ2(p1,p2)

1−α . Therefore, we have

|E[D(α)
SKL(p

1
m, p2n)]−D

(α)
SKL(p

1, p2)| ≤ c(α)

min{n,m}

for c(α) := min
{

1
α ,

χ2(p1,p2)
1−α

}
Now we present the proof of Theorem 1 in the main paper.

Proof. Define

B1 := D
(α)
SKL(p

1
n, p

2
n)− E[D(α)

SKL(p
1
n, p

2
n)]

B2 := E[D(α)
SKL(p

1
n∥p2n)]−D

(α)
SKL(p

1, p2).

Then, by using bias-variance decomposition (Pedro, 2000),
we have

Ep1,p2 [|D(α)
SKL(p

1
n, p

2
n)−D

(α)
SKL(p

1, p2)|2]
= Ep1,p2 [|B1|2]︸ ︷︷ ︸

Variance

+Ep1,p2 [|B2|2]︸ ︷︷ ︸
Bias2

.

Since the following holds for any random variable X ,

V(X) = E[(X − EX)2]

=

∫ ∞

0

P[|X − EX|2 > t]dt

=

∫ ∞

0

P[|X − EX| >
√
t]dt,

by Lemma B.2, we have a variance for estimator
D

(α)
SKL(p

1
n, p

2
n) as follows:

Vp1,p2 [D
(α)
SKL(p

1
n, p

2
n)] ≤∫ ∞

0

2 exp

(
− t

2
n

(
log2(αn) + 1

α2 log
2(e1/8n)

)) dt.

(8)

As we can directly compute the bias term through
Lemma B.5, we have

Ep1,p2 [|D(α)
SKL(p

1
n, p

2
n)]−D

(α)
SKL(p

1, p2)|2]

≤ c1(α)

n2︸ ︷︷ ︸
from Lemma B.5

+
c2 log

2(αn)

n
+

c3 log
2(c4n)

α2n︸ ︷︷ ︸
from Eq. (8)

, (9)

where c1(α) = min
{

1
α2 ,

χ2(p1,p2)2

(1−α)2

}
and constants

c2, c3, c4 > 0 that are independent of n, α, and DKL(p
1, p2),

where χ2(p1, p2) := Ep2

[
(dp1/dp2)2

]
.

C. Details of DISTILLM Algorithm
We describe DISTILLM in detail, especially for the adap-
tive off-policy approach, which could not be fully explained
in Sec. 3.2 due to lack of margin.

Instead of using ϕ defined in Sec. 3.2, we further define the
probability of using SGOs determined at each validation
iteration t̃, denoted as ϕt̃. We adjust the probability by
using the following rule with validation loss Lt̃ and Lt̃−1

for iteration t̃ and t̃− 1, respectively:

ϕt̃ =

{
ϕt̃−1 if Lt̃ ≤ Lt̃−1 + ε

min(ϕt̃−1 + 1/Nϕ, 1.0) otherwise
,
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(a) SKL (b) SRKL

Prob. 
increaseProb. 

increase

Figure 10. Plot of validation loss values (y-axis) across each vali-
dation iteration (x-axis). Although validation loss tends to increase
as training progresses, employing SGO effectively prevents this
increase. This is the core philosophy of our adaptive SGO sched-
uler (orange line).

where ε is the loss tolerance, a hyperparameter introduced to
mitigate unexpected fluctuations in loss values and enhance
the stability of the process. We set this value as 0.1 for
all experiments. Nϕ denotes the total number of stages
for adjusting the probability, allowing the probability to
adopt any value in the set

{
i

Nϕ

∣∣ i = 0, 1, . . . , Nϕ

}
. In our

experiments, we set an initial validation lossL0 as validation
loss of initialized student models, ϕ0 as 0.0, and Nϕ as 10.
If a newly computed validation loss exceeds the preceding
one, we increment ϕt̃ by one stage.

Here, we present empirical evidence to justify using vali-
dation loss as the primary metric. Fig. 10 shows that the
validation loss for both SKL and SRKL consistently in-
creases over iterations, as depicted by the blue lines. This
trend indicates that the student models may overly fit to
the training dataset and overlook other general sequences,
leading to a training-inference mismatch. To create a more
versatile student model that performs well on both train-
ing and validation datasets, we introduce additional SGOs
whenever an increase in validation loss is observed. This ap-
proach effectively mitigates the mismatch between training
and inference, as well as reduces the risk of noisy feedback.

D. Experimental Setup
We elaborate the detailed experimental setup regarding the
datasets used (Sec. D.1), training details (Sec. D.2), and
evaluation details (Sec. D.3).

D.1. Dataset Description

We apply DISTILLM on various generation tasks including
task-agnostic instruction-following, text summarization, and
machine translation. We provide detailed descriptions of the
datasets used.

• databricks-dolly-15k (instruction-following,
Conover et al. 2023): databricks-dolly-15k is an
open-source dataset of instruction-following records

generated by thousands of Databricks employees in
several behavioral categories that are outlined in Ouyang
et al. (2022), including brainstorming, classification,
closed QA, generation, information extraction, open QA,
and summarization.

• Self-Instruct (instruction-following, Wang et al. 2022): Self-
Instruct is a framework designed to enhance the language
model’s instruction-following capabilities by leveraging
the model’s own outputs to generate a vast set of instruc-
tional data. It includes 52K instructions and 82K inputs
and outputs for tuning, along with 252 expert-written
tasks aimed at practical applications and additional 50K
examples from public datasets for benchmarking.

• Vicuna (instruction-following, Chiang et al. 2023): We also
use 80 challenging questions that were used for evaluating
Vicuna, following Gu et al. (2024).

• Super-Natural Instruction (instruction-following, Wang
et al. 2022): Super-Natural Instruction is introduced as
a benchmark of 1,616 diverse NLP tasks and their expert-
written instructions. The collection covers 76 distinct task
types. Its test set consists of 9K samples ranging from
119 tasks.

• Unnatural Instruction (instruction-following, Honovich
et al. 2023): Unnatural Instruction uses AI to create 240K
instructions with little human help, showing that AI-made
data can be as good as human-made data for training lan-
guage models. The core set of this dataset contains 60K
samples.

• SAMSum (text summarization, Gliwa et al. 2019): SAM-
Sum consists of 16K messenger-like conversations, anno-
tated with a summary for providing a concise overview of
the conversation’s content by the third person.

• XSum (text summarization, Narayan et al. 2018): XSum com-
prises over 200K news articles, each accompanied by
a one-sentence summary designed for the evaluation of
abstractive single-document summarization systems, fo-
cusing on extreme summarization to capture the essence
of articles in a single sentence.

• CNN/DM (text summarization, See et al. 2017): CNN/ DM
consists of over 300K English news articles that were orig-
inally designed for machine-reading and comprehension
as well as abstractive question answering, but it now also
supports extractive and abstractive summarization.

• IWSLT 2017 (machine translation, Cettolo et al. 2017):
IWSLT 2017 addresses text translation, using a single
machine translation system for multiple language direc-
tions such as English and German. Here, we specifically
focus on an English-to-German (En-De) translation task.
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D.2. Training Details

For training the teacher and student models, we used four
A100 40GB GPUs for the instruction-following task and
four RTX 3090 GPUs for the text summarization and ma-
chine translation tasks.

Instruction-following experiments. Our experimental
setup for training LMs on databricks-dolly-15k pri-
marily follows the experimental setup for Gu et al. (2024).
For models within 1B parameters, we search for the learning
rates in {5e-4, 1e-4, 5e-5}, the batch sizes in {8, 16, 32}
within the possible maximum batch size for A100 40GB
GPUs, and train these models for 20 epochs. For models
that have more than 1B parameters, we search for the learn-
ing rate in {5e-5, 1e-5, 5e-6}, the batch sizes of 8, and train
these models for 10 epochs. We fully use the distillation loss
for the instruction-following dataset and language modeling
loss for OpenWebText (Gokaslan et al., 2019) corpus. The
checkpoints of each student are selected by the ROUGE-L
scores on the validation set.

For MiniLLM (Gu et al., 2024), we follow the original setup
except for the number of GPUs. For ImitKD (Lin et al.,
2020), MiniLLM, and GKD (Agarwal et al., 2024), we ini-
tialize the student models with the fine-tuned ones according
to their original methods, ensuring a fair comparison in our
method as well. However, DISTILLM demonstrates effec-
tiveness even without the need for such fine-tuned student
models, unlike other methods that utilize SGOs. The corre-
sponding results are available in Appendix ??. We conduct
validation at the end of every training epoch. For MiniLLM,
we have used the original code 2 (Gu et al., 2024), while for
other baselines, we have re-implemented them. To train the
OpenLLaMA2 (Geng & Liu, 2023), we use LoRA for query
and value weights with a rank of 16.

Task-specific experiments. For text summarization tasks
(SAMSum, XSum, and CNN/DM), we train all teacher and
student models for 10 epochs. In contrast, for the IWSLT
2017 En-De dataset, we train them for 2 epochs. Since the
official code for MiniLLM (Gu et al., 2024) is not available
on such tasks, we do not consider conducting experiments
with MiniLLM on these tasks. Moreover, as the other meth-
ods such as SeqKD (Kim & Rush, 2016), ImitKD (Lin et al.,
2020), and GKD (Agarwal et al., 2024) highly increase the
training time from obtaining the SGOs or teacher-generated
outputs, we only use the 20K of random samples for XSum
and CNN/DM, as we described in Sec. 4.2. However, due to
the difficulty of machine translation, we use the full dataset
of IWSLT 2017. We use a fixed learning rate of 1e-4 and
use possible maximum batch size within {8, 32, 64} for
RTX 3090 GPUs. We also conducted ten validations for
all experiments. For the training teacher model, we utilize

2https://github.com/microsoft/LMOps/tree/main/minillm

Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Figure 11. The prompt template for training and evaluation of
instruction-following task experiments from Gu et al. (2024).

LoRA (Hu et al., 2022) for all weights for query, key, value,
and output with rank of 16.

D.3. Evaluation

For evaluating the teacher and student models, we applied a
single A100 40GB GPU for the instruction-following task
and a single RTX 3090 GPU for the text summarization and
machine translation tasks.

Instruction-following. Our evaluation setup for the
instruction-following task also follows the Gu et al. (2024).
During the evaluation, we sample the responses from each
model using a temperature of 1.0, a max-length limit of 512,
and five random seeds (i.e., {10, 20, 30, 40, 50}). We adopt
a prompt wrapper as shown in Fig. 11. However, for GPT-4
feedback, instead of using the prompt introduced in Gu et al.
(2024), we use a more popular prompt introduced in Zheng
et al. (2023) which is illustrated in Fig. 12 with setting the
temperature of 0.7. We also report the ratio of the total score
of model responses and ground truth answers by following
Gu et al. (2024).

Task-specific experiments. During the evaluation, we
sample the responses from each model using a greedy sam-
pling, and a max-length limit of 128. We use ROUGE-L
(Lin, 2004) and BLEU (Papineni et al., 2002) for text sum-
marization and machine translation, respectively.

E. Additional Results
In this section, we provide additional experimental results
to demonstrate the effectiveness of our proposed method
and its components.

E.1. Full Results of Instruction-Following (Fig. 5)

In Fig. 14, we describe the full version of the main result
in Sec. 4.1 and Fig. 14. Our proposed DISTILLM con-
sistently outperform the baselines such as MiniLLM (Gu
et al., 2024) and GKD (Agarwal et al., 2024) in most of the
datasets (Dolly Evaluation, Self-Instruct, Vicuna Evaluation,
Super-Natural, and Unnatural) and metrics (ROUGE-L and
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[System]
Please act as an impartial judge and evaluate the quality
of the response provided by an AI assistant to the
user question displayed below. Your evaluation should
consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of the
response. Begin your evaluation by providing a short
explanation. Be as objective as possible. After providing
your explanation, please rate the response on a scale of 1
to 10 by strictly following this format: “[[rating]]”, for
example: “Rating: [[5]]”.

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

Figure 12. The prompt template for single-answer grading of GPT-
4 feedback from Zheng et al. (2023).

Table 7. The full results of Tab. 3, which is the performance com-
parison of KD methods trained on text summarization and machine
translation datasets. We report the ROUGE-L and BLEU scores
for the distilled student.

Dataset SAMSum XSum CNN/DM IWSLT

T5-XL (Teacher) 52.52 30.86 40.84 34.56

T5-XL (3B) → T5-Small (0.06B)

KD (Hinton et al., 2015) 39.52 21.47 36.43 21.15
SeqKD (Kim & Rush, 2016) 40.24 21.40 36.85 21.42
ImitKD (Lin et al., 2020) 41.44 21.96 37.68 21.52
GKD (Agarwal et al., 2024) 41.92 22.26 37.65 22.04
DISTILLM (ours) 42.37 22.43 38.01 22.53

T5-XL (3B) → T5-Base (0.2B)

KD (Hinton et al., 2015) 46.23 27.15 38.49 29.36
SeqKD (Kim & Rush, 2016) 46.89 27.35 38.65 29.07
ImitKD (Lin et al., 2020) 48.57 28.08 39.16 29.87
GKD (Agarwal et al., 2024) 48.49 28.15 38.98 30.24
DISTILLM (ours) 49.11 28.57 39.47 30.32

GPT-4 feedback) regardless of model sizes. The numerical
results are reported in Tab. 11, Tab. 12, and Tab. 13. These
results demonstrate that DISTILLM achieves the best per-
formance (bold number) in most cases, except for a few
second best performances (underlined number).

E.2. Full Results of Task-Specific KD (Tab. 3)

In addition to the results on SAMSum and IWSLT 2017
datasets in Sec. 4.2 and Tab. 3, we further conduct experi-
ments on XSum and CNN/DM datasets. As the existing
KD methods using SGO require up to 5× training time
compared to naı̈ve KD, we randomly sample 20K from
the training dataset. Tab. 7 further shows the performance
of XSum and CNN/DM for DISTILLM and other KD
baselines. Our DISTILLM consistently outperforms other

Table 8. Comparison of the ROUGE-L score of GPT-2 student
using different α. All results show the concave form in terms of
ROUGE-L scores.

Loss α Dolly Self Vicuna SNI UNI

SKL

0.0 23.52 11.23 15.92 20.68 23.38
0.1 24.80 12.86 16.20 26.43 28.06
0.3 24.54 12.72 16.25 25.31 27.92
0.5 24.55 12.66 16.05 23.59 27.48
0.7 24.49 12.08 15.86 21.49 27.15
0.9 24.27 11.25 14.84 19.07 26.51

SRKL

0.0 23.82 10.90 16.11 22.47 23.03
0.1 25.21 12.98 15.77 25.83 28.62
0.3 25.00 12.52 15.53 25.10 27.87
0.5 25.92 12.09 15.39 23.91 26.98
0.7 21.41 11.73 14.69 20.65 24.16
0.9 18.20 9.69 13.71 17.50 19.35

baselines in terms of ROUGE-L and BLEU scores.

E.3. Terminal Probability by Adaptive SGO Scheduler

In the following list, we report the terminal probability
values determined by our adaptive SGO scheduler. We
observe that the final probability values are varying across
the different tasks. This highlights the importance of using
our novel SGO scheduler which can adaptively balance the
SGOs and a fixed dataset.

• GPT-2 family(databricks-dolly-15k): 0.4 (Base),
0.4 (Medium), 0.5 (Large)

• OPT family (databricks-dolly-15k): 0.2 (125M),
0.3 (350M), 0.5 (1.3B)

• OpenLLaMA2 (databricks-dolly-15k): 0.6 (3B)

• T5 (SAMSum): 0.7 (Small), 0.8 (Base)

• T5 (IWSLT 2017): 0.5 (Small), 0.7 (Base)

• T5 (XSum): 0.3 (Small), 0.6 (Base)

• T5 (CNN/DM): 0.4 (Small), 0.6 (Base)

E.4. Sensitivity Study for α

As shown in Tab. 8, we also report the numerical values of
the results in Fig. 6 for all datasets. The results for Vicuna
and Unnatural are similar to the results for Dolly, Self-
Instruct, and Super-Natural Instruction datasets (i.e., making
concave form in terms of ROUGE-L scores as α increases).
These results highly relate to our theoretical analysis in
Sec. 3.1 that the normalized approximation error dividing
by gradient showed the convexity. This also provides the
importance of the skew value α which has an important role
in balancing the approximation error and gradient scale.

19



DISTILLM: Towards Streamlined Distillation for Large Language Models

Table 9. Comparison of diverse scheduling strategy of replay ratio.

Replay ratio ζ Time Dolly Self Vicuna SNI UNI

Constant (0.5) ×2.13 26.32 12.99 17.31 27.45 28.64
Increasing (t/T ) ×2.39 26.44 12.42 17.60 26.80 29.90
Decreasing (1− t/T ) ×1.67 26.11 13.14 18.46 27.51 29.35

0.00.1 0.3 0.5 0.7 0.91.0
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26.25

26.50

Super-Natural

Figure 13. Comparison of the ROUGE-L scores using different β
for ISKL (i.e., interpolations between SKL and SRKL).

E.5. Design of Replay Ratio

Tab. 9 summarizes the training time and performance ac-
cording to the different scheduling strategies for replay ratio
in the off-policy training. Despite the high bias error (Lee
et al., 2023) of off-policy training, the performance of the
constant or increasing ζ is similarly compared to our pro-
posed decreasing manner thanks to our adaptive probability
of using SGO. Furthermore, our scheduling strategy not
only demonstrates the highest training efficiency but also
consistently delivers the best performance overall, achieving
the best results in three out of five cases.

E.6. Synergy of SKL and SRKL

Similar to generalized JSD (Agarwal et al., 2024), we con-
sider the interpolation between the SKL and SRKL using
the coefficient β ∈ [0, 1]. Here, we define interpolated
SKL (ISKL) as follows:

D
(β)
ISKL(p, qθ) = βD

(0.1)
SKL (p, qθ) + (1− β)D

(0.1)
SRKL(p, qθ).

We set the α for 0.1 based on previously described results.
Fig. 13 shows the results of ISKL across different β values.
Note that we do not use SGO for these results. We observe
that there is no consistent tendency between the β and corre-
sponding performance. However, the performance for ISKL
for all β still outperforms the other loss functions previously
used in auto-regressive KD (i.e., JSD and RKLD).

E.7. Qualitative Evaluation

We provide some responses generated by the models dis-
tilled by different methods based on OpenLLaMA2-3B in
Tab. 14 and Tab. 15. The prompts are sampled from the
databricks-dolly-15k, Self-Inst, and Vicuna. Our
results demonstrate that DISTILLM produces more de-
tailed and accurate responses compared to other KD base-
lines. Specifically, DISTILLM excels at comprehending
the precise instructions given (for example, following al-
phabetical order in Case #1 from Tab. 14, and identifying

Table 10. Comparison of the performance of GPT-2 student across
different capacities of replay buffer for off-policy approach.

DR Capacity Dolly Self Vicuna SNI UNI

250 24.71 11.95 16.79 24.88 26.73
500 25.32 12.46 17.64 25.69 27.00
1000 26.11 13.14 18.46 27.51 29.35
2000 26.48 12.88 17.49 26.51 28.61
4000 25.58 12.65 17.22 25.65 27.55

categorization candidates in Case #2 from Tab. 15). Addi-
tionally, we observe that DISTILLM achieves high-quality
output across various types of tasks, including code genera-
tion (as in Case #1 in Tab. 15) and mathematical reasoning
(as in Case #3 in Tab. 15).

E.8. Replay Buffer Capacity

We also conduct experiments to confirm the effect of the
capacity of the replay buffer on our off-policy approach.
Table 10 summarizes the performance associated with dif-
ferent capacities of the replay buffer, DR. We observe that
determining the appropriate capacity involves a trade-off. A
capacity that is too small may lead to overfitting on a limited
number of samples within DR. Conversely, a capacity that
is too large results in the inclusion of outdated SGO in the
replay buffers, potentially introducing a high bias issue as
noted by Lee (2023) (Lee et al., 2023). In our experiments,
a capacity value of 1000 demonstrates the most balanced
performance overall.
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Table 11. Comparison with state-of-the-art KD methods, fine-tuned GPT-2 model families (Radford et al., 2019) on
databricks-dolly-15k dataset. All results are based on our re-implementation. The bold and underline markings indicate
the best and second-best results, respectively, among those from the same evaluation dataset and student model.

KD Dolly Evaluation Self-Instruct Vicuna Evaluation Super-Natural Unnatural
Method GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) ROUGE-L (↑) ROUGE-L (↑)
GPT-2 XL (Teacher) 44.91 (0.65) 26.53 (0.35) 34.98 (0.92) 14.41 (0.34) 33.19 (1.13) 16.30 (0.40) 27.76 (0.36) 32.06 (0.12)

GPT-2 XL (1.5B)→ GPT-2 (0.1B)

SFT 30.26 (0.76) 23.33 (0.22) 18.75 (0.55) 10.56 (0.54) 18.43 (0.10) 15.12 (0.47) 17.08 (0.29) 20.07 (0.13)
KD (Hinton et al., 2015) 30.33 (0.59) 23.52 (0.19) 18.39 (0.70) 11.23 (0.41) 18.87 (0.28) 15.92 (0.37) 20.68 (0.14) 23.38 (0.12)
SeqKD (Kim & Rush, 2016) 30.11 (0.35) 23.38 (0.37) 17.94 (0.55) 10.18 (0.18) 18.71 (0.67) 15.01 (0.28) 15.08 (0.12) 19.21 (0.06)
ImitKD (Lin et al., 2020) 27.91 (0.48) 21.63 (0.51) 18.71 (0.42) 10.85 (0.38) 19.14 (0.14) 14.70 (0.29) 17.94 (0.10) 21.24 (0.07)
MiniLLM (Gu et al., 2024) 29.27 (0.41) 23.84 (0.26) 20.76 (0.07) 12.44 (0.28) 20.82 (0.57) 18.29 (0.36) 22.62 (0.26) 23.26 (0.09)
GKD (Agarwal et al., 2024) 29.75 (0.06) 23.75 (0.15) 20.34 (0.47) 12.73 (0.24) 20.48 (0.43) 16.64 (0.24) 26.05 (0.23) 27.70 (0.10)
DISTILLM 31.97 (0.06) 26.11 (0.68) 22.45 (1.29) 13.14 (0.69) 23.21 (1.67) 18.46 (0.53) 27.51 (0.03) 29.35 (0.07)

GPT-2 XL (1.5B)→ GPT-2 Medium (0.3B)

SFT 38.56 (0.43) 25.23 (0.36) 27.48 (0.51) 13.35 (0.36) 27.88 (1.21) 16.17 (0.50) 23.77 (0.23) 27.27 (0.08)
KD (Hinton et al., 2015) 39.00 (0.77) 24.75 (0.54) 28.17 (0.93) 12.84 (0.48) 28.97 (0.72) 16.14 (0.37) 24.00 (0.23) 27.20 (0.12)
SeqKD (Kim & Rush, 2016) 38.78 (0.52) 25.54 (0.34) 25.62 (0.76) 12.69 (0.46) 29.54 (0.58) 16.61 (0.44) 21.79 (0.22) 26.33 (0.15)
ImitKD (Lin et al., 2020) 34.84 (0.11) 22.60 (0.27) 24.38 (0.07) 10.65 (0.48) 25.90 (0.39) 15.07 (0.39) 19.71 (0.20) 21.81 (0.07)
MiniLLM (Gu et al., 2024) 38.68 (0.13) 25.49 (0.28) 27.96 (0.57) 14.30 (0.49) 29.00 (1.16) 18.09 (0.32) 26.74 (0.22) 30.68 (0.13)
GKD (Agarwal et al., 2024) 36.82 (0.79) 24.51 (0.32) 27.70 (0.25) 14.26 (0.29) 30.25 (1.16) 16.86 (0.36) 26.05 (0.23) 29.05 (0.11)
DISTILLM 39.28 (0.39) 27.62 (0.28) 28.34 (0.29) 15.24 (0.43) 32.05 (1.01) 18.14 (0.28) 29.50 (0.24) 32.71 (0.09)

GPT-2 XL (1.5B)→ GPT-2 Large (0.8B)

SFT 40.27 (0.36) 25.19 (0.17) 28.58 (0.05) 13.40 (0.35) 28.07 (0.14) 16.10 (0.41) 23.89 (0.23) 26.82 (0.12)
KD (Hinton et al., 2015) 42.03 (1.26) 26.51 (0.47) 30.20 (0.90) 13.99 (0.58) 31.82 (0.28) 17.07 (0.20) 26.48 (0.31) 30.12 (0.09)
SeqKD (Kim & Rush, 2016) 40.88 (0.58) 26.11 (0.31) 30.79 (1.42) 14.61 (0.36) 31.29 (0.32) 16.23 (0.39) 25.64 (0.18) 28.40 (0.06)
ImitKD (Lin et al., 2020) 39.60 (0.39) 24.36 (0.58) 29.43 (0.76) 12.48 (0.29) 28.74 (0.49) 16.11 (0.39) 22.84 (0.31) 26.51 (0.16)
MiniLLM (Gu et al., 2024) 42.62 (0.26) 26.45 (0.48) 31.20 (0.23) 15.23 (0.22) 33.27 (0.09) 18.29 (0.32) 29.81 (0.28) 33.80 (0.13)
GKD (Agarwal et al., 2024) 40.18 (0.77) 25.52 (0.40) 29.23 (0.27) 14.25 (0.25) 29.86 (0.46) 16.82 (0.39) 27.50 (0.16) 30.48 (0.10)
DISTILLM 42.34 (1.09) 28.68 (0.33) 32.29 (0.25) 15.85 (0.44) 34.89 (1.29) 18.28 (0.33) 31.35 (0.12) 35.23 (0.10)

Table 12. Comparison with state-of-the-art KD methods, fine-tuned OPT model families (Zhang et al., 2022) on
databricks-dolly-15k dataset. All results are based on our re-implementation. The bold and underline markings indi-
cate the best and second-best results, respectively, among those from the same evaluation dataset and student model.

KD Dolly Evaluation Self-Instruct Vicuna Evaluation Super-Natural Unnatural
Method GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) ROUGE-L (↑) ROUGE-L (↑)
OPT-2.7B (Teacher) 43.15 (0.57) 26.18 (0.21) 25.62 (0.96) 11.19 (0.29) 30.48 (0.61) 15.48 (0.37) 19.19 (0.11) 22.65 (0.14)

OPT-2.7B (2.7B)→ OPT-125M (0.1B)

SFT 27.56 (0.06) 21.78 (0.19) 16.97 (0.54) 8.09 (0.39) 18.93 (0.12) 14.40 (0.17) 13.45 (0.20) 15.08 (0.05)
KD (Hinton et al., 2015) 26.26 (0.11) 20.54 (0.38) 19.91 (0.02) 9.16 (0.29) 18.42 (0.28) 14.65 (0.47) 15.79 (0.26) 18.23 (0.09)
SeqKD (Kim & Rush, 2016) 26.22 (0.09) 20.72 (0.59) 18.55 (0.25) 8.94 (0.37) 17.29 (0.62) 13.56 (0.33) 16.80 (0.36) 18.68 (0.16)
ImitKD (Lin et al., 2020) 27.69 (0.21) 20.16 (0.19) 17.95 (0.25) 8.95 (0.50) 18.66 (0.56) 15.05 (0.52) 14.72 (0.21) 16.55 (0.10)
MiniLLM (Gu et al., 2024) 26.56 (0.26) 22.24 (0.32) 18.73 (0.22) 9.92 (0.47) 19.39 (0.08) 16.97 (0.49) 16.58 (0.19) 18.59 (0.09)
GKD (Agarwal et al., 2024) 26.37 (0.24) 22.46 (0.27) 19.87 (0.16) 10.59 (0.36) 20.23 (0.74) 16.25 (0.65) 19.33 (0.20) 21.40 (0.16)
DISTILLM 29.30 (0.02) 24.75 (0.31) 20.50 (0.18) 10.93 (0.49) 21.54 (0.12) 16.55 (0.38) 24.06 (0.26) 26.02 (0.11)

OPT-2.7B (2.7B)→ OPT-350M (0.3B)

SFT 31.68 (0.05) 22.58 (0.38) 22.52 (0.36) 11.07 (0.31) 21.68 (0.43) 15.10 (0.31) 19.33 (0.43) 21.69 (0.04)
KD (Hinton et al., 2015) 31.81 (0.10) 24.01 (0.27) 22.65 (0.05) 11.97 (0.29) 21.72 (0.19) 16.12 (0.45) 22.50 (0.16) 25.39 (0.12)
SeqKD (Kim & Rush, 2016) 32.13 (0.17) 24.30 (0.20) 21.66 (1.58) 10.69 (0.45) 22.42 (0.48) 15.51 (0.18) 19.93 (0.31) 22.58 (0.15)
ImitKD (Lin et al., 2020) 30.48 (0.31) 21.77 (0.72) 22.06 (0.64) 10.62 (0.28) 21.30 (0.18) 15.27 (0.51) 14.97 (0.20) 19.12 (0.16)
MiniLLM (Gu et al., 2024) 31.95 (0.18) 24.44 (0.20) 22.54 (0.23) 12.41 (0.40) 23.81 (0.32) 16.89 (0.34) 22.33 (0.17) 24.20 (0.08)
GKD (Agarwal et al., 2024) 31.21 (0.63) 23.39 (0.34) 21.87 (0.40) 11.96 (0.54) 21.46 (0.10) 16.83 (0.49) 20.82 (0.24) 24.18 (0.19)
DISTILLM 32.85 (0.81) 26.33 (0.26) 22.70 (0.57) 13.24 (0.29) 23.54 (0.69) 17.28 (0.23) 23.95 (0.17) 28.10 (0.11)

OPT-2.7B (2.7B)→ OPT-1.3B (1.3B)

SFT 38.65 (0.18) 24.97 (0.33) 22.06 (0.07) 13.08 (0.29) 25.41 (0.10) 15.52 (0.48) 24.99 (0.17) 27.18 (0.16)
KD (Hinton et al., 2015) 39.17 (0.28) 25.36 (0.35) 23.99 (0.48) 13.04 (0.62) 28.36 (0.88) 16.21 (0.50) 25.33 (0.21) 29.41 (0.13)
SeqKD (Kim & Rush, 2016) 39.12 (0.46) 26.26 (0.28) 25.01 (0.26) 13.15 (0.19) 28.18 (1.45) 16.73 (0.52) 24.56 (0.17) 27.76 (0.06)
ImitKD (Lin et al., 2020) 37.91 (0.57) 23.92 (0.47) 21.01 (0.52) 12.21 (0.59) 25.11 (0.61) 16.35 (0.38) 22.86 (0.28) 27.33 (0.16)
MiniLLM (Gu et al., 2024) 37.27 (0.74) 24.99 (0.41) 23.74 (0.91) 12.45 (0.96) 28.15 (0.65) 16.37 (0.17) 22.86 (0.28) 27.33 (0.16)
GKD (Agarwal et al., 2024) 38.93 (1.12) 26.24 (0.20) 25.57 (0.33) 14.43 (0.75) 29.00 (0.50) 16.33 (0.37) 26.86 (0.20) 30.62 (0.26)
DISTILLM 41.69 (0.35) 27.30 (0.25) 26.21 (1.09) 14.06 (0.64) 29.04 (1.14) 17.27 (0.29) 27.60 (0.16) 31.02 (0.09)
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Table 13. Comparison of state-of-the-art KD methods using OpenLLaMA2-7B (Geng & Liu, 2023) and OpenLLaMA2-3B as teacher
and student models, respectively. We fine-tune the models on databricks-dolly-15k dataset. All results are based on our
re-implementation. The bold and underline markings indicate the best and second-best results, respectively, among those from the same
evaluation dataset and student model.

KD Dolly Evaluation Self-Instruct Vicuna Evaluation Super-Natural Unnatural
Method GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) GPT-4 Eval (↑) ROUGE-L (↑) ROUGE-L (↑) ROUGE-L (↑)
OpenLLaMA2-7B (Teacher) 56.86 (0.63) 27.59 (0.32) 54.11 (1.38) 18.99 (0.61) 46.65 (0.25) 17.42 (0.57) 31.26 (0.17) 31.14 (0.07)

SFT 47.27 (0.17) 25.11 (0.58) 41.66 (0.28) 16.52 (0.56) 35.23 (0.33) 16.33 (0.39) 29.28 (0.45) 29.17 (0.12)
KD (Hinton et al., 2015) 44.92 (0.56) 20.95 (0.49) 42.13 (0.06) 16.12 (0.80) 35.06 (0.17) 15.39 (0.39) 27.93 (0.26) 25.16 (0.22)
SeqKD (Kim & Rush, 2016) 48.05 (0.64) 24.67 (0.47) 45.96 (0.13) 15.83 (0.62) 39.57 (1.83) 17.06 (0.47) 29.06 (0.28) 28.56 (0.05)
ImitKD (Lin et al., 2020) 52.48 (1.51) 24.53 (0.26) 44.14 (1.12) 17.80 (0.80) 40.82 (1.08) 17.36 (0.22) 31.50 (0.12) 29.54 (0.13)
MiniLLM (Gu et al., 2024) 59.01 (1.64) 27.88 (0.28) 52.66 (1.66) 19.94 (0.58) 45.33 (0.92) 20.50 (0.41) 36.91 (0.28) 36.33 (0.14)
GKD (Agarwal et al., 2024) 55.86 (0.94) 26.30 (0.31) 52.01 (1.03) 19.56 (1.03) 46.08 (0.17) 18.66 (0.34) 35.71 (0.20) 32.57 (0.11)
DISTILLM 59.94 (1.19) 29.73 (0.52) 53.29 (0.75) 20.39 (0.56) 49.88 (0.46) 19.62 (0.41) 37.64 (0.18) 37.56 (0.08)

(d) OPT-2.7B → OPT-125M

(e) OPT-2.7B → OPT-350M (f) OPT-2.7B → OPT-1.3B (g) OLLaMA2-7B → OLLaMA2-3B

(a) GPT-2-1.5B → GPT-2-124M (b) GPT-2-1.5B → GPT-2-355M (c) GPT-2-1.5B → GPT-2-774M

(h) Training Speed (OLLaMA2-3B)

Figure 14. Instruction-following tasks, distilling GPT-2 (Radford et al., 2019), OPT (Zhang et al., 2022), and OpenLLaMA (OLLaMA;
Geng & Liu 2023) model families on databricks-dolly-15k dataset. GPT4 and R-L indicate GPT-4 feedback (Zheng et al., 2023)
and ROUGE-L (Lin, 2004), respectively. To evaluate training speed, results are obtained using four A100 GPUs. In SeqKD (Kim & Rush,
2016), we also consider the generation time for teacher-generated data.
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Table 14. Instruction-following cases from the databricks-dolly-15k (Conover et al., 2023) dataset.

Case # 1

Instruction Extract the names of the cities and rank them in alphabetical order?

Input
The United Kingdom is a constitutional monarchy and parliamentary democracy.[m][25] Its capital and largest city is London, the capital of
England, a global city and financial centre with a population of over 14 million people. Edinburgh, Cardiff and Belfast are the national capitals of
Scotland, Wales and Northern Ireland respectively.

Ground-truth The cities listed in alphabetical order are Belfast, Cardiff, Edinburgh and London.

SFT ✗
Alphabetical order of cities in the United Kingdom: \n\n London, Edinburgh, Cardiff, Belfast, Glasgow, Southampton, Birmingham, Coventry,
Leicester, Norwich, Swindon, Cambridge

KD ▲ London, Edinburgh, Cardiff, Belfast

SeqKD ✗ Edinburgh, Cardiff, Belfast are the national capital of Scotland, Wales and North Irelandrespectively.

ImitKD ▲ London.Edinburgh.Cardiff.Belfast.

MiniLLM ▲ London, Edinburgh, Cardiff, Belfast

GKD ▲ London, Edinburgh, Cardiff, Belfast

DISTILLM ✓ The following are the names of the cities in alphabetical order: \n \n Belfast\n Cardiff\n Edinburgh\n London

Case # 2

Instruction Extract all of the dates mentioned in this paragraph and list them using bullets in the format Date - Description

Input
Daniel Leavitt was born November 16, 1813, at Rye, New Hampshire, the son of Benning Leavitt, influential businessman, state senator, county
commissioner and later Chicopee Selectman,[5] and his wife Olive (Jenness) Leavitt. Daniel Leavitt married in 1838 at West Springfield,
Massachusetts, Ruth Jeannette Ball. They had three children.

Ground-truth • November 16, 1813 - This is when Daniel Leavitt was born \n • 1838 - This is when Daniel Leavitt married his wife Ruth Jeannette Ball.

SFT ✗

• November 16,1813 - Daniel Leavitt was born\n• November 17, 1814 - His mother Olive Leavitt died\n • November 1, 1815 - His father
Benning Leavitt died\n * December 24, 1818 - Daniel and Ruth Jeannette Ball were married\n * March 31, 1838 - They got married in March
31,1838\n * May 21, 1840 - Their third child was born\n * May 31, 2018 - Daniel and his children restored their home Rye\n * November 1,
2021 - Daniel Leavitt died

KD ✗ - November 16,

SeqKD ✗ • November 16, 2013 - Daniel Leavitt was born on this date.\n • September 27, 1838 - Daniel married at West Springfield, Massachusetts.

ImitKD ▲ - November 16,1813 - Day when he was born\n - West Springfield, Massachusetts - Marriage ceremony\n - September 5,1857 - Year he died

MiniLLM ▲
• November 16,1813 - Daniel Leavitt was born at Rye, New Haven, the son of Bening Leavitt, influential Businessman, state senator and County
Commissioner, and his wife Olive (jenness) Leavit.\n • November 19,1838 - Daniel Leavit married at West Springfield, Massachusetts.\n •
November 23,1913 - Daniel Leavy died at Chicopee, Massachusetts.

GKD ▲ • November 16,1813 - at Rye, New hampshire\n • July 2,1838 - at West Springfield, Massachusetts

DISTILLM ✓ • November 16,1813 - Daniel Leavitt was born at Rye, New Hampsire\n • November 1838 - Daniel Leavitt married Ruth Jeannette Ball

Case # 3

Instruction Which Dutch artist painted “Girl with a Pearl Earring”?

Input

Ground-truth Vermeer

SFT ✗ Dimitri Heidelbauer

KD ✗ Malahema

SeqKD ✗ Dutch artist, Mondrian, painted the Girl with a Pearl Earring.

ImitKD ✗ Malahema Vanpolder

MiniLLM ✗ Vincent Van Gogh

GKD ▲
Grachtengordel, which is commonly known as “Girl with a pearl earring” is an oil painting by Johannes Vermeer. It was first exhibited in June
1665 in the Hofje van Ca’ra van Oostende, which was in the city of 5de Oostende.

DISTILLM ✓ Johannes Vermeer
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Table 15. Instruction-following cases from the Self-Instruct (Wang et al., 2023b) and Vicuna (Chiang et al., 2023). Note that the ground-
truth for case #1 is for Python, not for the bash command. However, only DISTILLM generates the simple correct responses.

Case # 1 (Self-Instruct)

Instruction Convert the given description to a bash command.

Input read the first 10 lines from f

Ground-truth f.readlines(10)

SFT ▲ tail -n 10 f

KD ✗ f -n 10

SeqKD ✗ cat f

ImitKD ✗
cat f — nl 10 \n \n \n Writing data into the file \n \n \t Christina writes the first 10 documents to back t \n \n 10 documents written \n \n
Christina reads the first 10 files from t \n \n Christina writes the first ten ABC documents to t rw ec \n \n 10 documents read

MiniLLM ✓ cat f — head -10

GKD ▲ echo -e ’\n read – we read from stdin\n f – the file\n ’ — read -n 10 f

DISTILLM ✓ head -n 10 f

Case # 2 (Self-Instruct)

Instruction Categorize the Business into one of the Restaurants, Home Services, Auto Services and Miscellaneous based on its Specialties.

Input
Call us at 650-636-4884 or visit our website to receive a quote. This shop specializes in New Tires and General Auto Repair. We carry all tires
in-house and have a wide range to fit any budget or car specifics. If you are unsure what tires you need there are experts on hand and available to
help you pick the best tire for your needs. We also carry commercial vehicle tires and can serve a wide array of fleets.

Ground-truth Auto Services

SFT ✗ This shop specializes in New Tases and General Auto Repair.

KD ✗
Home Services, Auto Services and restaurant will be Restaurant because it focuses on Restaurants while automotive store and general auto repair
are both services and restaurant would therefore not belong in either category.

SeqKD ▲
The types of businesses listed here are Auto Services, Home Services and Miscellaneous. Because this business has multiple types it is considered
a Mischangeluz.

ImitKD ✗ Restaurants - Home Services - Auto Services - Miscellaneous

MiniLLM ✗ Restaurants, Home Services, AutoServices and Miscellaneous

GKD ✗ Options: Restaurants, Home Services, Car Services, Miscellaneous

DISTILLM ✓ Specialties: Auto Services

Case # 3 (Vicuna)

Instruction Given that f(x) = 5xˆ3 - 2x + 3, find the value of f(2).

Input

Ground-truth To find the value of f(2), we simply substitute 2 in place of x in the given equation of f(x): \n \n f(2) = 5(2)ˆ3 - 2(2) + 3 \n \n f(2) = 5(8) - 4 + 3
\n \n f(2) = 40 - 1 \n \n Therefore, the value of f(2) is 39.

SFT ✗
We know that \(f(2) = 5(2)ˆ3 - 2(2) + 3 = 1028 - 2 = 1021, \hospital doors 5 meters apart. The width of the hospital doors should be
\(\frac{1021}{5}\) = 202.8 inches. At least 202 hospital doors should be narrow enough to fit the estimated population of f(2)iashti2.

KD ✗

Given f(x) = (5xˆ3)ˆ–3 – 2xˆ3 – 3, when f(2) is given, substitute the value of x to derive f(2) back. In the given expression,\n f(2) is obtained by
saying multiplication of 5 and 2 over xˆ2 so that\n f(x) = (xˆ2 * 5)ˆ–3 – 3 (adding significance over the parenthesis)\n So, f(2) is obtained as\n
\t f(2) = (2 * 5)ˆ(–3) – 3 \n So, final answer for f(2) is \n \t f(2)-eq (2 * 5)ˆ(-3) – 3 \n Being little bit educated, it can be sequenced solution
chain also. So, \n \t f(2)\{= 5\} ×(-3) \+ 2 ×[-3]3 * 2 α ⁄ 2 \n or \n \t f(2)= 6 -2 + 3 \n Finding the value of f(x) is a linear inversion case.

SeqKD ✗
We can substitute for x in f(x) to get f(2) = 5(2 squared) + 2 = 10 and then f(10) = 5ˆ3 + 2 = 25, which is not an integer. Thus, f(2) cannot be an
integer, and therefore there isn’t a single positive integer that corresponds to f(2).

ImitKD ✗
The polynomial f(x) can be rewritten as:\n f(x) = 2xˆ4 + 5xˆ2 + 3.\n \n By straightforward algebraic manipulation, we can see that f(2) = -1 \n
therefore f(2) = 2 + 5 * 2 + 3 = -1

MiniLLM ✗ f(2) = 2(5ˆ3 - 2) + 3

GKD ✗ The polynomial f(x) can be rewritten as:\n 5xˆ3 -2x + 3 = (5x)ˆ2 - 2(5x) + 3 - (2x)ˆ2 + 3\n =¿5(xˆ2 - 2) + 3 = 0\n =¿xˆ2 - 6 = 0

DISTILLM ✓ f(2) = 5(2)ˆ3 - 2(2) + 3 = 40 - 4 + 3 = 39
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