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Abstract

Retrieval-Augmented Generation (RAG), while001
serving as a viable complement to large lan-002
guage models (LLMs), often overlooks the cru-003
cial aspect of text chunking within its pipeline.004
This paper initially introduces a dual-metric005
evaluation method, comprising Boundary Clar-006
ity and Chunk Stickiness, to enable the di-007
rect quantification of chunking quality. Lever-008
aging this assessment method, we highlight009
the inherent limitations of traditional and se-010
mantic chunking in handling complex contex-011
tual nuances, thereby substantiating the neces-012
sity of integrating LLMs into chunking pro-013
cess. To address the inherent trade-off between014
computational efficiency and chunking preci-015
sion in LLM-based approaches, we devise the016
granularity-aware Mixture-of-Chunkers (MoC)017
framework, which consists of a three-stage pro-018
cessing mechanism. Notably, our objective019
is to guide the chunker towards generating a020
structured list of chunking regular expressions,021
which are subsequently employed to extract022
chunks from the original text. Extensive ex-023
periments demonstrate that both our proposed024
metrics and the MoC framework effectively set-025
tle challenges of the chunking task, revealing026
the chunking kernel while enhancing the per-027
formance of the RAG system.028

1 Introduction029

Retrieval-augmented generation (RAG), as a030

cutting-edge technological paradigm, aims to ad-031

dress challenges faced by large language models032

(LLMs), such as data freshness (He et al., 2022),033

hallucinations (Bénédict et al., 2023; Chen et al.,034

2023; Zuccon et al., 2023; Liang et al., 2024),035

and the lack of domain-specific knowledge (Li036

et al., 2023; Shen et al., 2023). This is particularly037

relevant in knowledge-intensive tasks like open-038

domain question answering (QA) (Lazaridou et al.,039

2022). By integrating two key components: the040

retriever and the generator, this technology enables041

more precise responses to input queries (Singh 042

et al., 2021; Lin et al., 2023). While the feasibil- 043

ity of the retrieval-augmentation strategy has been 044

widely demonstrated through practice, its effective- 045

ness heavily relies on the relevance and accuracy of 046

the retrieved documents (Li et al., 2022; Tan et al., 047

2022). The introduction of excessive redundant or 048

incomplete information through retrieval not only 049

fails to enhance the performance of the generation 050

model but may also lead to a decline in answer 051

quality (Shi et al., 2023; Yan et al., 2024). 052

In response to the aforementioned challenges, 053

current research efforts mainly focus on two as- 054

pects: improving retrieval accuracy (Zhuang et al., 055

2024; Sidiropoulos and Kanoulas, 2022; Guo et al., 056

2023) and enhancing the robustness of LLMs 057

against toxic information (Longpre et al.; Kim et al., 058

2024). However, in RAG systems, a commonly 059

overlooked aspect is the chunked processing of tex- 060

tual content, which directly impacts the quality of 061

dense retrieval for QA (Xu et al., 2023). This is 062

due to the significant “weakest link” effect in the 063

performance of RAG systems, where the quality 064

of text chunking constrains the retrieved content, 065

thereby influencing the accuracy of generated an- 066

swers (Ru et al., 2024). Despite advancements in 067

other algorithmic components, incremental flaws 068

in the chunking strategy can still detract from the 069

overall system performance to some extent. 070

Given the critical role of text chunking in RAG 071

systems, optimizing this process has emerged as 072

one of the key strategy to mitigate performance 073

bottlenecks. Traditional text chunking methods, 074

often based on rules or semantic similarity (Zhang 075

et al., 2021; Langchain, 2023; Lyu et al., 2024), 076

provide some structural segmentation but are in- 077

adequate in capturing subtle changes in logical re- 078

lationships between sentences. The LumberChun- 079

ker (Duarte et al., 2024) offers a novel solution by 080

utilizing LLMs to receive a series of consecutive 081

paragraphs and accurately identify where content 082
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begins to diverge. However, it demands a high083

level of instruction-following ability from LLMs,084

which incurs significant resource and time costs.085

Additionally, the effectiveness of current chunk-086

ing strategies is often evaluated indirectly through087

downstream tasks, such as the QA accuracy in RAG088

systems, with a lack of independent metrics for089

evaluating the inherent rationality of the chunking090

process itself. These challenges give rise to two091

practical questions: This raises a practical question:092

How can we fully utilize the powerful reasoning093

capabilities of LLMs while accomplishing the text094

chunking task at a lower cost? And how to devise095

evaluation metrics that directly quantify the validity096

of text chunking?097

Inspired by these observations, we innovatively098

propose two metrics, Boundary Clarity and099

Chunk Stickiness, to independently and effec-100

tively assess chunking quality. Concurrently, we101

leverage these metrics to delve into the reasons102

behind the suboptimal performance of semantic103

chunking in certain scenarios, thereby highlighting104

the necessity of LLM-based chunking. To miti-105

gate the resource overhead of chunking without106

compromising the inference performance of LLMs,107

we introduce the Mixture-of-Chunkers (MoC)108

framework. This framework primarily comprises109

a multi-granularity-aware router, specialized meta-110

chunkers, and a post-processing algorithm.111

This mechanism adopts a divide-and-conquer112

strategy, partitioning the continuous granularity113

space into multiple adjacent subdomains, each cor-114

responding to a lightweight, specialized chunker.115

The router dynamically selects the most appropri-116

ate chunker to perform chunking operation based117

on the current input text. This approach not only118

effectively addresses the “granularity generaliza-119

tion dilemma” faced by traditional single-model120

approaches but also maintains computational re-121

source consumption at the level of a single small122

language model (SLM) through sparse activation,123

achieving an optimal balance between accuracy124

and efficiency for the chunking system. It is crucial125

to emphasize that our objective is not to require126

the meta-chunker to generate each text chunk in127

its entirety. Instead, we guide the model to gen-128

erate a structured list of chunking regular expres-129

sions used to extract chunks from the original text.130

To address potential hallucination phenomena of131

meta-chunker, we employ an edit distance recov-132

ery algorithm, which meticulously compares the133

generated chunking rules with the original text and134

subsequently rectifies the generated content. 135

The main contributions of this work are as fol- 136

lows: 137

• Breaking away from indirect evaluation 138

paradigms, we introduce the dual metrics of 139

Boundary Clarity and Chunk Stickiness to 140

achieve direct quantification of chunking qual- 141

ity. By deconstructing the failure mechanisms 142

of semantic chunking, we provide theoreti- 143

cal validation for the involvement of LLM in 144

chunking tasks. 145

• We devise the MoC architecture, a hy- 146

brid framework that dynamically orchestrates 147

lightweight chunking experts via a multi- 148

granularity-aware router. This architecture 149

innovatively integrates: a regex-guided chunk- 150

ing paradigm, a computation resource con- 151

straint mechanism based on sparse activation, 152

and a rectification algorithm driven by edit 153

distance. 154

• To validate the effectiveness of our pro- 155

posed metrics and chunking method, we con- 156

duct multidimensional experiments using five 157

different language models across four QA 158

datasets, accompanied by in-depth analysis. 159

2 Related Works 160

Text Segmentation It is a fundamental task in 161

NLP, aimed at breaking down text content into its 162

constituent parts to lay the foundation for subse- 163

quent advanced tasks such as information retrieval 164

(Li et al., 2020) and text summarization (Lukasik 165

et al., 2020; Cho et al., 2022). By conducting 166

topic modeling on documents, (Kherwa and Bansal, 167

2020) and (Barde and Bainwad, 2017) demonstrate 168

the identification of primary and sub-topics within 169

documents as a significant basis for text segmenta- 170

tion. (Zhang et al., 2021) frames text segmentation 171

as a sentence-level sequence labeling task, utiliz- 172

ing BERT to encode multiple sentences simulta- 173

neously. It calculates sentence vectors after mod- 174

eling longer contextual dependencies and finally 175

predicts whether to perform text segmentation after 176

each sentence. (Langchain, 2023) provides flexible 177

and powerful support for various text processing 178

scenarios by integrating multiple text segmenta- 179

tion methods, including character segmentation, 180

delimiter-based text segmentation, specific docu- 181

ment segmentation, and recursive chunk segmen- 182

tation. Although these methods better respect the 183
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structure of the document, they have limitations in184

deep contextual understanding. To address this is-185

sue, semantic-based segmentation (Kamradt, 2024)186

utilizes embeddings to aggregate semantically sim-187

ilar text chunks and identifies segmentation points188

by monitoring significant changes in embedding189

distances.190

Text Chunking in RAG By expanding the in-191

put space of LLMs through introducing retrieved192

text chunks (Guu et al., 2020; Lewis et al., 2020),193

RAG significantly improves the performance of194

knowledge-intensive tasks (Ram et al., 2023). Text195

chunking allows information to be more concen-196

trated, minimizing the interference of irrelevant197

information, enabling LLMs to focus more on the198

specific content of each text chunk and generate199

more precise responses (Yu et al., 2023; Besta et al.,200

2024; Su et al., 2024). LumberChunker (Duarte201

et al., 2024) iteratively harnesses LLMs to identify202

potential segmentation points within a continuous203

sequence of textual content, showing some poten-204

tial for LLMs chunking. However, this method205

demands a profound capability of LLMs to follow206

instructions and entails substantial consumption207

when employing the Gemini model.208

3 Methodology209

3.1 Deep Reflection on Chunking Strategies210

As pointed out by Qu et al. (2024), semantic chunk-211

ing has not shown a significant advantage in many212

experiments. This paper further explores this phe-213

nomenon and proposes two key metrics, "Boundary214

Clarity" and "Chunk Stickiness", to scientifically215

explain the limitations of semantic chunking and216

the effectiveness of LLM chunking. At the same217

time, it also provides independent evaluation indi-218

cators for the rationality of chunking itself.219

3.1.1 Boundary Clarity (BC)220

Boundary clarity refers to the effectiveness of221

chunks in separating semantic units. Specifically, it222

focuses on whether the structure formed by chunk-223

ing can create clear boundaries between text units224

at the semantic level. Blurred chunk boundaries225

may lead to a decrease in the accuracy of subse-226

quent tasks. Specifically, boundary clarity is calcu-227

lated utilizing the following formula:228

BC(q, d) =
ppl(q|d)
ppl(q)

(1)229

where ppl(q) represents the perplexity of sentence230

sequence q, and ppl(q|d) denotes the contrastive231

perplexity given the context d. Perplexity serves as 232

a critical metric for evaluating the predictive accu- 233

racy of language models (LMs) on specific textual 234

inputs, where lower perplexity values reveal su- 235

perior model comprehension of the text, whereas 236

higher values reflect greater uncertainty in seman- 237

tic interpretation. When the semantic relationship 238

between two text chunks is independent, ppl(q|d) 239

tends to be closer to ppl(q), resulting in the BC 240

metric approaching 1. Conversely, strong seman- 241

tic interdependence drives the BC metric toward 242

zero. Therefore, higher boundary clarity implies 243

that chunks can be effectively separated, whereas 244

a lower boundary clarity indicates blurred bound- 245

aries between chunks, which may potentially lead 246

to information confusion and comprehension diffi- 247

culties. 248

3.1.2 Chunk Stickiness (CS) 249

The objective of text chunking lies in achieving 250

adaptive partitioning of documents to generate log- 251

ically coherent independent chunks, ensuring that 252

each segmented chunk encapsulates a complete and 253

self-contained expression of ideas while prevent- 254

ing logical discontinuity during the segmentation 255

process. Chunk stickiness specifically focuses on 256

evaluating the tightness and sequential integrity of 257

semantic relationships between text chunks. This 258

is achieved by constructing a semantic association 259

graph among text chunks, where structural entropy 260

is introduced to quantify the network complexity. 261

Within this graph, nodes represent individual text 262

chunks, and edge weights are defined as follows: 263

Edge(q, d) =
ppl(q)− ppl(q|d)

ppl(q)
(2) 264

where the theoretical range of the Edge value is 265

defined as [0, 1]. Specifically, we initially compute 266

the Edge value between any two text chunks within 267

a long document. Values approaching 1 indicate 268

that ppl(q|d) tends towards 0, signifying a high 269

degree of inter-segment correlation. Conversely, an 270

Edge value approaching 0 suggests that ppl(q|d) 271

converges to ppl(q), implying that text chunks are 272

mutually independent. We establish a threshold 273

parameter K ∈ (0, 1) to retain edges exceeding 274

this value. Subsequently, the chunk stickiness is 275

specifically calculated as: 276

CS(G) = −
n∑

i=1

di
2m

· log2
di
2m

(3) 277
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Figure 1: Overview of the entire process of granularity-aware MoC: Dataset construction, training of router and
meta-chunkers, as well as chunking inference.

where G is the constructed semantic graph, di rep-278

resents the degree of node i, and m denotes the total279

number of edges. This methodology constructs a280

complete graph, followed by redundancy reduction281

based on the inter-segment relationships.282

On the other hand, to enhance computational283

efficiency, we construct a sequence-aware incom-284

plete graph that preserves the original ordering of285

text chunks, which constitutes a graph construc-286

tion strategy governed by sequential positional287

constraints. Specifically, given a long text parti-288

tioned into an ordered sequence of text chunks289

D = {d1, d2, ..., dn}, each node in the graph corre-290

sponds to a text chunk, while edge formation is sub-291

ject to dual criteria: (1) Relevance Criterion: Edge292

weight Edge(di, dj) > K, where K denotes a pre-293

defined threshold; (2) Sequential Constraint: Con-294

nections are permitted exclusively when j − i > δ,295

with δ representing the sliding window radius fixed296

at 0. This dual-constraint mechanism strategi-297

cally incorporates positional relationships, thereby298

achieving a better equilibrium between semantic299

relevance and textual coherence.300

The detailed design philosophy is elaborated in301

Appendix A.2. To more intuitively demonstrate302

the effectiveness of the two metrics, we construct a303

“Dissimilarity” metric based on the current main-304

stream semantic similarity, as detailed in Section305

4.5. Stemming from the above analysis, we intro- 306

duce a LM-based training and reasoning framework 307

for text chunking, named granularity-aware MoC. 308

3.2 Granularity-Aware MoC 309

In response to the complex and variable granu- 310

larity of large-scale text chunking in real-world 311

scenarios, this paper proposes a multi-granularity 312

chunking framework based on MoC. Our approach, 313

whose overall architecture is illustrated in Figure 314

1, dynamically routes different granularity experts 315

through a scheduling mechanism and optimizes 316

the integrity of results with a post-processing algo- 317

rithm. 318

3.2.1 Dataset Construction 319

We instruct GPT-4o to generate text chunks from 320

raw long-form texts according to the following cri- 321

teria: (1) Segmentation: The given text should be 322

segmented according to its logical and semantic 323

structure, such that each resulting chunk maintains 324

a complete and independent logical expression. (2) 325

Fidelity: The segmentation outcome must remain 326

faithful to the original text, preserving its vocabu- 327

lary and content without introducing any fictitious 328

elements. However, extracting such data from GPT- 329

4o poses significant challenges, as the LLM does 330

not always follow instructions, particularly when 331

4



dealing with long texts that contain numerous spe-332

cial characters. In preliminary experiments, we333

also observed that GPT-4o tends to alter the ex-334

pressions used in the original text and, at times,335

generates fabricated content.336

To address these challenges, we propose the fol-337

lowing dataset distillation procedure. We enhance338

chunking precision in GPT-4o through structured339

instructions that enforce adherence to predefined340

rules. A sliding window algorithm, coupled with a341

chunk buffering mechanism, mitigates the impact342

of input text length on performance, ensuring seam-343

less transitions between text subsequences. Fur-344

thermore, a rigorous data cleaning process, lever-345

aging edit distance calculations and manual review,346

addresses potential hallucination, while strategic347

anchor point extraction and placeholder insertion348

facilitate efficient processing. Detailed implemen-349

tation and technical specifics are provided in Ap-350

pendix A.3.351

3.2.2 Multi-granularity-aware Router352

After the dataset construction is completed, the353

MoC architecture achieves efficient text processing354

through the training of the routing decision mod-355

ule and meta-chunkers. The router dynamically356

evaluates the compatibility of each chunk granu-357

larity level based on document features, thereby358

activating the optimal chunk expert. A major chal-359

lenge in training the routing module lies in the im-360

plicit relationship between text features and chunk361

granularity, where the goal is to infer the potential362

granularity of the text without performing explicit363

chunking operations.364

In view of this, we propose a specialized fine-365

tuning method for SLMs. Firstly, we truncate or366

concatenate long and short texts respectively, en-367

suring their lengths hover around 1024 characters.368

Both operations are performed on text chunks as369

the operational unit, preserving the semantic in-370

tegrity of the training texts. By maintaining ap-371

proximate text lengths, SLMs can better focus on372

learning features that affect chunk granularity, thus373

minimizing the impact of text length on route per-374

formance. Subsequently, leveraging the segmented375

data generated by GPT-4o, we assign granularity376

labels ranging from 0 to 3 to the text, correspond-377

ing to average chunk length intervals such as (0,378

120], (120, 150], (150, 180], and (180,+∞). The379

loss function is formulated as: 380

L(θ) = − 1

N

N∑
i=1

yi log(p(yi|Xi; θ)) (4) 381

where θ represents the set of trainable parameters 382

of the SLM, yi denotes the ground-truth granular- 383

ity label for the i-th sample, N signifies the total 384

number of samples, and p(yi|Xi; θ) represents the 385

probability of assigning granularity label yi, given 386

input Xi and current parameters θ. 387

During inference, we implement marginal sam- 388

pling over the probability distribution of the final 389

token generated by the SLM in its contextual se- 390

quence, selecting the granularity category with the 391

highest probability from the four available cate- 392

gories as the granularity for the corresponding text. 393

Afterwards, the text to be chunked is routed to the 394

corresponding chunking expert: 395

R(Xi) = argmax
k

p(k|Xi; θ) (5) 396

where k represents the category of chunking granu- 397

larity. Through this mechanism, the router enables 398

dynamic expert selection without explicit chunking 399

operations. 400

3.2.3 Meta-chunkers 401

Our objective is not to require meta-chunkers to 402

generate each text chunk in its entirety, but rather to 403

guide it in producing a structured list of segmented 404

regular expressions. Each element in this list con- 405

tains only the start S and end E of a text chunk C, 406

with a special character r replacing the intervening 407

content. The regular expression is represented as: 408

Cregex = S ⊕ r ⊕ E, r ∈ R (6) 409

where ⊕ denotes the string concatenation opera- 410

tion, R = {“ < omitted > ”, “ < ellipsis > 411

”, “[MASK]”, “[ELLIPSIS]”, “.∗?”, “ < ... > 412

”, “ < .∗ > ”, “ < pad > ”} is the set of eight 413

special characters we have defined to represent the 414

omitted parts in a text chunk. During the expert 415

training phase, we employ a full fine-tuning strat- 416

egy, utilizing datasets categorized by different seg- 417

mentation granularities to optimize the model pa- 418

rameters. The loss function remains consistent with 419

Equation 4. This design allows Meta-chunkers to 420

comprehensively understand the composition of 421

each chunk while significantly reducing the time 422

cost of generation. 423
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3.2.4 Edit Distance Recovery Algorithm424

Let string A denote an element generated by a meta-425

chunker and string B represent a segment within426

the original text. The edit distance refers to the427

minimum number of operations required to trans-428

form A into B, where the permissible operations429

include the insertion, deletion, or substitution of a430

single character. We then define a two-dimensional431

array, ab[i][j], which represents the minimum num-432

ber of operations needed to convert the substring433

A[1 . . . i] into B[1 . . . j]. By recursively deriving434

the state transition formula, we can incrementally435

construct this array.436

Initially, the conditions are as follows: (1) When437

i = 0, A is an empty string, necessitating the inser-438

tion of j characters to match B, thus ab[0][j] = j;439

(2) When j = 0, B is an empty string, requiring440

the deletion of i characters, hence ab[i][0] = i; (3)441

When i = j = 0, the edit distance between two442

empty strings is evidently ab[0][0] = 0. Subse-443

quently, the entire ab array is populated using the444

following state transition formula:445

ab[i][j] =


ab[i− 1][j − 1], if A[i] = B[j]

1 + min(ab[i− 1][j],

ab[i][j − 1],

ab[i− 1][j − 1]), if A[i] ̸= B[j]

446

If the current characters are identical, no additional447

operation is required, and the problem reduces to448

a subproblem; if the characters differ, the opera-449

tion with the minimal cost among insertion, dele-450

tion, or substitution is selected. Ultimately, by451

utilizing the minimum edit distance, we can ac-452

curately pinpoint the field in the original text that453

most closely matches the elements generated by454

the meta-chunker, thereby ensuring the precision455

of regular extraction.456

4 Experiment457

4.1 Datasets and Metrics458

We conduct a comprehensive evaluation on three459

datasets, and covering multiple metrics. The460

CRUD benchmark (Lyu et al., 2024) contains461

single-hop and two-hop questions, evaluated us-462

ing metrics including BLEU series and ROUGE-L.463

We utilize the DuReader dataset from LongBench464

benchmark (Bai et al., 2023), evaluated based on465

F1 metric. In addition, a dataset called WebCPM466

(Qin et al., 2023) specifically designed for long-467

text QA, is utilized to retrieve relevant facts and468

generate detailed paragraph-style responses, with 469

ROUGE-L as the metric. 470

4.2 Baselines 471

We primarily compare meta-chunker and MoC with 472

two types of baselines, namely rule-based chunking 473

and dynamic chunking, noting that the latter incor- 474

porates both semantic similarity models and LLMs. 475

The original rule-based method simply divides 476

long texts into fixed-length chunks, disregarding 477

sentence boundaries. However, the Llama_index 478

method (Langchain, 2023) offers a more nuanced 479

approach, balancing the maintenance of sentence 480

boundaries while ensuring that token counts in each 481

segment are close to a preset threshold. On the 482

other hand, semantic chunking (Xiao et al., 2023) 483

utilizes sentence embedding models to segment 484

text based on semantic similarity. LumberChun- 485

ker (Duarte et al., 2024) employs LLMs to predict 486

optimal segmentation points within the text. 487

4.3 Experimental Settings 488

Without additional annotations, all LMs used in 489

this paper adopt chat or instruction versions. When 490

chunking, we primarily employ LMs with the fol- 491

lowing hyperparameter settings: temperature at 0.1 492

and top-p at 0.1. For evaluation, Qwen2-7B is 493

applied with the following settings: top_p = 0.9, 494

top_k = 5, temperature = 0.1, and max_new_tokens 495

= 1280. When conducting QA, the system neces- 496

sitates dense retrievals from the vector database, 497

with top_k set to 8 for CRUD, 5 for DuReader and 498

WebCPM. To control variables, we maintain con- 499

sistent chunk lengths for various chunking methods 500

across each dataset. Detailed experimental setup 501

information can be found in Appendix A.1. 502

4.4 Main Results 503

To comprehensively validate the effectiveness of 504

the proposed meta-chunker and MoC architectures, 505

we conducts experiments using three widely used 506

QA datasets. During dataset preparation, we cu- 507

rate 20,000 chunked QA pairs through rigorous 508

processing. Initially, we fine-tune the Qwen2.5- 509

1.5B model using this data. As shown in Table 1, 510

compared to traditional rule-based and semantic 511

chunking methods, as well as the state-of-the-art 512

LumberChunker approach based on Qwen2.5-14B, 513

the Meta-chunker-1.5B exhibits both improved and 514

more stable performance. Furthermore, we directly 515

perform chunking employing Qwen2.5-14B and 516

Qwen2.5-72B. The results demonstrate that these 517
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Chunking Methods
CRUD (Single-hop) CRUD (Two-hop) DuReader WebCPM

BLEU-1 BLEU-Avg ROUGE-L BLEU-1 BLEU-Avg ROUGE-L F1 ROUGE-L

Original 0.3515 0.2548 0.4213 0.2322 0.1133 0.2613 0.2030 0.2642

Llama_index 0.3620 0.2682 0.4326 0.2315 0.1133 0.2585 0.2220 0.2630

Semantic Chunking 0.3382 0.2462 0.4131 0.2223 0.1075 0.2507 0.2157 0.2691

LumberChunker 0.3456 0.2542 0.4160 0.2204 0.1083 0.2521 0.2178 0.2730

Qwen2.5-14B 0.3650 0.2679 0.4351 0.2304 0.1129 0.2587 0.2271 0.2691

Qwen2.5-72B 0.3721 0.2743 0.4405 0.2382 0.1185 0.2677 0.2284 0.2693

Meta-chunker-1.5B 0.3754 0.2760 0.4445 0.2354 0.1155 0.2641 0.2387 0.2745

Table 1: Main experimental results are presented in four QA datasets. The best result is in bold, and the second best
result is underlined.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

<pad> 0.3683 0.2953 0.2490 0.2132 0.4391

<omitted> 0.3725 0.2985 0.2523 0.2165 0.4401

<ellipsis> 0.3761 0.3025 0.2554 0.2193 0.4452

[MASK] 0.3754 0.3012 0.2545 0.2188 0.4445

[ELLIPSIS] 0.3699 0.2966 0.2510 0.2159 0.4380

.*? 0.3745 0.3015 0.2553 0.2195 0.4437

<...> 0.3716 0.2988 0.2526 0.2167 0.4412

<.*> 0.3790 0.3054 0.2583 0.2221 0.4470

MoC 0.3826 0.3077 0.2602 0.2234 0.4510

Table 2: Performance impact of special characters and
the effectiveness of granularity-aware MoC framework
in text chunking.

LLMs, with their powerful context processing and518

reasoning abilities, also deliver outstanding perfor-519

mance in chunking tasks. However, Meta-chunker-520

1.5B slightly underperforms the 72B model only521

in the two-hop CRUD, while outperforming both522

LLMs in other scenarios.523

Upon validating the effectiveness of our pro-524

posed chunking experts, we proceeded to inves-525

tigate the impact of various special characters on526

performance, and extended chunking within the527

MoC framework. As illustrated in Table 2, we528

design eight distinct special characters, each in-529

ducing varying degrees of performance fluctuation530

in the meta-chunker. Notably, all character con-531

figurations demonstrate measurable performance532

enhancements compared to baseline approaches,533

with [Mask] and < .∗ > exhibiting particularly534

remarkable efficacy. In our experiments, both the535

Meta-chunker-1.5B and the MoC framework em-536

ploy [Mask] as an ellipsis to replace the middle537

sections of text chunks, while maintaining consis-538

tent training data. The experimental results indi- 539

cate that the chunking method based on the MoC 540

architecture further enhances performance. Specif- 541

ically, when handling complex long texts, MoC 542

effectively differentiates the chunking granularity 543

of various sections. Moreover, the time complexity 544

of the MoC remains at the level of a single SLM, 545

showcasing a commendable balance between com- 546

putational efficiency and performance. 547

4.5 Exploring Chunking Based on Boundary 548

Clarity and Chunk Stickiness 549

To compare the effectiveness of the two metrics 550

we designed, we introduce the "Dissimilarity" (DS) 551

metric: DS = 1 − sim(q, d), where sim(q, d) rep- 552

resents the semantic similarity score between the 553

text chunks q and d, and this concept is further 554

concretely illustrated in Appendix A.4. Figure 2(a) 555

reveals the QA performance of RAG using differ- 556

ent chunking strategies. It is important to note that, 557

to ensure the validity of the evaluation, we main- 558

tained the same average text chunk length across 559

all chunking methods. 560

Why Does Semantic Chunking Underper- 561

form? As illustrated in Figure 2(b), while se- 562

mantic chunking scores are generally high, its per- 563

formance in QA tasks is suboptimal. Moreover, 564

there is no evident correlation between the scores 565

of semantic dissimilarity and the efficacy of QA. 566

This suggests that in the context of RAG, relying 567

solely on semantic similarity between sentences is 568

insufficient for accurately delineating the optimal 569

boundaries of text chunks. 570

Furthermore, it can be observed from Table 3 571

that the clarity of semantic chunking boundaries 572

is only marginally superior to fixed-length chunk- 573
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Chunking Methods
Qwen2.5-1.5B Qwen2.5-7B Qwen2.5-14B Internlm3-8B

BC CSc CSi BC CSc CSi BC CSc CSi BC CSc CSi

Original 0.8210 2.397 1.800 0.8049 2.421 1.898 0.7704 2.297 1.459 0.8054 2.409 1.940

Llama_index 0.8590 2.185 1.379 0.8455 2.250 1.483 0.8117 2.081 1.088 0.8334 2.107 1.303

Semantic Chunking 0.8260 2.280 1.552 0.8140 2.325 1.650 0.7751 2.207 1.314 0.8027 2.255 1.546

Qwen2.5-14B 0.8750 2.069 1.340 0.8641 2.125 1.438 0.8302 1.927 1.068 0.8444 1.889 1.181

Table 3: Performance of different chunking methods under various LMs, directly calculated using two metrics we
proposed: BC represents boundary clarity, which is preferable when higher; CSc denotes chunk stickiness utilizing
a complete graph, and CSi indicates chunk stickiness employing a incomplete graph, both of which are favorable
when lower.

ing. This implies that although semantic chunking574

attempts to account for the degree of association575

between sentences, its limited ability to distinguish576

logically connected sentences often results in incor-577

rect segmentation of content that should remain co-578

herent. Additionally, Table 3 reveals that semantic579

chunking also falls short in terms of capturing se-580

mantic relationships, leading to higher chunk stick-581

iness and consequently affecting the independence582

of text chunks.583

Why Does LLM-Based Chunking Work? As584

shown in Table 3, the text chunks generated by585

LLMs exhibit superior boundary clarity, indicating586

the heightened ability to accurately identify seman-587

tic shifts and topic transitions, thereby mitigating588

the erroneous segmentation of related sentences.589

Concurrently, the LLM-based chunking produces590

text chunks with reduced chunk stickiness, signify-591

ing that the internal semantics of chunks are more592

tightly bound, while a greater degree of indepen-593

dence is maintained between chunks. This combi-594

nation of well-defined boundaries and diminished595

stickiness contributes to enhanced retrieval effi-596

ciency and generation quality within RAG systems,597

ultimately leading to superior overall performance.598

4.6 Hyper-parameter Sensitivity Analysis599

In calculating the chunk stickiness, we rely on the600

K to filter out edges with weaker associations be-601

tween text chunks in the knowledge graph. As602

presented in Table 4, an increase in the value of603

K leads to a gradual decrease in the metric. This604

occurs because a larger K value limits the number605

of retained edges, resulting in a sparser connectiv-606

ity structure within the graph. Notably, regardless607

of the chosen K value, the LLM-based chunking608

method consistently maintains a low level of chunk609

stickiness. This indicates that it more accurately610

identifies semantic transition points between sen- 611

tences, effectively avoiding excessive cohesion be- 612

tween text chunks caused by interruptions within 613

paragraphs. The sensitivity analysis for genera- 614

tive models in the MoC framework is presented in 615

Appendix A.6. 616

Methods
Complete Graph Incomplete Graph

0.7 0.8 0.9 0.7 0.8 0.9

Original 2.536 2.397 2.035 2.199 1.800 1.300

Llama_index 2.454 2.185 1.543 1.997 1.379 0.740

Semantic Chunking 2.455 2.280 1.733 2.039 1.552 0.835

Qwen2.5-14B 2.364 2.069 1.381 1.972 1.340 0.623

Table 4: Performance sensitivity of K in chunk sticki-
ness.

5 Conclusion 617

Addressing the current void in the independent as- 618

sessment of chunking quality, this paper introduces 619

two novel evaluation metrics: boundary clarity and 620

chunk stickiness. It systematically elucidates the 621

inherent limitations of semantic chunking in long- 622

text processing, which further leads to the neces- 623

sity of LLM-based chunking. Amidst the drive for 624

performance and efficiency optimization, we pro- 625

pose the MoC framework, which utilizes sparsely 626

activated meta-chunkers through multi-granularity- 627

aware router. It’s worth emphasizing that this study 628

guides meta-chunkers to generate a highly struc- 629

tured list of chunking regular expressions, precisely 630

extracting text chunks from the original text using 631

only a few characters from the beginning and end. 632

Our approach demonstrates superior performance 633

compared to strong baselines. 634
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6 Limitations635

Despite the superior performance demonstrated by636

the proposed MoC framework for chunking tasks637

on various datasets, there are still some limitations638

that merit further exploration and improvement.639

Although we have implemented multiple quality640

control measures to ensure data quality and con-641

structed a training set consisting of nearly 20,000642

data entries, the current dataset size remains rela-643

tively limited compared to the massive scale and644

complex diversity of real-world text data. We have645

mobilized the power of the open-source community646

to further enrich our chunking dataset utilizing pre-647

training data from LMs. Additionally, while the648

dataset construction process is flexible and theoret-649

ically expandable to more scenarios, it has not yet650

undergone adequate multi-language adaptation and651

validation. We leave this aspect for future research.652
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A Appendix848

A.1 Main Experimental Details849

All language models utilized in this paper em-850

ploy the chat or instruct versions where multiple851

versions exist, and are loaded in full precision852

(Float32). The vector database is constructed using853

Milvus, where the embedding model is bge-large-854

zh-v1.5. In experiments, we utilized a total of four855

benchmarks, and their specific configurations are856

detailed as follows:857

(a) Rule-based Chunking Methods858

• Original: This method divides long texts859

into segments of a fixed length, such as860

two hundred Chinese characters or words,861

without considering sentence boundaries.862

• Llama_index (Langchain, 2023): This863

method considers both sentence com-864

pleteness and token counts during seg-865

mentation. It prioritizes maintain-866

ing sentence boundaries while ensur-867

ing that the number of tokens in each868

chunk are close to a preset threshold.869

We use the SimpleNodeParser func-870

tion from Llama_index, adjusting the871

chunk_size parameter to control seg-872

ment length. Overlaps are handled by dy-873

namically overlapping segments using the874

chunk_overlap parameter, ensuring sen-875

tence completeness during segmentation876

and overlapping.877

(b) Dynamic Chunking Methods878

• Semantic Chunking (Xiao et al., 2023):879

Utilizes pre-trained sentence embedding880

models to calculate the cosine similarity881

between sentences. By setting a simi-882

larity threshold, sentences with lower883

similarity are selected as segmentation884

points, ensuring that sentences within885

each chunk are highly semantically886

related. This method employs the887

SemanticSplitterNodeParser from888

Llama_index, exploiting the bge-base-889

zh-v1.5 model. The size of the text890

chunks is controlled by adjusting the891

similarity threshold.892

• LumberChunker (Duarte et al., 2024):893

Leverages the reasoning capabilities of894

LLMs to predict suitable segmentation895

points within the text. We utilize Qwen2.5 896

models with 14B parameters, set to full 897

precision. 898

A.2 Design Philosophy of Chunk Stickiness 899

In the context of network architecture, high struc- 900

tural entropy tends to exhibit greater challenges in 901

predictability and controllability due to its inherent 902

randomness and complexity. Our chunking strategy 903

aims to maximize semantic independence between 904

text chunks while maintaining a coherent semantic 905

expression. Consequently, a higher chunk stick- 906

iness implies greater interconnectedness among 907

these chunks, resulting in a more intricate and less 908

ordered semantic network. Furthermore, to ensure 909

a robust comparison between different chunking 910

methods, we enforce a uniform average chunking 911

length. This standardization provides a fair basis 912

for evaluation, mitigating potential biases arising 913

from discrepancies in chunking size. Ultimately, a 914

lower CS score signifies that the chunking method 915

is more accurate in identifying semantic transi- 916

tion points between sentences, thereby avoiding 917

the fragmentation of coherent passages and the 918

consequent excessive stickiness between resulting 919

chunks. 920

To more intuitively demonstrate the effective- 921

ness of the two metrics we designed, we construct 922

a “Dissimilarity” metric based on the current main- 923

stream semantic similarity, as detailed in Section 924

4.5. Furthermore, employing several chunking tech- 925

niques and LLMs, we conduct an in-depth inves- 926

tigation of boundary clarity and chunk stickiness, 927

conducting comparative experiments with the dis- 928

similarity metric. The experimental results clearly 929

show that the two proposed metrics exhibit a consis- 930

tent trend with RAG performance when evaluating 931

the quality of text chunking. In contrast, the dis- 932

similarity metric fail to display a similar variation. 933

This suggests that, even without relying on QA ac- 934

curacy, the two proposed metrics can independently 935

and effectively assess chunking quality. 936

A.3 Dataset Construction Process 937

Structured Instruction Design By explicitly 938

enumerating rules, GPT-4o is compelled to adhere 939

to predefined chunking regulations, such as ensur- 940

ing semantic unit integrity, enforcing punctuation 941

boundaries, and prohibiting content rewriting. 942

Sliding Window and Chunk Buffering Mech- 943

anism Drawing from the research conducted by 944

Duarte et al. (2024) and practical experience, we 945
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observe that the length of the original text signif-946

icantly influences the chunking performance of947

LLMs. To address this problem, we initially apply948

a sliding window algorithm to segment the input949

text into subsequences, each below a threshold of950

1024 tokens. Segmentation points are prioritized at951

paragraph boundaries or sentence-ending positions.952

These subsequences are then processed sequen-953

tially by GPT-4o. To maintain continuity between954

two consecutive subsequences, we implement a955

chunk buffer mechanism by removing the last gen-956

erated text chunk of the preceding sequence and957

using it as the prefix for the subsequent sequence,958

thereby ensuring smooth information flow.959

Data Cleaning and Annotation To identify960

and eliminate hallucinated content during the gener-961

ation process, we calculate the difference between962

each chunk and the paragraphs in the original text963

through the edit distance, as outlined in Section964

3.2.4. If the minimum edit distance exceeds 10%965

of the chunk length, we manually review the lo-966

cation of the chunk error and make corrections967

accordingly. Additionally, for a long text, we ex-968

tract several characters at the beginning and end of969

each text chunk as anchor points, while replacing970

the intermediate content with eight preset special971

placeholders, as demonstrated in Sections 3.2.2 and972

3.2.3.973

A.4 Design Philosophy of Dissimilarity974

To compare the effectiveness of the two metrics975

we designed, we introduce the "Dissimilarity" (DS)976

metric:977

DS = 1− sim(q, d)978

where sim(q, d) represents the semantic similarity979

score between the text chunks q and d. With this980

definition, the DS metric ranges from [0, 1], where981

0 indicates perfect similarity and 1 indicates com-982

plete dissimilarity. The design of the DS metric is983

based on the following considerations: first, seman-984

tic similarity measures are typically employed to985

assess the degree of semantic proximity between986

two text segments. By converting this to the dissim-987

ilarity measure, we can more directly observe the988

semantic differences between chunks. Second, the989

linear transformation of DS preserves the mono-990

tonicity of the original similarity measure without991

losing any information.992

Methods Qwen-1.5B Qwen-7B Qwen-14B Internlm-8B

Original 2.206 2.650 2.560 1.636

Llama_index 1.964 2.412 2.353 1.486

Semantic Chunking 1.865 2.331 2.238 1.411

LumberChunker 2.184 2.593 2.589 1.652

Qwen2.5-14B 1.841 2.313 2.209 1.373

Meta-chunker-1.5B 1.835 2.267 2.199 1.367

Table 5: Information-based performance evaluation for
the RAG system.

A.5 Another Perspective on Chunking 993

Performance Comparison 994

The performance evaluation of RAG systems pri- 995

marily focuses on the similarity between gener- 996

ated answers and reference answers. However, this 997

evaluation method introduces additional noise dur- 998

ing the decoding strategy in the generation stage, 999

making it difficult to distinguish whether the perfor- 1000

mance defects originate from the retrieved chunk or 1001

the generation module. To address this constraint, 1002

we propose an evaluation approach based on infor- 1003

mation support, which centers on quantifying the 1004

supporting capability of retrieved text chunks for 1005

the target answer through conditional probability 1006

modeling. 1007

Given a set of retrieved chunks C = 1008

{c1, c2, ..., cn} and the reference answer A = 1009

{a1, a2, ..., am}, we employ a LLM to compute the 1010

average conditional probability (CP) of the target 1011

answer: 1012

CP = − 1

M

M∑
i=1

logP (ai|c1, c2, . . . , cn) (7) 1013

A smaller CP value indicates a higher likelihood 1014

of the correct answer being inferred from the re- 1015

trieved text chunks, signifying stronger support. 1016

The results presented in Table 5 show that, even 1017

when evaluated with different LMs, our chunking 1018

method consistently exhibits high support. This 1019

suggests that our chunking strategy, by optimiz- 1020

ing the semantic integrity and independence of text 1021

chunks, enhances the relevance of the retrieved text 1022

to the question, thereby reducing the difficulty of 1023

generating the correct answer. 1024

A.6 Hyper-parameter Sensitivity Analysis of 1025

Meta-chunker 1026

We conducted experiments on the decoding sam- 1027

pling hyperparameters of the meta-chunker within 1028

the MoC framework, with specific results presented 1029
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Figure 2: Trends in evaluating chunking performance using different metrics.

in Table 3. Experimental data demonstrates that1030

higher values of temperature and top-k sampling1031

strategies introduce increased randomness, thereby1032

exerting a certain impact on the chunking effect.1033

Conversely, when these two hyperparameters are1034

set to lower values, the model typically provides1035

more stable and precise chunking, leading to a1036

more significant performance improvement.1037

Figure 3: Performance sensitivity to temperature and
top-k.

A.7 Prompt utilized in Chunking1038

When preparing datasets using GPT-4o and gener-1039

ating chunking rules with MoC, prompts are nec-1040

essary, as illustrated in Tables 6 and 7. The design1041

and implementation of these prompts are crucial,1042

as they directly influence the quality and character-1043

istics of the resulting datasets and chunking rules.1044

Figure 4: Trend of loss change during router training.

Figure 5: Trend of loss change during meta-chunker
training with granularity range [0,120].
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Figure 6: Trend of loss change during meta-chunker
training with granularity range (120,150].

Figure 7: Trend of loss change during meta-chunker
training with granularity range (150,180].

Figure 8: Trend of loss change during meta-chunker
training with granularity range (180,+∞).

Chunking Prompt

This is a text chunking task, and you are an expert
in text segmentation, responsible for dividing the
given text into text chunks. You must adhere to
the following four conditions:

1. Segment the text based on its logical and seman-
tic structure, ensuring each text chunk expresses a
complete logical thought.

2. Avoid making the text chunks too short, bal-
ancing the recognition of content transitions with
appropriate chunk length.

3. Do not alter the original vocabulary or content
of the text.

4. Do not add any new words or symbols.

If you understand, please segment the follow-
ing text into text chunks, with each chunk sep-
arated by "\n—\n". Output the complete set of
segmented chunks without omissions.

Document content: [Text to be segmented]

The segmented text chunks are:

Table 6: Prompt for direct chunking of GPT-4o.
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Chunking Prompt

This is a text chunking task. As an expert in text segmentation, you are responsible
for segmenting the given text into text chunks. You must adhere to the following four
conditions:

1. Combine several consecutive sentences with related content into text chunks,
ensuring that each text chunk has a complete logical expression.

2. Avoid making the text chunks too short, and strike a good balance between
recognizing content transitions and chunk length.

3. The output of the chunking result should be in a list format, where each element
represents a text chunk in the document.

4. Each text chunk in the output should consist of the first few characters of the text
chunk, followed by "[MASK]" to replace the intermediate content, and end with the
last few characters of the text chunk. The output format is as follows:

[

"First few characters of text chunk [MASK] Last few characters of text chunk",

...

]

If you understand, please segment the following text into text chunks and output
them in the required list format.

Document content: [Text to be segmented]

Table 7: Prompt for chunking of MoC.
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