
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EMERGENCE OF SUPERPOSITION: UNVEILING THE
TRAINING DYNAMICS OF CHAIN OF CONTINUOUS
THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Previous work shows that the chain of continuous thought (continuous CoT) im-
proves the reasoning capability of large language models (LLMs) by enabling
implicit parallel thinking, and a subsequent work provided theoretical insight by
showing that a two-layer transformer equipped with continuous CoT can effi-
ciently solve directed graph reachability by maintaining a superposition of mul-
tiple reasoning traces in the continuous thought. However, it remains unclear
how the superposition mechanism is naturally learned from gradient-based train-
ing methods. To fill this gap, we theoretically analyze the training dynamics of
a simplified two-layer transformer on the directed graph reachability problem to
unveil how the superposition mechanism emerges during training in two training
stages – (i) a thought-generation stage that autoregressively expands the contin-
uous thought, and (ii) a prediction stage that converts the thought into the final
answer. Our analysis reveals that during training using continuous thought, the
index-matching logit, an important quantity which reflects the strength of the
model’s local search ability, will first increase and then remain bounded under
mild assumptions. The bounded index-matching logit effectively balances explo-
ration and exploitation during the reasoning process: the model will exploit lo-
cal problem structures to identify plausible search traces, and assign comparable
weights to multiple such traces to explore when it is uncertain about which solu-
tion is correct, which results in superposition. Our experimental results tracking
the growth of logits further validate our theory.

1 INTRODUCTIONS

Large Language Models (LLMs) show great reasoning capabilities in many complex tasks, espe-
cially when equipped with chain-of-thought (CoT) (Wei et al., 2022). However, due to the large
inference cost of long CoT for complex tasks, many recent works seek alternative test-time scal-
ing methods to more efficiently improve LLMs’ reasoning ability (Goyal et al., 2023; Wang et al.,
2023b; Pfau et al., 2024; Su et al., 2025).

One promising method is to use chain-of-continuous-thought (COCONUT, or continuous CoT) (Hao
et al., 2024), where the reasoning trace of an LLM is kept in a continuous latent space instead of pro-
jected back to the discrete token space. Continuous CoT exhibits both theoretical advantages (Zhu
et al., 2025) and empirical performance gains (Hao et al., 2024) in many tasks. To more efficiently
and reliably scale up continuous CoT to solve more challenging tasks, it requires a deeper under-
standing of its internal mechanism.

Previous work (Zhu et al., 2025) theoretically shows that one of the most important advantages
of continuous CoT is that it can enable the model to reason by superposition: when the model
encounters multiple plausible search traces and is uncertain about which one is correct, it can keep
all plausible traces in parallel since the CoT is in continuous space instead of discrete tokens. In
particular, Zhu et al. (2025) abstracted a family of reasoning tasks as a directed graph reachability
problem, i.e., whether there exists a path from a given start node to a given destination node, and
showed that a two-layer transformer with O(n) (where n is the number of vertices in the graph)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

continuous thought decoding steps can efficiently solve the task by providing a construction of the
parameters. Therefore, a natural next question is:

Do gradient-based methods naturally lead to such a construction, and can we
theoretically prove it?

This paper answers the above question affirmatively by theoretically analyzing the training dynamics
of a (simplified) two-layer transformer on the graph reachability problem in two training stages: (i) a
thought generation stage where the model autoregressively generates a chain of continuous thoughts
and (ii) a prediction stage where the model predicts the final answer using the generated thought.

Importantly, our analysis of the thought generation training stage reveals why the superposition
can emerge even if the training data only presents one demonstration for each training sample.
Our theoretical analysis as well as experimental results show that when training with continuous
thought (i.e., the COCONUT training method in Section 3 and Section 5), the index-matching logit,
an important quantity that measures the strength of model’s local search capability, will remain
bounded under mild conditions, which is in contrast to many previous analysis on transformer logit
without continuous thought (e.g., Tian et al. (2023a); Nichani et al. (2024a); Nguyen & Nguyen-
Tang (2025)) where the logit will grow logarithmically and thus unbounded. A bounded index-
matching logit can balance exploration and exploitation: if the logit is too small, the model cannot
even perform local search, resulting in a nearly random guess in the next step; if the logit is too large,
the model might over-confidently commit to one of the plausible search traces merely depending on
local features (e.g., the indegree of a node in our case) even if it is uncertain about the solution, and
thus early discard the correct path. A bounded index-matching logit encourages the model to exploit
the local structure while explore multiple plausible solutions by assigning comparable weights to
them, which naturally results in superposition. This answers the question of Zhu et al. (2025) why
superposition can emerge during training.

1.1 RELATED WORKS

Reasoning with chain of thought. Chain-of-thought (CoT) (Wei et al., 2022) is a simple yet
effective test time scaling method to enhance LLM’s reasoning capability. It can either be prompt-
based only (Khot et al., 2022; Zhou et al., 2022) or be included in the training sample to create
high-quality training data (Yue et al., 2023; Yu et al., 2023; Wang et al., 2023a; Shao et al., 2024).
Beyond empirical study, many theoretical works also explore the advantages of the CoT method. For
example, Liu et al. (2022); Feng et al. (2023); Merrill & Sabharwal (2023); Li et al. (2024b) shows
that CoT can improve the expressivity of transformers. Zhu et al. (2024) studies the importance of
CoT for two-hop reasoning via training dynamics. Wen et al. (2024); Kim & Suzuki (2024) studies
how CoT in the training data can improve the sample efficiency of transformers. Instead of the text-
based CoT, this paper studies continuous CoT where the “thinking tokens” lie in a latent continuous
space and do not need to be converted to discrete tokens.

Latent space reasoning. A recent line of work studies latent space reasoning, a novel paradigm
beyond text-based CoT (Goyal et al., 2023; Wang et al., 2023b; Pfau et al., 2024; Su et al., 2025; Hao
et al., 2024). For example, Goyal et al. (2023) proposed to use pause tokens, which are learnable
tokens that are inserted into the original text to increase the computation space. Later, London &
Kanade (2025) theoretically shows that the pause token can strictly increase the expressivity of the
transformer. Similarly, Pfau et al. (2024) studies filler tokens, which also increase the computation
space of LLMs. Wang et al. (2023b) proposed to use planning tokens at the beginning of the response
generation to improve the reasoning capability. Su et al. (2025) proposed to use abstract tokens in
a latent space to enhance the reasoning performance while reducing the inference cost. The most
related work is Hao et al. (2024), which proposes to use continuous CoT for reasoning. A follow-up
work Zhu et al. (2025) theoretically shows the advantage of continuous CoT via expressivity. Our
work takes a further step by analyzing the training dynamics of continuous CoT.

Training dynamics of transformers. There is a rich line of literature studying the optimization
of transformer-based models (Jelassi et al., 2022; Bietti et al., 2023; Mahankali et al., 2023; Fu
et al., 2023; Tian et al., 2023a;b; Zhang et al., 2024; Li et al., 2024a; Huang et al., 2024; Guo et al.,
2024). A line of more recent works focus on the understanding of reasoning abilities or patterns

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of transformers via training dynamics, including the induction heads (Nichani et al., 2024a), the
reversal curse (Zhu et al., 2024), CoT (Wen et al., 2024; Kim & Suzuki, 2024), factual recall (Nichani
et al., 2024b), in context two hop reasoning (Guo et al., 2025), out of context reasoning (Huang et al.,
2025), etc. Along the line, our paper aims to understand the internal mechanism of continuous CoT
and why superposition emerges via the analysis of training dynamics.

2 PROBLEM FORMULATION

Basic notations. We use [N] to denote the set {1, 2, . . . , N} for any integer N > 0 and use [i : j]
to denote {i, i + 1, . . . , j − 1, j} for integers i ≤ j. For any finite set X , we use |X | to denote its
cardinality and use Unif(X) to denote the uniform distribution over X . We use R to denote the set
of real numbers and denote x+ = max(x, 0) for x ∈ R. For any vector x = (x1, . . . , xd) ∈ Rd, the
softmax function SoftMax(·) : Rd → Rd is defined as SoftMax(x)i = exp(xi)/(

∑d
j=1 exp(xj)).

Let Id ∈ Rd×d denote the identity matrix. Let Voc = [M] denote a vocabulary of size M for a
fixed integer M > 0. For each token v ∈ Voc, there is an associated embedding E(v) ∈ Rd. Let
U = [E(1),E(2), . . . ,E(M)] ∈ Rd×M be the token embedding matrix.

Graph and permutation. For a directed graph G = (V, E) with the vertex set |V| = n and
the edge set E = {(si → ti)}mi=1, we fix a root node r ∈ V and two candidate destination
nodes c1,c2 ∈ V such that exactly one node, denoted c⋆, is reachable from r and denote the
other as c⊥ that is unreachable. For a radius c ∈ N, define the c-ball as N G

c (r) = {v ∈ V :
v is reachable from r within c steps}. For a subset V ′ ⊆ V , we define the restricted in-degree as
deg−G,V′(v) = |{u ∈ V ′ : (u → v) ∈ E}|. We also fix a shortest path from r to c⋆ as p =

(p0, . . . , pC) with p0 = r, pC = c⋆, (pc−1 → pc) ∈ E for any c ∈ [C]. For any permutation π
over V , we define π(G) = (V, π(E)), where π(E) = {(π(s) → π(t)) | (s → t) ∈ E}, and define
π(p) = (π(p0), . . . , π(pC)). We also denote the set of all permutations over V as SV .

Chain of continuous thought. Let TFθ(·) : (Rd)∗ → Rd be a transformer which receives an

input embedding sequence h = h[t]
△
= (h1,h2, . . . ,ht) ∈ Rd×t and outputs TFθ(h) ∈ Rd. For

convenience, we assume weight tying. A traditional decoder using a discrete CoT will sample the
next token vt+1 ∼ SoftMax(U⊤TFθ(h)). Then the embedding of vt+1 will be appended to the
end of the input, i.e., ht+1 = E(vt+1). For continuous CoT, one directly appends the output of the
transformer to the end of the input sequence without converting it to a token, i.e., setting ht+1 =
TFθ(h). Assume the prompt x = [x1, . . . , xt0] ∈ Voct0 and its corresponding embedding sequence
is h[t0] = [h1, . . . ,ht0] = [E(x1), . . . ,E(xt0)]. For notation convenience, we use [tc] = ht0+c

to denote the continuous thought generated at decoding step c, where [tc] = TFθ(h[t0+c−1]).
In particular, [t0] = ht0 . After C decoding steps, one can append a special token <A> at the
end of the sequence to trigger the transformer to switch the mode and generate the final answer.
Specifically, one can set hT = E(<A>) where T = t0 + C + 1 and generate the final answer
T̃Fθ,C,U(h[t0]) := argmaxv∈Voc U

⊤TFθ(h[T]).

Graph reachability and prompt format. In this paper, we mainly focus on the directed graph
reachability problem as studied in Zhu et al. (2025), where we are given a graph G = (V, E), two
candidate destination nodes c1 and c2, and a root node r. The task is to identify which of the two
nodes can be reached by r (denoted as c⋆). The prompt structure is illustrated in Figure 1 following
Zhu et al. (2025). The prompt consists of (1) a BOS (beginning of sentence) token <s>; (2) the
graph description part, which contains m edges where each edge is represented by a source node
si, a target node ti, and a special edge token <e>; (3) the task description part that contains a
special question token <Q>, two candidate destination nodes c1 and c2, a special reasoning token
<R> and a root node r. See Table 1 for the full list of token notations. Note that t0 = 3m+ 6 is the
prompt length, and let h[t0] = (h1,h2, . . .ht0) be the input embedding sequence. Following Zhu
et al. (2025), we use Idx(v) to denote the position of a token in the input sequence (e.g., Idx(<s>) =
1, Idx(si) = 3i−1, Idx(c1) = 3m+3, Idx(<R>) = 3m+5), use Idx(<e>, i) = 3i+1 to denote the
position of the i-th <e> token, and use Idx([ti]) = t0 + i to denote the position of the continuous
thought at step i. See Table 2 for the complete list of position indices.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Prompt format of the graph reachability problem (Figure 1 of Zhu et al. (2025)).

Zhu et al. (2025) provided a construction of transformer parameters θ such that T̃Fθ,C,U(h[t0]) =
c⋆ (i.e., the transformer can predict the reachable candidate node using continuous CoT) for any
graph and root-candidate node tuples, where h[t0] corresponds to the prompt of the graph and task
descriptions. However, they did not theoretically study whether the constructed solution can be
naturally learned via gradient-based methods. In the following sections, we theoretically show that
the solution can be learned via gradient flow in both the thought generation stage (Section 3) and the
prediction stage (Section 4). We also provide empirical results showing that the training dynamics
in our theoretical analysis align well with the experiments (Section 5).

2.1 INDEX-MATCHING LOGITS AND LOCAL SEARCH CAPABILITY

Before we delve into the technical details in the following sections, we first provide an intuitive
explanation of the dynamics of the main mechanism.

(a) Left: The continuous thought at step 1 [t1] encodes embeddings of nodes that are reachable
from the root node r within one step. Middle: One-step expansion via local search where the
strength is quantified by index-matching logit µ. Right: After one-step expansion, the continuous
thought at step 2 [t2] encodes nodes reachable within two steps.

(b) Illustration of how one-step expansion is implemented (adapted from Figure 3 of Zhu et al.
(2025)). In the first layer of the transformer, each special edge token <e> copies its corresponding
source and target nodes to its buffer spaces. In the second layer, as illustrated in the figure, the
current thought [tc] pays large attention to an edge if its source node has been explored, and adds
its target node to the superposition, where the strength of the added node is controlled by the index-
matching logit µ. The two edges v5 → v4 and v1 → v3 corresponds to edges in Figure 2a.

Figure 2: Pictorial illustration of the superposition mechanism and the index-matching logit µ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Global planning vs. local search. In the context of graph reachability, the global planning refers
to a model’s capability to analyze the structure of the whole graph and then determine a path from
the root node to the destination node. In contrast, local search focuses only on which nodes are
reachable in one step from the current node, which is much easier to learn than global planning.
When using discrete CoT, the model can choose only one path at a time. Therefore, the model
needs global planning to select the correct path or to backtrack from the wrong one. When using
continuous CoT, the model can keep multiple plausible paths simultaneously. Therefore, the model
can rely solely on local search to perform parallel BFS, solving the task with only simple skills.

Index-matching logits. We use the index-matching logit µ to quantify the strength of the model’s
local search capability, which is illustrated in Figure 2 and will be formally defined in (3) in Sec-
tion 3. In Theorem 1, we will prove that under mild conditions, the index-matching logit µ will
first increase and then remain bounded. Note that a positive, bounded logit µ effectively balances
exploration and exploitation in node expansion: if µ is too small, each edge will receive similar
attention in Figure 2b, and thus the model even lacks the local search capability to exploit the local
graph structure; if µ is too large, the model will put too much weights on nodes with large in-degree
(e.g., in Figure 2a, v3 weights 2µ and other frontier nodes such as v4 weights µ, where the difference
in weights will be significant under large µ and commonly used softmax attention) and thus lacks
exploration of different plausible paths.

3 ANALYSIS OF THE THOUGHT GENERATION STAGE

In this section, we analyze the training dynamics of the thought generation stage. We consider
any graph G = (V, E), a root node r ∈ V , two candidate destination nodes c1,c2 ∈ V , where
{c1,c2} ∈ {c⋆,c⊥} with c⋆ reachable from r and c⊥ unreachable. We are also given a (discrete)
CoT demonstration, which is a shortest path p = (p0, . . . , pC) from r to c⋆ where p0 = r, pC = c⋆.

We use curriculum learning following Hao et al. (2024); Zhu et al. (2025), where at stage (c + 1)
for any 0 ≤ c < C, upon receiving the prompt embeddings h[c0], the model will first generate c
continuous thoughts [t1], . . . ,[tc] autoregressively without supervision (i.e., no loss calculated
on the first c continuous thoughts at stage c+1), and then be trained to generate the next continuous
thought [tc+1] = TFθ(h[t0+c]). Since the learning procedure at each stage is similar, we focus
below on a fixed c.

Zhu et al. (2025) constructs a solution for a two-layer transformer, where the first layer mainly
performs copy (e.g., the i-th special edge token <e> will copy the information of its corresponding
source node si and target node ti). Since the copy mechanism has been widely studied (Nguyen
& Nguyen-Tang, 2025), as well as its formation via training dynamics (Nichani et al., 2024a), we
mainly focus on the dynamics after the copy mechanism has been established. Thus, we analyze the
dynamics of the second layer of the transformer.

In particular, let the hidden states of each special edge token <e> and the current thought [tc] after
the first transformer layer be

hIdx(<e>,i) = Es(si) + Et(ti) ∈ Rd, hIdx([tc]) =
∑

v∈NG
c (r)

1√
|N G

c (r)|
E(v) ∈ Rd, (1)

where Es(v) ∈ Rd and Et(v) ∈ Rd map token v ∈ Voc to different subspaces of Rd. For example,
as in the construction of Zhu et al. (2025), we can set d = 3M , and Es(·), Et(·) and E(·) each
corresponds to M different non-zero entries. This is also similar to previous work Chen et al.
(2025); Nguyen & Nguyen-Tang (2025) where Es(·) and Et(·) can be viewed as previous token
heads. We make the following assumptions on the embedding Es(·), Et(·) and E(·):
Assumption 1 (Orthonormal embeddings). Assume Et(·) ≡ E(·). For any u, v ∈ Voc,
Es(u)

⊤Es(v) = Et(u)
⊤Et(v) = 1{u = v} and Es(u)

⊤Et(v) = 0.

(1) means after the first layer, each special edge token <e> will copy the embeddings of its corre-
sponding source and target nodes si and ti to the same position in different subspaces. Also, we
assume by induction that after training stages 1, 2, . . . , c, the current thought generated by the well-
trained model hIdx([tc]) is a normalized superposition of token embeddings of all nodes reachable
from r within c steps. Below, we study the training dynamics of the current stage (i.e., stage c+ 1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The forward path and reparameterization. We consider the setting where the second layer is
attention-only. The forward pass can be formulated as

ϕ(h; {hi}i) =
∑
i

Vσ(h⊤Whi)hi,

ξ = U⊤(hIdx([tc]) + ϕ(hIdx([tc]); {hIdx(<e>,i)}mi=1)
)
∈ RM ,

(2)

where V,W ∈ Rd×d are attention parameters and σ(·) : R → R is an activation function that
determines the range of attention scores, and ξ = (ξv)v∈Voc ∈ RM is the output logit vector for each
token in the vocabulary. Similar to the analysis in Nguyen & Nguyen-Tang (2025), we adopt the
linear attention σ(h⊤Whi) = h⊤Whi, fix V = I and use the index-matching reparameterization

W =
∑
v∈V

µv E(v)Es(v)
⊤, µv(t) = 0 for t = 0. (3)

Remark 1. Note that a more general form of the attention weight matrix can be

W = µ<R> E(<A>)E(<R>)
⊤ +

∑
v,v′∈V

µv,v′ E(v)Es(v
′)⊤. (4)

The first term only takes effect in the prediction stage (Section 4), so we can set µ<R> = 0 for now.
The second term involves n × n cross terms. The symmetry of the vertices, which can be enforced
by permuting vertex labels during training, makes the n× n parameters {µv,v′}v,v′ effectively two
parameters {µ1, µ2} where µv,v ≡ µ1 and µv,v′ ≡ µ2 for v ̸= v′. Moreover, if we focus on the
relative value between µ1 and µ2, we can further simplify the attention weight matrix by assuming
µ2 = 0.

For notation simplicity, we use hi to denote hIdx(<e>,i), use h[tc] to denote hIdx([tc]) and use Nc,
Nc+1 to denote N G

c (r), N G
c+1(r), respectively when the graph G and root node r is clear from the

context. We also denote du := deg−G,Nc
(u) which is the indegree of u with source nodes restricted

in Nc. Finally, we denote K = |Nc| and λ = 1√
K

.

Loss functions. An ideal model should be able to directly output the shortest path from the start
node r to the desired candidate destination node c⋆, i.e., the prediction of the (c+ 1)-th continuous
thought [tc+1] exactly corresponds to the (c + 1)-th step of the shortest path pc+1. However,
experiments in Zhu et al. (2025) show that even for a 12-layer transformer, it is hard to predict the
shortest path even if the length of the shortest path is only 3 or 4. Therefore, we take a step back
and pursue a more practical goal – we expect the model to at least be able to generate an arbitrary
path starting from the start node r, which only requires local search ability that is much easier than
the global planning ability. In the context of continuous thought, we expect the model to include
information of all vertices that are reachable from r within (c + 1) steps in the generated thought
[tc+1]. We consider the following two loss functions:

COCONUT-BFS: ℓBFS
G,r := − log

∑
v∈Nc+1

exp(ξv)∑
v∈V exp(ξv)

, (5)

COCONUT: ℓcocoG,r,p := − log
exp
(
ξpc+1

)∑
v∈V exp(ξv)

, (6)

with permutation-averaged dataset losses

LBFS = Eπ∼Unif(SV)[ℓ
BFS
π(G),π(r)] and Lcoco = Eπ∼Unif(SV)[ℓ

coco
π(G),π(r),π(p)].

Note that, intuitively, the permutation-averaged loss will lead to similar behavior across different
parameters. The first loss LBFS explicitly encourages the model to predict any nodes in NC+1.
However, in practice, it is costly and even impossible to search over the entire solution space ex-
haustively; instead, we usually present only one demonstration for each task instance during training
(in our setting, only one path p per instance (G,r,c1,c2)), which corresponds to the second loss
Lcoco and aligns with the practical setting where chain of thought data can be used for supervision.

Zhu et al. (2025) observed in experiments that superposition emerges even without explicit guid-
ance during training, i.e., using the loss Lcoco. In this paper, we investigate the emergence of
superposition by analyzing its training dynamics. The following lemma gives the gradient of the
index-matching strength parameter µv(t) using gradient flow under the loss function Lcoco.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Lemma 1 (Gradient of µv under Lcoco; informal version of Theorem 4 in Appendix B). Under
permutation-averaged training from symmetric initialization and gradient flow µ̇v = −α∇µv

Lcoco,
we have µv(t) ≡ µ(t) for all v and times t, and the gradient of µv is

µ̇(t) =
α

n
√
K

(
dpc+1 − F (µ(t))

)
, F (µ) =

∑
u∈Nc+1

du e
λ(1{u∈Nc}+µdu)∑

u∈Nc+1
eλ(1{u∈Nc}+µdu) + (n− |Nc+1|)

.

Moreover F is smooth, strictly increasing, with F (−∞) = 0, F (+∞) = maxv∈V dv and 0 <
F (µ) < maxv∈V dv for all finite µ.

The proof is deferred to Appendix B. Note that as long as dpc+1
̸= maxv∈V dv , µ(t) will converge

to µ⋆ < ∞. In contrast, under COCONUT-BFS with loss LBFS, µ(t) will diverge to infinity. We
formalize the comparison into the following theorem and defer the proof to Appendix B.
Theorem 1 (Bounded vs. divergent attention logits under COCONUT vs. COCONUT-BFS; informal
version of Theorem 4 & Lemma 5 in Appendix B). Let d⋆ := dpc+1 and dmax := maxv dv .

(i) Under COCONUT-BFS (5), µ(t) grows at least logarithmically in t, leading to unbounded
attention logits.

(ii) Under COCONUT (6), if d⋆ < dmax then µ(t) → µ⋆ < ∞, so all attention logits remain
uniformly bounded. If d⋆ = dmax, then µ(t) → ∞ at least in a logarithmic rate.

Emergence of Superposition via Bounded Attention Logits. By Theorem 1, as long as F (0) <
dpc+1 < dmax, we have µ(t) → µ∗ > 0. Compared to many previous work (Tian et al., 2023a;
Nichani et al., 2024a; Nguyen & Nguyen-Tang, 2025) that analyze the dynamics of attention logits
in “discrete” settings where the attention logits diverge to infinity, the COCONUT training method
in continuous setting usually result in bounded attention logits. The bounded attention logits lead
to a more smooth probability distribution over next tokens, which is beneficial especially under
uncertainty: when the model is uncertain about the next step, a more smooth probability distribution
under continuous CoT mechanism results in a superposition of different plausible next steps, which
implements an effective exploration; on the contrary, an unbounded logit will result in a one-hot-like
distribution and thus the model will over-confidently commit to a plausible branch and is likely to
discard the ground-truth branch even when the evidence is weak.

Finally, we show that with a positive value of µ, the continuous thought [tc+1] implements a one-
step expansion from Nc to Nc+1 for any graph G and root node r.
Theorem 2 (One-step frontier expansion; informal version of Theorem 5 in Appendix B). For
any graph G and root node r, if the current thought is any positive superposition on N G

c (r), i.e.,
[tc] =

∑
u∈Nc

λu E(u) with λu > 0, then the next thought [tc+1] satisfies that its token-
projected output U⊤[tc+1] is supported on the one-step expansion Nc+1 and has strictly positive
mass on every node in Nc+1 if µ > 0. In particular,

U⊤[tc+1] =
∑

v∈Nc+1

βv ev

with
βv = λv 1{v ∈ Nc}︸ ︷︷ ︸

carryover

+ µ
∑
u∈Nc

λu 1{(u → v) ∈ E}︸ ︷︷ ︸
one-hop expansion

≥ 0.

The proof is deferred to Appendix B. Note that at initialization where µ = 0, we have βv = 0 for
v ∈ Nc+1\Nc. This means every node outside Nc has the same attention logits and thus the same
next token probability. However, such an exploration is not an effective exploration since it blindly
puts the same weight on almost every node in the graph without exploiting the graph structure.
Therefore, an appropriate µ∗ > 0 effectively balances the exploration and exploitation: (1) it has a
positive value so the model can exploit the graph structure and can distinguish nodes within the one-
step expansion set; (2) it has a bounded value so it will not overconfidently commit to a plausible
branch while discarding other branches merely relying on local structure (such as the indegree of
the node) without global planning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF THE PREDICTION STAGE

In this section, we study how the transformer learns to make the correct prediction c⋆ among
{c1,c2} by utilizing the generated continuous thought. Note that according to Section 3, the model
is able to generate [tC] =

∑
v∈NC

λvE(v) with λv ∈ (0, 1], a superposition of all reachable nodes
within C steps, via a balanced exploration and exploitation. We denote λ = {λv}v∈V . At the final
stage, one appends a special answer token <A> at the end of the continuous CoT, i.e., hT = h<A>,
and make the final prediction T̃Fθ,C,U(h[t0]) := argmaxv∈Voc U

⊤TFθ(h[T]).

The forward path and reparameterization. Similar to (2), we formulate the forward pass in the
prediction stage as

ϕ(h; {hi}i) =
∑
i

Vσ(h⊤Whi)hi,

ξ = U⊤(µ<A>hIdx(<A>) + ϕ(hIdx(<A>); {h<R>})
)
∈ RM ,

(7)

where
hIdx(<R>) = E(<R>) + E(c1) + E(c2), hIdx(<A>) = h[tC] + E(<A>).

Note that after the first transformer layer, the hidden state of <R> contains information of two candi-
date nodes c1 and c2 and the hidden state of <A> contains the representation of the last thought
[tC] both due to the copy mechanism in the first layer. Again, we adopt the linear attention
σ(h⊤Whi) = h⊤Whi, fix V = I and use the reparameterization

W = µ<R> E(<A>)E(<R>)
⊤. (8)

Remark 2. The scalar µ<R> denotes the attention logit strength from <A> to <R>. The scalar µ<A>
represents the signal strength of the residual stream from the first layer. Also, note that the repa-
rameterization of W in the prediction stage has a different form from (3) in the thought generation
stage. One can either view both (3) and (8) as special cases of a more general version (4) in or-
thogonal subspaces, or view them as two different attention heads (a thought generation head and a
prediction head).

The loss function. In the prediction stage, the goal of the model is to predict the reachable candi-
date node c⋆, and thus the loss function can be written as

ℓpredG,r,c1,c2,λ
:= − log

exp
(
ξc⋆
)∑

v∈V exp(ξv)
, Lpred = E(G,r,c1,c2,λ)∼D[ℓ

pred
G,r,c1,c2,λ

]
, (9)

where the D = {(G(i),r(i),c(i)
1 ,c(i)

2 ,λ(i))}i denote the training set. The following lemma provides
closed-form logits for each vertex where the proof is deferred to Appendix C.

Lemma 2 (Closed-form logits; informal version of Lemma 8 in Appendix C). The logit of each
vertex v ∈ V has the form

ξv = µ<A> λv 1{v ∈ NC}︸ ︷︷ ︸
residual carryover

+ µ<R> 1{v ∈ {c1,c2}}︸ ︷︷ ︸
candidate lift

.

According to Lemma 2, only the candidate node c⋆ has both positive residual carryover and can-
didate lift, and an appropriate relative growth rate of µ<R> and µ<A> ensures that c⋆ has the largest
logit. We formalize the result in the following theorem with proof in Appendix C.

Theorem 3 (Prediction of the reachable candidate node; informal version of Theorem 6 in Ap-
pendix C). Denote µA = µ<A> and µR = µ<R>. Let (µ<A>(t), µ<R>(t)) follow gradient flow on loss
defined in (9). Suppose

λ⋆ := min
i

λ(i)
c⋆

∈ (0, 1], ∆train := maxi max
v∈N (i)

C \{c(i)
⋆ }

(
λ(i)
v − λ(i)

c⋆

)
+

∈ [0, 1].

Then we have
(µA(t), µR(t))

∥(µA(t), µR(t))∥
→ u⋆, ∥(µA(t), µR(t))∥ → ∞,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with u⋆
R/u

⋆
A = λ⋆ + ∆train, and u⋆

R, u
⋆
A > 0. Consequently, for any unseen instance

(G,r,c1,c2,λ) satisfying λv ∈ (0, 1] on NC and 0 otherwise, and maxv λv − λc⋆
≤ ∆train,

it holds that:

pc⋆(t) :=
exp

(
ξc⋆(µA(t), µR(t))

)∑
v exp

(
ξv(µA(t), µR(t))

) −−−→
t→∞

1.

5 EXPERIMENTS

In this section, we present experimental results validating the theoretical analysis. We first describe
the setup and overall results, then analyze training dynamics in the thought generation and answer
prediction stages.

Model. We adopt a GPT-2 style decoder with two transformer layers (dmodel=768, nheads=8). The
model is trained from scratch with AdamW (β1=0.9, β2=0.95, weight decay 10−2), a constant
learning rate of 1× 10−4, and a global batch size of 256.

Dataset. We follow the dataset from Zhu et al. (2025), which is a subset of ProsQA (Hao et al.,
2024). Different from Zhu et al. (2025), we randomly permute the vertex indices in both training
and testing to avoid prediction bias and validate the symmetry assumption in (4). Dataset statistics
are summarized in Table 3.

Training. Following Hao et al. (2024); Zhu et al. (2025), we use a multi-stage training strategy
with supervision from chain-of-thought demonstrations. At stage c, the model learns to use c con-
tinuous thoughts before predicting the c-th node on the reasoning path (thought-generation stage).
If c > l (the CoT length), the model predicts the final answer after l continuous thoughts and the
<A> token (prediction stage). We train for 150 epochs at Stage 1 and 25 epochs for each subsequent
stage, totaling 350 epochs. At each stage, data from earlier stages is mixed in with probability 0.1,
which prevents the model from forgetting abilities learned from previous stages. The final accuracy
of this model on the test set is 96.2%.

5.1 THOUGHT GENERATION

To examine the training dynamics of µv under Lcoco, we track the second-layer attention logits.
When generating the c-th continuous thought, µv corresponds to the logit on an edge token <e>
whose source lies in Nc. In practice, Lcoco encourages the model to predict the current search
frontier rather than revisiting explored nodes, so most attention concentrates on frontier edges, i.e.,
edges with sources in Nc \ Nc−1. For theoretical simplicity, we assume µ2 = 0 in (4). In practice,
however, the model does assign non-zero attention logits to other edges. Therefore, we report the
logit difference between frontier and non-frontier edges on the test set, which more faithfully reflects
the effective value of µv .

Figure 3: The attention logits difference between frontier edges and others under Lcoco as a proxy for µv . The
background colors indicate different training stages.

Figure 3 shows the results. In Stage 1 (blue background), the model gradually learns to attend to
frontier edges when predicting the first continuous thought (c = 1). The logit difference increases

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

steadily and saturates around 60 after ∼125 epochs. This matches the theoretical prediction in
Theorem 1: under Lcoco, µv first grows and then stabilizes at a bounded value.

When switching to Stage 2 (purple background), the model requires far fewer epochs to establish
a positive µ for c = 2. Moreover, this pattern generalizes to c = 3 and c = 4, even though the
model was never explicitly trained to generate more than two continuous thoughts. This “length
generalization” indicates that once superposition emerges in earlier stages, later stages can quickly
reuse it to expand the frontier further.

We also trained with a variant of LBFS. Compared to Lcoco, the attention logit difference when
c = 1 did not saturate but kept increasing to much higher values, consistent with the analysis in
Theorem 1. Detailed experiments and plots are provided in Appendix E.2.

5.2 ANSWER PREDICTION

We next analyze how the model predicts the final answer. According to Lemma 2, the prediction
relies on two signals. The first is the residual carryover, which brings the explored nodes in the last
thought [tC] into the answer token with strength µA. Concretely, this corresponds to the first-layer
attention from <A> to [tC], which copies the superposition of reachable nodes. The second is the
candidate lift, which raises the logits of the two candidate nodes with strength µR. Since <R> copies
the candidate nodes in the first layer, the second-layer attention from <A> to <R> serves as a proxy
for µR.1

Figure 4 shows the dynamics of these two proxies. Once training enters the prediction stage, both
µA and µR increase rapidly and stabilize after roughly 5 epochs. This observation is consistent
with Theorem 3, which states that µA and µR grow at comparable rates, ensuring that the reachable
candidate c⋆ attains the highest logit. In contrast to the unbounded growth predicted in theory, we
observe the logits plateau in practice. A possible reason is that, in practice, prediction-stage training
also interacts with thought generation, whereas the theory assumes fixed thought distributions to
focus on the relationship between µR and µA. We leave a more detailed analysis to future work.

0 1 2 3 4 5 6 7 8 9 10
Training Epoch after Answer Prediction

10

0

10

20

30

40

Av
er

ag
e

At
te

nt
io

n
Lo

gi
ts

A (residual carryover)
R (candidate lift)

Figure 4: Training dynamics of the proxies for µA (residual carryover) and µR (candidate lift).

6 CONCLUSIONS

In this paper, we study the emergence of superposition when training with continuous CoT. In par-
ticular, we theoretically analyze the training dynamics of a simplified two-layer transformer on the
directed graph reachability problem. Our analysis shows that under mild assumptions, the index-
matching logit, an important quantity showing the strength of the model’s local search ability, re-
mains bounded during training. A bounded index-matching logit effectively balances exploration
and exploitation during the reasoning process and thus enables implicit parallel thinking, which nat-
urally results in superposition. Our experimental results, which track the growth of logits, further
validate our theory. We expect our theoretical analysis to bring new insights into a deeper under-
standing of the mechanism of continuous CoT and ultimately scaling up this promising paradigm
more efficiently and reliably.

1We observe that under different experimental settings and random seeds, the candidate lift effect is not
always mediated by the <R> token; alternative attention routes are presented in the Appendix E.3.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36:
1560–1588, 2023.

Lei Chen, Joan Bruna, and Alberto Bietti. Distributional associations vs in-context reasoning: A
study of feed-forward and attention layers. In The Thirteenth International Conference on Learn-
ing Representations, 2025.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36:70757–70798, 2023.

Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a
study through the random features lens. Advances in Neural Information Processing Systems,
36:11912–11951, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I Jordan, and Song Mei. Active-dormant
attention heads: Mechanistically demystifying extreme-token phenomena in llms. arXiv preprint
arXiv:2410.13835, 2024.

Tianyu Guo, Hanlin Zhu, Ruiqi Zhang, Jiantao Jiao, Song Mei, Michael I Jordan, and Stuart Russell.
How do llms perform two-hop reasoning in context? arXiv preprint arXiv:2502.13913, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Yixiao Huang, Hanlin Zhu, Tianyu Guo, Jiantao Jiao, Somayeh Sojoudi, Michael I Jordan, Stuart
Russell, and Song Mei. Generalization or hallucination? understanding out-of-context reasoning
in transformers. arXiv preprint arXiv:2506.10887, 2025.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In Proceedings
of the 41st International Conference on Machine Learning, pp. 19660–19722, 2024.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought.
arXiv preprint arXiv:2410.08633, 2024.

Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
of next token prediction with self-attention. In International Conference on Artificial Intelligence
and Statistics, pp. 685–693. PMLR, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 1, 2024b.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Charles London and Varun Kanade. Pause tokens strictly increase the expressivity of constant-depth
transformers. arXiv preprint arXiv:2505.21024, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Quan Nguyen and Thanh Nguyen-Tang. One-layer transformers are provably optimal for in-context
reasoning and distributional association learning in next-token prediction tasks. arXiv preprint
arXiv:2505.15009, 2025.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024a.

Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
associative memories. arXiv preprint arXiv:2412.06538, 2024b.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
plicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):
1–57, 2018.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. Advances in neural information process-
ing systems, 36:71911–71947, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying mul-
tilayer transformers via joint dynamics of mlp and attention. arXiv preprint arXiv:2310.00535,
2023b.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023a.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessan-
dro Sordoni. Guiding language model reasoning with planning tokens. arXiv preprint
arXiv:2310.05707, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Kaiyue Wen, Huaqing Zhang, Hongzhou Lin, and Jingzhao Zhang. From sparse dependence to
sparse attention: unveiling how chain-of-thought enhances transformer sample efficiency. arXiv
preprint arXiv:2410.05459, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stu-
art J Russell. Towards a theoretical understanding of the’reversal curse’via training dynamics.
Advances in Neural Information Processing Systems, 37:90473–90513, 2024.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reason-
ing by superposition: A theoretical perspective on chain of continuous thought. arXiv preprint
arXiv:2505.12514, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATION DETAILS

The notation and meaning of each token and the position index are the same as Zhu et al. (2025).
For completeness, we provide detailed descriptions of different tokens in Table 1 (which is Table 2
in Zhu et al. (2025)), and the position index of different tokens or continuous thoughts in Table 2
(which is Table 3 in Zhu et al. (2025)).

Tokens Meanings
<s> a special token denoting the beginning of the sentence
si the source node of edge i
ti the target node of edge i
<e> a special token marking the end of an edge
<Q> a special token followed by two candidate nodes
c1,c2 two candidate destination nodes
<R> a special token marking the start of reasoning
r the root node

[ti] the i-th continuous thought (represented by a d-dimensional vector)
<A> a special token driving the model to make the final prediction

Table 1: Meaning of each token (Table 2 in Zhu et al. (2025)).

Notations Position indices
Idx(<s>) 1
Idx(si) 3i− 1
Idx(ti) 3i

Idx(<e>, i) 3i+ 1
Idx(<Q>) 3m+ 2
Idx(c1) 3m+ 3
Idx(c2) 3m+ 4
Idx(<R>) 3m+ 5
Idx(r) 3m+ 6 = t0

Idx([ti]) t0 + i
Idx(<A>) t0 + C + 1 = T

Table 2: Position indices of different tokens or continuous thoughts in the input sequence (Table 3
in Zhu et al. (2025)).

B MISSING PROOFS FOR SECTION 3

In this section, we provide the full proof of theoretical results in Section 3. We first provide theoret-
ical analysis of COCONUT-BFS and COCONUT in Appendix B.1, Appendix B.2, respectively, and
provide results for continuous thought expansion in Appendix B.3.

B.1 ANALYSIS OF COCONUT-BFS

In this section, we analyze the training dynamics of COCONUT-BFS. We first provide the closed-
form formulation of the gradient ∇µv

ℓBFS
G,r = ∇µv

ℓBFS
G,r (µ), where µ = {µv}v∈V is the set of

parameters. We omit the superscript or subscript when the context is clear.
Lemma 3 (Per-instance gradient of µv for COCONUT-BFS). Under the loss function of COCONUT-
BFS as given in (5) and the forward pass as in (2), the per-instance gradient is

∇µv
ℓ(µ) = −1{v ∈ Nc}√

|Nc|
·
∑

v′:(v→v′)∈E exp (ξv′)

exp (ξ+)
· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

for any v ∈ V , where ξ+ = log
(∑

v∈Nc+1
exp (ξv)

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. First, note that for any v ∈ V , according to (2), the logit can be calculated as

ξv =E(v)⊤ (h[tc] + ϕ (h[tc]; {hi}mi=1))

=E(v)⊤

(
h[tc] +V

m∑
i=1

σ
(
h⊤
[tc]Whi

)
hi

)

=E(v)⊤

(
h[tc] +

m∑
i=1

(h⊤
[tc]Whi)hi

)

=E(v)⊤

h[tc] +

m∑
i=1

(∑
v′∈Nc

λE(v′)

)⊤ ∑
v′∈V

µv′E(v′)Es(v
′)⊤(Es(si) + Et(ti))

hi


=E(v)⊤

h[tc] +

m∑
i=1

(∑
v′∈Nc

λE(v′)

)⊤

µsi
E(si)

hi


=E(v)⊤

(
h[tc] +

m∑
i=1

λµsi
1{si ∈ Nc}hi

)

=λ · 1{v ∈ Nc}+
m∑
i=1

λµsi
1{si ∈ Nc} · 1{v = ti},

where λ = 1√
|Nc|

. Note that by the definition of Nc, we have ξv = 0 if v /∈ Nc+1. Therefore,

ℓ(µ) =− log

∑
v∈Nc+1

exp (ξv)∑
v∈V exp (ξv)

=− log

∑
v∈Nc+1

exp (λ · 1{v ∈ Nc}+
∑m

i=1 λµsi1{si ∈ Nc} · 1{v = ti})∑
v∈V exp (λ · 1{v ∈ Nc}+

∑m
i=1 λµsi

1{si ∈ Nc} · 1{v = ti})

=− log

(
1− n− |Nc+1|∑

v∈V exp (λ · 1{v ∈ Nc}+
∑m

i=1 λµsi1{si ∈ Nc} · 1{v = ti})

)
.

For simplicity, we define exp (ξ+) =
∑

v∈Nc+1
exp (ξv) and thus

ℓ(µ) = − log

(
1− n− |Nc+1|

exp (ξ+) + n− |Nc+1|

)
.

Then the per-instance gradient can be calculated as
∇µvℓ(µ)

=− exp (ξ+) + n− |Nc+1|
exp (ξ+)

· n− |Nc+1|
(exp (ξ+) + n− |Nc+1|)2

· ∇µv
exp (ξ+)

=−
∑

v′∈Nc+1
exp (ξv′)1{v ∈ Nc}

∑m
i=1 λ1{si = v,ti = v′}

exp (ξ+)
· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

=− λ · 1{v ∈ Nc}
∑

v′:(v→v′)∈E exp (ξv′)

exp (ξ+)
· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

.

Now we calculate the gradient of µv over the whole dataset, where the nodes of the graphs are
randomly shuffled. We also write LBFS = LBFS(µ) and omit the superscript when the context is
clear.
Lemma 4 (Whole-dataset gradient of µv for COCONUT-BFS). Under the loss function of
COCONUT-BFS as given in (5) and the forward pass as in (2) and assuming all µv have the same
value, the gradient w.r.t. the whole dataset is

∇µv
L(µ) = −exp (−ξ+)

n ·
√
|Nc|

· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

∑
v∈V

dv exp (ξv)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

for any v ∈ V which is independent of v, where ξ+ = log
(∑

v∈Nc+1
exp (ξv)

)
.

Proof. Denote ξ
(G,r)
+ = log

(∑
v∈NG

c+1(r)
exp

(
ξ
(G,r)
v

))
, where ξ

(G,r)
v is the logit of v when the

graph in the prompt is G and the start node is r.

According to Lemma 3 and the condition that all µv have the same value, for any permutation
π ∈ SV , we have

ξ
(π(G),π(r))
π(v)

=
1{π(v) ∈ N π(G)

c (π(r))}+
∑m

i=1 µπ(si)1{π(si) ∈ N π(G)
c (π(r))} · 1{π(v) = π(ti)}√∣∣∣N π(G)

c (π(r))
∣∣∣

=
1√

|N G
c (r)|

(
1{v ∈ N G

c (r)}+
m∑
i=1

µsi
1{si ∈ N G

c (r)} · 1{v = ti}

)
=ξ(G,r)v .

This also implies

exp
(
ξ
(π(G),π(r))
+

)
=

∑
π(v)∈Nπ(G)

c+1 (π(r))

exp
(
ξ
(π(G),π(r))
π(v)

)
=

∑
v∈NG

c+1(r)

exp
(
ξ(G,r)v

)
=exp

(
ξ
(G,r)
+

)
.

Therefore, by Lemma 3, we can obtain that

∇µπ(v)
ℓπ(G),π(r)(µ)

=− 1{π(v) ∈ N π(G)
c (π(r))}√∣∣∣N π(G)

c (π(r))
∣∣∣ ·

∑
π(v′):(π(v)→π(v′))∈π(E) exp

(
ξ
(π(G),π(r))
π(v′)

)
exp

(
ξ
(π(G),π(r))
+

)

·
n−

∣∣∣N π(G)
c+1 (π(r))

∣∣∣
exp

(
ξ
(π(G),π(r))
+

)
+ n−

∣∣∣N π(G)
c+1 (π(r))

∣∣∣
=− 1{v ∈ N G

c (r)}√
|N G

c (r)|
·

∑
v′:(v→v′)∈E exp

(
ξ
(G,r)
v′

)
exp

(
ξ
(G,r)
+

) ·
n−

∣∣N G
c+1(r)

∣∣
exp

(
ξ
(G,r)
+

)
+ n−

∣∣N G
c+1(r)

∣∣
=∇µv

ℓG,r(µ).

Therefore, we can calculate the gradient with respect to the whole dataset as

∇µv
L(µ) =Eπ∼Unif(SV)[∇µv

ℓπ(G),π(r)(µ)]

=Eπ∼Unif(SV)[∇µπ−1(v)
ℓG,r(µ)]

=Ev′∼Unif(V)[∇µv′ ℓG,r(µ)]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

which is independent of v and thus the gradients for µv are equal for all v ∈ V . Furthermore, we
can calculate that

∇µv
L(µ)

=
1

n

∑
v∈V

(
−1{v ∈ Nc}√

|Nc|
·
∑

v′:(v→v′)∈E exp (ξv′)

exp (ξ+)
· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

)

=− 1

n ·
√
|Nc|

· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

∑
v∈Nc

∑
v′:(v→v′)∈E exp (ξv′)

exp (ξ+)

=− exp (−ξ+)

n ·
√
|Nc|

· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

∑
v∈Nc

∑
v′:(v→v′)∈E

exp (ξv′)

=− exp (−ξ+)

n ·
√
|Nc|

· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

∑
v∈V

dv exp (ξv) .

According to the gradient of µv , we finally show that µv diverges to infinity at least logarithmically
in t.
Lemma 5 (Dynamics of µv for COCONUT-BFS). Let µv(t) be the value of µv at time t. Assume
zero-initialization, i.e., µv(0) = 0 for all v ∈ V . Under gradient flow

µ̇v = −α · ∇µv
LBFS(µ) (10)

where α > 0 is the learning rate, we have
µv(t) ≥ c1 ln (1 + αc2t)

for all v ∈ V where c1 = 1

2
√

|Nc|
, c2 = n−3e−2.

Proof. First, by Lemma 4, all µ̇v have the same value if all µv have the same value. Given that
µv(0) = 0 for all v ∈ V , we can obtain that for any time t, µv(t) have the same value for all v ∈ V
using similar argument as in Lemma 15 of Huang et al. (2025).

Now, given any fixed time t ≥ 0, it holds that µv(t) has the same value for all v ∈ V . We omit t for
notation convenience, i.e., using µv to represent µv(t). Below, we first provide a lower bound of the
gradient µ̇v .

Since we are guaranteed that one of c1 and c2 cannot be reached from r, Nc+1 cannot contain all
the vertices in V for any c, and thus n− |Nc+1| ≥ 1. Also, since one of c1 and c2 is guaranteed to
be reachable from r, there exists v ∈ V such that dv ≥ 1 for any c. This is because the start node
r ∈ N0 ⊆ Nc for any c ≥ 0, and we can take v = p1 which is on the shortest path from r to c⋆.
Therefore, we can obtain that µ̇v > 0. Moreover, we have

µ̇v =α · exp (−ξ+)

n ·
√
|Nc|

· n− |Nc+1|
exp (ξ+) + n− |Nc+1|

∑
v∈V

dv exp (ξv)

≥α · exp (−ξ+)

n ·
√
|Nc|

· 1

exp (ξ+) + 1

∑
v∈V

dv exp (ξv)

≥ α

n ·
√
|Nc|

·
∑

v∈V dv exp (ξv)

(exp (ξ+) + 1) · exp (ξ+)
.

Note that by definition, for any vertex v ∈ Nc+1\{r}, there must exists another vertex v′ ∈ Nc

such that (v′ → v) ∈ E , which implies that dv ≥ 1. Therefore,∑
v∈V

dv exp (ξv) ≥
∑

v∈Nc+1\{r}

dv exp (ξv)

≥
∑

v∈Nc+1\{r}

exp (ξv)

= exp (ξ+)− exp (ξr) ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

which further implies that

µ̇v ≥ α

n ·
√
|Nc|

·
∑

v∈V dv exp (ξv)

(exp (ξ+) + 1) · exp (ξ+)

≥ α

n ·
√
|Nc|

· exp (ξ+)− exp (ξr)

(exp (ξ+) + 1) · exp (ξ+)
.

Now recall from Lemma 3 that

ξv =
1√
|Nc|

(
1{v ∈ Nc}+

m∑
i=1

µsi1{si ∈ Nc} · 1{v = ti}

)

=
1√
|Nc|

(1{v ∈ Nc}+ dv · µv)

≤ 1√
|Nc|

(1 + |Nc| · µv) .

Therefore,

exp (ξ+) =
∑

v∈Nc+1

exp (ξv)

≤ |Nc+1| exp

(
1√
|Nc|

(1 + |Nc| · µv)

)
≤n · exp

(
1 +

√
|Nc| · µv

)
.

Also, since p1 ∈ Nc+1 and deg−G,Nc
(p1) ≥ 1, we can obtain that

exp (ξ+)− exp (ξr) ≥ exp
(
ξ(G,r)p1

)
=exp

(
1√
|Nc|

(1{p1 ∈ Nc}+ dp1
· µv)

)

≥ exp

(
µv√
|Nc|

)
.

Combining the above two inequalities, we can obtain that

µ̇v ≥ α

n ·
√
|Nc|

· exp (ξ+)− exp (ξr)

(exp (ξ+) + 1) · exp (ξ+)

≥ α

n ·
√
|Nc|

·
exp

(
µv√
|Nc|

)
2n2 · exp

(
2 + 2

√
|Nc| · µv

)
≥ α

2n3e2 ·
√
|Nc|

· exp
(
−2
√
|Nc| · µv

)
.

Finally, by applying Lemma 13, we can obtain that

µv(t) ≥
1

2
√
|Nc|

ln
(
1 + αn−3e−2t

)
.

B.2 ANALYSIS OF COCONUT

In this section, we analyze the training dynamics of COCONUT. Similarly, we first provide the
closed-form formulation of the gradient ∇µv

ℓcocoG,r,p = ∇µv
ℓcocoG,r,p(µ), where µ = {µv}v∈V is the set

of parameters. We omit the superscript or subscript when the context is clear.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 6 (Per-instance gradient of µv for COCONUT). Under the loss function of COCONUT as
given in (6) and the forward pass as in (2), the per-instance gradient is

∇µv
ℓ(µ) =

1{v ∈ Nc}√
|Nc|

(
−1{(v → pc+1) ∈ E}+

∑
v′:(v→v′)∈E exp (ξv′)

exp (ξ+) + n− |Nc+1|

)

for any v ∈ V , where ξ+ = log
(∑

v∈Nc+1
exp (ξv)

)
.

Proof. First, according to the proof of Lemma 3, we have

ξv = λ · 1{v ∈ Nc}+
m∑
i=1

λµsi
1{si ∈ Nc} · 1{v = ti},

where λ = 1√
|Nc|

. Note that by the definition of Nc, we have ξv = 0 if v /∈ Nc+1. Therefore,

ℓ(µ) = − log
exp

(
ξpc+1

)∑
v∈V exp (ξv)

= − log

(
exp

(
ξpc+1

)
exp (ξ+) + n− |Nc+1|

)
,

where exp (ξ+) =
∑

v∈Nc+1
exp (ξv).

Then the per-instance gradient can be calculated as

∇µv
ℓ(µ)

=− exp (ξ+) + n− |Nc+1|
exp

(
ξpc+1

)
·
∇µv

exp
(
ξpc+1

)
· (exp (ξ+) + n− |Nc+1|)− exp

(
ξpc+1

)
∇µv

exp (ξ+)

(exp (ξ+) + n− |Nc+1|)2

=−
∇µv

exp
(
ξpc+1

)
exp

(
ξpc+1

) +
∇µv exp (ξ+)

exp (ξ+) + n− |Nc+1|

=−∇µv
ξpc+1

+
∇µv exp (ξ+)

exp (ξ+) + n− |Nc+1|
.

Since

∇µv exp (ξ+) =
∑

v′∈Nc+1

exp (ξv′)1{v ∈ Nc}
m∑
i=1

λ1{si = v,ti = v′}

=λ · 1{v ∈ Nc}
∑

v′:(v→v′)∈E

exp (ξv′)

and

∇µv
ξpc+1

= λ · 1{v ∈ Nc} · 1{(v → pc+1) ∈ E},

we can finally obtain that

∇µv
ℓ(µ) =

1{v ∈ Nc}√
|Nc|

(
−1{(v → pc+1) ∈ E}+

∑
v′:(v→v′)∈E exp (ξv′)

exp (ξ+) + n− |Nc+1|

)
.

Now we calculate the gradient of µv over the whole dataset, where the nodes of the graphs are
randomly shuffled. We also write Lcoco = Lcoco(µ) and omit the superscript when the context is
clear.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 7 (Whole-dataset gradient of µv for COCONUT). Under the loss function of COCONUT as
given in (6) and the forward pass as in (2) and assuming all µv have the same value, the gradient
w.r.t. the whole dataset is

∇µv
L(µ) = 1

n ·
√
|Nc|

(
−dpc+1

+

∑
v∈Nc+1

dv exp (ξv)

exp (ξ+) + n− |Nc+1|

)

for any v ∈ V which is independent of v, where ξ+ = log
(∑

v∈Nc+1
exp (ξv)

)
.

Proof. Similar to Lemma 4, we denote ξ
(G,r)
+ = log

(∑
v∈NG

c+1(r)
exp

(
ξ
(G,r)
v

))
, where ξ

(G,r)
v is

the logit of v when the graph in the prompt is G and the start node is r. According to the proof of
Lemma 4, for any permutation π ∈ SV , we have

ξ
(π(G),π(r))
π(v) = ξ(G,r)v

for any v ∈ V and

exp
(
ξ
(π(G),π(r))
+

)
= exp

(
ξ
(G,r)
+

)
.

Therefore, by Lemma 6, we can obtain that

∇µπ(v)
ℓπ(G),π(r),π(p)(µ)

=
1{π(v) ∈ N π(G)

c (π(r))}√∣∣∣N π(G)
c (π(r))

∣∣∣ (−1{(π(v) → π(pc+1)) ∈ π(E)}

+

∑
π(v′):(π(v)→π(v′))∈π(E) exp

(
ξ
(π(G),π(r))
π(v′)

)
exp

(
ξ
(π(G),π(r))
+

)
+ n−

∣∣∣N π(G)
c+1 (π(r))

∣∣∣


=
1{v ∈ N G

c (r)}√
|N G

c (r)|

−1{(v → pc+1) ∈ E}+

∑
v′:(v→v′)∈E exp

(
ξ
(G,r)
v′

)
exp

(
ξ
(G,r)
+

)
+ n−

∣∣N G
c+1(r)

∣∣


=∇µv
ℓG,r,p(µ).

Therefore, we can calculate the gradient with respect to the whole dataset as

∇µv
L(µ) =Eπ∼Unif(SV)[∇µv

ℓπ(G),π(r),π(p)(µ)]

=Eπ∼Unif(SV)[∇µπ−1(v)
ℓG,r,p,c(µ)]

=Ev′∼Unif(V)[∇µv′ ℓG,r,p,c(µ)]

which is independent of v and thus the gradients for µv are equal for all v ∈ V . Furthermore, similar
to Lemma 4, we can calculate that

∇µv
L(µ)

=
1

n

∑
v∈V

1{v ∈ Nc}√
|Nc|

−1{(v → pc+1) ∈ E}+
∑

v′:(v→v′)∈E exp (ξv′)

exp
(
ξ
(G,r)
+

)
+ n− |Nc+1|


=

1

n ·
√
|Nc|

−dpc+1
+

∑
v∈Nc+1

dv exp (ξv)

exp
(
ξ
(G,r)
+

)
+ n− |Nc+1|

 .

Finally, we derive the dynamics of µv . Recall that we denote K = |Nc|, λ = 1√
K

. We also make
the following notation for Theorem 4. Let d⋆ := dpc+1 and dmax := maxu∈Vdu. Moreover, Let

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

c0 := n− |Nc+1| ≥ 1 and denote

ξu(µ) := λ (1{u ∈ Nc}+ µdu) , E+(µ) :=
∑

u∈Nc+1

eξu(µ),

S(µ) :=
∑

u∈Nc+1

du e
ξu(µ), F (µ) :=

S(µ)

E+(µ) + c0
.

Theorem 4 (Dynamics of µv for COCONUT). Let µv(t) be the value of µv at time t. Assume zero-
initialization, i.e., µv(0) = 0 for all v ∈ V . Under gradient flow

µ̇v = −α · ∇µv
Lcoco(µ) (11)

where α > 0 is the learning rate, suppose the initialization satisfies µv(0) = 0 for all v. Then:

1. Scalar reduction. For all t ≥ 0, µv(t) ≡ µ(t) is shared across v, and µ(t) satisfies

µ̇(t) =
α

n
√
K

(d⋆ − F (µ(t))) . (12)

2. Regularity of F . The function F : R → R is C∞, strictly increasing, and satisfies

lim
µ→−∞

F (µ) = 0, lim
µ→+∞

F (µ) = dmax, 0 < F (µ) < dmax for all finite µ.

3. Finite fixed point when d⋆ < dmax. If d⋆ < dmax, there exists a unique µ⋆ ∈ R such that
F (µ⋆) = d⋆. The solution µ(t) of (12) with µ(0) = 0 converges monotonically to µ⋆:

µ(t) ↗ µ⋆ if F (0) ≤ d⋆, µ(t) ↘ µ⋆ if F (0) > d⋆,

and the equilibrium µ⋆ is locally exponentially stable, i.e., there exists γ > 0 such that for
all large enought t, it holds that

|µ(t)− µ⋆| ≤ e−γt |µ(0)− µ⋆|.

4. Logarithmic divergence when d⋆ = dmax. If d⋆ = dmax, then µ̇(t) > 0 for all t and
µ(t) → +∞. Moreover, for all t ≥ 0,

µ(t) ≥ 1

λdmax
ln

(
1 +

αλd2max c0 e
−λ

2n2
√
K

t

)
. (13)

Proof. (1) Scalar reduction. By Lemma 7 and the similar argument as in the proof of Lemma 5, we
have µv(t) ≡ µ(t) for all t ≥ 0. Therefore, the gradient ∇µv

L(µ) is independent of v and equals

∇µv
L(µ) = 1

n
√
K

(
− d⋆ +

∑
u∈Nc+1

du e
ξu(µu)∑

u∈Nc+1
eξu(µu) + n− |Nc+1|

)
=

1

n
√
K

(−d⋆ + F (µv)) .

Thus, we have

µ̇(t) = −∇µv
L(µ(t)) = α

n
√
K

(d⋆ − F (µ(t))) .

(2) Regularity and limits of F . By the proof of Lemma 6 and the condition that µv(t) ≡ µ(t) for
all v ∈ V and t ≥ 0, we have

E+(µ) =
∑

u∈Nc+1

exp(λ(1{u ∈ Nc}+ µdu)) , S(µ) =
∑

u∈Nc+1

du exp(λ(1{u ∈ Nc}+ µdu)) .

Both functions are finite sums of C∞ functions of µ, hence F (µ) = S(µ)/(E+(µ) + c0) is also
C∞.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now we show the strict monotonicity of F (·) on µ by differentiation. We further write ξu := ξu(µ)
for brevity. Then

E′
+(µ) = λ

∑
u∈Nc+1

due
ξu , S′(µ) = λ

∑
u∈Nc+1

d2ue
ξu .

Therefore, we can obtain that

F ′(µ) =
S′(µ) (E+(µ) + c0)− S(µ)E′

+(µ)

(E+(µ) + c0)
2

=
λ

(E+(µ) + c0)
2


 ∑

u∈Nc+1

d2ue
ξu

 (E+(µ) + c0)−

 ∑
u∈Nc+1

due
ξu

2
 .

Note that by the Cauchy-Schwarz inequality, we have

∑
u∈Nc+1

d2ue
ξu · E+(µ)−

 ∑
u∈Nc+1

due
ξu

2

≥ 0,

and hence

F ′(µ) ≥ λ

(E+(µ) + c0)
2 c0 E+(µ)

 ∑
u∈Nc+1

d2ue
ξu

 > 0

since c0 > 0 and there exists at least one node u ∈ Nc+1 (e.g., pc+1) such that du ≥ 1 by definition.
Thus, F (·) is strictly increasing.

Now we consider the limits of F (·). First, note that

S(µ) =
∑

u∈Nc+1

du e
ξu(µ),

and for each u ∈ Nc+1, either du = 0 or du > 0 and thus

lim
µ→−∞

due
ξu(µ) = lim

µ→−∞
du exp(λ(1{u ∈ Nc}+ µdu)) = 0.

Therefore, we have limµ→−∞ S(µ) = 0. Moreover, since E+(µ) + c0 ≥ c0 > 0, we have

lim
µ→−∞

F (µ) = 0.

Now we consider the case when µ → +∞. Since

eξu(µ)

E+(µ) + c0
=

exp (λ(1{u ∈ Nc}+ µdu))∑
v∈Nc+1

exp(λ(1{v ∈ Nc}+ µdv)) + c0

=
1∑

v∈Nc+1
exp(λ(1{v ∈ Nc} − 1{u ∈ Nc}+ µ(dv − du))) + c0

.

As µ → +∞, we can obtain that if du < dmax, then

lim
µ→+∞

eξu(µ)

E+(µ) + c0
≤ lim

µ→+∞

1

exp(λ(−1 + µ(dmax − du))) + c0
= 0.

If du = dmax, then

lim
µ→+∞

eξu(µ)

E+(µ) + c0

= lim
µ→+∞

exp (λ · 1{u ∈ Nc})∑
v∈Dmax

exp(λ · 1{v ∈ Nc}) +
∑

v∈Nc+1\Dmax
exp(λ(1{v ∈ Nc}+ µ(dv − dmax))) +

c0
eλµdmax

=
exp (λ · 1{u ∈ Nc})∑

v∈Dmax
exp(λ · 1{v ∈ Nc})

,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where Dmax := {u ∈ Nc+1 : du = dmax}. Therefore,

lim
µ→+∞

F (µ) =
∑

u∈Dmax

du
exp (λ · 1{u ∈ Nc})∑

v∈Dmax
exp(λ · 1{v ∈ Nc})

= dmax.

Finally, the inequality F (µ) < dmax for finite µ follows from S(µ) ≤ dmaxE+(µ) and c0 > 0:

F (µ) =
S(µ)

E+(µ) + c0
≤ dmaxE+(µ)

E+(µ) + c0
< dmax.

(3) Finite fixed point and monotone convergence for d⋆ < dmax. By (2), F (·) is continuous,
strictly increasing, with range (0, dmax). Therefore, there exists a unique µ⋆ ∈ R such that F (µ⋆) =
d⋆. Now we first argue µ(t) → µ⋆.

Consider the ODE µ̇ = c (d⋆ − F (µ)) with c = α/(n
√
K) > 0. If µ(0) = 0 ≤ µ⋆ and (thus)

F (µ(0)) ≤ F (µ⋆) = d⋆, then µ̇(t) ≥ 0 as long as µ(t) ≤ µ⋆, hence µ is non-decreasing and
bounded above by µ⋆; monotone convergence implies µ(t) → µ̄ ≤ µ⋆ for some µ̄. By the continuity
of F (·) and the fact that µ̇ → 0, we can obtain that F (µ̄) = d⋆, which implies µ̄ = µ⋆. The case
µ(0) > µ⋆ is analogous with a non-increasing trajectory.

For local exponential stability, we can set µ̃ = µ− µ⋆ and write

˙̃µ(t) = −c (F (µ⋆ + µ̃(t))− F (µ⋆)) .

By the mean value theorem, F (µ⋆+µ̃)−F (µ⋆) = F ′(ξ) µ̃ for some ξ between µ⋆ and µ⋆+µ̃. Since
F ′(µ⋆) > 0 and F ′ is continuous, there exists η > 0 and m > 0 such that F ′(ξ) ≥ m whenever
|ξ − µ⋆| ≤ η. Hence, as long as |µ̃(t)| ≤ η, we have

d

dt
|µ̃(t)| =

µ̃(t)

|µ̃(t)|
˙̃µ(t) = −c F ′(ξ(t)) |µ̃(t)| ≤ −cm |µ̃(t)|.

Applying Gronwall’s inequality, we have |µ̃(t)| ≤ e−cmt|µ̃(0)| in this neighborhood, which estab-
lishes local exponential convergence.

(4) Divergence and logarithmic lower bound for d⋆ = dmax. When d⋆ = dmax, since F (µ) <
dmax for all finite µ, we have µ̇(t) = c (dmax − F (µ(t))) > 0 where c = α

n
√
K

and thus µ(t) is
strictly increasing. We now lower bound the growth rate similar to Lemma 5.

Since S(µ) ≤ dmaxE+(µ), we have

dmax − F (µ) = dmax −
S(µ)

E+(µ) + c0
≥ dmax

(
1− E+(µ)

E+(µ) + c0

)
=

dmax c0
E+(µ) + c0

.

Moreover, for each u ∈ Nc+1, it holds that

eξu(µ) ≤ exp(λ(1 + µdmax)) .

Therefore, E+(µ) ≤ |Nc+1| eλ(1+µdmax) ≤ n eλ(1+µdmax) and thus we can obtain that

E+(µ) + c0 ≤ n eλ(1+µdmax) + c0 ≤ n
(
eλ(1+µdmax) + 1

)
≤ 2n eλ(1+µdmax),

where we used ex ≥ 1 for x ≥ 0. Combining the above derivation, we can obtain that

dmax − F (µ) ≥ dmax c0
2n

e−λ e−λdmaxµ.

We can then plug this into µ̇ = c (dmax − F (µ)) with c = α/(n
√
K) to get

µ̇(t) ≥ α

n
√
K

· dmax c0
2n

e−λ e−λdmaxµ(t) = c1 e
−c2µ(t),

where c1 =
αdmax c0 e

−λ

2n2
√
K

and c2 = λdmax > 0.

Applying Lemma 13, we can obtain exactly (13). This shows µ(t) → +∞ at least logarithmically
fast.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.3 THOUGHT EXPANSION

Finally, we provide results for continuous thought expansion. Note that the following results hold
for any directed graph that differs from the graphs in the training set.

Theorem 5 (One-hop expansion of continuous thoughts). Let G = (V, E) be any directed graph
(which can differ from the graphs in the training set) and r ∈ V be a root node. Assume the current
thought is any positive superposition on N G

c (r):

h[tc] =
∑
u∈Nc

λu E(u), λu > 0.

Then the next continuous thought [tc+1] = h[tc+1] generated by the forward pass (2) satisfies

ξ = U⊤h[tc+1] =
∑

v∈Nc+1

βv ev,

with coefficients

βv = λv 1{v ∈ Nc}︸ ︷︷ ︸
carryover

+ µ
∑
u∈Nc

λu 1{(u → v) ∈ E}︸ ︷︷ ︸
one-hop expansion

≥ 0. (14)

where we assume the model has been trained until time t and the trained model satisfies µv(t) ≡
µ > 0 in (3). In particular, βv > 0 for every v ∈ Nc+1 if µ > 0, so the support of ξ is exactly Nc+1,
and the output is a superposition of Nc+1.

Proof. Note that hi = Es(si)+Et(ti) and W =
∑

v∈V µv(t)E(v)Es(v)
⊤ =

∑
v∈V µE(v)Es(v)

⊤.
We can calculate that

Whi =
∑
v∈V

µE(v)Es(v)
⊤(Es(si) + Et(ti)

)
= µE(si),

where we used Es(v)
⊤Es(si) = 1{v = si} and Es(v)

⊤Et(ti) = 0 according to Assumption 1.
Therefore, with h[tc] =

∑
u∈Nc

λuE(u), we can calculate

αi := h⊤
[tc]Whi = µ

∑
u∈Nc

λu E(u)
⊤E(si) = µλsi 1{si ∈ Nc}.

The value aggregation becomes

ϕ(h[tc]; {hi}) =
m∑
i=1

αihi = µ
∑

i: si∈Nc

λsi

(
Es(si) + Et(ti)

)
.

Furthermore, we have

U⊤ϕ(h[tc]; {hi}) = µ
∑

i: si∈Nc

λsi eti = µ
∑
v∈V

(∑
u∈Nc

λu 1{(u → v) ∈ E}
)
ev.

Similarly,
U⊤h[tc] =

∑
v∈Nc

λv eu =
∑
v∈V

λv 1{v ∈ Nc} ev.

Adding the two parts yields ξ =
∑

v βv ev with βv as in (14), since by definition we have h[tc+1] =
h[tc] + ϕ(h[tc]; {hi}) and ξ = U⊤h[tc+1].

C MISSING PROOFS FOR SECTION 4

In this section, we analyze the training dynamics of the prediction stage, i.e., after thought gener-
ation, how the model extracts the information from the generated continuous thought to make the
final prediction.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Recall that the i-th training sample consists of (G(i),r(i),c(i)
1 ,c(i)

2 ,λ(i)), and we denote c(i)
⋆ as

the reachable candidate and c(i)
⊥ as the unreachable candidate. We also use N (i)

C = N G(i)

C (r(i)) to
denote the C-ball for the i-th training sample. We assume C is large enough so that c(i)

⋆ ∈ N (i)
C

for any i. Note that c(i)
⊥ /∈ N (i)

C for any C by definition. For notation convenience, we also use
µA = µ<A>, µR = µ<R>, and denote ξ(i) = {ξ(i)v }v∈Voc as the logits calculated by forward pass (7)
for the i-th training sample. We denote ξ

(i)

c(i)
t

= ξ
(i)
ct , λ(i)

c(i)
t

= λ
(i)
ct for t ∈ {1, 2, ⋆,⊥} for notation

convenience.

To start with, we first provide a closed-form logit expression.
Lemma 8 (Closed-form logits in prediction stage). Under reparameterization (8) and forward pass
for the prediction stage (7), for every v ∈ V we have

ξv(µ<A>, µ<R>) = µ<A> λv︸ ︷︷ ︸
frontier residual

+ µ<R> 1{v ∈ {c1,c2}}︸ ︷︷ ︸
candidate lift

. (15)

In particular,
ξc⋆

− ξc⊥ = µ<A> λc⋆
. (16)

Proof. For the reasoning token hIdx(<R>) = E(<R>) + E(c1) + E(c2), we have

WhIdx(<R>) = µ<R> E(<A>)E(<R>)
⊤hIdx(<R>)︸ ︷︷ ︸
=1

= µ<R> E(<A>).

Therefore,
U⊤((h⊤

Idx(<A>)WhIdx(<R>))hIdx(<R>)

)
= µ<R>(e<R> + ec1

+ ec2
).

Also,
U⊤(µ<A> hIdx(<A>)

)
= µ<A>

∑
u∈NC

λu eu + µ<A> e<A>.

Combining the above two expressions yields (15). For c⊥ /∈ NC we have λc⊥ = 0, and (16)
follows.

For each training sample, we can construct a two-dimensional feature for every node v ∈ V:

x(i)
v :=

(
λ(i)
v , 1{v ∈ {c(i)

1 ,c(i)
2 }}

)
∈ R2

≥0,

so that ξ(i)v (µA, µR) = ⟨w, x(i)
v ⟩ with w := (µA, µR) ∈ R2

≥0. For instance i, a correct classification

means ⟨w, x(i)
c⋆ − x

(i)
v ⟩ > 0 for all v ̸= c(i)

⋆ , where we denote x
(i)

c(i)
t

= x
(i)
ct for t ∈ {1, 2, ⋆,⊥}. We

further define the difference of features with respect to c⋆ for later use:

∆i,v := x(i)
c⋆

− x(i)
v =


(λ

(i)
c⋆ , 0), v = c(i)

⊥ ,

(λ
(i)
c⋆ − λ

(i)
v , 1), v ∈ N (i)

C \ {c(i)
⋆ },

(λ
(i)
c⋆ , 1), v /∈ N (i)

C ∪ {c(i)
⊥ }.

(17)

C.1 LINEARLY SEPARABLE STRUCTURE AND A MAX-MARGIN PROBLEM

Lemma 9 (Separation by a nonnegative direction). For every instance i and each competitor v ̸=
c(i)
⋆ ,

⟨(1, 1), ∆i,v⟩ =


λ
(i)
c⋆ , v = c(i)

⊥ ,

λ
(i)
c⋆ − λ

(i)
v + 1, v ∈ N (i)

C \ {c(i)
⋆ },

λ
(i)
c⋆ + 1, v /∈ N (i)

C ∪ {c(i)
⊥ },

> 0.

Hence, the training data are linearly separable by a direction in R2
≥0.

Proof. The result holds because λ
(i)
c⋆ > 0, λ(i)

v ≤ 1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Define the hard-margin value of a unit direction u ∈ S1 ∩ R2
≥0 (where S1 = {u ∈ R2 : ∥u∥2 = 1})

as
γ(u) := min

i
min
v ̸=c(i)

⋆

⟨u, ∆i,v⟩.

The corresponding maximum-margin direction is
u⋆ ∈ argmaxu∈S1∩R2

≥0
γ(u). (18)

We characterize u⋆ using the following two quantities of the training sets:

λ⋆ := min
i

λ(i)
c⋆

∈ (0, 1], ∆train := maxi max
v∈N (i)

C \{c(i)
⋆ }

(
λ(i)
v − λ(i)

c⋆

)
+

∈ [0, 1],

where (x)+ := max{x, 0}. Intuitively, λ⋆ is the smallest mass ever placed on a reachable candidate
across the training set, and ∆train is the largest overshoot of a non-candidate but reachable node’s
weight relative to the reachable candidate.
Lemma 10 (Closed-form lower envelope of the margin). For any unit u = (uA, uR) ∈ S1 ∩ R2

≥0,

γ(u) = min
{
uA λ⋆, uR − uA ∆train, uA λ⋆ + uR

}
= min

{
uA λ⋆, uR − uA ∆train

}
.

Proof. According to (17), we can directly obtain the the lower bounds uA λ
(i)
c⋆ , uR+uA(λ

(i)
c⋆ −λ

(i)
v),

and uA λ
(i)
c⋆ +uR. Minimizing over i and v according to the definition of λ⋆,∆train yields the desired

result.

Proposition C.1 (Properties of the maximum-margin direction). Let u⋆ = (u⋆
A, u

⋆
R) be a solution

of (18). Then the unique maximizer satisfies
u⋆
R

u⋆
A

= λ⋆ +∆train, u⋆
A =

1√
1 + (λ⋆ +∆train)2

, u⋆
R =

λ⋆ +∆train√
1 + (λ⋆ +∆train)2

.

Proof. By Lemma 10, we can maximize γ(u) = min{uAλ⋆, uR−uA∆train} over the unit vector u
by equalizing the two arguments (otherwise one can rotate u to increase the minimum). Therefore,
we can equalize the two arguments, which yields uR = uA(λ⋆ + ∆train), and obtain the desired
result.

C.2 IMPLICIT BIAS OF GRADIENT FLOW AND DIRECTIONAL CONVERGENCE

ℓpredG,r,c1,c2,λ
:= − log

exp
(
ξc⋆
)∑

v∈V exp(ξv)
, Lpred = E(G,r,c1,c2,λ)∼D[ℓ

pred
G,r,c1,c2,λ

]
,

Recall the loss function on the prediction stage over the training set (9). We can rewrite it as follows

L(µA, µR) :=
1

N

N∑
i=1

ℓ(i)(µA, µR), ℓ(i)(µA, µR) := − log
exp(ξ

(i)

c(i)
⋆

)∑
v∈V exp(ξ

(i)
v)

,

and run the gradient-flow dynamics ẇ(t) = −α∇L(w(t)) with w(t) = (µA(t), µR(t)) and α > 0.
By Lemma 9, the data are linearly separable, so the implicit bias of gradient flow directly yields the
following lemma.
Lemma 11 (Implicit bias of gradient flow). Along gradient flow from any bounded initialization
w(0), we have

∥w(t)∥ → ∞,
w(t)

∥w(t)∥
→ u⋆,

where u⋆ is the unique solution to the maximum-margin problem (18). Combining Proposition C.1,
there exists a scalar radius r(t) → ∞ such that

(µA(t), µR(t)) = r(t)u⋆ + o(r(t)),

and for any ε > 0,
µR(t)

µA(t)
≥ λ⋆ +∆train − ε for all sufficiently large t.

The proof can be straightforwardly adapted from its gradient descent counterpart (Soudry et al.,
2018).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.3 PREDICTION ON UNSEEN GRAPHS

Finally, we show that after sufficient training, the model can correctly predict the reachable candidate
node even for unseen graphs, showcasing its generalization capability.

Fix any unseen test graph along with the exploration set N test
C and weights λtest, such that λtest

v ∈
(0, 1] on N test

C and 0 otherwise. The test graph also satisfies

max
u∈N test

C

λtest
u − λtest

c⋆
≤ ∆, with ∆ ≤ ∆train.

Therefore, for every non-candidate v ∈ N test
C \ {ctest

⋆ }, it holds that λtest
v ≤ λtest

c⋆
+∆.

The following lemma shows that as long as the test graph satisfies the above condition, it has a
positive margin using the maximum margin direction for the training set u⋆.

Lemma 12 (Positive test-time margins from the trained direction). Let u⋆ = (u⋆
A, u

⋆
R) be the unique

max-margin direction with u⋆
R/u

⋆
A = λ⋆ +∆train > ∆. Then for every competitor v ̸= ctest

⋆ ,

⟨u⋆, xtest
c⋆

− xtest
v ⟩ ≥ min{u⋆

A λ⋆, u⋆
A λtest

⋆ } > 0.

Proof. For v = ctest
⊥ , the difference is (λtest

c⋆
, 0); since λtest

c⋆
> 0 we have ⟨u⋆, xtest

c⋆
− xtest

c⊥
⟩ ≥

u⋆
Aλ

test
c⋆

> 0.

For v /∈ N test
C the difference is (λtest

c⋆
, 1) and the bound is even larger.

For v ∈ N test
C \ {ctest

⋆ }, we have λtest
v ≤ λtest

c⋆
+∆, hence〈

u⋆, xtest
c⋆

−xtest
v

〉
= u⋆

A

(
λtest
c⋆

−λtest
v

)
+u⋆

R ≥ u⋆
R−u⋆

A ∆ ≥ u⋆
A

(
λ⋆+∆train−∆

)
≥ u⋆

A λ⋆ > 0.

Finally, we show that after sufficient training, the model can correctly predict the reachable candidate
node .

Theorem 6 (Generalization for unseen graphs). Let (µA(t), µR(t)) follow gradient flow on the loss
(9) from any bounded initialization. Suppose the training set is linearly separable and λ⋆, ∆train are
defined as above. Then, for any unseen instance satisfying λtest

v ∈ (0, 1] on N test
C and 0 otherwise,

and

max
u∈N test

C

λtest
u − λtest

c⋆
≤ ∆, with ∆ ≤ ∆train,

we have for all sufficiently large t:

pctest
⋆

(t) :=
exp

(
ξtestctest

⋆
(µA(t), µR(t))

)∑
v exp

(
ξtestv (µA(t), µR(t))

) → 1.

Proof. By Lemma 11, we have

(µA(t), µR(t)) = r(t)u⋆ + o(r(t)), r(t) → ∞.

Then, by Lemma 12, for every competitor v ̸= ctest
⋆ ,

ξtestc⋆
(µA(t), µR(t))− ξtestv (µA(t), µR(t))

=r(t) ⟨u⋆, xtest
c⋆

− xtest
v ⟩ + o

(
r(t)

)
≥r(t) ·min{u⋆

A λ⋆, u⋆
A λtest

⋆ }+ o
(
r(t)

)
−−−→
t→∞

+∞.

Hence the argmax is ctest
⋆ , and its softmax probability tends to 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D AUXILIARY LEMMAS

Lemma 13 (ODE lower bound). Let c1, c2 > 0 be two constants. Assume the function f : R → R
satisfies f(0) = 0 and

df(t)

dt
≥ c1 · exp(−c2 · f(t)), ∀t ≥ 0.

Then it holds

f(t) ≥ 1

c2
ln(1 + c1c2t)

for all t ≥ 0.

Proof. We define g(t) = ec2f(t). Note that

dg(t)

dt
=

d

dt
(ec2f(t)) = c2

df(t)

dt
· ec2f(t) ≥ c2 · c1 · exp(−c2 · f(t)) exp(c2f(t)) = c1c2.

Therefore, dg(t) ≥ c1c2dt for t ≥ 0, and thus∫ t

0

dg(t) ≥
∫ t

0

c1c2dt =⇒ g(t)− g(0) ≥ c1c2t.

Therefore,

g(t) = ec2f(t) ≥ g(0) + c1c2t = ec2f(0) + c1c2t = 1 + c1c2t,

which implies

f(t) ≥ 1

c2
ln(1 + c1c2t).

E EXPERIMENT DETAILS

E.1 DATASET

Table 3: ProsQA statistics. Numbers are averaged over problem instances.

#Problems |V | |E| Sol. Len.

Train 14785 22.8 36.5 3.5
Val 257 22.7 36.3 3.5
Test 419 22.7 36.0 3.5

The statistics of the ProsQA dataset is shown in Table 3.

E.2 EXPERIMENT WITH COCONUT-BFS

As a comparison, we also train a model with a modified version of LBFS. Recall that the original
LBFS (5) encourages the model to predict any nodes within Nc+1. To avoid the trivial solution of al-
ways predicting the root node, we introduce an experimental variant that only encourages predicting
nodes on the current frontier:

COCONUT-BFS-exp: ℓBFS-exp
G,r := − log

∑
v∈Nc+1\Nc

exp(ξv)∑
v∈V exp(ξv)

. (19)

All other training settings remain unchanged. The answer accuracy of this model on the test set is
99.0%. We then track the logit difference between frontier and non-frontier edges as a proxy for µv ,
with results shown in Figure 5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Number of layers
L = 2 98.8
L = 4 97.3
L = 8 96.5
L = 12 67.4

Number of heads
H = 4 98.0
H = 8 98.8
H = 12 98.8

Width
dmodel = 384 62.0
dmodel = 768 98.8
dmodel = 1536 97.7

Learning rate

η = 2× 10−4 58.1
η = 1× 10−4 98.8
η = 5× 10−5 62.1

Weight tying
Tied 98.8
Untied 98.8

Table 4: Ablation on depth, heads, width, learning rate, and weight tying. By default, other hyper-
parameters follow the main experiments.

In Stage 1, the logit difference for c = 1 grows much faster than under Lcoco and shows no sign of
saturation even after 150 epochs. This agrees with the theoretical prediction in Theorem 1: under
COCONUT-BFS, µv diverges rather than stabilizing. At later steps (c = 3, 4), the gap between
COCONUT-BFS and COCONUT becomes smaller. We attribute this to practical factors such as stage-
wise data mixing, gradient propagation across earlier thoughts, and a larger discrepancy between
losses (5) and (19) in the later stage.

Figure 5: The attention logits difference between frontier edges and others. The model is trained with a
modified version of LBFS.

E.3 ALTERNATIVE ATTENTION ROUTES FOR CANDIDATE LIFT

Our theoretical analysis in Lemma 2 assumes that <R> copies the candidate nodes in the first layer,
and <A> then attends to <R> in the second layer. In practice, however, we observe three distinct yet
functionally equivalent attention routes that realize the same candidate lift. Example attention maps
for each route are shown in Figure 6.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experiments to complement our main analysis of training
dynamics.

F.1 ABLATION STUDY: ARCHITECTURAL AND OPTIMIZATION SENSITIVITY

We evaluate the sensitivity of COCONUT training to model depth, number of attention heads, hidden
width, and learning rate. The results are summarized in Table 4.

We observe that models with L = {4, 8} layers maintain high accuracy, while L = 12 is harder to
optimize. The performance remains comparable when dmodel ∈ {768, 1536}, but degrades when the
width is too small (e.g., dmodel = 384). Varying the number of heads does not have major effects on

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

<e
> 17 16

<e
> 14 6

<e
> 11 13 [Q
] 1 12 [R
]

20
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

<e>
17
16

<e>
14
6

<e>
11
13
[Q]

1
12
[R]
20

<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

At
te

nt
io

n
W

ei
gh

t

(a) Layer-1 attention map for Pattern A

<e
> 14 11

<e
> 7 6

<e
> 21 11 [Q
] 1 12 [R
]

20
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

<e>
14
11

<e>
7
6

<e>
21
11
[Q]

1
12
[R]
20

<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0

1

2

3

4

5

At
te

nt
io

n
W

ei
gh

t

(b) Layer-2 attention map for Pattern A

4 11
<e

> 17 11
<e

> 18 14 [Q
]

10 5 [R
]

21
<l

at
en

t>
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

4
11

<e>
17
11

<e>
18
14
[Q]
10
5

[R]
21

<latent>
<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

At
te

nt
io

n
W

ei
gh

t

(c) Layer-1 attention map for Pattern B

4 11
<e

> 17 11
<e

> 18 14 [Q
]

10 5 [R
]

21
<l

at
en

t>
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

4
11

<e>
17
11

<e>
18
14
[Q]
10
5

[R]
21

<latent>
<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

At
te

nt
io

n
W

ei
gh

t

(d) Layer-2 attention map for Pattern B

15 10
<e

> 4 8
<e

> 14 20 [Q
]

10 5 [R
]

21
<l

at
en

t>
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

15
10

<e>
4
8

<e>
14
20
[Q]
10
5

[R]
21

<latent>
<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0

1

2

3

4

At
te

nt
io

n
W

ei
gh

t

(e) Layer-1 attention map for Pattern C

15 10
<e

> 4 8
<e

> 14 20 [Q
]

10 5 [R
]

21
<l

at
en

t>
<l

at
en

t>
<l

at
en

t>
<l

at
en

t> [A
]

Input Tokens (Key)

15
10

<e>
4
8

<e>
14
20
[Q]
10
5

[R]
21

<latent>
<latent>
<latent>
<latent>

[A]

In
pu

t T
ok

en
s (

Qu
er

y)

0

1

2

3

4
At

te
nt

io
n

W
ei

gh
t

(f) Layer-2 attention map for Pattern C

Figure 6: Example attention maps illustrating three alternative routes for candidate lift. For clarity,
we omit earlier tokens in the sequence and only visualize the final segment containing some of edges,
the candidate nodes, latent thoughts, and answer tokens. Pattern A (consistent with the theoretical
assumption): <R> copies candidate nodes in Layer 1, and <A> attends to <R> in Layer 2. Pattern B:
<A> directly attends to candidate nodes in Layer 1. Pattern C: continuous thoughts copy candidate
nodes in Layer 1, and <A> attends to the continuous thoughts in Layer 2. All three patterns achieve
the same functional effect of lifting the reachable candidate.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

<s
> 5 15

<e
> 11 16

<e
> 1 3

<e
> 14 17

<e
> 0 14

<e
>

Input Tokens (Key)

<s>
5

15
<e>

11
16

<e>
1
3

<e>
14
17

<e>
0

14
<e>

In
pu

t T
ok

en
s (

Qu
er

y)

0

1

2

3

4

5

6

7

8

At
te

nt
io

n
W

ei
gh

t

Figure 7: The first-layer attention patterns in 4-layer transformers. <e> tokens attend to the corre-
sponding source and target nodes to aggregate the information. This is consistent with the analysis
of the two-layer transformer in Zhu et al. (2025).

final accuracy, whereas too large or too small learning rates tend to degrade performance. Weight
tying setting does not affect model performance.

We emphasize that each ablation in Table 4 varies only a single hyperparameter at a time, keeping
all other settings identical to our main experiment. In practice, these hyperparameters interact in a
coupled manner. For instance, with a smaller learning rate of 5×10−5, we can extend the first-stage
training to 300 epochs and get 97.0% accuracy. For deeper models with L = 12, prolonging first-
stage training to 400 epochs and reducing the learning rate to 5×10−5 improves accuracy to 99.6%.
A comprehensive hyperparameter interaction study is beyond the scope of this work and is left for
future investigation.

F.2 MULTI-LAYER TRANSFORMERS AND MECHANISTIC PATTERNS

We use the COCONUT model with L = 4 to analyze the reasoning pattern beyond two-layer trans-
formers. The results are shown in Figure 7 and Figure 8, and we summarize the reasoning patterns
below.

• First layer (induction head): The first layer performs token-level copying, propagating
node information into edge tokens <e>, consistent with the copy mechanism derived in
previous theoretical analysis (Zhu et al., 2025).

• Second layer and beyond (superposition): From the second layer onward, the model
aggregates over reachable nodes in a superpositional representation that enables parallel
breadth-first exploration.

F.3 ACCURACY DYNAMICS IN THE ANSWER-PREDICTION STAGE

We track the test accuracy during the final answer-prediction stage following the setting in Figure 4.
The result is shown in Figure 9, which shows a rapid transition from near-random guessing to stable
high accuracy once the model integrates residual carryover and candidate lift signals.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

10 5 0
0

500

1000

1500

2000

2500

La
ye

r
1

Continuous thought 1
Not Reachable (1.23)
Reachable (-1.54)
Frontier (1.39)
Optimal (1.54)

6 4 2 0 2 4
0

200

400

600

800

Continuous thought 2
Not Reachable (1.52)
Reachable (-0.15)
Frontier (0.76)
Optimal (2.05)

6 4 2 0 2 4
0

100

200

300

400

500

600

Continuous thought 3
Not Reachable (1.66)
Reachable (0.03)
Frontier (0.29)
Optimal (2.63)

4 2 0 2 4 6
0

50

100

150

200

250

300

350
Continuous thought 4

Not Reachable (1.34)
Reachable (0.29)
Frontier (0.61)
Optimal (4.68)

10 0 10 20 30
0

500

1000

1500

2000

2500

La
ye

r
2

Not Reachable (-0.43)
Reachable (8.14)
Frontier (15.11)
Optimal (17.42)

10 0 10 20 30
0

250

500

750

1000

1250

1500

1750 Not Reachable (-0.45)
Reachable (3.42)
Frontier (7.36)
Optimal (13.10)

10 0 10 20 30
0

200

400

600

800

1000

1200

1400
Not Reachable (0.10)
Reachable (1.92)
Frontier (4.73)
Optimal (12.42)

0 10 20 30
0

100

200

300

400

500

600

700 Not Reachable (0.66)
Reachable (1.59)
Frontier (4.16)
Optimal (14.85)

10 0 10 20
0

250

500

750

1000

1250

1500

1750

La
ye

r
3

Not Reachable (-0.01)
Reachable (7.61)
Frontier (13.97)
Optimal (15.70)

10 0 10 20
0

200

400

600

800

1000

1200 Not Reachable (-0.18)
Reachable (3.73)
Frontier (7.52)
Optimal (12.50)

10 0 10 20
0

200

400

600

800

1000
Not Reachable (0.48)
Reachable (2.10)
Frontier (4.58)
Optimal (10.50)

5 0 5 10 15 20
0

100

200

300

400

500 Not Reachable (1.09)
Reachable (1.73)
Frontier (3.85)
Optimal (11.50)

5.0 2.5 0.0 2.5 5.0 7.5
Inner Product Value

0

250

500

750

1000

1250

1500

1750

La
ye

r
4

Not Reachable (0.22)
Reachable (2.58)
Frontier (4.80)
Optimal (5.37)

5.0 2.5 0.0 2.5 5.0 7.5
Inner Product Value

0

200

400

600

800

1000
Not Reachable (0.30)
Reachable (1.17)
Frontier (2.53)
Optimal (4.46)

5 0 5 10
Inner Product Value

0

200

400

600

800

1000 Not Reachable (0.55)
Reachable (0.66)
Frontier (1.66)
Optimal (5.87)

0 5 10
Inner Product Value

0

100

200

300

400

500
Not Reachable (0.55)
Reachable (0.67)
Frontier (1.96)
Optimal (9.59)

Figure 8: Inner product between layer-wise hidden states and different types of nodes in a 4-layer
transformer. The experimental setting follows Zhu et al. (2025). From the second layer onward,
hidden states exhibit larger inner products with reachable, frontier, and optimal nodes, indicating
that superpositional representations emerge as early as layer 2 in the 4-layer transformer.

0 1 2 3 4 5 6 7 8 9 10
Training Epoch after Answer Prediction

10

0

10

20

30

40

Av
er

ag
e

At
te

nt
io

n
Lo

gi
ts

A (residual carryover)
R (candidate lift)

Accuracy
20

40

60

80

Ac
cu

ra
cy

 (%
)

Figure 9: Accuracy curve during the answer-prediction stage. The accuracy shows a rapid improve-
ment corresponding to the learning of residual carryover and candidate lift signals.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs mainly for grammar checking and polishing in paper writing.

32

	Introductions
	Related works

	Problem Formulation
	Index-matching Logits and Local Search Capability

	Analysis of the Thought Generation Stage
	Analysis of the Prediction Stage
	Experiments
	Thought Generation
	Answer Prediction

	Conclusions
	Notation Details
	Missing Proofs for sec:thought-gen-main
	Analysis of Coconut-BFS
	Analysis of Coconut
	Thought Expansion

	Missing Proofs for sec:pred-main
	Linearly separable structure and a max-margin problem
	Implicit bias of gradient flow and directional convergence
	Prediction on unseen graphs

	Auxiliary Lemmas
	Experiment Details
	Dataset
	Experiment with Coconut-BFS
	Alternative Attention Routes for Candidate Lift

	Additional Experimental Results
	Ablation Study: Architectural and Optimization Sensitivity
	Multi-Layer Transformers and Mechanistic Patterns
	Accuracy Dynamics in the Answer-Prediction Stage

	The Use of Large Language Models (LLMs)

