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ABSTRACT

Classifier guidance is a recently introduced method to trade off mode coverage
and sample fidelity in conditional diffusion models post training, in the same spirit
as low temperature sampling or truncation in other types of generative models.
Classifier guidance combines the score estimate of a diffusion model with the
gradient of an image classifier and thereby requires training an image classifier
separate from the diffusion model. It also raises the question of whether guidance
can be performed without a classifier. We show that guidance can be indeed
performed by a pure generative model without such a classifier: in what we
call unconditional guidance, we jointly train a conditional and an unconditional
diffusion model, and we combine the resulting conditional and unconditional score
estimates to attain a trade-off between sample quality and diversity similar to that
obtained using classifier guidance.

1 INTRODUCTION

Diffusion models have recently emerged as an expressive and flexible family of generative models,
delivering competitive sample quality and likelihood scores on image and audio synthesis tasks (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Kingma et al., 2021;
Song et al., 2021a). These models have delivered audio synthesis performance rivaling the quality
of autoregressive models with substantially fewer inference steps (Chen et al., 2021; Kong et al.,
2021), and they have delivered ImageNet generation results outperforming BigGAN-deep (Brock
et al., 2019) and VQ-VAE-2 (Razavi et al., 2019) in terms of FID score and classification accuracy
score (Ho et al., 2021; Dhariwal & Nichol, 2021).

Dhariwal & Nichol (2021) proposed classifier guidance, a technique to boost the sample quality of
a diffusion model using an extra trained classifier. Prior to classifier guidance, it was not known
how to generate “low temperature” samples from a diffusion model similar to those produced by
truncated BigGAN (Brock et al., 2019) or low temperature Glow (Kingma & Dhariwal, 2018):
naive attempts, such as scaling the model score vectors or decreasing the amount of Gaussian noise
added during diffusion sampling, are ineffective (Dhariwal & Nichol, 2021). Classifier guidance
instead mixes a diffusion model’s score estimate with the input gradient of the log probability of a
classifier. By varying the strength of the classifier gradient, Dhariwal & Nichol can trade off Inception
score (Salimans et al., 2016) and FID score (Heusel et al., 2017) (or precision and recall) in a manner
similar to varying the truncation parameter of BigGAN.

Figure 1: Unconditional guidance on the malamute class for a 64x64 ImageNet diffusion model. Left
to right: increasing amounts of unconditional guidance, starting from non-guided samples on the left.
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Figure 2: The effect of guidance on a mixture of three Gaussians, each mixture component represent-
ing data conditioned on a class. The leftmost plot is the non-guided marginal density. Left to right
are densities of mixtures of normalized guided conditionals with increasing guidance strength.

We are interested in whether classifier guidance can be performed without a classifier. Because
classifier guidance mixes a score estimate with a classifier gradient during sampling, classifier-guided
diffusion sampling can be interpreted as attempting to confuse an image classifier with a gradient-
based adversarial attack. This raises the question of whether classifier guidance is successful at
boosting classifier-based metrics such as FID and Inception score (IS) simply because it is adversarial
against such classifiers. Stepping in direction of classifier gradients also bears some resemblance to
GAN training, particularly with nonparameteric generators; this also raises the question of whether
classifier-guided diffusion models perform well on classifier-based metrics because they are beginning
to resemble GANs, which are already known to perform well on such metrics.

To resolve these questions, we present unconditional guidance, our guidance method which avoids
any classifier entirely. Rather than sampling in the direction of the gradient of an image classifier,
unconditional guidance instead mixes the score estimates of a conditional diffusion model and a
jointly trained unconditional diffusion model. By sweeping over the mixing weight, we attain a
FID/IS tradeoff similar to that attained by classifier guidance. Our unconditional guidance results
demonstrate that pure generative diffusion models are capable of synthesizing extremely high fidelity
samples possible with other types of generative models.

2 BACKGROUND

We train diffusion models in continuous time (Song et al., 2021b; Chen et al., 2021; Kingma et al.,
2021): letting x ∼ p(x) and z = {zλ |λ ∈ [λmin, λmax]} for hyperparameters λmin < λmax ∈ R,
the forward process q(z|x) is the variance-preserving Markov process (Sohl-Dickstein et al., 2015):

q(zλ|x) = N (αλx, σ
2
λI), where α2

λ = 1/(1 + e−λ), σ2
λ = 1− α2

λ (1)

q(zλ|zλ′) = N ((αλ/αλ′)zλ′ , σ2
λ|λ′I), where λ < λ′, σ2

λ|λ′ = (1− eλ−λ
′
)σ2
λ (2)

We will use the notation p(z) (or p(zλ)) to denote the marginal of z (or zλ) when x ∼ p(x) and
z ∼ q(z|x). Note that λ = logα2

λ/σ
2
λ, so λ can be interpreted as the log signal-to-noise ratio of zλ,

and the forward process runs in the direction of decreasing λ.

Conditioned on x, the forward process can be described in reverse by the transitions q(zλ′ |zλ,x) =
N (µ̃λ′|λ(zλ,x), σ̃

2
λ′|λI), where

µ̃λ′|λ(zλ,x) = eλ−λ
′
(αλ′/αλ)zλ + (1− eλ−λ

′
)αλ′x, σ̃2

λ′|λ = (1− eλ−λ
′
)σ2
λ′ (3)

The reverse process generative model starts from pθ(zλmin) = N (0, I). We specify the transitions:

pθ(zλ′ |zλ) = N (µ̃λ′|λ(zλ,xθ(zλ)), (σ̃
2
λ′|λ)

1−v(σ2
λ|λ′)v) (4)

During sampling, we apply this transition along an increasing sequence λmin = λ1 < · · · < λT =
λmax for T timesteps; in other words, we follow the discrete time ancestral sampler of Sohl-Dickstein
et al. (2015); Ho et al. (2020). If the model xθ is correct, then as T →∞, we obtain samples from an
SDE whose sample paths are distributed as p(z) (Song et al., 2021b), and we use pθ(z) to denote the
continuous time model distribution. The variance is a log-space interpolation of σ̃2

λ′|λ and σ2
λ|λ′ as
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suggested by Nichol & Dhariwal (2021); we found it effective to use a constant hyperparameter v
rather than learned zλ-dependent v. Note that the variances simplify to σ̃2

λ′|λ as λ′ → λ, so v has an
effect only when sampling with non-infinitesimal timesteps as done in practice.

The reverse process mean comes from an estimate xθ(zλ) ≈ x plugged into q(zλ′ |zλ,x) (Ho et al.,
2020; Kingma et al., 2021) (xθ also receives λ as input, but we suppress this to keep our notation
clean). We parameterize xθ in terms of ε-prediction (Ho et al., 2020): xθ(zλ) = (zλ−σλεθ(zλ))/αλ,
and we train on the objective

Eε,λ

[
‖εθ(zλ)− ε‖22

]
(5)

where ε ∼ N (0, I), zλ = αλx + σλε, and λ is drawn from a distribution p(λ) over [λmin, λmax].
This objective is denoising score matching (Vincent, 2011; Hyvärinen & Dayan, 2005) over multiple
noise scales (Song & Ermon, 2019), and when p(λ) is uniform, the objective is proportional to the
variational lower bound on the marginal log likelihood of the latent variable model

∫
p(x|z)pθ(z)dz,

ignoring the term for the unspecified decoder p(x|z) and for the prior at zλmin
(Kingma et al., 2021).

If p(λ) is not uniform, the objective can be interpreted as weighted variational lower bound whose
weighting can be tuned for sample quality (Ho et al., 2020; Kingma et al., 2021). We use a p(λ)
inspired by the discrete time cosine noise schedule of Nichol & Dhariwal (2021): we sample λ
via λ = −2 log tan(au+ b) for uniformly distributed u ∈ [0, 1], where b = arctan(e−λmax/2) and
a = arctan(e−λmin/2)− b. This represents a hyperbolic secant distribution modified to be supported
on a bounded interval. For finite timestep generation, we use λ values corresponding to uniformly
spaced u ∈ [0, 1], and the final generated sample is xθ(zλmax).

Because the loss for εθ(zλ) is denoising score matching for all λ, the score εθ(zλ) learned by our
model estimates the gradient of the log-density of the distribution of our noisy data zλ, that is
εθ(zλ) ≈ σλ∇zλ log p(zλ). Sampling from the learned diffusion model resembles using Langevin
diffusion to sample from a sequence of distributions p(zλ) that converges to the conditional distribu-
tion p(x) of the original data x.

In the case of conditional generative modeling, the data x is drawn jointly with conditioning informa-
tion c, i.e. a class label for class-conditional image generation. The only modification to the model is
that the reverse process function approximator receives c as input, as in εθ(zλ, c).

3 GUIDANCE

An interesting property of certain generative models, such as GANs and flow-based models, is the
ability to perform truncated or low temperature sampling by decreasing the variance or range of noise
inputs to the generative model at sampling time. The intended effect is to decrease the diversity of
the samples while increasing the quality of each individual sample. Truncation in BigGAN (Brock
et al., 2019), for example, yields a tradeoff curve between FID score and Inception score for low and
high amounts of truncation, respectively. Low temperature sampling in Glow (Kingma & Dhariwal,
2018) has a similar effect.

Unfortunately, straightforward attempts of implementing truncation or low temperature sampling
in diffusion models are ineffective. For example, scaling model scores or decreasing the variance
of Gaussian noise in the reverse process cause the diffusion model to generate blurry, low quality
samples (Dhariwal & Nichol, 2021).

3.1 CLASSIFIER GUIDANCE

To obtain a truncation-like effect in diffusion models, Dhariwal & Nichol (2021) introduce classifier
guidance, where the diffusion score εθ(zλ, c) ≈ σλ∇zλ log p(zλ|c) is modified to include the
gradient of the log likelihood of an auxiliary classifier model pθ(c|zλ) as follows:

ε̃θ(zλ, c) = εθ(zλ, c) + wσλ∇zλ log pθ(c|zλ) ≈ σλ∇zλ [log p(zλ|c) + w log pθ(c|zλ)],
where w is a parameter that controls the strength of the classifier guidance. This modified score
ε̃θ(zλ, c) is then used in place of εθ(zλ, c) when sampling from the diffusion model, resulting in
approximate samples from the distribution

p̃θ(zλ|c) ∝ pθ(zλ|c)pθ(c|zλ)w.
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Algorithm 1 Joint training a diffusion model with unconditional guidance

Require: puncond: probability of unconditional training
1: repeat
2: (x, c) ∼ p(x, c) . Sample data with conditioning from the dataset
3: c← ∅ with probability puncond . Randomly discard conditioning to train unconditionally
4: λ ∼ p(λ) . Sample log SNR value
5: ε ∼ N (0, I)
6: zλ = αλx+ σλε . Corrupt data to the sampled log SNR value
7: Take gradient step on ∇θ ‖εθ(zλ, c)− ε‖2 . Optimization of denoising model
8: until converged

The effect is that of up-weighting the probability of data for which the classifier pθ(c|zλ) assigns
high likelihood to the correct label: data that can be classified well scores high on the Inception score
of perceptual quality (Salimans et al., 2016), which rewards generative models for this by design.
Dhariwal & Nichol therefore find that by setting w > 0 they can improve the Inception score of their
diffusion model, at the expense of decreased diversity in their samples.

Figure 2 illustrates the effect of numerically solved guidance p̃θ(zλ|c) ∝ pθ(zλ|c)pθ(c|zλ)w on a
toy 2D example of three classes, in which the conditional distribution for each class is an isotropic
Gaussian. The form of each conditional upon applying guidance is markedly non-Gaussian. As
guidance strength is increased, each conditional places probability mass farther away from other
classes and towards directions of high confidence given by logistic regression, and most of the mass
becomes concentrated in smaller regions. This behavior can be seen as a simplistic manifestation of
the Inception score boost and sample diversity decrease that occur when classifier guidance strength
is increased in an ImageNet model.

Applying classifier guidance with weight w + 1 to an unconditional model would theoretically lead
to the same result as applying classifier guidance with weight w to a conditional model, because
pθ(zλ|c)pθ(c|zλ)w ∝ pθ(zλ)pθ(c|zλ)w+1; or in terms of scores,

εθ(zλ) + (w + 1)σλ∇zλ log pθ(c|zλ) ≈ σλ∇zλ [log p(zλ) + (w + 1) log pθ(c|zλ)]
= σλ∇zλ [log p(zλ|c) + w log pθ(c|zλ)],

but interestingly, Dhariwal & Nichol obtain their best results when applying classifier guidance to an
already class-conditional model, as opposed to applying guidance to an unconditional model. For
this reason, we will stay in the setup of guiding an already conditional model.

3.2 UNCONDITIONAL GUIDANCE

While classifier guidance successfully trades off IS and FID as expected from truncation or low
temperature sampling, it is nonetheless reliant on gradients from an image classifier and we seek to
eliminate the classifier for the reasons stated in Section 1. Here, we describe unconditional guidance,
which achieves the same effect without such gradients. Unconditional guidance is an alternative
method of modifying εθ(zλ, c) to have the same effect as classifier guidance, but without a classifier.

Instead of training a separate classifier model, we choose to train an unconditional denoising diffusion
model pθ(z) parameterized through a score estimator εθ(zλ) together with the conditional model
pθ(z|c) parameterized through εθ(zλ, c). We use a single neural network to parameterize both
models, where for the unconditional model we can simply input a null token ∅ for the class identifier
c when predicting the score, i.e. εθ(zλ) = εθ(zλ, c = ∅). We jointly train the unconditional and
conditional models simply by randomly setting c to the unconditional class identifier ∅ with some
probability puncond, set as a hyperparameter. (It would certainly be possible to train separate models
instead of jointly training them together, but we choose joint training because it is extremely simple
to implement, does not complicate the training pipeline, and does not increase the total number of
parameters.)

We can then apply Bayes’ rule to obtain an implicit classifier as piθ(c|zλ) ∝ pθ(zλ|c)/pθ(zλ). The
score of this implicit classifier will then be given by ∇zλ log p

i
θ(c|zλ) ≈ 1

σλ
[εθ(zλ, c) − εθ(zλ)].

Applying classifier guidance with this implicit classifier yields the following modification to the
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Algorithm 2 Conditional sampling with unconditional guidance

Require: w: guidance strength
Require: c: conditioning information for conditional sampling
Require: λ1, . . . , λT : increasing log SNR sequence with λ1 = λmin, λT = λmax

1: z1 ∼ N (0, I)
2: for t = 1, . . . , T do

. Form the unconditional-guided score at log SNR λt
3: ε̃t = (1 + w)εθ(zt, c)− wεθ(zt)

. Sampling step (could be replaced by another sampler, e.g. DDIM)
4: x̃t = (zt − σλt ε̃t)/αλt
5: zt+1 ∼ N (µ̃λt+1|λt(zt, x̃t), (σ̃

2
λt+1|λt)

1−v(σ2
λt|λt+1

)v) if t < T else zt+1 = x̃t
6: end for
7: return zT+1

diffusion score estimator:

ε̃θ(zλ, c) = (1 + w)εθ(zλ, c)− wεθ(zλ) ≈ σλ∇zλ [log pθ(zλ|c) + w log piθ(c|zλ)]. (6)

We then use ε̃θ(zλ, c) to sample from our diffusion model as usual, thus producing approximate
samples from p̃θ(zλ|c) ∝ pθ(zλ|c)piθ(c|zλ)w. Algorithms 1 and 2 describe training and sampling
with unconditional guidance in detail.

Note that in some cases, it may be possible to entirely avoid training an unconditional model. If we
know the class distribution and there are only a few classes, we can use the fact that

∑
c p(x|c)p(c) =

p(x) to obtain an unconditional score from conditional scores without explicitly training for the
unconditional score. Of course, this would require as many forward passes as there are possible
values of c and would be inefficient for high dimensional conditioning signals.

It is not obvious a priori that inverting a generative model using Bayes’ rule yields a good classifier that
provides a useful guidance signal. For example, Grandvalet & Bengio (2004) find that discriminative
models generally outperform implicit classifiers derived from generative models, even in artificial
cases where the specification of those generative models exactly matches the data distribution. In
cases such as ours, where we expect the model to be misspecified, classifiers derived by Bayes’ rule
can be inconsistent (Grünwald & Langford, 2007) and we lose all guarantees on their performance.
Nevertheless, in Section 4, we show empirically that unconditional guidance is able to trade off
FID and IS in the same way as classifier guidance. In Section 5 we discuss the implications of
unconditional guidance in relation to classifier guidance.

4 EXPERIMENTS

We train diffusion models with unconditional guidance on area-downsampled class-conditional
ImageNet (Russakovsky et al., 2015), the standard setting for studying tradeoffs between FID and
Inception scores starting from the BigGAN paper (Brock et al., 2019).

The purpose of our experiments is to serve as a proof of concept to demonstrate that unconditional
guidance is able to attain a FID/IS tradeoff similar to classifier guidance and to understand the
behavior of unconditional guidance, not necessarily to push sample quality metrics to state of the
art on these benchmarks. For this purpose, we use the model architectures and hyperparameters as
the guided diffusion models of Dhariwal & Nichol (2021) (apart from continuous time training as
specified in Section 2); those hyperparameter settings were tuned for classifier guidance and hence
may be suboptimal for unconditional guidance. Furthermore, since we amortize the conditional and
unconditional models into the same architecture without an extra classifier, we in fact are using less
model capacity than previous work. Nevertheless, our unconditional-guided models still produce
competitive sample quality metrics and sometimes outperform prior work, as can be seen in the
following sections.
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Figure 3: Unconditional guidance on 128x128 ImageNet. Left: non-guided samples, right:
unconditional-guided samples with w = 3.0. Interestingly, strongly guided samples such as these
display saturated colors. See Fig. 8 for more.

4.1 VARYING THE UNCONDITIONAL GUIDANCE STRENGTH

Here we experimentally verify the main claim of this paper: that unconditional guidance is able
to trade off IS and FID in a manner like classifier guidance or GAN truncation. We apply our
proposed unconditional guidance to 64× 64 and 128× 128 class-conditional ImageNet generation.
In Table 1 and Fig. 4, we show sample quality effects of sweeping over the guidance strength w on
our 64 × 64 ImageNet models; Table 2 and Fig. 5 show the same for our 128 × 128 models. We
consider w ∈ {0, 0.1, 0.2, . . . , 4} and calculate FID and Inception Scores with 50000 samples for
each value following the procedures of Heusel et al. (2017) and Salimans et al. (2016). All models
used log SNR endpoints λmin = −20 and λmax = 20. The 64 × 64 models used sampler noise
interpolation coefficient v = 0.3 and were trained for 400 thousand steps; the 128× 128 models used
v = 0.2 and were trained for 2.7 million steps.

We obtain the best FID results with a small amount of guidance (w = 0.1 or w = 0.3, depending on
the dataset) and the best IS result with strong guidance (w ≥ 4). Between these two extremes we see
a clear trade-off between these two metrics of perceptual quality, with FID monotonically decreasing
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and IS monotonically increasing with w. Our results compare favorably to Dhariwal & Nichol (2021)
and Ho et al. (2021), and in fact our 128 × 128 results are the state of the art in the literature. At
w = 0.3, our model’s FID score on 128× 128 ImageNet outperforms the classifier-guided ADM-G,
and at w = 4.0, our model outperforms BigGAN-deep at both FID and IS when BigGAN-deep is
evaluated its best-IS truncation level.

Figures 1, 3 and 6 to 8 show randomly generated samples from our model for different levels of
guidance: here we clearly see that increasing unconditional guidance strength has the expected effect
of decreasing sample variety and increasing individual sample fidelity.

Model FID (↓) IS (↑)

ADM (Dhariwal & Nichol, 2021) 2.07 -
CDM (Ho et al., 2021) 1.48 67.95

Ours puncond = 0.1/0.2/0.5
w = 0.0 1.8 / 1.8 / 2.21 53.71 / 52.9 / 47.61
w = 0.1 1.55 / 1.62 / 1.91 66.11 / 64.58 / 56.1
w = 0.2 2.04 / 2.1 / 2.08 78.91 / 76.99 / 65.6
w = 0.3 3.03 / 2.93 / 2.65 92.8 / 88.64 / 74.92
w = 0.4 4.3 / 4 / 3.44 106.2 / 101.11 / 84.27
w = 0.5 5.74 / 5.19 / 4.34 119.3 / 112.15 / 92.95
w = 0.6 7.19 / 6.48 / 5.27 131.1 / 122.13 / 102
w = 0.7 8.62 / 7.73 / 6.23 141.8 / 131.6 / 109.8
w = 0.8 10.08 / 8.9 / 7.25 151.6 / 140.82 / 116.9
w = 0.9 11.41 / 10.09 / 8.21 161 / 150.26 / 124.6
w = 1.0 12.6 / 11.21 / 9.13 170.1 / 158.29 / 131.1
w = 2.0 21.03 / 18.79 / 16.16 225.5 / 212.98 / 183
w = 3.0 24.83 / 22.36 / 19.75 250.4 / 237.65 / 208.9
w = 4.0 26.22 / 23.84 / 21.48 260.2 / 248.97 / 225.1

Table 1: ImageNet 64x64 results (w = 0.0 refers to non-guided models).
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puncond = 0.1
puncond = 0.2
puncond = 0.5

Figure 4: IS/FID curves over guidance strengths for ImageNet 64x64 models. Each curve represents
a model with unconditional training probability puncond. Accompanies Table 1.

4.2 VARYING THE UNCONDITIONAL TRAINING PROBABILITY

The main hyperparameter of unconditional guidance is puncond, the probability of training on
unconditional generation during joint training of the conditional and unconditional diffusion models.
Here, we study the effect of training models on varying puncond on 64× 64 ImageNet.

Table 1 and Fig. 4 show the effects of puncond on sample quality. We trained models with puncond ∈
{0.1, 0.2, 0.5}, all for 400 thousand training steps, and evaluated sample quality across various
guidance strengths. We find puncond = 0.5 consistently performs worse than puncond ∈ {0.1, 0.2}
across the entire IS/FID frontier; puncond ∈ {0.1, 0.2} perform about equally as well as each other.
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Based on these findings, we conclude that only a relatively small portion of the model capacity of
the diffusion model needs to be dedicated to the unconditional generation task in order to produce
unconditional-guided scores effective for sample quality. Interestingly, for classifier guidance,
Dhariwal & Nichol report that relatively small classifiers with little capacity are sufficient for effective
classifier guided sampling, mirroring this phenomenon that we found with unconditionally guided
models.

4.3 VARYING THE NUMBER OF SAMPLING STEPS

Since the number of sampling steps T is known to have a major impact on the sample quality of a
diffusion model, here we study the effect of varying T on our 128× 128 ImageNet model. Table 2
and Fig. 5 show the effect of varying T ∈ {128, 256, 1024} over a range of guidance strengths. As
expected, sample quality improves when T is increased, and for this model T = 256 attains a good
balance between sample quality and sampling speed.

Note that T = 256 is approximately the same number of sampling steps used by ADM-G (Dhariwal
& Nichol, 2021), which is outperformed by our model. However, it is important to note that each
sampling step for our method requires evaluating the denoising model twice, once for the conditional
εθ(zλ, c) and once for the unconditional εθ(zλ). Because we used the same model architecture as
ADM-G, the fair comparison in terms of sampling speed would be our T = 128 setting, which
underperforms compared to ADM-G in terms of FID score.

Model FID (↓) IS (↑)

BigGAN-deep, max IS (Brock et al., 2019) 25 253
BigGAN-deep (Brock et al., 2019) 5.7 124.5

CDM (Ho et al., 2021) 3.52 128.8
LOGAN (Wu et al., 2019) 3.36 148.2

ADM-G (Dhariwal & Nichol, 2021) 2.97 -

Ours T = 128/256/1024
w = 0.0 8.11 / 7.27 / 7.22 81.46 / 82.45 / 81.54
w = 0.1 5.31 / 4.53 / 4.5 105.01 / 106.12 / 104.67
w = 0.2 3.7 / 3.03 / 3 130.79 / 132.54 / 130.09
w = 0.3 3.04 / 2.43 / 2.43 156.09 / 158.47 / 156
w = 0.4 3.02 / 2.49 / 2.48 183.01 / 183.41 / 180.88
w = 0.5 3.43 / 2.98 / 2.96 206.94 / 207.98 / 204.31
w = 0.6 4.09 / 3.76 / 3.73 227.72 / 228.83 / 226.76
w = 0.7 4.96 / 4.67 / 4.69 247.92 / 249.25 / 247.89
w = 0.8 5.93 / 5.74 / 5.71 265.54 / 267.99 / 265.52
w = 0.9 6.89 / 6.8 / 6.81 280.19 / 283.41 / 281.14
w = 1.0 7.88 / 7.86 / 7.8 295.29 / 297.98 / 294.56
w = 2.0 15.9 / 15.93 / 15.75 378.56 / 377.37 / 373.18
w = 3.0 19.77 / 19.77 / 19.56 409.16 / 407.44 / 405.68
w = 4.0 21.55 / 21.53 / 21.45 422.29 / 421.03 / 419.06

Table 2: ImageNet 128x128 results (w = 0.0 refers to non-guided models).

5 DISCUSSION

Since unconditional guidance is able to trade off IS and FID like classifier guidance without needing an
extra trained classifier, we have demonstrated that guidance can be performed with a pure generative
model. We confirm that it is possible to maximize Inception scores using classifier-free unconditional
guidance (and improve FID score for a small amount of guidance), thus providing evidence that
classifier-based sample quality metrics can be improved using methods that are not adversarial
against ImageNet classifiers using classifier gradients. Our diffusion models are parameterized by
unconstrained neural networks and therefore their score estimates do not necessarily form conservative
vector fields, unlike classifier gradients (Salimans & Ho, 2021). Therefore, an unconditional-guided
sampler follows step directions that do not resemble classifier gradients at all and thus cannot be
interpreted as a gradient-based adversarial attack on a classifier; hence our results show that boosting
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Figure 5: IS/FID curves over guidance strengths for ImageNet 128x128 models. Each curve represents
sampling with a different number of timesteps T . Accompanies Table 2.

the classifier-based IS and FID metrics can be accomplished with pure generative models with a
sampling procedure that is not adversarial against image classifiers.

We also have arrived at an intuitive explanation for how guidance works: it decreases the uncondi-
tional likelihood of the sample while increasing the conditional likelihood. Unconditional guidance
accomplishes this by decreasing the unconditional likelihood with a negative score term, which to
our knowledge has not yet been explored and may find uses in other applications.

On the practical side, unconditional guidance is extremely simple to implement and does not compli-
cate the training pipeline of a diffusion model, unlike classifier guidance which requires training an
additional classifier model. This model has to be trained on noisy data zλ, so it is not possible to plug
in a standard pre-trained classifier.

A potential disadvantage of classifier-free guidance is sampling speed. Generally, classifiers can be
smaller and faster than generative models, so classifier guided sampling may be faster than classifier-
free guidance because the latter needs to run two forward passes of the diffusion model, one for
conditional score and another for the unconditional score. The necessity to run multiple passes of the
diffusion model might be mitigated by changing the architecture to inject conditioning late in the
network, but we leave this exploration for future work.

Finally, any guidance method that increases sample fidelity at the expense of diversity must face the
question of whether decreased diversity is acceptable. There may be negative impacts in deployed
models, since sample diversity is important to maintain in applications where certain parts of the data
are underrepresented in the context of the rest of the data. It would be an interesting avenue of future
work to try to boost sample quality while maintaining sample diversity.

6 CONCLUSION

We have presented unconditional guidance, a method to increase sample quality while decreasing
sample diversity in diffusion models. Unconditional guidance can be thought of as classifier guidance
without a classifier, and our results showing the effectiveness of unconditional guidance confirm that
pure generative diffusion models are capable of maximizing classifier-based sample quality metrics
while entirely avoiding classifier gradients. We look forward to further explorations of unconditional
guidance in a wider variety of settings and data modalities.

REPRODUCIBILITY STATEMENT

Our model architectures and training hyperparameters are from Dhariwal & Nichol (2021), which
can be referenced for implementation details. Hyperparameters related to guidance are are described
in Section 4. In Algorithm 1 and Algorithm 2 we provide detailed pseudocode that further describes
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our implementation. We plan to open source our code and model checkpoints with the release of the
final version of this paper.

ETHICS STATEMENT

Like other machine learning methods, generative models can suffer from bias if applied to data sets
that are not carefully curated. As mentioned in Section 5, any guidance or truncation method such
as ours will drop sample diversity in favor of quality, and this may introduce more biases. We did
not study the influence of our proposed method on this property of generative models, and careful
evaluation is advised before using our algorithm in practice.
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