
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT ATTENTION VIA PRE-SCORING:
PRIORITIZING INFORMATIVE KEYS IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in transformer architectures deeply enhanced long-context lan-
guage modeling. Among them, HyperAttention achieves competitive efficiency by
combining a single-level LSH-based clustering with uniform residual sampling.
However, HyperAttention fails to find all significant keys, which in turn raises the
overall perplexity. We propose a pre-scoring mechanism that prioritizes signifi-
cant keys before applying HyperAttention. We introduce three scoring methods:
k-means and kernel k-means clustering, k-median clustering, and leverage score-
based ranking (inspired by LevAttention) to filter keys effectively. We further
replace HyperAttention’s original uniform residual sampling, relying exclusively
on our pre-scoring mechanism. Experiments on ChatGLM2 (131k token context)
reduce perplexity from 12 to 8.3, which outperforms standard HyperAttention.
Moreover, when running on the Vision-Transformer (ViT), our method shows that
it can guarantee similar accuracy compared with LevAttention, and will surpass
LevAttention given specific parameters. Although this method introduces some
computational overhead, its combination with HyperAttention achieves up to 20
times faster than FlashAttention, providing a balanced trade-off between speed
and modeling accuracy. Our results highlight the effectiveness of integrating pre-
scoring into hierarchical attention mechanisms, significantly improving transformer
efficiency.

1 INTRODUCTION

Transformer-based large language models (LLMs) now underpin cutting-edge performance across
diverse applications, including computer vision Bi et al. (2021) and text classification Rodrawangpai
& Daungjaiboon (2022), yet their quadratic self-attention cost remains a persistent barrier to efficient
long-context processing. Especially for Transformer-based attention mechanisms, the time complexity
rises quadratically with respect to the sequence length. Without effective strategies to alleviate this
cost, deploying transformer models on tasks requiring truly long contexts remains impractical and
challenging.

Consider the input of each attention layer, which is typically represented as an n × d matrix X ,
where n denotes the context length and d is the embedding dimension of the tokens. From this input
matrix, we generate three distinct matrices by applying learned linear transformations. Specifically,
we compute the query matrix Q = X · WQ, the key matrix K = X · WK , and the value matrix
V = X ·WV , where WQ, WK , and WV are learned parameter matrices of dimensions d×d. Various
methods have been developed to improve efficiency when processing Q, K, and V . For example,
Performer Choromanski et al. (2022) replaces the standard softmax attention with kernel methods.
This remarkably reduces computational complexity, yet it involves potential kernel approximation-
induced errors. FlashAttention Dao et al. (2022) facilitates computation by optimizing memory access
patterns during the matrix computations. Despite its advantages, specialized hardware support is
required for optimal performance.

More recent advances in efficient attention methods have explored diverse strategies to mitigate
quadratic complexity while maintaining performance. For long-context processing, DuoAttention
Xiao et al. (2024) combines retrieval-augmented heads with streaming attention mechanisms, dynam-
ically balancing local and global context access. The adaptive approach in ”Unveiling Simplicities
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of Attention” Donhauser et al. (2025) identifies and preserves only essential attention heads for
long-context modeling, achieving comparable performance with significantly reduced computation.

In addition, HyperAttention Han et al. (2023) reduces the computational burden using approximate
matrix product and locality sensitive hashing. These methods improve efficiency at the cost of some
degradation in perplexity. LevAttention Kannan et al. (2024) selects a fixed set of keys independent
of the queries to try to capture all heavy attention scores. However, it is less effective in capturing
query-specific attention patterns.

Inspired by HyperAttention and LevAttention, we propose a pre-scoring mechanism. Namely, we use
clustering-based filtering to prioritize informative keys before applying HyperAttention.

Our Results We first show that clustering-based pre-scoring consistently outperforms leverage-score
selection: for example, on a Vision Transformer (ViT) Large model Dosovitskiy et al. (2021) (85.85%
baseline accuracy on ImageNet-1k), sampling 128 keys via K-means retains 84.46% accuracy,
compared to only 77.17% when using leverage scores (top-128). Furthermore, by integrating our
clustering-based pre-scoring into HyperAttention, we reduce ChatGLM2-6b-32k’s perplexity on the
Longbench data set Bai et al. (2024) from 12 to 8.3, outperforming both the original HyperAttention
and the variant augmented with leverage-score selection (LevAttention+HyperAttention) GLM et al.
(2024); Kannan et al. (2024). Moreover, our method preserves the computational efficiency advantages
of HyperAttention over standard self-attention and FlashAttention Dao et al. (2022).

In addition to our empirical results, we revisit the planted-subspace model introduced for LevAttention
(Section 4 of LevAttentionKannan et al. (2024)), and we show that our pre-scoring clustering-based
methods recover the same planted model guarantees of LevAttention, in terms of recovering all heavy
keys for a query by a Markov bound with constant probability 1− 1/poly(d). Thus, theoretically our
methods are no worse than those of LevAttention in this natural planted model. We further introduce
an alternative planted-subspace model in which K-means clustering provably recovers keys with large
leverage score, showing again that K-means pre-scoring is as powerful as leverage score pre-scoring
for natural models. This may help explain why our empirical results consistently outperform those of
LevAttention Kannan et al. (2024).

2 PRELIMINARIES

We define the attention mechanism Att = D−1AV . Here, A is defined as A := exp(QK⊤), while
D is a diagonal matrix with Di,i = ∥Ai,:∥1 for each i ∈ [n] = {1, 2, . . . , n}. We refer to the matrix
A as the attention matrix. Explicitly calculating the attention matrix requires Θ(n2d) time and Θ(n2)
memory, which can be prohibitive.

Han et al. introduce HyperAttention Han et al. (2023), which addresses the quadratic bottleneck
of vanilla self-attention by hashing queries and keys with an angular locality-sensitive hash (LSH)
function and then ordering buckets so that adjacent buckets have small Hamming distance. Scores
are computed only for pairs that fall into the same hash bucket, significantly reducing the time
and memory cost on typical data distributions. Their method performs an additional randomized
low-rank compression inside each bucket, further reducing constant factors. Its main limitation is
data independence: because bucket membership is determined solely by the hash function, weak but
semantically crucial long-range links may never collide and can therefore be missed.

LevAttention Kannan et al. (2024) takes a complementary view. It first sketches the key matrix in
O(nd) time to approximate statistical leverage scores for each row of the key matrix, then forms a
Universal set U = {i : LS(Ki) ≥ ϵ} that, for polynomial-based attention (rather than the standard
softmax attention), is guaranteed to contain all attention scores whose weight exceeds a user-chosen
threshold ϵ > 0. Looking only at U therefore achieves perfect recall of heavy attention scores,
independent of positional locality. However, when ϵ is very small, |U | can be large as n, eliminating
any savings.

Moreover, a uniform evaluation within the set U wastes time in many pairs with low impact. By first
constructing U to ensure theoretical coverage and then applying HyperAttention’s locality-sensitive
hashing inside this recall-guaranteed set, our hybrid approach combines the strengths of both methods:
it retains subquadratic complexity and provably captures every ϵ-heavy attention.
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Our goal is to accelerate approximation methods for transformers while maintaining high accuracy.
Rather than using the universal set U of Kannan et al. Kannan et al. (2024), we suggest other sets
based on clustering methods to guide approximation algorithms such as HyperAttention Han et al.
(2023) to find large attention scores.

3 ALGORITHM

A central motivation for our pre-scoring approach is the hypothesis that computationally efficient
methods, such as clustering, can effectively identify and prioritize the most salient keys within the key
matrix K ∈ Rn×dk (where n is sequence length and dk is the key dimension). This idea is supported
by Axiotis et al. Axiotis et al. (2024). They developed a cluster-based sensitivity sampling method
to enhance data selection efficiency for large-scale model training. This principle resonates with
techniques such as LevAttention Kannan et al. (2024), which use statistical leverage scores to sample
influential data points. To provide rigorous grounding for clustering, and specifically K-means or
K-median) as a pre-scoring mechanism, we analyze its performance and relationship to leverage
scores under a structured data model.

3.1 STRUCTURAL GUARANTEES

3.1.1 MATRIX STRUCTURE AND ASSUMPTIONS

The guarantees in this section follow Kannan et al. (2024) and apply to polynomial attention; softmax
results are empirical. Unless stated otherwise:
Assumption 1 (Model and regularity). Keys split into S ∪ N with means µS , µN , within-cluster
variance ≤ σ2, separation ∆ = ∥µS − µN∥2; analysis uses a degree-r polynomial kernel; the
selector retains s keys per query; all probability statements are over the data and algorithmic
randomness.

We give a new planted model for which cluster-based prescoring recovers all large leverage scores.

Let A ∈ Rn×d be a matrix generated as follows:

1. There are d disjoint sets of row indices, S1, . . . , Sd, each of size m = ⌈1/ϵ⌉ for some small
ϵ ∈ (0, 1).

2. Let S0 = {1, . . . , n} \
⋃d

j=1 Sj be the set of remaining row indices. We assume n ≫ dm,
so |S0| = n(1− o(1)).

3. Let v1, . . . , vd ∈ Rd be an orthonormal basis for Rd.

4. For each j ∈ {1, . . . , d} and every i ∈ Sj , first draw an unnormalized vector Ãi = vj + δi,j
with δi,j ∼ N (0, σ2

SId) i.i.d. We then normalize it and set Ai = Ãi/∥Ãi∥2.

5. For each i ∈ S0, sample Ãi = ηi where ηi ∼ N (0, σ2
NId) i.i.d., and again normalize via

Ai = Ãi/∥Ãi∥2.
6. The noise scales satisfy σ2

S = cS/d and σ2
N = cN/(nϵ) for sufficiently small positive

constants cS , cN . This implies that the noise variance within groups dσ2
S = cS and within

the noise group dσ2
N = dcN/(nϵ) are small.

7. Row-norm regularity: ∥Ai∥2 = 1 for all i.
8. The model explicitly states conditions on correlations:

(P1) ∀j, l ∈ S, j ̸= l, |AjA
T
l | ≤ δ1 ·min(||Aj ||22, ||Al||22)

(P2) ∀j ∈ S, l /∈ S, |AlA
T
j | ≤ δ2 ·min(||Aj ||22, ||Al||22)

We assume as in LevAttention Kannan et al. (2024) that δ1 and δ2 are sufficiently small
constants.

Remark The correlation bounds (P1)–(P2) do not control row norms. Appendix B gives a construc-
tion with δ1 = δ2 = 0 where a few noise rows have norm M ≫1. Their M2-scaled contributions
dominate the k-means objective, “stealing” clusters from the signal set S and preventing recovery
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despite perfect orthogonality. Thus, without enforcing ∥Ai∥2 = 1 for all i, clustering can fail even in
the best-case correlation regime. For the analysis below we therefore adopt Assumption 1 (row-norm
regularity): all rows are ℓ2-normalized, i.e., ∥Ai∥2 = 1.

Recall that for any row i, its leverage score is hi = Ai (A
⊤A)−1A⊤

i = sup∥x∥=1
(A⊤

i x)2

∥Ax∥2 . Based on
our assumption, we have the following:
Lemma 1 (Upper Bound on Noise Leverage). In this model, for each row i ∈ S0, consider that
||Ai||2 = 1 we have hi ≤ ∥Ai∥2

σ2
min

= 1
Θ(1/ε) = O(ε).

Lemma 2 (Lower Bound on Signal Leverage). For each row i ∈ Sj , choose unit x = vj . Then

hi ≥ (A⊤
i vj)

2

∥Avj∥2 = Θ(ϵ).

The above lemmas are standard; we refer to the supplementary for their proofs. Letting A be the key

matrix K, we have: hj = sup∥x∥=1
(k⊤

j x)2

∥Kx∥2 , and ∥Kx∥2 ≥ σ2
min = Θ(1).

Connection to real key matrices. The planted–subspace model should be viewed as an explanatory
zoom-lens, not as a literal generative process for every transformer layer. In a trained model, most
key vectors are well spread across the unit sphere; consequently, any two randomly chosen keys have
almost orthogonal directions, and each heavy key tends to sit near a distinct “axis” of that sphere. This
geometric picture mirrors items (P1)–(P2) of our assumptions, where signal rows are approximately
orthogonal to both noise rows and to one another. Empirically, clustering with k = d+1 isolates one
centroid per such axis plus a single centroid for the residual cloud of light keys, exactly as the model
predicts. Thus the theoretical guarantees provide an intuitive explanation for why clustering-based
pre-scoring works on real transformers even when the data are only approximately, rather than exactly,
in planted-subspace position.
Theorem 1 (Leverage-Score Separation). Let A ∈ Rn×d satisfy Assumption 1 (∥Ai∥2 = 1 for all
i) and (P1)–(P2). Assume the concentration σ2

min(A
⊤A) = Θ(1/ε). Let S be the set of signal rows

and N = [n] \ S the noise rows. Then there exist constants 0 < Cnoise < Csig, depending only on
the model parameters, such that with probability at least 1− 1/poly(d)

max
i∈N

hi ≤ Cnoiseε and min
i∈S

hi ≥ Csigε.

Consequently, any threshold τ ∈ (Cnoiseε, Csigε) perfectly separates noise from signal by leverage
scores.

Proof of Theorem 1

Proof sketch. Since ∥Ai∥2 = 1 and σ2
min = Θ(1/ε),

hi = A⊤
i (A

⊤A)−1Ai ≤
∥Ai∥22
σ2
min

=
1

Θ(1/ε)
= O(ε),

so maxi∈N hi ≤ Cnoiseε. By Lemma 2, each signal row satisfies hi ≥ Csigε, completing the
proof.

Theorem 2 (K-means Clustering). Under the same assumptions as Theorem 1, and assuming cS
and cN are sufficiently small (e.g., cS < 1/2 and dcN/(nϵ) < 1/2), with probability at least
1− exp(−Ω(min(m,n− dm, d)))), the k-means algorithm with k = d+ 1, applied to the rows of
A converges to a clustering where:

1. There are d clusters, C1, . . . , Cd, such that for each j ∈ {1, . . . , d}, all rows in Sj are
assigned to cluster Cj . The centroid µj of Cj satisfies ∥µj − vj∥ = O(σS/

√
m).

2. There is one cluster C0 containing all rows from S0. The centroid µ0 of C0 satisfies ∥µ0 −
0∥ = O(σN/

√
n− dm).

Running K-means with k = d + 1 clusters on {kj} yields centroids µ1, . . . , µd, µd+1. Under the
above separations, an optimal solution aligns with Ci = Si for i = 1, . . . , d and Cd+1 = S, since
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∑
kj∈Si

∥kj − ui∥2 = 0,
∑

s∈S ∥s− µd+1∥2 ≤
∑

s∈S ∥s− µ∥2 ∀µ, and any deviation incurs
a large additional within-cluster sum of squares (WSS). In fact, by Theorem 1 the true partition
Cj = Sj (j = 1, . . . , d) and Cd+1 = S0 has total within-cluster cost

d∑
j=1

∑
i∈Sj

∥Ai − vj∥2 +
∑
i∈S0

∥Ai∥2

= O(mσ2
S) +O((n− dm)σ2

N )

= o(1) ,

whereas moving any single point to the wrong cluster incurs an additional penalty of at least
min{∥vj − vk∥2, ∥vj∥2} − o(1) = 1 − o(1) > 0. Hence any mis-assignment increases the total
sum-of-squares, making the true grouping the unique global minimizer of the k-means objective.
Thus, clustering identifies those rows with hj ≥ ϵ, matching LevAttention’s heavy-key selection.
Corollary 1 (Singleton case of Theorem 2). Setting m = 1 (so ϵ = 1 in this special case) in Theorem
2 shows that, with the same probability, the optimal k-means clustering with k = d+ 1 places every
signal row in its own cluster and gathers all noise rows in C0.

Proof Sketch. With m = 1, each heavy row Kj ∈ S contributes zero within-cluster distortion when
isolated. If instead Kj is merged with any other row Kx, the centroid error lower bound

∥Kj − µ∥22 ≥ 1
2∥Kj −Kx∥22 ≥ 1

2Dmin

applies, where Dmin > 0 is the minimum inter-point separation guaranteed by Theorem 1. Since
Dmin/2 remains a positive constant, any such mis-assignment strictly increases the total k-Means
cost. Finally, choosing k = d + 1 reserves one centroid per heavy key and one for all noise rows,
matching the leverage-score separation. For a detailed proof, see Appendix C in supplementary
material.

Connection to the planted model and the constant gap Dmin. The Gaussian planted model
studied in Section 4 of LevAttentionKannan et al. (2024) draws signal and noise rows from two
covariance profiles whose variances differ by a fixed ratio. Standard concentration shows that this
forces a constant lower bound

Dmin = 2(1− ϑ1)≥ 3
2

on the squared Euclidean distance between any signal and any noise row whenever the variance-ratio
parameter satisfies ϑ1 < 1

4 . That same constant gap is exactly what drives Corollary 1: putting a
signal row into a mixed cluster would increase the k-means objective by at least Dmin/2, so the
optimal solution (with k = d + 1) must isolate every signal row and pool all noise rows in C0.
Thereby, the planted model supplies a probabilistic guarantee for the deterministic separation our
corollary needs, confirming that the singleton clustering phenomenon emerges naturally whenever
the signal-to-noise variance ratio is sufficiently small.

In addition to our theorems above, this framework extends naturally to any ℓp norm where p > 0,
allowing us to generalize our pre-scoring mechanism. Consider a key matrix K = {kj}nj=1 ⊂ Rdk

drawn from a mixture of d well-separated “heavy” centers and a bulk of “light” points, as in our
structured data model. We define the ℓp-sensitivity of each key kj following Padmanabhan et al.
(2023), which quantifies the importance of keys under the ℓp norm.

To adapt our clustering approach, we employ Minkowski-k-means, which minimizes the following:∑n
j=1 mini∈[d] ∥kj − µi∥pp. This method clusters keys by minimizing the p-th power of their

ℓp distances to the nearest centroid. Under the same separation conditions as in Lemma 2,
Minkowski-k-meansOti et al. (2021) accurately recovers the top-heavy keys according to their
ℓp-sensitivity. Specifically, we show:

Claim 1 (ℓp-Generalization). Under the structured planted model mentioned above (with disjoint
signal sets S1, . . . , Sd, noise set S0, and Ai = vj + δi,j for i ∈ Sj , Ai = ηi for i ∈ S0, and
noise scales σ2

S = cS/d, σ2
N = cN/(nϵ)), running k-means with the ℓp metric (i.e., using distances

∥x− y∥pp) and k = d+ 1 recovers exactly the true clusters S1, . . . , Sd, S0, provided cS and cN are
sufficiently small.
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For a brief proof of this claim, we replace every squared-norm (p = 2) in the analysis of lemma 1
with the p-th power norm, and the separation conditions ensure that the heavy centers remain
distinguishable. Based on our proof in C.4, we conclude: In the ℓpp metric one checks that ∥vj−0∥pp = 1
and ∥vj − vk∥pp = 2 for j ̸= k so the minimum inter-centroid separation is ∆min = 1, while standard

bounds show that each point’s p-th power deviation δmax = O(c
p/2
S d1−p/2) = o(1). Hence any mis-

assignment raises the k-means cost by at least ∆min−2δmax > 0, making the true partition the unique
global minimizer. Since δmax = o(1) holds with probability at least 1− exp(−Ω(min(m,n−dm))),
ℓp-k-means recovers the true clusters with probability at least 1− 1/poly(d).

This generalization enables our method to prioritize informative keys under various ℓp metrics,
which may be advantageous for different data distributions or model architectures. By restricting
the queries to attend only to the sampled keys selected by the method above, we ensure focused
attention mechanisms while preserving the framework’s adaptability. We provide both deterministic
and probabilistic analyses of this connection in Appendix C of supplementary material.

3.2 PRE-SCORED HYPERATTENTION

Algorithm 1 ranks the n keys in a single pass. Given a stochastically perturbed matrix K ′ of keys, it
offers two routes: (i) a one-shot k-means/k-median call that returns the s closest keys to k = d+1
centroids, or (ii) a fast leverage-score sketch. We set the number of clusters to d+1: one centroid
per latent orthogonal direction (d) plus a single residual bucket for noise/no-signal keys. In the
planted–subspace model in algorithm section, this matches the ground-truth partition and guarantees
the within–cluster variance term is O(σ2

S) while the between–cluster gap remains Ω(1) by Lemma 2.
Theorems 1 and 2 guarantee that both routes isolate all Θ(ϵ)-heavy keys with exponentially small
failure probability. The full model and assumptions are given after Algorithm 2. Lines 3–7 execute in
O(ndk) time for clustering, and O(ndklog dk) for leverage scores.

Algorithm 1 PreScore: Rank Keys via Clustering or Leverage

Require: Keys K ∈ Rn×dk , clusters k = d+1, retain s, noise σ, method ∈
{KMEANS, KMEDIAN, LEVERAGE}

1: K′ ← K +N (0, σ2Idk ) ▷ optional noise
2: if method == KMEANS OR KMEDIAN then
3: {Cj , µj}kj=1 ← KMEANS(K′, k)
4: S ← indices of the s keys nearest to their centroids
5: else ▷ LEVERAGE branch
6: h← APPROXLEVERAGE(K′) ▷ O(ndklog dk) time
7: S ← top-s indices by h
8: end if
9: return index set S

Algorithm 2 wraps the pre-scoring routine around HyperAttention. It first calls PRESCORE to obtain
the retained key index set S; if fewer than δn keys survive, it falls back to vanilla HyperAttention to
match the baseline’s worst-case runtime. Otherwise, it applies HyperAttention only to the |S| = s
scored keys, yielding a near-linear O(ndk + sdk) layer cost.

Algorithm 2 Pre-Scored HyperAttention

Require: Query Q, Key K, Value V ∈ Rn×dk ; retain s; clusters k = d+1; noise σ; threshold δ; method
∈ {KMEANS, KMEDIAN, LEVERAGE}

1: S ← PRESCORE(K, k, s, σ,method) ▷ Algorithm 1
2: if |S| < δn then ▷ robust fallback
3: return HYPERATTENTION(Q,K, V )
4: end if
5: Attout ← HYPERATTENTION(Q,K[S], V [S])
6: return Attout

6
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4 EXPERIMENTS AND RESULTS

To evaluate our proposed pre-scoring attention algorithm, we conducted comprehensive experiments
assessing runtime efficiency, perplexity performance, and applicability to Vision Transformers (ViTs)
Dosovitskiy et al. (2021). We compared three variants—K-means+Hyper, K-median+Hyper, and
Lev+Hyper—against baseline HyperAttention Han et al. (2023) and FlashAttention Dao et al. (2022).
We also analyzed the key clustering performance of K-means relative to ViT’s standard self-attention.
All the experiments were done on a single NVIDIA A100 GPU with 40 GB memory or a single
NVIDIA L4 GPU with 24 GB memory.

4.1 SPEED COMPARISON ON FLASH ATTENTION

Figure 1: Single layer speed test by only forward
pass

Figure 2: Single layer speed test by forward and
backward pass

FlashAttention is the current gold-standard for exact soft-max attention throughput, so we report
all speed factors relative to FlashAttention. Our question is therefore: does the added pre-scoring
overhead erode HyperAttention’s 20 × wall-clock advantage? We test the speed-up factor for each
layer compared to that of Flash Attention. This speedup factor is the ratio of Flash Attention’s
runtime to that of each tested method on a per-layer basis. From the results, all combinations, Lev +
Hyper, K-means + Hyper and K-median + Hyper, outperform Flash Attention for sufficiently long
sequences, demonstrating the advantage of HyperAttention-based methods. Compared to the original
HyperAttention, these methods can generate a mild acceleration, with performance becoming more
remarkable starting at 213 with a speedup factor of around 3 to 4 in Figure 1. Such tradeoffs are
from the time complexity of the pre-scoring algorithm in forward selection parts, which is O(N · d2)
for Lev+Hyper and O(N · d · k) for K-means/median+Hyper, where k is the number of clusters in
the K-means/median part. Because of the huge size of the key matrix, having d ≫ k is a common
situation. In this case, it is also reasonable to conclude that the additional complexity is roughly
O(N · d), a near-linear complexity dependent solely on the dimensions of K. Comparing these
two options, Lev+Hyper exhibits the best scalability, closely matching HyperAttention on longer
sequences, while K-median+Hyper requires slightly higher computational cost due to its clustering
complexity. Our pre-scoring overhead is most pronounced in the forward pass, as the backward pass
adheres to HyperAttention’s standard pipeline. As a result, extending pre-scoring to both passes could
potentially narrow the speedup factor.

4.2 ACCURACY COMPARISON

While their speedup factors grow more gradually, our HyperAttention-based methods offer a bal-
anced trade-off between runtime and perplexity, as observed in the speed comparison. Similarly to
HyperAttention’s test Han et al. (2023), we use the LongBench dataset Bai et al. (2024) and evaluate
on ChatGLM2-6B-32k GLM et al. (2024) and ChatGLM3-6B-32k ZAI-ORG (2024). Hereafter we
refer to them as GLM2 and GLM3, respectively. To compare the efficacy of different methods
under full-layer replacement, we incorporate K-means/K-median and LevAttention with our scoring
mechanism before sending the scored data to the HyperAttention algorithm.
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Figure 3: GLM2: The perplexity performance of various key selection strategies—K-means, K-
median, and Leverage Score (Lev)—under different values of k (the number of selected keys), where
each k is sampled as a power of 2 (e.g., 128, 2048, 8192).

For GLM2, Figure 3 shows the methods that incorporate sampling: K-means, K-median, and
Lev, consistently outperform standard HyperAttention across various top-k values. These meth-
ods exhibit a U-shaped trend: the perplexity initially decreases as k increases, reaching an optimal
range around 2048 to 8192. Note that the original HyperAttention has perplexity=12, our
pre-scoring algorithm lowers the perplexity for top-k between 128 and 2048. When k ≤ 128,
our pre-scoring set misses many ϵ-heavy keys; the resulting recall deficit drives perplexity up
roughly like e−Ck. Once k reaches the range 2048–8192, every heavy key is almost surely retained,
so the ”missed-mass” term vanishes and perplexity hits its minimum. At top_k=2048, we ob-
tained the highest accuracy of perplexity=10.38 (a 12.5% improvement). In addition, setting
min_seq_len >= n_query ensures that the model bypasses fallback mechanisms in the causal
attention branch, enabling full use of blockwise optimization even at shorter sequence lengths. The
perplexity reaches a minimum of 8.31 under this condition, representing a 30.8% improvement.
Increasing k excessively (e.g., 16384) degenerates perplexity back to the HyperAttention baseline
Han et al. (2023).

Results on ChatGLM3-6B-32k. We evaluate our method on ChatGLM3-6B-32k under the same
LongBench/full-layer protocol as GLM2. To avoid implementation artifacts observed on GLM2, we
use a corrected coupling of pre-scoring and HyperAttention (details in App. F).

Figure 4: GLM3: perplexity vs. top-k for K-means/K-median/Leverage, with/without residual sam-
pling.

Key observations.

• Small k saturates: Curves are flat at low k and lie below vanilla HyperAttention, indicating
pre-scoring mainly denoises and a few hundred keys capture most mass.

• Residual vs. no-residual: With residual sampling, curves increase mildly as k grows;
without residuals they stay stable with small dips at very low k, consistent with block-
diagonal attention already capturing most mass.
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• Runtime: Lev scoring is light and masking is applied as bias, so runtime varies weakly with
k; K-means/K-median incur more overhead as k increases.

GLM2 vs. GLM3. The U-shape on GLM2 was partly due to implementation effects; with the
corrected coupling, GLM3 reflects the better modeling behavior (see App. F for ablations and
discussion).

4.3 MONKEY PATCHING VISION-TRANSFORMER

We replaced the standard softmax-based self-attention layers in the Vision Transformer (ViT) Doso-
vitskiy et al. (2021) with our proposed K-means sampling attention mechanism by letting queries Q
only attend to a subset S of keys K chosen by our algorithm 1. We also mask the value matrix V
with our subset S to align with the original output shape. For the baseline, we used the pretrained
vit small patch16 224 and vit large patch16 224 models, which achieved top-1 accuracies of 85.11%
and 85.85%, respectively, on the ImageNet-1k validation set Deng et al. (2009). Our custom attention
mechanism replaces the full attention computation with a K-means clustering approach that samples
a subset of key vectors per head. We varied the number of clusters and sampled keys to evaluate
the performance. In the ViT-Small variant, when the number of clusters was fixed at 4, reducing the
number of sampled keys to 32 resulted in a drastic accuracy drop (31.34%), while increasing the
sample count to 64, 96, and 128 gradually improved the accuracy to 61.31%, 74.21%, and 80.05%,
respectively. A further increase to 6 clusters with 128 sampled keys yielded a marginal improvement
(80.49%). In contrast, the ViT-Large variant exhibited higher robustness: with 4 clusters, the accuracy
improved from 53.05% with 32 samples to 78.10%, 82.89%, and 84.46% for 64, 96, and 128 samples,
respectively, while increasing the cluster count to 6 with 128 sampled keys maintained an accuracy of
84.46%. These results, summarized in Table 1., indicate that our K-means sampling attention can
closely approximate the performance of the full self-attention mechanism if a sufficient number of
key vectors is sampled. Our method achieve better performance than LevAttention Kannan et al.
(2024) with pretrained ViT models and share similar accuracy trade-offs to LevAttention with models
trained from scratch using their updated leverage-score based attention mechanism. More detailed
results of LevAttention are included in Appendix E.

Table 1: Accuracy of monkey-patched ViT with K-means prescoring (higher is better).

Configuration S/16 Acc. L/16 Acc.

Base model 85.11% 85.85%
num cluster=4, num sample=32 31.34% 53.05%
num cluster=4, num sample=64 61.31% 78.10%
num cluster=4, num sample=96 74.21% 82.89%
num cluster=4, num sample=128 80.05% 84.46%
num cluster=6, num sample=128 80.49% 84.46%

5 CONCLUSION

In this work, we proposed a novel pre-scoring mechanism that integrates clustering-based key selec-
tion methods to improve hierarchical attention mechanisms. By selectively prioritizing informative
keys, we overcome limitations of HyperAttention’s uniform residual sampling, achieving significant
perplexity improvements and computational efficiency advantages over FlashAttentionDao et al.
(2022). Empirical results across both models validate our method’s effectiveness and generality.
Mathematically, we also used planted-subspace model to prove that our clustering-based scoring is as
powerful as leverage score pre-scoring for natural models.

ETHICS STATEMENT

This work focuses on improving the efficiency of attention mechanisms in transformer architectures
through pre-scoring strategies such as clustering and leverage-based methods. Our study is purely
algorithmic and computational in nature, and does not involve human subjects, personal or sensitive
data, or animal studies. All datasets used in our experiments (e.g., LongBench for long-context
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evaluation and ImageNet-1k for Vision Transformer evaluation) are publicly available and widely
used in the research community. We strictly followed the dataset usage terms and did not modify or
misuse the data in ways that would raise privacy, security, or fairness concerns. Our work does not
generate or promote harmful content, nor is it intended for malicious applications. The contributions
lie in theoretical analysis, algorithm design, and empirical benchmarking of efficiency–accuracy
trade-offs. There are no conflicts of interest or external sponsorship that would bias the results. We
affirm adherence to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our results. All theoretical results
are presented with explicit assumptions, definitions, and complete proofs in the main text and
appendices (Sections 3 and Appendices B–D). The algorithmic contributions are described in detail,
including pseudocode for the pre-scoring procedure (Algorithm 1) and the integrated Pre-Scored
HyperAttention framework (Algorithm 2). Experimental protocols are fully specified: we report
hardware setups (NVIDIA A100 and L4 GPUs), datasets used (LongBench and ImageNet-1k), model
variants (ChatGLM2, ChatGLM3, and ViT-S/Large), and evaluation metrics (perplexity, runtime, and
accuracy). Appendix A–F provides additional tables, ablation studies, and coupling clarifications to
address potential implementation concerns. An anonymous code repository containing source code
and scripts for reproducing our experiments will be submitted as supplementary material. Together,
these resources allow researchers to replicate and verify both the theoretical and empirical findings of
our work.
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A APPENDIX A: PERPLEXITY COMPARISON ACROSS CONFIGURATION

In this section, we give tables to represent the data in our experiments for comparing accuracy.
Both K-means and K-median prescoring achieve their best performance at top-k = 2048 with
sampling. Lev+Hyper method reaches best its PPL performance at top-k=8192. If we allow
min-seq-len>=n_query, their best perplexity will improve to about 9.5 at top-k=8192. We
also confirmed that the top-k corresponding to the best PPL performance is between 2048 and 8192.
Also, when we set sample_size=0, the experiments show the best perplexity when top_k=0.
Given these two conditions, our accuracy further improves to 8.3081 for all filtering methods when
min-seq-len>=n_query, which further improves to 30.8% compared to HyperAttention.

A.1 ON THE U-SHAPED PERFORMANCE CURVE AND TOP K=0 RESULT

We observe a U-shaped performance curve in our PPL experiments (see Tables 2, 3, 4). This can be
explained by a trade-off between capturing sufficient signal and introducing noise.

• At a low top-k, the model fails to select a sufficient number of informative keys, leading
to higher perplexity as crucial information is missed.

• At a very high top-k (e.g., 16384), the pre-scoring selects an excessive number of keys.
This can introduce noise and less relevant information that degrades the performance of the
subsequent HyperAttention stage, causing the perplexity to rise again.
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• The optimal performance is achieved at a balance point (empirically found between 2048
and 8192) where the most salient keys are captured without introducing excessive noise.

The strong performance at top k=0 with sample size=0 and min-seq-len>=n_query is
a special case. Here, pre-scoring is deactivated, and the model relies solely on the original HyperAt-
tention mechanism. The performance gain to 8.3081 comes from the min-seq-len>=n_query
setting, which ensures the model fully utilizes blockwise optimizations even at shorter sequence
lengths, rather than from the pre-scoring itself.

Table 2: PPL comparison for K-means across configurations.

Top K Sample Size PPL PPL*

0 256 17.5419 13.4143
32 256 17.3717 14.2691
128 256 15.7498 14.7510
512 256 11.7709 10.3013
2048 256 10.3837 10.0160
8192 256 10.5371 9.5313
16384 256 11.9027 10.7297

0 0 10.4122 8.3081
32 0 10.4014 8.3460
128 0 10.9531 8.3633
512 0 11.1941 8.6657
2048 0 12.1078 9.3075
8192 0 23.7752 12.3623
16384 0 27.1459 21.9300

*PPL for sequences with length ≥ n query

Table 3: PPL comparison for K-median across configurations.

Top K Sample Size PPL PPL*

0 256 17.5435 13.4139
32 256 17.5589 14.3638
128 256 15.1726 14.2688
512 256 12.6928 10.7822
2048 256 10.4396 10.6784
8192 256 10.5228 9.6705
16384 256 12.0311 10.6668

0 0 10.4122 8.3081
32 0 10.5020 8.3319
128 0 10.6929 8.3912
512 0 10.9729 8.5140
2048 0 11.6279 8.9240
8192 0 20.9296 12.3335
16384 0 22.5637 18.5101

*PPL for sequences with length ≥ n query

B APPENDIX B: COUNTEREXAMPLE FOR K-MEANS SENSITIVITIES

This counterexample demonstrates that k-means clustering can fail to identify the set S of important
keys, even when the data satisfies the orthogonality conditions (δ1, δ2 → 0) of the planted model
from LevAttention. We show this failure is due to the sensitivity of k-means to large deviations in
data point norms, a problem that our row-norm regularization assumption explicitly prevents.
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Table 4: PPL comparison for Leverage Score-Based Method across configurations.

Top K Sample Size PPL PPL*

0 256 17.5428 13.4129
32 256 21.3402 15.7013
128 256 21.3568 17.0048
512 256 15.0292 13.4522
2048 256 11.4189 9.8549
8192 256 10.6066 9.4091
16384 256 12.1050 10.5868

0 0 10.4122 8.3081
32 0 10.6251 8.4462
128 0 11.1715 8.4504
512 0 11.4453 8.6360
2048 0 12.3255 9.1102
8192 0 23.7757 13.4991
16384 0 30.7175 28.9817

*PPL for sequences with length ≥ n query

B.1 SETUP OF THE COUNTEREXAMPLE

Let d be the feature dimension. We construct an n× d matrix K with n ≫ d. We define the set of
“relevant keys” S ⊂ [n] with |S| = d/2 (assuming d is an even integer). The remaining n− |S| keys
form the set Sc = [n] \ S. We define the rows of K as follows:

1. For j ∈ S: Let S = {1, 2, . . . , d/2}. For each j ∈ S, Kj is a standard basis vector with
unit Euclidean norm, supported on the first d/2 coordinates.

Kj = ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
d/2

) ∈ Rd

where the single 1 is in the j-th position. So, ||Kj ||22 = 1.
2. For l ∈ Sc: Let Sc = {d/2 + 1, . . . , n}. For each l ∈ Sc, Kl is a vector with a large

Euclidean norm M ≫ 1, supported on the remaining d/2 coordinates. For simplicity,
we assume all of the Kl for l ∈ Sc are identical and non-zero only in the (d/2 + 1)-th
coordinate.

Kl = (0, . . . , 0,M, 0, . . . , 0) ∈ Rd

where the value M is in the (d/2 + 1)-th position. So, ||Kl||22 = M2.

B.2 VERIFICATION OF PLANTED MODEL ASSUMPTIONS

We check if the counterexample satisfies the planted model assumptions (1) and (2) of LevAttention
for small δ1, δ2.

• Assumption (1): ∀j, l ∈ S, j ̸= l, |KjK
T
l | ≤ δ1 · min(||Kj ||22, ||Kl||22) For j, l ∈ S and

j ̸= l, Kj = ej and Kl = el. Since j ̸= l, KjK
T
l = eTj el = 0. The minimum norm is

min(||Kj ||22, ||Kl||22) = min(1, 1) = 1. Thus, 0 ≤ δ1 · 1. We can choose δ1 = 0, which
satisfies the assumption.

• Assumption (2): ∀j ∈ S, l /∈ S, |KlK
T
j | ≤ δ2 · min(||Kj ||22, ||Kl||22) For j ∈ S, Kj

is supported on the first d/2 coordinates. For l /∈ S, Kl is supported on the (d/2 + 1)-
th coordinate. Therefore, KjK

T
l = 0. The minimum norm is min(||Kj ||22, ||Kl||22) =

min(1,M2) = 1 (since M ≫ 1). Thus, 0 ≤ δ2 · 1. We can choose δ2 = 0, again satisfying
the asumption.

This simple example demonstrates that δ1 and δ2 can be zero, implying perfect orthogonality between
points in S, and between points in S and points in Sc.
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C APPENDIX C: SUPPLEMENTARY PROOFS

C.1 PROOF OF LEMMA 1

Proof. By the Cauchy–Schwarz inequality, for any unit vector x, (A⊤
i x)

2 ≤ ∥Ai∥2, so hi =

sup∥x∥=1
(A⊤

i x)2

∥Ax∥2 ≤ ∥Ai∥2

σ2
min

. Under the Gaussian noise model, ∥Ai∥2 ≈ d σ2
N = d (cN/nϵ). As

established in the proof of Theorem 1, standard matrix concentration (given in LevAttention) ensures
that σ2

min = λmin(A
⊤A) = Θ(1/ϵ) and does not decay with n. Since n ≫ d/ϵ, we obtain hi =

O(d/n).

C.2 PROOF OF LEMMA 2

Proof. Since Ai = vj + δi,j and ∥vj∥ = 1, we have (A⊤
i vj)

2 =
(
1+ δ⊤i,jvj

)2 ≈ 1 (up to O(∥δi,j∥)).
Meanwhile, ∥Avj∥2 =

∑n
ℓ=1(A

⊤
ℓ vj)

2 ≈
∑

i∈Sj
1 = m = ⌈ 1

ϵ ⌉. Hence hi ≥ 1
m = Θ(ϵ).

Recall that for any row i, its leverage score is hi = Ai (A
⊤A)−1A⊤

i = sup∥x∥=1
(A⊤

i x)2

∥Ax∥2 .

C.3 EXPLANATION OF THEOREM 2

The key to k-means recovering the planted structure is cluster separability: each “signal” row with a
large leverage score must lie far enough from every other row that allocating it its own centroid strictly
lowers the within-cluster distortion. In our analysis we therefore initialize k = Θ(d/ϵ) centroids—one
for each row whose leverage score is Ω(ϵ), plus a single centroid that absorbs all residual (low-score)
rows. Under this choice the clusters are provably well-separated, and the standard k-means objective
attains its global minimum exactly at the desired partition, yielding a clean solution for the instance
at hand.

C.4 PROOF OF CLAIM 1

Proof. We follow three steps: (1) compute inter-centroid ℓp separations, (2) bound intra-cluster ℓp
variances, (3) invoke well-separated cluster recovery for ℓp-k-means.

1. True centroid positions and inter-cluster distances.
The signal centroids are

v1, . . . , vd, and 0 ∈ Rd,

with ∥vj∥pp = 1 (one coordinate of magnitude 1, rest zero), and

∥vj − vk∥pp = |1− 0|p + |0− 1|p = 2, j ̸= k, ∥vj − 0∥pp = 1.

Hence the minimum inter-centroid distance (in p-th power) is

∆min = min
{
∥vj − 0∥pp, ∥vj − vk∥pp

}
= 1.

2. Intra-cluster ℓp variances.
Fix any signal cluster Sj . For i ∈ Sj ,

Ai = vj + δi,j , δi,j ∼ N (0, σ2
SId).

We need
E
[
∥Ai − vj∥pp

]
= E

[
∥δi,j∥pp

]
.

By standard moment bounds for a Gaussian vector in Rd (e.g. Rosenthal-type inequalities), there is a
constant Cp so that

E
[
∥δi,j∥pp

]
= Θ

(
d σp

S

)
= Θ

(
d (cS/d)

p/2
)
= O(c

p/2
S d1−p/2).

Since m = |Sj | = ⌈1/ϵ⌉, by concentration of i.i.d. sums (via Rosenthal + Markov), with probability
1− e−Ω(m),

max
i∈Sj

∥Ai − vj∥pp ≤ O
(
c
p/2
S d1−p/2

)
≪ 1
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whenever cS is small

Similarly for the noise cluster S0, each Ai = ηi ∼ N (0, σ2
NI) gives

E
[
∥ηi∥pp

]
= Θ

(
d σp

N

)
= Θ

(
d (cN/(nϵ))p/2

)
= O

(
(cN/(nϵ))p/2 d

)
,

and by a Markov bound with constant probability 1

max
i∈S0

∥ηi∥pp ≪ 1

if cN is small and n ≫ d/ϵ.

Thus the maximum within-cluster p-power deviation is

δmax := max
{

max
i∈S1∪···∪Sd

∥Ai − vtrue(i)∥pp, max
i∈S0

∥ηi∥pp
}

= o(1) ,

where true(i) is the signal-index for row i.

3. Well-separated clustering and exact recovery.
Consider the k-means objective under ℓp-powers:

min
C0,...,Cd
µ0,...,µd

d∑
j=0

∑
i∈Cj

∥Ai − µj∥pp.

We compare the cost of the true partition {S0, . . . , Sd} with any incorrect partition that assigns some
point i∗ ∈ Sj to the wrong cluster Ck, k ̸= j. Since its true centroid vj and the wrong centroid vk
satisfy

∥Ai∗ − vk∥pp ≥
(
∥vj − vk∥p − ∥Ai∗ − vj∥p

)p ≥
(
21/p − δ1/pmax

)p
.

whereas the cost at the correct centroid is ∥Ai∗ − vj∥pp ≤ δmax. Thus the extra cost of misplacing
any single point is at least

(2− δmax)− δmax = 2− 2δmax > 0

provided δmax < 1. A symmetric argument holds for mis-assigning a noise point from S0 to any
Sj . Because moving any point to a wrong cluster strictly increases the total cost, the unique global
minimizer of the k-means objective is the true partition {S0, . . . , Sd}.

This completes the proof of Claim 1.

D APPENDIX D: ON THE PRACTICALITY OF THE PLANTED MODEL
ASSUMPTIONS

A potential concern is the connection between our “planted model” and the behavior of real-world
attention mechanisms. While the model is a simplification, we argue it captures the essential structural
properties of key matrices in well-trained transformers.

• Low-Rank Structure: It is widely observed that attention heads in transformers often learn
to be redundant or specialize. This leads to an effective low-rank structure in the key matrix
K, where a small subset of “important” keys captures most of the variance. Our model’s
distinction between “signal” rows (from Sj) and “noise” rows (from S0) is a formalization
of this empirical observation.

• Orthogonality Assumption: The assumptions of near-orthogonality between signal vectors
(δ1 → 0) and between signal and noise vectors (δ2 → 0) model the ideal case where
important keys are distinct from each other and from the bulk of less important keys.

1See Computing Apporximate lp Sensitivities, Padmanabhan et al. (2023) for detail

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Row-Norm Regularity: Our assumption of uniform row norms is a crucial simplification
justified by the counterexample in Appendix B. In practice, Layer Normalization, applied
before the self-attention block in many transformer architectures, serves a similar purpose
by ensuring that vectors do not have pathologically large norms, thus mitigating the bias
k-means exhibits towards high-magnitude points.

Therefore, while not a perfect model of reality, our planted model provides a tractable framework to
prove that clustering methods such as k-means can effectively identify the same set of important keys
as more complex methods such as leverage score sampling, under reasonable structural assumptions.

E APPENDIX E: BASELINE PERFORMANCE OF LEVATTENTION ON VIT

Table 5: Accuracies of ViT models with various attention mechanisms on the ImageNet-1k validation
set, summarized from LevAttention.

Model Accuracy on Validation Set
S/16 (softmax) 76.47%
S/16 (LevAttention, top-32*) 13.3%
S/16 (ℓ2 norm selection, top-32*) 3.3%
S/16 (LevAttention, top-32) 68.30%
S/16 (LevAttention, top-64) 72.48%

L/16 (softmax) 78.83%
L/16 (LevAttention, top-32*) 48.58%
L/16 (ℓ2 norm selection, top-32*) 8.9%
L/16 (LevAttention, top-32) 75.12%
L/16 (LevAttention, top-64) 77.27%
L/16 (LevAttention, top-128) 77.17%

*Pretrained with standard softmax attention

F APPENDIX F: CORRECTED COUPLING AND ABLATIONS FOR GLM3

Why GLM2 showed a U-shape. In Figure 3 (GLM2), we observed a U-shaped perplexity curve:
high values at very small k, a drop around mid-range k (e.g. 2K–8K), and then a rebound as k grows
larger. We traced this shape to three implementation artifacts in the original coupling of pre-scoring
with HyperAttention:

• Zeroing of K/V tensors. In the GLM2 code path, keys/values outside the pre-score set
were physically zeroed. This distorted the LSH bucket structure, because zero vectors all
collapse into the same region of the hash space. As a result, block-diagonal attention included
spurious “dead” keys, which increased variance at small k and inflated perplexity.

• Residual weighting by nkey instead of neff. The residual Monte-Carlo samples were scaled
by the global key length nkey, even though only a subset of neff keys survived pre-scoring.
This overweighted the residual path, effectively amplifying noise when k was small (few
keys retained), which explains why perplexity started high and only dropped once k was
large enough to dominate the residual contribution.

• No overlap mask between block-diagonal and residual terms. Without masking, some
keys were double-counted: first in their LSH-assigned block, then again if they were sam-
pled into the residual path. This double counting inflated variance and artificially lowered
perplexity at intermediate k, contributing to the “U” dip.

Together, these artifacts produced the misleading U-shaped curve: small k looked unstable (inflated
PPL from zeroed K/V and overweighted residuals), mid-range k looked artificially good (double
counting effectively boosted recall), and large k naturally drifted back toward HyperAttention.
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Coupling fixes (GLM3). In our GLM3 experiments we corrected these issues:

1. No zeroing of K/V: instead of modifying the tensors, we build a boolean mask from scores
and inject it as a −∞ bias in the attention kernel. This preserves the true geometry of LSH
buckets.

2. Residual re-weighting: residual samples are scaled by neff/sample size, matching the effec-
tive number of valid keys rather than the global length.

3. Block–residual masking: we add an explicit mask to exclude already-used block keys from
residuals, preventing double counting.

Effect of corrections. With these fixes, the GLM3 results (Figure 4) reveal the true behavior of
pre-scoring:

• At small k, perplexity is already low because heavy keys are retained and no spurious
residual amplification occurs.

• As k grows, additional (less relevant) keys are admitted, which introduces mild noise; thus
curves rise gradually rather than showing a sharp drop.

• The U-shape disappears: instead we see a monotone or flat trend consistent with pre-scoring
acting as a denoising mechanism rather than as a distorted sampling mixture.

Clarifications. We define k=0 as “no filtering” (mask-all-valid), i.e. HyperAttention without pre-
scoring. A separate ablation ResidualOnly(MC) disables the block path and keeps only uniform
residuals; this is not conflated with k=0. Lev scoring adds negligible overhead; K-means/K-median
grow with k due to clustering cost.

G APPENDIX G: HEAVY ATTENTION COVERAGE PERCENTAGE

We evaluated our custom attention mechanism that employs K-means and K-Median sampling to
approximate the full attention distribution. This experiment was also conducted using ViT base
model with patch 16 Dosovitskiy et al. (2021) on Imagenet-1k validation set Deng et al. (2009).We
compared the original attention output matrix with the attention output matrix after applying our
clustering-based prescoring mechanism for analysis. We vary the number of sampled keys and adjust
the threshold parameter ϵ (with values 0.01, 0.1, and 0.3) to measure the median percentage of
heavy attention entries captured. An entry of attention matrix A is considered heavy if Aij > ϵ for
0 ≤ i, j ≤ N . From Figure 5 and Figure 6, the capture percentage increases as ϵ or the number of keys
sampled increases and K-Means has some marginal performance increase compared to K-Median.
Additionally, we tested the number of top columns that contain the most heavy attention entries, and
how well these can be captured by both sampling approaches. The result is shown in table6. While the
overall heavy attention entries coverage rate shows a linear relationship, the top-k coverage remains
the same as the configurations change (where k aligns with our number of keys sampled).
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Figure 5: K-Means: Median percentage vs. sam-
pled keys.
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Figure 6: K-Median: Median percentage vs. sam-
pled keys.
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Table 6: Top-k Heavy Columns Coverage

Number of Keys Sampled Average Percentage

Kmeans-32 15.62%

Kmeans-64 32.81%

Kmeans-128 65.62%

Kmedian-32 18.75%

Kmedian-64 32.81%

Kmedian-128 65.62%

H APPENDIX H: LIMITATIONS AND FUTURE WORK

Our pre-scoring mechanism achieves significant improvements in efficiency and performance, but
comes with inherent trade-offs. The primary limitation is computational overhead from clustering
operations, requiring O(ndk) time complexity for n keys of dimension d with k clusters. While justi-
fied by perplexity gains, this cost motivates future work on parallelized implementations, particularly
for multi-head attention architectures. The sparse key selection may also introduce non-contiguous
memory access patterns that warrant optimization for GPU/TPU hardware.

Theoretical guarantees rely on planted-subspace assumptions (δ1, δ2 ≪ 1), though empirical results
show robustness to moderate violations. Edge cases involving adversarial inputs or pathological
distributions remain challenging, suggesting needs for: (1) adaptive pre-scoring that adjusts clustering
parameters dynamically, (2) extensions to multimodal architectures beyond language modeling, and
(3) hardware-aware clustering approximations. The fallback condition in Algorithm 2 requires further
study of its activation patterns across different tasks.

While our experimental comparison deliberately focused on HyperAttention Han et al. (2023) and
LevAttention Kannan et al. (2024) as the most directly comparable baselines for long-context
attention, a more comprehensive evaluation against other efficient attention methods could further
illuminate the practical trade-space. Specifically, comparison with kernel-based approximations like
Performer Choromanski et al. (2022) and benchmarking against hashing-based methods such as
Reformer Kitaev et al. (2020) would better contextualize our approach’s trade-offs.

I APPENDIX I: GAUSSIAN KERNEL K-MEANS

We further tested Gaussian kernel k-means on GLM2, which computes distance to centroids via the
kernel method. Results are reported in Table 7. The best performance appears at top-k=8192 with
Sample Size=256 (perplexity=10.06). Similar to previous methods, perplexity reaches
the lowest value at top-k=0 when Sample Size=0.

Table 7: GLM2: PPL comparison for Gaussian Kernel K-means across configurations.

Sample Size = 256 Sample Size = 0

Top K PPL Top K PPL

0 17.5410 0 10.4122
32 18.5715 32 10.7094
128 19.6897 128 11.6935
512 15.6162 512 11.2801
1024 14.3289 1024 11.8827
2048 11.8682 2048 13.6853
4096 10.5833 4096 17.6743
8192 10.0670 8192 22.8829
16384 11.8495 16384 34.6969
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