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Abstract. We propose Domain Decomposed Bundle Adjustment
(DDBA), a robust and efficient solver for the bundle adjustment prob-
lem. Bundle adjustment (BA) is generally formulated as a non-linear
least squares problem and is solved by some variant of the Levenberg-
Marquardt (LM) algorithm. Each iteration of the LM algorithm requires
solving a system of normal equations, which becomes computationally
expensive with the increase in problem size. The coefficient matrix of
this system has a sparse structure which can be exploited for simplifying
the computations in this step. We propose a technique for approximat-
ing the Schur complement of the matrix, and use this approximation to
construct a preconditioner, that can be used with the Generalized Min-
imal Residual (GMRES) algorithm for solving the system of equations.
Our experiments on the BAL [2] dataset show that the proposed method
for solving the system is faster than GMRES solve preconditioned with
block Jacobi and more memory efficient than direct solve.

Keywords: Computer Vision - Bundle Adjustment - Structure from
Motion - Generalized Minimal Residual - Preconditioning - Domain De-
composition.

1 Introduction

Many recent works in three dimensional (3D) reconstruction using Structure-
from-Motion (SfM) algorithms has focused on building systems [1,9,19] that
are capable of handling millions of images from unstructured internet photo
collections. Given the feature matches between images, bundle adjustment (BA)
[21] is a key component in most SfM systems. It is typically used as the last
step in a 3D reconstruction pipeline. For large scale problems however, BA
becomes very expensive computationally and thus, creates a bottleneck in the
SfM systems. As a result, there has been a lot of interest in developing scalable
large scale bundle adjustment algorithms [2,6,7,11,22].

The BA problem is typically formulated as the minimization of a nonlinear
least squares problem, which can be done by using a classical algorithm such as
the Levenberg-Marquardt(LM) algorithm. In each iteration of the LM algorithm,
a solution to a linear system is required, which is the most computationally
expensive step. A lot of research has been focused on making this step cheaper.
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In [16], a direct method using Dense Cholesky factorization has been pro-
posed. However, these methods do not scale well as the problem size increases.
This has led to the application of iterative methods, specifically the Conjugate
Gradient(CG)[18] method, for solving these systems. The convergence of these
methods depend upon the condition number of the coefficient matrix. However,
it has been observed that BA problems are very ill-conditioned. To solve this
problem, preconditioning matrices or preconditioners [18] are applied to the sys-
tem. They lower the condition number of the systems, which in turn speeds up
the convergence of the iterative methods.

In this paper, we propose a new preconditioner which is based on the do-
main decomposition of the coefficient matrix. As it has been pointed out in [2]:
“each point in the SfM problem is a domain, and the cameras form the interface
between these domains”. Using the domain decomposition method, we present
a technique that can be used for approximating the global Schur complement
of the matrix. We name this preconditioner as Mini Schur Complement (MSC)
preconditioner. One of the advantages of using this preconditioner is that it
is sparse, highly parallelizable and can be scaled up for very large problems.
However, the preconditioned operator is unsymmetric. Thus, we use another it-
erative method known as restarted generalized minimal residual (GMRES). As
the results show, solving the normal equations using GMRES preconditioned
with MSC gives state-of-the-art performance on the BAL dataset.

The remaining part of the paper is organized as follows. Section 2 intro-
duces the BA problem and also gives a review of the recent work on the use of
preconditioned iterative methods. Section 3 gives a brief overview of domain de-
composition methods and describes the design and implementation of the MSC
preconditioner. Section 4 compares the results of our technique with direct solver
and block Jacobi preconditioned GMRES solver. In section 5, we conclude with a
discussion.

2 Bundle Adjustment

Bundle adjustment tries to minimize the sum of reprojection errors between
the 2D observations and the reprojected 2D points which are determined by the
point and camera parameters. More information about this process can be found
in [21].

Suppose that the scene to be reconstructed consists of p 3D points(or fea-
tures), individually denoted as y;,4 = 1,...,p, and these points are imaged in
q cameras, whose individual parameters are denoted as zy,k = 1,...,q. As-
sume that the structure(point) and camera parameters to be estimated are
taken in a large state vector € R(P+9) which has the block structure z =
(Y1, sYps 21, -+ 24) " . Then, the reprojection error is defined as f(z) = ry(z)—
mgk, for k =1, ..., q. Given the mean reprojection error for each camera, the
unknown 3D point and camera parameters can be estimated by minimizing the
total reprojection error. Define F(z) = [f1(z), ..., f;(z)]* to be a g-dimensional
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function of the given parameter vector x. Then, the bundle adjustment problem
can be stated as

1
¥ = argmin§||F(x)||§. (1)

In (1), the objective function is non-linear. For solving non-linear least squares
problems of this form, the Levenberg-Marquardt (LM) algorithm [3, 15, 17] is ap-
plied. It is an iterative method where, in each iteration, an affine approximation
of the cost function F(z) in a neighbourhood of the current iterate x, is mini-
mized. It is shown in [3] that the next iterate z;y; can be computed as

21 = xp — (JT T+ Ndiag(J" ) I F(2y). (2)

Let Hppy = JTJ + Mdiag(JTJ) and g = JT F(z;). Here, J is the Jacobian
of F(z) at x; and \! > 0 is a damping parameter which ensures that x,,1 lies
in a neighbourhood of x;. It should be noted that the definition of Hy,j; results
in an approximation of the Hessian. Then, rearranging the terms in (2) gives

Hpp Az = —g, where Ax = 2411 — 24 (3)

The Hessian Hpjs is symmetric and positive definite(SPD). Thus, (3) can be
solved as Az = —ngt[g to get the exact solution. However, when the problem
size becomes large, computing the inverse of Hy; becomes expensive. In these
cases, an inexact solution of the system (3) can be computed by using an iterative
method, such as GMRES. The convergence of the iterative methods depend on
the condition number of the coefficient matrix, the Hessian in this case. For
badly conditioned problems, such as bundle adjustment, the condition number
can be improved with the help of a preconditioner [18]. This paper proposes the
design and implementation of such a preconditioner, which exploits the special
structure of the Hessian Hp, ).

2.1 Structure of the Hessian

In the state vector x defined in Section 2, let s be the size of each point block
and ¢ be the size of each camera block. For the BAL dataset used in this paper,
c=9 and s = 3. Given these block sizes, the Jacobian J can be partitioned into
a point part Jg and camera part J. as J = [Js; J.|, which gives

JEJs I Je DL"
Hear = {JZJS JCTJJ = [L Gl “)

Here, D € RP**?% is a block diagonal matrix with p blocks such that each block is
of size s x s and G € R%°*9° is a block diagonal matrix with ¢ blocks such that each
block is of size ¢ x ¢. The matrix L € R?“*P® is a general block sparse matrix. Thus,
we can rewrite (3) as a block structured linear system as follows

[IL) LGT] {ﬁﬁj = Bj] , (5)
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where Az = [Az,; Az.], Azsand Az, correspond to point parameter blocks and cam-
era parameter blocks of Az, respectively, and g = [gs;gc], gs and ge correspond to
point and camera parameter blocks of g, respectively. Different approaches have been
proposed for solving (5), which exploits the special structure of the Hessian.

2.2 Previous Work

For solving (5), direct methods have been well studied in literature [16, 21]. In [4], the
special structure of the Hessian is exploited to solve the system using a reduced camera
system and a reduced structure system. A survey of various direct and iterative methods
as well the use of various preconditioners can be found in [21]. Cholesky factorization is
used for solving the reduced camera system in [16]. However, for large scale problems,
this method does not scale satisfactorily.

An advantage of using iterative methods, such as CG, is that these methods require
less memory compared to direct methods. This is because these methods require only
matrix-vector products. However, since BA problems are very badly conditioned, re-
cent research has focused on obtaining efficient preconditioners to speed up the conver-
gence of these methods. In [2], several classical preconditioners have been implemented
and their impact on large scale problems is shown. In [5],Preconditioned Conjugate
Gradients(PCG) is used for solving (5) with an incomplete QR factorization based
preconditioner. In [22], PCG is used for solving the reduced camera system with the
bandwidth limited block diagonal of the Schur complement as the preconditioner. [7]
exploits hardware parallelism on multicore CPUs as well as multicore GPUs to solve
the BA problem by a new inexact Newton type method. Avanish et al. [14] utilizes the
camera-point visibility structure in the scene to form block diagonal and block tridi-
agonal preconditioners. [11] explores a generalized subgraph preconditioning (GSP)
technique which is based on the combinatorial structure of the BA problem. In [12],
a preconditioner based on a deflated two grid methods is used with GMRES as the
iterative method.

Usually for small to medium sized problems, direct methods converge faster than
iterative methods . In this paper, we show that our method is more memory efficient
than direct methods and faster than iterative methods preconditioned with block Ja-
cobi, for small to medium problems, to converge to a comparable mean reprojection
error. Also, it has been observed that the construction of the MSC preconditioner does
not take much time.

3 Domain Decomposition Method

Domain decomposition (DD) methods refer to a class of divide-and-conquer techniques,
that have been primarily developed for solving Partial Differential Equations over re-
gions in two or three dimensions. However, the principles used in this techniques have
also been exploited in other fields of scientific and engineering computational problems.
The DD methods attempt to solve the problem on the entire domain from problem so-
lutions to the subdomains. For more details, see [18,20]. One of the most widely used
non-overlapping DD methods is the Schur complement method, which is described
below.
Consider the following block triangular factorization of Hpas:

I bl [ Ip 0][DLT
ML ] LD Ig| |0 S
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where Ip € RP**P$ and Ig € R9°%9¢, are identity matrices. Here, S = G — LD 'LT
is the Schur complement of D in Hpps. It has been observed that the construction of
S for large problems becomes computationally expensive. Also, the Cholesky decom-
position of S leads to dense factors, even though S remains sparse. Here, we present a
technique for approximating the Schur complement and design a preconditioner using
this approximation.

3.1 The Mini Schur Complement Preconditioner

In [13], several methods for approximation of the global Schur complement S have been
mentioned. Here, we construct the Mini Schur Complements (MSC) using the MSC
based on Numbering (MSCN) scheme, which is described below.

We consider the block 2 x 2 partitioned system in (4). The matrix Hra is further
partitioned as follows.

[ D11\ D12 ‘ L | LT, —‘
D21 | D Lai|L
HLM _ 21 22 21 22 (6)
{ Li1|L12 G11|Gi2 J
Lo1| Lo G21|Gaz

Now, a further approximation of the matrix in (6) is constructed by dropping the blocks
D;j, L,-Tj7 L;; and Gy  for which ¢ # j. Thus the following approximation H is obtained.
D11 L1,

121-2 — D22

| ™)

{ L1 G111
Loo Gaa

Here, the subscript 2 in H> denotes the number of principal sub-matrices of the matrix
G, namely, G11 and Ga2. The matrix in (7) is further partitioned to get the following
matrix

[ Dui|Dis Liy | LT |

Dar| Doz L%

Ds3| D34 Lis|L3s

. Dl D LLIZE o

Li1|L12 G11|Gi2
Tor|Los Go1|Gao

L33| L3y G33|Gi34

L Laz| Laa G| Gaa

Again, a sparse approximation of (8) is done by dropping the blocks ﬁij, lA}ZTJ, i/ij

and éij for which i # j, to obtain the following matrix

Do %
D33 I LidTg,f
.= Dy A Ll
L1y G11
Loz Gas
L33 G33

Lyg Gaa
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Here the subscript 4 in Hy denotes the number of principal sub-matrices of matrix
G. Eliminating the blocks E“ by using D“ as a pivot, we obtain an approximation to
the global Schur complement S by Sy = blkDiag(Si;) where Si; = Gii — ﬁ“f)ﬁlﬁg

The matrix Sj; is called a Mini Schur Complement (MSC). Here, for simplicity, we
have partitioned the matrix recursively into a block 2 X 2 matrix. During implementa-
tion, by taking advantage of the sparsity structure of the Hessian Hr s and the infor-
mation about the size of the blocks, we could directly identify the blocks Gm lA)m [A/Z;
and ﬁii, such that S;; is computed as S;; = G4 — L“D;lLﬁ, where ¢ = 1: m and m
is the number of MSCs desired.

Fig.1. The first two plots show the Schur complement of ladybug-372 and
ladybug-885 respectively. The third and fourth plots show their respective MSC ap-
proximations (m = 30 blocks).

MSC Preconditioner : Let S,, denote the Schur complement approximation
computed from m MSCs. Then we construct the MSC preconditioner as

D| 0
Prse = %

Here D and S, have a block diagonal structure and also, D and L blocks are already
available from the coefficient matrix Hpr . Thus, storing the required blocks of the MSC
preconditioner does not require much extra memory. In figure 1, the Schur complement
and the Mini Schur Complement approximation of two problems are shown. It can
be seen that the MSC approximation has a lot more sparsity than the global Schur
complement.

4 Experimental Evaluation

4.1 Implementation Details

For performing the experiments, we select block D such that the number of rows (and
columns) of D is given by 3 X (number of points) and block G such that the number
of rows (and columns) is given by 9 x (number of cameras). The information about
the number of points and the number of cameras are available in the dataset. We
construct the block Jacobi preconditioner as Pj,. = blkdiag(D, &) (as shown in [2]),
where blkdiag forms a block diagonal matrix using the given blocks. For constructing
the MSC preconditioner, the number of MSC blocks is taken as 30 blocks.
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For the Levenberg-Marquardt algorithm, we use a freely available sparse C++ imple-
mentation (SSBA)', which has several cost functions that are used by the LM algorithm
for the BA step. Out of these, we choose the bundle_large_lifted_schur cost function
implemented in the SSBA package, which is discussed in detail in [23]. The LM algo-
rithm runs for 100 iterations, or till the difference in norms of two consecutive residuals
is not less than 107'2 in magnitude, whichever criterion is met first. For solving the
normal equations in (3) using direct method, SSBA uses LDL factorization [10], which is
a Cholesky like factorization method for sparse symmetric positive definite matrices.
COLAMD is applied for appropriate column reordering. Both LDL and COLAMD have been
adopted from the SuiteSparse package [8].

We experimented with Preconditioned Conjugate Gradient(PCG) as the iterative
solver but the results we got using Pj.. as a preconditioner were not encouraging.
Hence, we implement an MSC preconditioned GMRES with restarts and warm starts [3,
p.393] as an iterative solver in the SSBA package, for solving (3). The restart parameter
is taken as 40, thus forming a Krylov subspace of 40 vectors. The GMRES algorithm
runs as long as the number of iterations is less than 100 or the norm of the relative
residual is not less than 1072 (as taken in [2]), whichever comes first. The GMRES method
is implemented using the dfgmres routine available in the INTEL MKL library, version
2019.4.243. All of the experiments are performed on a subset of problems from the
BAL dataset [2]. We run all of the experiments on a machine with Intel Pentium(R)
processor and 8 GB of RAM. As all the problems from the BAL dataset cannot fit into
memory, we select 8 problems for which the number of points varies from 7K to 226 K.

4.2 Results

We compare the direct solve, specifically, the LDL factorization method and the restarted
GMRES preconditioned with two preconditioners : (1) block Jacobi preconditioner and
(2) MSC preconditioner. The problems have been selected from the BAL dataset. We
experimented with different number of MSC blocks and found that taking 30 blocks
gave optimal results.

In Table 1, the time per LM iteration and the mean reprojection error for various
methods are shown. As we have tested mostly on small to medium sized problems,
we observe that direct solve is faster than iterative solve for these problems. However,
as can be seen from figure 3, the memory requirement for direct solver increases with
increase in problem size. Thus, iterative solvers are essential for very large problems. In
Table 1, it can be seen that using MSC as a preconditioner results in faster computation
time than using block Jacobi as a preconditioner.

Also, from figure 3 it can be seen that the MSC preconditioned GMRES is the most
memory efficient of the three methods. In figure 3, as the number of cameras increases,
the size of the L, D factors of block G also increases. Thus, doing an LDL factorization of
block G during block Jacobi preconditioner solve requires more time compared to that
of MSC, as seen in figure 4. Thus, for larger problems, using MSC as a preconditioner
is a much better option for a memory constrained system.

5 Conclusions and Future Work

We proposed a technique for the approximation of the global Schur complement and
used this approximation to design a preconditioner. We showed some preliminary re-

! www.cvg.ethz.ch/research/chzach/opensource.html
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Table 1. Average time (in seconds) per iteration for the LM solver using the three
methods on 8 problems from the BAL datasets using the bundle_large lifted_schur
cost function routine in SSBA. The time in bold represents the faster of the two pre-

conditioners for iterative solve. The problems are prefixed as :
Trafalgar Square and D for Dubrovnik.

L for LadyBug, TS for

Fig. 2. Plot showing the total time taken for 100 iterations of the Levenberg Mar-
quardt algorithm, using direct solve, block Jacobi preconditioned GMRES and MSC
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BAL Dataset Parameters Direct Solve Block Jacobi MSC(30)
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L-49 7776 31843 0.1 0.73 0.6 0.96 0.6 0.65
L-138 19878 85217 0.4 0.89 1.1 0.82 1.6 0.88
TS-225 |57665 208622 0.9 0.87 10.4 0.79 9.5 0.67
D-308 195089 (1045197 8.2 0.71 29.4 0.71 26.2 0.72
D-356 226730 1255268 11 0.80 41.5 0.77 30.6 |0.79
L-372 47423 204472 3.0 0.70 11.9 0.71 13.1 0.71
L-539 65220 |277273 5.4 0.74 9.5 0.80 6.7 0.77
L-885 97473  |434905 11.5 0.69 25.7 0.69 17 0.71
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Fig. 3. Plot showing the memory requirement for the three methods for the 4 largest
problems in our paper, as the number of cameras increases. We have plotted the memory
for the three methods : L, D factors for direct solve, L, D factors of block G alongwith

the Krylov subspace and the memory for storing the MSC block, its L, D factors as
well as the Krylov subspace.

—Block G
~MSC(30)

Time(in secs)
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Number of cameras

Fig. 4. Plot showing the time taken for LDL factorization of the G block and the MSC
block.

sults which were obtained by implementing our technique as a sequential code. As seen
in figure 3, this solver has much less memory requirement than the other methods
mentioned in the paper, and is also faster than using block Jacobi as a preconditioner.
This makes using MSC as a preconditioner a much better choice. Also, since the MSC
blocks are non-overlapping, they are independent of each other. Thus, one possible
direction of future work is a parallel implementation of the proposed solver. Another
direction would be to assess the robustness of the solver for very large scale problems.
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