
Published in Transactions on Machine Learning Research (10/2025)

Boosting Revisited:
Benchmarking and Advancing LP-Based Ensemble Methods

Fabian Akkerman f.r.akkerman@utwente.nl
Industrial Engineering and Management Science
University of Twente

Julien Ferry julien.ferry@polymtl.ca
CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains
Polytechnique Montréal

Christian Artigues christian.artigues@laas.fr
LAAS-CNRS
Université de Toulouse

Emmanuel Hébrard hebrard@laas.fr
LAAS-CNRS
Université de Toulouse

Thibaut Vidal thibaut.vidal@polymtl.ca
CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains
Polytechnique Montréal

Reviewed on OpenReview: https: // openreview. net/ forum? id= lscC4PZUE4

Abstract

Despite their theoretical appeal, totally corrective boosting methods based on linear pro-
gramming have received limited empirical attention. In this paper, we conduct the first
large-scale experimental study of six LP-based boosting formulations, including two novel
methods, NM-Boost and QRLP-Boost, across 20 diverse datasets. We evaluate the use of
both heuristic and optimal base learners within these formulations, and analyze not only
accuracy, but also ensemble sparsity, margin distribution, anytime performance, and hyper-
parameter sensitivity. We show that totally corrective methods can outperform or match
state-of-the-art heuristics like XGBoost and LightGBM when using shallow trees, while
producing significantly sparser ensembles. We further show that these methods can thin
pre-trained ensembles without sacrificing performance, and we highlight both the strengths
and limitations of using optimal decision trees in this context.

1 Introduction

Despite the surge in deep learning, ensemble methods remain state-of-the-art for tabular data (Borisov et al.,
2024). This is evident in recent prediction competitions, where ensemble methods often outperform deep
neural networks (Bojer & Meldgaard, 2021; Makridakis et al., 2022; 2024). Among them, boosting methods,
such as Adaboost, XGBoost, and LightGBM, have become the default choice due to their efficiency, accuracy,
and practical success across domains (Freund & Schapire, 1997; Chen & Guestrin, 2016; Ke et al., 2017).
While these methods are widely adopted, they rely on greedy, stage-wise updates that often obscure the
optimization principles behind their effectiveness.

A more theoretically grounded alternative is offered by linear programming (LP) based boosting methods,
which formulate ensemble training as a global optimization problem. These methods cast training as a

1

https://orcid.org/0000-0001-8055-9864
https://orcid.org/0000-0002-8764-0080
https://orcid.org/0000-0002-9766-9864
https://orcid.org/0000-0003-3131-0709
https://orcid.org/0000-0001-5183-8485
https://openreview.net/forum?id=lscC4PZUE4

Published in Transactions on Machine Learning Research (10/2025)

linear program solved via column generation (Uchoa et al., 2024), where the goal is to optimize the weights
of all base learners simultaneously. At each iteration, a new base learner is added to improve classification
margins —the signed distances between examples and the ensemble decision boundary. From the perspective
of decomposition techniques, column generation provides a principled framework to decouple the selection of
base learners (solutions of pricing subproblems) from the global reweighting of the learner weights (solution of
the master problem). These two subproblems are linked through dual variables, which emphasize misclassified
points. This iterative reoptimization is referred to as total correctiveness. Notably, variations in the main
objective, such as maximizing the minimum margin or minimizing the variance across margins, lead to
different selection criteria for the base learners.

Although LP-based boosting was introduced over two decades ago, comprehensive empirical analysis remains
limited. While some studies have explored multiple formulations or larger datasets, most remain either
narrowly scoped or primarily theoretical. Few works offer a broad and systematic comparison of LP-based
methods, and even fewer examine their behavior in depth across varying conditions. As a result, key
questions remain unanswered: how do different formulations behave in practice, how do they compare to
modern heuristic methods, and how are they affected by factors such as tree depth, margin objectives, and
the use of optimal versus heuristic base learners?

In this work, we conduct the first large-scale empirical study of totally corrective boosting methods. Focusing
on binary classification tasks, we compare six optimization-based methods, which we refer to as LP-based for
brevity, although some involve quadratic programs (QPs). This includes two novel formulations introduced
in this paper. Their performance is benchmarked against three state-of-the-art heuristic boosting baselines.
Our evaluation spans 20 benchmark datasets and explores a wide range of settings, encompassing varying tree
depths, margin objectives, and types of base learners—namely, heuristic CART trees and optimal decision
trees. Decision trees are a natural choice in boosting due to their interpretability, and ensemble sparsity
is particularly relevant: smaller ensembles with fewer trees are easier to interpret and faster at inference
time. Beyond accuracy alone, our goal is to better understand the structure and properties of totally
corrective methods. To that end, we examine anytime performance, ensemble sparsity, margin distributions,
sensitivity to hyperparameters, and reweighting dynamics. Our findings provide new insights into why
certain formulations generalize better and offer practical guidance for designing interpretable and effective
ensemble models.

To summarize, our main contributions are:

• We conduct an extensive empirical study across twenty datasets, comparing six LP-based boosting
methods and three state-of-the-art heuristic baselines.

• We analyze generalization performance, anytime behavior, margin distribution, ensemble sparsity,
and hyperparameter sensitivity of LP-based boosting methods.

• We study the use of three different types of base learners within boosting frameworks: CART trees
with hard voting, CART trees with soft voting through confidence scores, and optimal decision trees.

• We present two novel formulations that achieve state-of-the-art performance: one that focuses on the
negative margins (misclassifications), and another that adapts an existing method by introducing a
new quadratic regularization term.

• The full source code is available under an MIT license at https://github.com/frakkerman/
colboost. All methods are implemented in the unified, user-friendly colboost Python library
to promote more systematic empirical comparisons between totally corrective methods and facil-
itate future research in this field, see https://pypi.org/project/colboost/. Furthermore, all
experimental results and datasets used in this study can be found at https://doi.org/10.4121/
f82dcdaa-fc94-43c5-b66d-02579bd3de4f.

The remainder of this paper is organized as follows. Section 2 introduces notation and background on
boosting approaches. Section 3 reviews related work on totally corrective methods and highlights our contri-
butions. In Section 4, we present two novel totally corrective formulations. Section 5 details our experimental

2

https://github.com/frakkerman/colboost
https://github.com/frakkerman/colboost
https://pypi.org/project/colboost/
https://doi.org/10.4121/f82dcdaa-fc94-43c5-b66d-02579bd3de4f
https://doi.org/10.4121/f82dcdaa-fc94-43c5-b66d-02579bd3de4f

Published in Transactions on Machine Learning Research (10/2025)

design. The results are then reported in two parts, based on the type of base learner. Section 6 focuses on
ensembles built with CART trees, using either hard voting or confidence-based soft voting. Section 7 then
evaluates the use of optimal decision trees. Finally, Section 8 concludes this paper.

2 Preliminaries

Let D = {(x1, y1), (x2, y2), . . . , (xM , yM)} be a dataset of size M where each example (also called data
point, or sample) xi ∈ X has a binary label yi ∈ {−1, 1}. Also, let H = {h1, h2, . . . , hT } be an ensemble
of classifiers, such that hj : X 7→ {−1, 1}, ∀j ∈ {1, . . . , T}. Boosting methods usually associate weights
w = {w1, w2, . . . , wT } to the different classifiers —also called base learners or weak learners— to minimize
classification error. Base learners are trained iteratively such that each new classifier hj is fitted using sample
weights uj = {uj1, uj2, . . . , ujM}, which highlight misclassified points. In column generation-based methods,
the weights w are either computed directly (in primal) or derived from dual variables, depending on the
formulation. While totally corrective boosting methods are able to recompute the base learners’ weights w
to maintain the best-performing ensemble at each iteration, popular heuristic methods typically compute
the weight of each classifier only once and never update it in further iterations.

Adaboost, introduced in Freund & Schapire (1997), is a classical heuristic boosting method. Its most common
version relies on the SAMME algorithm (Hastie et al., 2009). For a pre-specified number of iterations T ,
which specifies the number of trees that will be used in the ensemble, the SAMME algorithm iteratively
does the following. First, (i) it trains a tree using sample weights uj to weight datapoints for importance
(in the first iteration, u1i ← 1

M ∀i ∈ {1, . . . , M}), next, (ii) the weighted error of the new tree hj is
calculated, and (iii) the weight wj of the new tree in the ensemble voting process is determined based on
its error. Afterwards, (iv) new sample weights uj+1 are calculated by updating the former ones uj based
on the misclassifications of the new tree hj and a pre-defined learning rate hyperparameter, and the process
continues at step (i) until T trees have been added to the ensemble.

Totally corrective methods are different from Adaboost in several ways. We present a high-level and generic
overview to summarize these distinctions in Algorithm 1 (see also Shen et al. 2013). The key differences
from Adaboost (and other heuristic boosting methods) are: (i) the ensemble size is not pre-defined, as
the stopping criterion, based on the dual constraint, ensures that the optimal ensemble has been found,
(ii) no intermediate error term is calculated to determine the weights w and u, as both are outputs
from the LP, and (iii) the weights w are re-computed at each LP solve (instead of only the weight of
the new tree). These differences offer clear advantages over heuristic boosting methods like Adaboost,
as the stopping criterion is well-defined ensuring finite termination at a global optimum, sample weights
u are determined using the complete current ensembles’ performance, and all base learners’ weights w
are re-determined, which yields ensembles that perform better while also being sparser (with fewer trees).

Algorithm 1 High-level totally corrective boosting algorithm
Require: Convergence threshold ϵ

1: ∀i ∈ {1..M}, u1i ← 1
M , β ← 0 ▷ Initialize the variables

2: j ← 1
3: while True do
4: Fit new tree hj to training data using weights uj ▷ Solve the pricing problem
5: if

∑M
i=1 yiujihj(xi) ≤ β + ϵ then break ▷ Check for stopping criterion

6: Add hj to the master problem
7: Obtain new voting weights wj′∈{1...j} and compute uj+1 ▷ Solve the restricted master problem
8: return A convex combination of base learners and voting weights w

3 Related Works

In this section, we focus on totally corrective boosting methods for training ensemble models. A foundational
contribution comes from Grove & Schuurmans (1998) who, motivated by the success of Adaboost (Freund

3

Published in Transactions on Machine Learning Research (10/2025)

& Schapire, 1997) and the hypothesis that its effectiveness arises from focusing on margins (Bartlett et al.,
1998), propose the use of LP to minimize the worst-case margin. In classification, the margin typically
quantifies the confidence of the ensemble’s prediction: it is the difference between the cumulative vote
assigned to the correct label and the largest cumulative vote assigned to any incorrect label (Bartlett et al.,
1998). A negative margin indicates a misclassified example —one that lies on the wrong side of the ensemble’s
decision boundary. Grove & Schuurmans (1998) propose the following LP formulation (notation adapted for
consistency):

maximizew,ρ ρ. (1)

subject to yi

T∑
j=1

wjhj(xi) ≥ ρ, ∀i = 1, . . . , M, (2)

T∑
j=1

wj = 1, (3)

wj ≥ 0, ∀j = 1, . . . , T, (4)

where ρ is the minimum margin, the term yi

∑T
j=1 wjhj(xi) is positive when the current ensemble votes

correctly for data point (xi, yi), and negative when the ensemble vote is incorrect. The sum of weak learner
weights is bounded by 1. Solving this problem using a column generation framework provides two main
advantages: (i) it allows leveraging the dual solution to identify new weak learners at each iteration, and (ii)
it offers a well-defined stopping criterion. The corresponding dual problem is given by:

minimizeu,β β. (5)

subject to
M∑

i=1
uiyihj(xi) ≤ β, ∀j = 1, . . . , T, (6)

M∑
i=1

ui = 1, (7)

0 ≤ ui, ∀i = 1, . . . , M. (8)

In this dual formulation, Constraint (6) defines the misclassification costs ui for each example i, emphasizing
those with low or negative margins. Training a weak learner corresponds to finding a violated constraint (6)
and a new variable wj of positive reduced cost. Furthermore, when no base learner satisfies

∑M
j=1 uiyihj(xi) >

β, the current combined classifier represents the optimal solution among all possible linear combinations of
base learners. Despite these properties, Grove & Schuurmans (1998) report unstable empirical performance
for this LP. Demiriz et al. (2002) address several of the issues by using a soft-margin LP variant, i.e.,
introducing a slack variable in Constraint (2). This adjustment improves robustness: unlike the hard-margin
formulation, which can be highly degenerate when the number of weak learners is small relative to the
number of data points, the soft-margin version reduces such degeneracies and is less sensitive to noisy or
outlier data. The resulting formulation —known as LP-Boost— alleviates many limitations of the original
hard-margin LP, though, as we will demonstrate in our experiments, it does not resolve all of them. In the
remainder of this section, we discuss the contributions to ensemble learning using linear programming after
LP-Boost (Grove & Schuurmans, 1998; Demiriz et al., 2002).

Theoretical analyses have identified fundamental limitations of LP-based boosting and guided the design
of improved formulations. Shen & Li (2009) analyze boosting algorithms through the lens of their La-
grange duals, drawing connections between LP-Boost and entropy-maximization frameworks. They show
that Adaboost, LogitBoost, and soft-margin LP-Boost can be viewed as entropy-regularized variants of the
hard-margin LP-Boost formulation. A key insight from their analysis is that LP-Boost, despite its focus
on maximizing the minimum margin, often exhibits inferior generalization performance compared to al-
gorithms that optimize for average margin or margin distribution, such as Adaboost. The authors argue
that entropy regularization, which enforces a more uniform weight distribution on training examples, con-
tributes to Adaboost’s superior generalization performance, especially in noisy or non-separable datasets.

4

Published in Transactions on Machine Learning Research (10/2025)

This work provides theoretical insights into why LP-Boost’s strict focus on the minimum margin may limit
its effectiveness in practical settings, a conclusion further supported by the formal results in Gao & Zhou
(2013).

Building on earlier theoretical insights, several works have proposed totally corrective variants of LP-Boost
to improve both convergence and generalization. Warmuth et al. (2006) propose Total-Boost, which incorpo-
rates entropic regularization and adaptive margin constraints to achieve logarithmic convergence guarantees.
The authors experimentally demonstrate that Total-Boost often requires significantly fewer iterations than
LP-Boost, particularly in high-dimensional or redundant feature spaces, while producing smaller ensembles,
making it advantageous for feature selection tasks. Total-Boost serves as a precursor to Soft-Boost (Rätsch
et al., 2007), which extends the approach to the non-separable case by minimizing the relative entropy to
the initial distribution, subject to linear constraints on the edges of all previously generated base learners
—where the edge is defined as the weighted difference between correctly and incorrectly classified exam-
ples. Rätsch et al. (2007) show that LP-Boost may require up to O(M) iterations to converge in the worst
case, particularly when the problem structure induces linear dependencies in the optimization process. In
contrast, Soft-Boost’s use of capping constraints and entropy updates leads to provably faster, logarithmic
convergence, making it a potentially more efficient alternative in such settings. However, its conservative
constraint-tightening can result in worse early-stage generalization performance.

To address this, Warmuth et al. (2008) introduce Entropy Regularized LP-Boost (ERLP-Boost), which
modifies LP-Boost by incorporating a scaled relative entropy term into the objective. ERLP-Boost matches
the performance of LP-Boost and Soft-Boost but offers faster early error reduction and guarantees conver-
gence within O(1

ϵ2 ln M
C) iterations, with C being a tunable parameter. Additionally, Warmuth et al. (2006)

observe that LP-Boost’s empirical performance is sensitive to the choice of the solver: interior-point methods
achieve faster convergence than simplex methods in certain scenarios.

More recently, Mitsuboshi et al. (2022) offer a unified view of LP-based boosting methods by framing LP-
Boost and ERLP-Boost as instances of the Frank-Wolfe algorithm. They highlight a key trade-off: LP-Boost
has low per-iteration cost but may require many iterations, while ERLP-Boost converges in fewer steps at
a higher computational cost per iteration. To balance these strengths, they propose MLP-Boost, a hybrid
algorithm that alternates between LP-Boost and ERLP-Boost steps. Experiments show that MLP-Boost
retains the convergence guarantees of ERLP-Boost while achieving runtime comparable to LP-Boost.

Building on the limitations of focusing only on the minimum margin, a line of research has emerged to
optimize the entire margin distribution. Shen & Li (2010) introduce MD-Boost, a totally corrective boosting
algorithm that simultaneously maximizes the average margin and minimizes margin variance. Extending LP-
Boost, MD-Boost retains the column generation approach but adopts a quadratic programming formulation,
enabling it to overcome limitations inherent to linear programming methods. Empirical results show that
MD-Boost outperforms LP-Boost in generalization performance on several benchmark datasets. The authors
highlight that MD-Boost’s ability to consider the full margin distribution, rather than focusing solely on the
minimum margin like LP-Boost, contributes to its robustness and improved classification accuracy. In a
similar spirit, Roy et al. (2016) propose Cq-Boost, a column generation algorithm that minimizes the PAC-
Bayesian C-bound, explicitly accounting for both the mean and variance of the margin distribution. Unlike
LP-Boost, which focuses on minimizing the margin of misclassified points, Cq-Boost leverages quadratic
programming to optimize the margin distribution while achieving sparser ensembles. Empirical results show
that Cq-Boost outperforms LP-Boost in terms of accuracy and sparsity.

Bi et al. (2004) extend LP-Boost by developing CG-Boost, a column-generation boosting framework for
constructing sparse mixture-of-kernels models. By 2-norm regularization, CG-Boost produces models that
balance expressiveness and sparsity, achieving improved generalization and reduced testing time compared
to single-kernel or composite-kernel methods. The approach generalizes LP-Boost to quadratic programs,
enabling its application to a broader range of learning formulations. Experiments demonstrate CG-Boost’s
effectiveness in achieving high accuracy with fewer basis functions, outperforming standard composite-kernel
methods in both performance and efficiency. Shen et al. (2013) propose CGBoost (not to be confused with
CG-Boost by Bi et al. 2004), a fully corrective boosting framework that generalizes LP-Boost to accommodate
arbitrary convex loss functions and regularization terms (e.g., ℓ1, ℓ2, and ℓ∞-norms). Unlike LP-Boost,

5

Published in Transactions on Machine Learning Research (10/2025)

which solves the dual problem, CGBoost focuses on the primal problem, offering simpler optimization with
faster convergence. The authors demonstrate that CGBoost effectively balances sparsity and generalization,
outperforming LP-Boost in terms of computational efficiency while maintaining or improving classification
accuracy across various benchmark datasets.

To address class imbalance, Datta et al. (2020) propose LexiBoost, a lexicographic programming-based
boosting framework that eliminates the need for manual cost tuning. LexiBoost solves a two-stage sequence
of linear programs, first minimizing hinge loss separately for each class, then minimizing the deviation from
these losses to balance misclassification rates. The dual formulation further adapts instance weights dy-
namically. The approach is scalable to multi-class settings and demonstrates strong performance across
imbalanced datasets, hyperspectral images, and ImageNet subsets, outperforming traditional cost-sensitive
boosting methods. Aziz et al. (2024) propose a dynamic data-reduction ensemble learning algorithm (DDA)
that extends LP-Boost by incorporating dynamic data selection, phased learning, and nonlinear loss func-
tions. Unlike standard LP-Boost, which considers the entire training dataset in every iteration, DDA uses
sparse dual solutions to identify “active data points” in a bootstrap fashion, focusing computation on subsets
of critical examples to improve efficiency. The algorithm operates in three phases: initialization (bootstrap-
ping base learners), generation (error-based sampling without full master problem inputs), and refinement
(iteratively adding base learners based on active data subsets). By incorporating nonlinear loss functions and
explicitly promoting diversity, DDA reduces generalization error while maintaining or improving computa-
tional efficiency. Experiments show that DDA outperforms standard LP-Boost by achieving higher accuracy
and better diversity in ensemble models.

Other work has adapted LP-Boosting for specific application domains or different base learners. Hinrichs
et al. (2009) propose spatially augmented LP-Boosting, adding spatial smoothness constraints to promote
contiguous regions in medical imaging data. Applied to the ADNI dataset, the method improves clas-
sification accuracy and interpretability compared to standard LP-Boost, achieving better generalization
performance. Aglin et al. (2021) investigate optimal forests of decision trees by integrating optimal decision
tree (ODT) learning into LP-Boost and MD-Boost frameworks. Their method, OptiBoost, uses a column
generation process with ODTs to guarantee optimality for both LP-Boost and MD-Boost formulations.
Experiments demonstrate that optimizing the entire margin distribution with MD-Boost often yields better
generalization compared to maximizing the minimum margin in LP-Boost. The study highlights that
incorporating ODTs into boosting frameworks not only improves optimization objectives but also leads to
more accurate and sparse models, outperforming heuristic approaches on certain datasets.

To sum up, most works on totally corrective boosting propose formulations that optimize the margins of
base learner ensembles. However, key aspects of LP-based boosting —including the ensemble accuracy-
sparsity trade-off, anytime behavior, and sensitivity to hyperparameters— remain underexplored. In this
work, we address these gaps through a comprehensive empirical study across twenty datasets, comparing
six LP-based boosting methods against three state-of-the-art heuristic baselines. Our results provide a
systematic understanding of how margin formulations affect not only final accuracy but also convergence
speed, sparsity, and hyperparameter sensitivity. In addition, we study the influence of weak learner choice
—comparing heuristic CART trees with either hard voting or soft (confidence-based) voting, and optimal
decision trees— on boosting performance. We also introduce two novel formulations. The first one explicitly
models negative margins, allowing direct control of the trade-off between generalization performance and
training accuracy through a regularization hyperparameter. The second applies quadratic regularization
to improve ensemble stability. Together, these contributions offer both practical insights and theoretical
extensions that strengthen the foundation of LP-based boosting research.

4 New Totally Corrective Formulations

We introduce two novel boosting formulations that build on existing margin-based approaches. The first
focuses on a previously underexplored aspect of the margin distribution, the negative margins. This formu-
lation, detailed in Section 4.1, directly yields the ensemble weights w from the primal solution, while the
sample weights u are derived from the dual. The second formulation, presented in Section 4.2, introduces

6

Published in Transactions on Machine Learning Research (10/2025)

regularization on the sample weights u, which are computed directly in the primal to keep the quadratic
term in the objective. In this case, the ensemble weights w are recovered from the dual solution.

4.1 Negative Margins Boosting

The idea behind this formulation, which we coin Negative Margins Boost (NM-Boost), is to maximize the sum
of all margins while assigning greater weight to negative margins in the objective. A coefficient C controls the
trade-off between reducing negative margins (which serve as a proxy for misclassifications) and increasing the
overall sum of margins (which promotes better generalization). NM-Boost avoids the limitations of earlier
approaches that focus solely on the worst-case margin —often overly sensitive to outliers— as well as the
drawbacks of LP-Boost, where the margin of each example is decomposed into a “slack” and a worst-case
margin, making the contribution of individual examples difficult to interpret.

In the primal formulation shown below, variables ρneg
i represent the negative part of the individual margins:

ρneg
i = 0 if example i is correctly classified, and ρneg

i is the (negative) margin ρi between the ensemble’s
prediction for misclassified example i and the decision boundary (minus a small offset) otherwise. Negative
margins hence receive greater penalization in the objective function. This explicit modeling ensures that mis-
classified examples (with negative margins) directly influence the optimization, rather than being absorbed
implicitly in the overall margin sum. In practice, they are computed as the negative part of the margins
offset by a constant term 1

T . This offset ensures a clear distinction between zero and strictly positive margins,
since in the former case, an example may not be confidently classified —depending on the tie-breaking policy
used. Note that this offset becomes tight when all trees contribute equally to the vote.1 The optimization
problem of NM-Boost is formalized as:

maximizew,ρ,ρneg

M∑
i=1

ρneg
i + C

M∑
i=1

ρi. (9)

subject to yi

T∑
j=1

wjhj(xi) ≥ ρi, ∀i = 1, . . . , M, (10)

ρneg
i ≤ 0, ∀i = 1, . . . , M, (11)

ρneg
i ≤ ρi −

1
T

, ∀i = 1, . . . , M, (12)
T∑

j=1
wj = 1, wj ≥ 0, ∀j = 1, . . . , T. (13)

Because (9) is an LP with w constrained to the probability simplex, an optimal solution can be chosen to
place weight on only a subset of base learners; in practice, many wj are zero.

4.2 Quadratically Regularized LP-Boost

We also propose a boosting formulation with a quadratic regularization term, which we call QRLP-Boost.
The formulation builds on prior work by Warmuth et al. (2006), Rätsch et al. (2007), and Warmuth et al.
(2008). More precisely, we modify the objective function of ERLP-Boost, whose formulation is provided in
the Appendix B.3. The original ERLP-Boost ensures stability through entropy-based smoothing. Moreover,
it requires iterative refinement of the sample weight distribution, repeatedly computing KL-divergence ad-
justments and stabilizing small weight changes. In contrast, our proposed QRLP-Boost introduces a direct
quadratic regularization that blends entropy and variance-like penalties, enabling larger, smoother updates
within a single optimization step. This leads to a more numerically stable process, as the regularization
naturally controls weight shifts without requiring repeated re-optimization or entropy-based corrections.

Our approach differs from ERLP-Boost in the following ways: (i) instead of minimizing a KL-divergence
penalty, we use a combined entropy–quadratic regularization term that stabilizes updates while offering more

1For instance, this is usually not the case within a confidence-based soft voting scheme.

7

Published in Transactions on Machine Learning Research (10/2025)

flexibility in reweighting training examples, (ii) the weight distribution is updated directly in a single QP
solve per iteration, avoiding multiple re-solves with adjusted entropy terms, and (iii) convergence is checked
based on the QP objective, eliminating the need for iterative entropy-based margin estimates or auxiliary
thresholds. QRLP-Boost therefore solves the following convex optimization problem:

minimizeu,ξ

M∑
i=1

ξi + 1
η

M∑
i=1

(
ui log u0

i + u2
i

2u0
i

)
. (14)

subject to
M∑

i=1
uiyihj(xi) ≤ ξi, ∀j = 1, . . . , T, (15)

M∑
i=1

ui = 1, (16)

0 ≤ ui ≤
1
C

, ∀i = 1, . . . , M. (17)

Here, η is defined as max(0.5, ln M/ 1
2 ϵstop), where ϵstop is a small constant. The term u0 denotes the initial

sample weight distribution, typically uniform. The quadratic regularizer u2
i /2ui replaces the KL-divergence

term in ERLP-Boost, serving to penalize sharp deviations from the initial weights. The quadratic component
of the regularizer (with u0

i > 0) makes the objective strictly convex in u, hence the minimizing u is unique. We
solve the program directly with a standard convex optimizer; no generic closed-form expression is available.
All other constraints are retained from the original ERLP-Boost formulation (see Appendix B.3).

5 Experimental Design

To obtain robust and generalizable insights into boosting with column generation methods, we conduct an
extensive empirical study across 20 diverse datasets from widely used benchmark repositories in machine
learning. These datasets were selected to ensure diversity in terms of size, feature dimensionality, and class
balance. A complete description of the datasets is given in Appendix A.

Our study includes the following totally corrective methods, evaluated in the original versions proposed by
their respective authors: LP-Boost (Demiriz et al., 2002), CG-Boost (Bi et al., 2004), ERLP-Boost (Warmuth
et al., 2008), MD-Boost (Shen & Li, 2010), as well as our two novel formulations, NM-Boost and QRLP-
Boost (introduced in Section 4). For LP-Boost, we adopt the formulation from Equation 2 in Demiriz et al.
(2002), as we found the alternative version (Equation 4) to be highly sensitive to its hyperparameters and
more prone to degeneracy. The detailed mathematical formulations of all totally corrective methods are
provided in Appendix B. While we initially included Cq-Boost (Roy et al., 2016) in our experiments, we did
not retain it in our final analyses for the sake of brevity, as it did not provide additional insights or accuracy
improvements over other methods. For comparison, we also include three widely used heuristic boosting
baselines: Adaboost (Freund & Schapire, 1997), XGBoost (Chen & Guestrin, 2016), and LightGBM (Ke
et al., 2017).

To ensure a fair comparison between the different methods, we conduct hyperparameter tuning for which we
vary the trade-off parameter C (totally corrective methods) and the learning rate (heuristic boosting meth-
ods) across 10 possible values. Appendix C details the hyperparameter ranges considered for each method,
consistent with the original papers’ recommendations and refined based on our preliminary experiments. As
each method involves tuning a single hyperparameter only, an exhaustive sweep over a fixed set of values is
straightforward and ensures that we reliably measure performance across the relevant range.

Each dataset is split into 60% for training, 20% for validation, and 20% for testing. We select the best-
performing hyperparameter value in terms of accuracy using the validation data, and report only the results
on the testing data. For all results, we report averages over five random seeds, accounting for variability in
data splits and method-specific randomness. We impose a time limit of 45 minutes and an iteration limit
of 100 for all the methods. Early stopping is explicitly disabled for totally corrective approaches to ensure
that all boosting strategies are evaluated under a comparable number of iterations. This setup ensures

8

Published in Transactions on Machine Learning Research (10/2025)

fairness, as each method is allowed to construct ensembles with the same number of base learners. In
practice, the iteration limit is reached much more frequently than the time limit, which is seldom binding.
In Appendix D.1, we report the computational times per dataset for all studied methods. On average, the
totally corrective methods require between 8 and 15 minutes of training time, whereas the heuristic variants
typically finish within seconds. Although this represents a noticeable difference, the running times remain
modest and well within practical limits for offline training.

All code is written in Python and experiments are executed on a Linux cluster using Python 3.11. Mathe-
matical programs are solved using Gurobi 10.0.1. We rely on the scikit-learn library (Pedregosa et al.,
2011) to build CART trees and fit Adaboost ensembles, and use the Blossom library for optimal decision
trees (Demirović et al., 2023). XGBoost and LightGBM ensembles are fitted using their respective Python
libraries, see Chen & Guestrin (2016) and Ke et al. (2017), respectively. We run individual experiments on a
single thread of a compute node equipped with AMD Genoa 9654 cores @2.4GHz along with 2 GB of mem-
ory per thread. All totally corrective methods are implemented within the unified, user-friendly colboost
Python library, available under an MIT license at https://pypi.org/project/colboost/.

The remaining experimental sections in this paper are organized as follows. Section 6 analyzes the results of
ensembles built using CART trees with either hard or confidence-based soft voting. Section 7 then focuses
on the use of optimal decision trees in boosting ensembles.

6 Experiments with CART Trees as Base Learners

In this section, we conduct experiments using CART trees as base learners —the default choice in most
boosting applications due to their computational efficiency and reasonably strong predictive performance,
despite being heuristic rather than optimal. Our goal is to provide a comprehensive empirical analysis of
totally corrective boosting methods, comparing different mathematical formulations with each other and
with the state-of-the-art heuristic benchmarks. To this end, we evaluate multiple facets of model behavior:
accuracy-sparsity performance (Section 6.1), anytime performance (Section 6.2), ensemble sparsity (Sec-
tion 6.3), margin distributions (Section 6.4), and sensitivity to hyperparameters (Section 6.5). We also
include an experiment, in Section 6.6, for which we obtain an ensemble using an external method (Ad-
aboost) and next let the totally corrective methods reweight the complete ensemble in a single shot. All
main experiments are conducted using a hard voting scheme (i.e., each tree casts a vote of either -1 or +1).
In Section 6.7, we investigate the impact of adopting a soft voting mechanism, in which trees contribute
confidence-weighted scores (i.e., each tree votes in the domain [−1, 1]). Throughout all experiments, we vary
the maximum tree depth between 1 (decision stumps), 3, 5, and 10. While decision stumps are commonly
used in boosting due to their high bias and low variance, we broaden the scope to thoroughly compare
performance across varying tree complexities.

6.1 Accuracy-Sparsity Performance

We evaluate the trained ensembles using two metrics: testing accuracy and number of columns (base learners)
used. The latter serves as a measure of sparsity, indicating how many trees contribute non-zero weight to
the ensemble’s prediction. Sparser ensembles are generally preferred, as this improves interpretability and
reduces inference time.

Figure 1 summarizes all results by showing the average testing accuracy and sparsity across all considered
datasets2, for each method and different tree depths. For depth 1 (decision stumps), we observe that NM-
Boost, QRLP-Boost, CG-Boost, and XGBoost achieve comparable accuracy. However, NM-Boost matches or
slightly outperforms the others while using significantly fewer trees. MD-Boost yields the sparsest ensembles
but suffers from the lowest accuracy. Interestingly, for decision stumps (which are often the default weak
learners of boosting approaches), totally corrective methods outperform the heuristic baselines (Adaboost,
XGBoost, and LightGBM) in both accuracy and sparsity. At depths 3 and 5, some totally corrective methods

2While averaging across datasets may seem counterintuitive, since the resulting metrics lack a clear, interpretable meaning
for any individual dataset, it is a widely used approach for summarizing and comparing methods (see, e.g., Freund & Schapire
1996, Demirović et al. 2023).

9

https://pypi.org/project/colboost/

Published in Transactions on Machine Learning Research (10/2025)

20 40 60 80 100
Average Number of Columns Used

0.785

0.790

0.795

0.800

0.805

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost QRLP-Boost

LP-Boost

CG-Boost

ERLP-Boost

MD-Boost

Adaboost

XGBoost

lightGBM

Test Accuracy vs Ensemble Sparsity on Depth 1

30 40 50 60 70 80 90 100
Average Number of Columns Used

0.815

0.820

0.825

0.830

0.835

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-Boost

LP-Boost
CG-Boost

ERLP-Boost

MD-Boost

Adaboost

XGBoost
lightGBM

Test Accuracy vs Ensemble Sparsity on Depth 3

20 30 40 50 60 70 80 90 100
Average Number of Columns Used

0.8200

0.8225

0.8250

0.8275

0.8300

0.8325

0.8350

0.8375

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-Boost

LP-Boost

CG-Boost

ERLP-Boost

MD-Boost

Adaboost

XGBoost
lightGBM

Test Accuracy vs Ensemble Sparsity on Depth 5

20 40 60 80 100
Average Number of Columns Used

0.822

0.824

0.826

0.828

0.830

0.832

0.834

0.836

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-Boost

LP-Boost

CG-Boost

ERLP-Boost

MD-Boost

Adaboost
XGBoostlightGBM

Test Accuracy vs Ensemble Sparsity on Depth 10

Figure 1: Average testing accuracy compared to average ensemble sparsity over all datasets for CART
decision trees of depth 1, 3, 5, and 10.

(NM-Boost, QRLP-Boost, LP-Boost) exhibit close or similar accuracy as the heuristic benchmarks but use
fewer trees, or find similar accuracy with the same number of trees (CG-Boost). For depth 10, the individual
trees are strong and specialized, and using them all is the best policy. As a result, totally corrective methods
fall short in accuracy, though CG-Boost remains competitive, partly due to its use of denser ensembles.

Observation 1 With shallow to moderately deep CART trees, totally corrective methods match or exceed
the test accuracy of heuristic baselines while yielding significantly sparser ensembles.

Observation 2 Among all totally corrective methods, our proposed NM-Boost achieves the best performance
when using shallow to moderately deep CART trees.

Observation 3 With deeper CART trees, a trade-off becomes apparent: heuristic methods achieve generally
higher accuracy, but at the expense of sparsity.

To allow for a more nuanced assessment of each method’s strengths and weaknesses, we also report per-
dataset results. Tables 1 and 2 detail the testing accuracy and sparsity across all considered datasets,
totally corrective methods, and heuristic benchmarks for CART decision tree base learners of depth 1 and 5,
respectively. Results for the other depth values are provided in the Appendix D.2, and are consistent with
our main observations.

Focusing on depth-1 trees (Table 1), we observe that the superiority of totally corrective methods over
state-of-the-art heuristic boosting approaches, which was previously observed on aggregate results, holds
consistently across datasets. The proposed NM-Boost and QRLP-Boost are particularly competitive in this
regime.

Observation 4 With decision stumps base learners, the totally corrective boosting methods consistently
outperform or match the benchmarked heuristic approaches on 19 out of 20 datasets.

10

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Testing accuracy and number of non-zero weights for different boosting methods using CART trees
of depth 1, averaged over five seeds. Bold highlights the best overall accuracy, while a star∗ marks the
best among totally corrective methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost LightGBM

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.625∗ ± 0.016 5 0.620 ± 0.016 16 0.625∗ ± 0.016 1 0.625∗ ± 0.016 100 0.620 ± 0.016 16 0.620 ± 0.016 14 0.625 ± 0.016 100 0.620 ± 0.016 100 0.620 ± 0.016 100
breast cancer 0.819∗ ± 0.049 5 0.800 ± 0.068 20 0.789 ± 0.053 4 0.789 ± 0.042 100 0.811 ± 0.053 17 0.808 ± 0.038 10 0.777 ± 0.045 100 0.804 ± 0.041 100 0.819 ± 0.059 100
diabetes 0.775∗ ± 0.013 4 0.756 ± 0.031 98 0.742 ± 0.024 19 0.747 ± 0.028 100 0.770 ± 0.037 28 0.755 ± 0.023 10 0.769 ± 0.020 100 0.761 ± 0.022 100 0.768 ± 0.018 100
german credit 0.795 ± 0.020 16 0.808∗ ± 0.024 68 0.800 ± 0.015 26 0.807 ± 0.012 100 0.801 ± 0.021 24 0.754 ± 0.011 11 0.798 ± 0.017 100 0.804 ± 0.015 100 0.806 ± 0.015 100
heart 0.841 ± 0.043 26 0.822 ± 0.019 34 0.811 ± 0.043 12 0.848∗ ± 0.014 100 0.807 ± 0.028 11 0.804 ± 0.036 12 0.819 ± 0.032 100 0.789 ± 0.042 100 0.833 ± 0.023 100
image 0.851∗ ± 0.009 20 0.844 ± 0.010 40 0.834 ± 0.015 11 0.844 ± 0.006 100 0.804 ± 0.006 8 0.733 ± 0.047 7 0.805 ± 0.012 100 0.840 ± 0.006 100 0.835 ± 0.011 100
ringnorm 0.930 ± 0.003 60 0.931∗ ± 0.004 62 0.927 ± 0.004 58 0.929 ± 0.003 100 0.883 ± 0.008 20 0.877 ± 0.007 16 0.894 ± 0.006 100 0.929 ± 0.005 100 0.926 ± 0.003 100
solar flare 0.703 ± 0.047 7 0.710 ± 0.077 16 0.683 ± 0.091 2 0.738∗ ± 0.071 100 0.724 ± 0.058 10 0.683 ± 0.051 10 0.759 ± 0.031 100 0.724 ± 0.072 100 0.628 ± 0.096 100
splice 0.943 ± 0.009 55 0.943 ± 0.006 92 0.943 ± 0.010 31 0.946∗ ± 0.005 100 0.932 ± 0.011 16 0.918 ± 0.013 9 0.942 ± 0.010 100 0.947 ± 0.006 100 0.943 ± 0.008 100
thyroid 0.940 ± 0.035 5 0.949∗ ± 0.031 8 0.944 ± 0.032 3 0.944 ± 0.032 100 0.944 ± 0.032 4 0.921 ± 0.024 8 0.940 ± 0.032 100 0.935 ± 0.034 100 0.898 ± 0.019 100
titanic 0.806∗ ± 0.015 11 0.790 ± 0.019 93 0.796 ± 0.021 3 0.797 ± 0.019 100 0.793 ± 0.026 16 0.801 ± 0.030 13 0.802 ± 0.035 100 0.808 ± 0.026 100 0.806 ± 0.031 100
twonorm 0.961∗ ± 0.003 60 0.960 ± 0.004 62 0.961∗ ± 0.004 57 0.961∗ ± 0.004 100 0.924 ± 0.004 25 0.950 ± 0.004 43 0.945 ± 0.002 100 0.960 ± 0.004 100 0.954 ± 0.004 100
waveform 0.889∗ ± 0.007 56 0.885 ± 0.008 65 0.889∗ ± 0.005 35 0.888 ± 0.006 100 0.870 ± 0.006 20 0.850 ± 0.003 11 0.880 ± 0.007 100 0.888 ± 0.005 100 0.886 ± 0.004 100
adult 0.814 ± 0.003 16 0.816∗ ± 0.002 39 0.814 ± 0.003 14 0.814 ± 0.003 80 0.816∗ ± 0.002 32 0.814 ± 0.002 14 0.815 ± 0.002 100 0.816 ± 0.002 100 0.816 ± 0.002 100
compas 0.660 ± 0.016 7 0.671 ± 0.018 28 0.660 ± 0.013 5 0.660 ± 0.013 100 0.671 ± 0.018 28 0.673∗ ± 0.016 13 0.671 ± 0.016 100 0.671 ± 0.016 100 0.669 ± 0.017 100
employment CA2018 0.740 ± 0.003 16 0.747∗ ± 0.002 83 0.740 ± 0.003 17 0.740 ± 0.003 61 0.744 ± 0.002 30 0.734 ± 0.003 9 0.723 ± 0.004 100 0.747 ± 0.002 100 0.746 ± 0.002 100
employment TX2018 0.744 ± 0.003 18 0.755∗ ± 0.003 86 0.744 ± 0.003 18 0.744 ± 0.003 76 0.749 ± 0.002 29 0.731 ± 0.005 8 0.731 ± 0.003 100 0.753 ± 0.004 100 0.751 ± 0.002 100
public coverage CA2018 0.680 ± 0.006 4 0.704∗ ± 0.003 88 0.680 ± 0.005 3 0.680 ± 0.006 96 0.704∗ ± 0.003 72 0.704∗ ± 0.003 54 0.695 ± 0.004 100 0.701 ± 0.004 100 0.700 ± 0.004 100
public coverage TX2018 0.834 ± 0.008 4 0.849∗ ± 0.003 100 0.829 ± 0.002 3 0.829 ± 0.002 100 0.848 ± 0.003 52 0.847 ± 0.002 7 0.844 ± 0.003 100 0.850 ± 0.003 100 0.849 ± 0.002 100
mushroom secondary 0.817∗ ± 0.004 62 0.787 ± 0.003 65 0.816 ± 0.004 56 0.816 ± 0.005 71 0.752 ± 0.003 23 0.726 ± 0.003 15 0.739 ± 0.002 100 0.784 ± 0.004 100 0.778 ± 0.004 100

Mean/Median 0.808∗/0.815∗ 22.9/16 0.807/0.804 58.1/63.5 0.801/0.806 18.9/13 0.807/0.810 94.2/100 0.798/0.802 24.1/21.5 0.785/0.778 14.7/11 0.799/0.800 100/100 0.807/0.804 100/100 0.802/0.811 100/100

Observation 5 With decision stumps base learners, NM-Boost and QRLP-Boost achieve the best perfor-
mances of all totally corrective methods, with NM-Boost producing sparser ensembles.

Table 2: Testing accuracy and number of non-zero weights for different boosting methods using CART trees
of depth 5, averaged over five seeds. Bold highlights the best overall accuracy, while a star∗ marks the
best among totally corrective methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost LightGBM

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 12 0.670∗ ± 0.014 1 0.670∗ ± 0.014 1 0.670∗ ± 0.014 100 0.670∗ ± 0.014 2 0.670∗ ± 0.014 48 0.670 ± 0.014 100 0.670 ± 0.014 100 0.670 ± 0.014 100
breast cancer 0.875∗ ± 0.028 9 0.838 ± 0.041 15 0.830 ± 0.027 20 0.819 ± 0.031 100 0.815 ± 0.042 11 0.826 ± 0.060 8 0.811 ± 0.041 100 0.819 ± 0.019 100 0.830 ± 0.032 100
diabetes 0.747 ± 0.012 29 0.753∗ ± 0.020 32 0.714 ± 0.020 67 0.738 ± 0.023 100 0.740 ± 0.025 20 0.734 ± 0.008 14 0.757 ± 0.009 100 0.774 ± 0.021 100 0.758 ± 0.019 100
german credit 0.876 ± 0.024 27 0.884∗ ± 0.029 22 0.866 ± 0.022 77 0.882 ± 0.010 100 0.852 ± 0.024 16 0.841 ± 0.019 12 0.882 ± 0.022 100 0.878 ± 0.027 100 0.887 ± 0.016 100
heart 0.874 ± 0.036 5 0.867 ± 0.046 12 0.863 ± 0.030 43 0.896∗ ± 0.015 100 0.885 ± 0.022 12 0.859 ± 0.030 17 0.893 ± 0.022 100 0.893 ± 0.027 100 0.896 ± 0.019 100
image 0.953 ± 0.002 22 0.948 ± 0.015 23 0.952 ± 0.008 31 0.955∗ ± 0.004 100 0.933 ± 0.011 12 0.914 ± 0.020 33 0.957 ± 0.003 100 0.955 ± 0.007 100 0.957 ± 0.007 100
ringnorm 0.942∗ ± 0.005 93 0.919 ± 0.006 60 0.937 ± 0.005 79 0.939 ± 0.002 100 0.909 ± 0.008 24 0.886 ± 0.004 14 0.921 ± 0.006 100 0.948 ± 0.006 100 0.947 ± 0.002 100
solar flare 0.676∗ ± 0.028 4 0.662 ± 0.051 16 0.641 ± 0.071 1 0.648 ± 0.070 100 0.628 ± 0.063 11 0.648 ± 0.101 11 0.655 ± 0.038 100 0.607 ± 0.099 100 0.593 ± 0.105 100
splice 0.975 ± 0.006 20 0.978 ± 0.005 48 0.979∗ ± 0.007 83 0.979∗ ± 0.006 100 0.976 ± 0.008 21 0.973 ± 0.008 22 0.984 ± 0.004 100 0.980 ± 0.005 100 0.982 ± 0.006 100
thyroid 0.944 ± 0.032 2 0.953∗ ± 0.029 6 0.944 ± 0.019 1 0.944 ± 0.035 100 0.935 ± 0.031 4 0.940 ± 0.035 9 0.944 ± 0.032 100 0.944 ± 0.032 100 0.907 ± 0.025 100
titanic 0.806 ± 0.021 9 0.797 ± 0.017 25 0.794 ± 0.026 23 0.794 ± 0.031 100 0.802 ± 0.018 21 0.812∗ ± 0.030 15 0.803 ± 0.017 100 0.822 ± 0.036 100 0.821 ± 0.019 100
twonorm 0.962∗ ± 0.004 59 0.953 ± 0.003 45 0.960 ± 0.004 82 0.962∗ ± 0.002 100 0.951 ± 0.006 28 0.943 ± 0.005 37 0.965 ± 0.004 100 0.967 ± 0.002 100 0.967 ± 0.005 100
waveform 0.921∗ ± 0.006 75 0.908 ± 0.007 29 0.919 ± 0.014 96 0.917 ± 0.009 100 0.893 ± 0.009 21 0.886 ± 0.007 16 0.923 ± 0.009 100 0.927 ± 0.008 100 0.928 ± 0.010 100
adult 0.816 ± 0.002 72 0.817 ± 0.002 100 0.817 ± 0.001 90 0.817 ± 0.001 96 0.818 ± 0.002 100 0.819∗ ± 0.001 49 0.819 ± 0.001 100 0.820 ± 0.001 100 0.820 ± 0.002 100
compas 0.667 ± 0.012 17 0.669 ± 0.017 78 0.669 ± 0.017 44 0.669 ± 0.014 100 0.670∗ ± 0.017 3 0.668 ± 0.016 40 0.670 ± 0.012 100 0.669 ± 0.014 100 0.669 ± 0.015 100
employment CA2018 0.746 ± 0.002 69 0.751 ± 0.003 100 0.748 ± 0.001 75 0.748 ± 0.003 75 0.752∗ ± 0.001 82 0.742 ± 0.003 18 0.748 ± 0.001 100 0.755 ± 0.001 100 0.754 ± 0.002 100
employment TX2018 0.759 ± 0.001 85 0.762∗ ± 0.002 99 0.759 ± 0.003 90 0.760 ± 0.001 91 0.761 ± 0.003 64 0.747 ± 0.005 17 0.758 ± 0.003 100 0.764 ± 0.003 100 0.765 ± 0.004 100
public coverage CA2018 0.702 ± 0.011 30 0.707 ± 0.004 100 0.713 ± 0.003 100 0.713 ± 0.002 100 0.715∗ ± 0.003 100 0.707 ± 0.003 20 0.716 ± 0.002 100 0.718 ± 0.003 100 0.716 ± 0.002 100
public coverage TX2018 0.851 ± 0.001 22 0.853∗ ± 0.002 91 0.852 ± 0.003 99 0.849 ± 0.001 100 0.853∗ ± 0.003 44 0.850 ± 0.001 13 0.851 ± 0.003 100 0.856 ± 0.003 100 0.855 ± 0.003 100
mushroom secondary 0.999∗ ± 0.000 51 0.987 ± 0.002 31 0.999∗ ± 0.001 81 0.999∗ ± 0.000 86 0.936 ± 0.008 19 0.940 ± 0.035 43 0.998 ± 0.000 100 0.999 ± 0.000 100 0.999 ± 0.000 100

Mean/Median 0.838∗/0.863∗ 35.6/24.5 0.834/0.845 46.6/31.5 0.831/0.841 59.1/76 0.835/0.834 97.4/100 0.825/0.835 30.8/20.5 0.820/0.833 22.8/17 0.836/0.835 100/100 0.838/0.839 100/100 0.836/0.843 100/100

As the depth of the decision trees increases, we observe a shift in the relative performance of the boosting
methods. Table 2, which reports results for depth-5 trees, illustrates this trend. These findings suggest
that deeper trees tend to favor traditional heuristic methods such as XGBoost and LightGBM. Nevertheless,
totally corrective methods —NM-Boost in particular— remain competitive, especially in terms of the trade-
off between testing accuracy and ensemble sparsity. This pattern becomes even more apparent for depth-10
trees (Appendix D.2): as tree depth increases further, the trade-offs between ensemble size and accuracy
grow more pronounced. We observe a gradual increase in the testing accuracy of the benchmarked heuristic
boosting methods as tree depth increases. Nonetheless, for most datasets, the difference relative to the
totally corrective boosting methods remains statistically insignificant, while the latter consistently yield
much sparser ensembles. Specifically, for depth-5 trees, only 3 out of 20 datasets showed a statistically
significant improvement in testing accuracy of heuristic methods over totally corrective ones. For depth-10
trees, this number increased slightly to 5 out of 20. In contrast, the totally corrective methods significantly
outperformed the heuristic ones on 1 out of 20 datasets for both depths.

Observation 6 As the depth of decision trees increases, the relative accuracy of totally corrective boosting
methods declines compared to heuristic ones. However, on most datasets, differences in testing accuracy are
not statistically significant, while totally corrective methods consistently produce much sparser ensembles.

11

Published in Transactions on Machine Learning Research (10/2025)

Observation 7 NM-Boost remains the most accurate totally corrective boosting method with depth-3 and
depth-5 trees. With depth-10 trees, CG-Boost and ERLP-Boost match its accuracy but produce significantly
larger ensembles.

6.2 Anytime Performance

We now evaluate the anytime performance of the different boosting methods, i.e., how their testing accuracy
evolves over the iterations. To maintain readability and conserve space, we present results for two represen-
tative datasets and a focused subset of methods. The remaining results follow the same trends (in particular,
supporting all our drawn observations) and will be released alongside our source code.

Figure 2 shows the testing accuracy of the considered boosting approaches at each iteration —i.e., after the
addition of each new base learner— on the image dataset, across different decision tree depths. We observe
that performance differences are more pronounced for shallower trees (e.g., depth 1) and tend to diminish
as tree depth increases (e.g., depth 10). This suggests that the strategy used to generate and aggregate base
learners has a greater impact when the individual learners are weak.

Observation 8 Differences in anytime performance between boosting approaches are most pronounced when
using shallow trees. With decision stumps, totally corrective methods significantly outperform heuristic meth-
ods —especially Adaboost— during the early iterations.

Furthermore, in the early iterations, totally corrective methods outperform the heuristic benchmarks. This
trend is reversed on the ringnorm dataset (Figure 3), where XGBoost and LightGBM consistently outperform
the totally corrective methods across all tree depths except depth 10. These results suggest that the ability
of each boosting approach to accurately fit the data in early iterations is dataset-dependent. Interestingly,
even when using deeper trees, totally corrective boosting methods often yield better performance in early
iterations, although heuristic methods tend to catch up quickly as more learners are added.

NM-Boost QRLP-Boost LP-Boost Adaboost XGBoost lightGBM

0 20 40 60 80 100
Iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on image

0 20 40 60 80 100
Iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on image

0 20 40 60 80 100
Iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on image

0 20 40 60 80 100
Iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on image

Figure 2: Anytime behavior on the image dataset for selected methods (all other methods in gray), for
CART decision trees of depth 1, 3, 5, and 10. Error bars indicate the standard deviation over 5 seeds.

12

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost Adaboost XGBoost lightGBM

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on ringnorm

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on ringnorm

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on ringnorm

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on ringnorm

Figure 3: Anytime behavior on the ringnorm dataset for selected methods (all other methods in gray), for
CART decision trees of depth 1, 3, 5, and 10. Error bars indicate the standard deviation over 5 seeds.

Observation 9 When using deeper CART trees as base learners, totally corrective methods often achieve
better early-stage performance than heuristic approaches —though the latter typically converge to slightly
higher final accuracy.

The anytime performance of the boosting approaches may also be influenced by how the individual trees
are constructed in the underlying algorithms. Indeed, XGBoost and LightGBM both use a custom leaf-wise
growth strategy to build their base learners, while all other methods use a depth-wise approach (CART) to
construct each decision tree. We observe that XGBoost and LightGBM perform significantly worse than the
other methods during the initial iterations when using decision trees deeper than decision stumps. Their
performance typically catches up to that of the other methods after around 10 iterations. This behavior is
illustrated, for example, on the adult dataset, with detailed results provided in Appendix D.3.

6.3 Ensemble Sparsity

We now analyze ensemble sparsity, defined as the number of base learners with non-zero weights in the
final ensemble. We exclude XGBoost and LightGBM from this analysis, as they use stage-wise additive
boosting with implicit weights. In these methods, each tree contributes to the final prediction through its
leaf values, scaled by the learning rate, and all trees remain active in the ensemble. Figure 4 presents
barcharts showing the assigned weight of each tree across different methods for four representative datasets.
The results reveal substantial variation in sparsity across methods. As expected, Adaboost always uses all
trees by design, since it is not totally corrective and assigns weights sequentially. Surprisingly, CG-Boost
—despite being a totally corrective method and an extension of LP-Boost with a regularization term on the
ensemble weights— often uses all trees as well. This observation is consistent with prior findings in Roy
et al. (2016) and suggests that CG-Boost’s regularization may not sufficiently promote sparsity in practice.
Other totally corrective methods are able to obtain the same or better performance with significantly fewer
trees. Notably, NM-Boost, LP-Boost, and ERLP-Boost frequently yield sparse ensembles without sacrificing
predictive accuracy. QRLP-Boost occasionally produces sparse ensembles but is less consistent —for example,

13

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Acc: 0.819∗

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Acc: 0.800

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Acc: 0.789

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Acc: 0.789

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

Acc: 0.811

0 20 40 60 80 100
0

10

20

30

40

50

Acc: 0.808

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Acc: 0.777

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Acc: 0.795

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

Acc: 0.808∗

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

Acc: 0.800

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Acc: 0.807

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Acc: 0.801

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Acc: 0.754

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Acc: 0.798

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

Acc: 0.943

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

Acc: 0.943

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

Acc: 0.943

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

Acc: 0.946∗

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Acc: 0.932

0 20 40 60 80 100
0

10

20

30

40

50

Acc: 0.918

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Acc: 0.942

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Acc: 0.961∗

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Acc: 0.960

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Acc: 0.961∗

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Acc: 0.961∗

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

Acc: 0.924

0 20 40 60 80 100
0

10

20

30

40

50

Acc: 0.950

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Acc: 0.945

Figure 4: Ensemble weights for four datasets (top to bottom: breast cancer, german credit, splice,
and twonorm) and depth 1 CART trees for totally corrective methods and Adaboost, over 5 seeds. Bold
highlights the best overall accuracy, while a star∗ marks the best among totally corrective methods.

on the splice dataset, it assigns non-zero weights to all 100 trees. MD-Boost generates the sparsest ensembles
overall, but this comes at the cost of noticeably reduced accuracy. NM-Boost consistently produces sparser
ensembles than QRLP-Boost, as its objective implicitly promotes selecting only trees that perform well.

Observation 10 The methods that structurally return the sparsest ensembles while maintaining competitive
accuracy are NM-Boost, LP-Boost, and ERLP-Boost.

6.4 Margin Analysis

As mentioned in Section 3, most totally corrective methods, including those proposed in this work, focus on
optimizing the margins. In this section, we analyze the cumulative margin distribution of the methods on
the test data. This allows us to compare not only the proportion of misclassified instances (i.e., those with
negative margins) but also the structure of the decision boundaries induced by different methods.

First, we consider the margins of the boosting methods with tree depths of 1, 3, and 5, for various datasets.
Figure 5 shows the cumulative margin distributions on the german credit and ringnorm datasets. We observe
that the minimum margin of the methods across the depths is not directly linked to test accuracy, echoing
the insights of Shen & Li (2010). Similarly, the variance of the margin distribution does not appear to be the
primary driver of performance: for example, QRLP-Boost often yields lower margin variance across depths,
yet it is not always the top-performing method. This supports the doubts raised by Breiman (1999) and
further discussed in Gao & Zhou (2013). QRLP-Boost and NM-Boost generally achieve the lowest margin
variance, although this difference vanishes with deep decision trees, aligning with the absence of significant
performance differences in that regime.

Observation 11 Differences in performance across boosting methods cannot be fully explained by their
margin distribution. Methods with a heavy right-tail of the distribution (high confidence on correctly classified
data points) do not necessarily have the highest accuracy and lowest minimum margin.

Next, we take a closer look at NM-Boost and QRLP-Boost, and analyze how their margin distributions
for the test data change for different values of their tradeoff hyperparameter (C). As a comparison, we
also plot the margin distribution of Adaboost for different values of its hyperparameter (learning rate). We

14

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost lightGBM

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost lightGBM

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 1 Margin Distributions on german credit

0.25 0.20 0.15 0.10 0.05 0.00

0.00

0.05

0.10

0.15

0.20

0.25

QRLP-Boost 0.808∗

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 1 Margin Distributions on ringnorm

0.10 0.08 0.06 0.04 0.02 0.00

0.00

0.02

0.04

0.06

0.08

0.10

QRLP-Boost 0.931∗

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions on german credit

0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

NM-Boost 0.878∗

LightGBM 0.881

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions on ringnorm

0.10 0.08 0.06 0.04 0.02 0.00

0.00

0.02

0.04

0.06

0.08

0.10

QRLP-Boost, CG-Boost 0.935∗

XGBoost 0.943

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 5 Margin Distributions on german credit

0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

QRLP-Boost 0.884∗

LightGBM 0.887

0.2 0.0 0.2 0.4 0.6 0.8
Scaled Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 5 Margin Distributions on ringnorm

0.30 0.25 0.20 0.15 0.10 0.05 0.00

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

NM-Boost 0.942∗

XGBoost 0.948

Figure 5: Test data margin distribution for german credit (left column plots) and ringnorm (right
column plots) datasets using CART trees of depths 1, 3, and 5, over 5 seeds. Bold highlights the best
overall accuracy, while a star∗ marks the best among totally corrective methods.

15

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost Adaboost

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions NM-Boost on german credit
Hyperparameters

1e 04
5e-02
1e-01
2e-01
2e-01
3e-01
3e-01
4e-01
4e-01
5e-01

0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Acc.
NM-Boost 0.878∗

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions NM-Boost on ringnorm
Hyperparameters

1e 04
5e-02
1e-01
2e-01
2e-01
3e-01
3e-01
4e-01
4e-01
5e-01

0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Acc.
NM-Boost 0.934

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions QRLP-Boost on german credit
Hyperparameters

0.0010M
0.0076M
0.0141M
0.0207M
0.0272M
0.0338M
0.0403M
0.0469M
0.0534M
0.0600M

0.12 0.10 0.08 0.06 0.04 0.02 0.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Acc.
QRLP-Boost 0.856

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions QRLP-Boost on ringnorm
Hyperparameters

0.0001M
0.0068M
0.0134M
0.0201M
0.0267M
0.0334M
0.0400M
0.0467M
0.0533M
0.0600M

0.030 0.025 0.020 0.015 0.010 0.005 0.000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Acc.
QRLP-Boost 0.935∗

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions AdaBoost on german credit
Hyperparameters

1e-03
1e-01
2e-01
3e-01
4e-01
6e-01
7e-01
8e-01
9e-01
1e + 00

0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

0.00

0.05

0.10

0.15

0.20

0.25

Acc.
Adaboost 0.875

0.2 0.0 0.2 0.4 0.6 0.8
Margin

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity

Depth 3 Margin Distributions AdaBoost on ringnorm
Hyperparameters

1e-03
1e-01
2e-01
3e-01
4e-01
6e-01
7e-01
8e-01
9e-01
1e + 00

0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Acc.
Adaboost 0.906

Figure 6: Test margin distribution over the hyperparameter for german credit (left column plots) and
ringnorm (right column plots) datasets using depth 3 CART trees, over 5 seeds. The best hyperparameter
value is marked bold in the legend. Bold accuracy highlights the best overall, while a star∗ marks the best
among totally corrective methods. The legend’s outline color indicates the used formulation.

display in Figure 6 the margin distributions for depth-3 trees, again for the german credit and ringnorm
datasets. Remember that for NM-Boost, the hyperparameter C controls the tradeoff between reducing
negative margins and increasing the sum of margins. Lower values of C focus on reducing the negative
portion of the margin distribution, thereby minimizing misclassifications, whereas higher values enhance
generalization by increasing the positive margins. For QRLP-Boost, C controls the balance between the
quadratic regularization of sample weights and the original LP-Boost linear worst-case margin.

16

Published in Transactions on Machine Learning Research (10/2025)

For NM-Boost, the hyperparameter has a direct and large effect on the variance of margin distributions:
larger values of C place more emphasis on maximizing the sum of margins (i.e., assigning more weight to
confidently classified examples), which leads to a wider spread in margin values and thus higher variance.

For QRLP-Boost, we observe a smaller impact on variance but a more noticeable effect on the smoothness
of the margin distribution: increasing C tightens the upper bound on individual sample weights, effectively
increasing the regularization on the distribution. This promotes smoother distributions and moves the
objective further from that of standard LP-Boost.

Interestingly, for NM-Boost, lower variance in the margin distribution tends to correlate with better gen-
eralization on the test set, which is analogous to insights in Shen & Li (2010). However, this result is not
necessarily confirmed by the earlier results in Figure 5. The same goes for QRLP-Boost: a smoother curve
does not necessarily yield better generalization. If we look at the Adaboost margins, this is confirmed, as
the best performance is not at the lowest variance margin distribution.

Observation 12 Margin distribution variance is not necessarily correlated with testing accuracy.

6.5 Hyperparameter Sensitivity

We further evaluate the sensitivity of methods to their hyperparameter. To do so, we plot the testing
accuracy and number of used columns (as before) but now for all hyperparameter values, instead of only the
best found on the validation data. We hereafter focus on two representative datasets, and plot results for all
remaining ones in Appendix D.4. Figure 7 shows the performance of totally corrective boosting approaches
on the ringnorm and mushroom secondary datasets using depth-1 and depth-5 trees. Across all 20 datasets,
we consistently observe a trade-off between sparsity and testing accuracy. The interesting finding is that

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 1 Accuracy vs Columns (ringnorm hyperparams)

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 5 Accuracy vs Columns (ringnorm hyperparams)

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 1 Accuracy vs Columns (mushroom secondary hyperparams)

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 5 Accuracy vs Columns (mushroom secondary hyperparams)

Figure 7: Average testing accuracy compared to average ensemble sparsity over two datasets (top: ringnorm,
bottom: mushroom secondary) and all hyperparameter values for depth 1 (left) and depth 5 (right)
CART tree base learners, over 5 seeds.

17

Published in Transactions on Machine Learning Research (10/2025)

each method occupies a different point along this Pareto front3, highlighting distinct performance–sparsity
trade-offs. CG-Boost often lies on the rightmost part of the front, yielding ensembles that perform well
but use most of the generated base learners. LP-Boost, QRLP-Boost, ERLP-Boost, and NM-Boost offer
an interesting range of trade-offs, as they are often able to improve sparsity while preserving predictive
performance. Overall, we observe that the different totally corrective approaches are complementary, i.e.,
they are placed in different parts of the Pareto front, and the selection of the method may be determined
based on the specific accuracy-sparsity tradeoff requirement per dataset.

Observation 13 We observe a clear trade-off between accuracy and sparsity, and most methods are placed
on the Pareto front of both metrics, i.e., they build non-dominated ensembles.

For depth-5 trees, Figure 7 shows that MD-Boost is often dominated, i.e., there is always a method that
finds better accuracy and sparsity. However, its best-performing hyperparameter typically lies on the frontier,
underscoring the importance of careful tuning. In MD-Boost, the hyperparameter C governs the trade-off
between maximizing the first moment and minimizing the second moment of the margin distribution. As
also highlighted in Demiriz et al. (2002), LP-Boost is prone to degenerate solutions when the set of weak
learners is small. Moreover, it is highly sensitive to its hyperparameter: for a high value of C, LP-Boost
reverts to hard-margin behavior, reintroducing the issues identified in Grove & Schuurmans (1998). These
effects are clearly visible in Figure 7 (leftmost points, with trivial accuracy) and are consistent across the
other datasets.

Observation 14 Hyperparameter tuning is crucial for some totally corrective boosting approaches —
particularly MD-Boost and LP-Boost— as unsuitable values of their trade-off parameter can lead to poorly
performing ensembles.

6.6 Reweighting Behavior

We now consider a post-processing experiment where an ensemble of 100 trees is first generated using
Adaboost. Each totally corrective method is then applied in a single shot to reweight this fixed ensemble,
i.e., to optimize the base learner weights without generating new ones. Our goal is to assess whether
totally corrective reweighting can yield sparser or more accurate ensembles compared to the original heuristic
solution. Related work has shown promise in post-processing Adaboost ensembles, see Emine et al. (2025).
As previously, this experiment is conducted for tree depths of 1, 3, 5, and 10. Figure 8 shows the average
performance across all datasets, while Appendix D.5 details all results per dataset.

First, we observe that totally corrective methods can slightly improve the predictive performance of the
original Adaboost ensembles, in terms of testing accuracy (particularly when using decision stumps) and
in terms of accuracy-sparsity tradeoff. For deeper trees (depth 10), reweighting generally does not allow
significant performance improvements. Overall, totally corrective methods appear as a viable strategy to
thin existing ensembles while keeping up performance, especially for shallow tree ensembles.

Observation 15 Totally corrective methods can be an effective post-processing strategy to sparsify existing
ensembles while preserving —or modestly improving— their predictive performance.

However, the reweighted ensembles consistently underperform compared to those natively generated by the
totally corrective methods (Figure 1). This indicates that the strength of totally corrective boosting lies not
only in its base learner weight optimization, but also in its ability to iteratively generate informative base
learners. The performance gains observed with totally corrective methods result from this joint optimization
over both base learner selection and weight assignment.

6.7 Effect of Confidence-Rated Voting

Following the proposal by Demiriz et al. (2002), we investigate the impact of confidence-rated voting in
boosting ensembles. In that setting, each base learner hj no longer outputs a binary label (hj : X 7→

3In multi-objective optimization, the Pareto front contains non-dominated solutions — none improve one objective without
worsening another. Here, an ensemble is non-dominated if accuracy or sparsity cannot improve without degrading the other.

18

Published in Transactions on Machine Learning Research (10/2025)

20 40 60 80 100
Average Number of Columns Used

0.786

0.788

0.790

0.792

0.794

0.796

0.798

0.800

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-Boost

LP-Boost
CG-BoostERLP-Boost

MD-Boost

Adaboost

Test Accuracy vs Ensemble Sparsity on Depth 1

30 40 50 60 70 80 90 100
Average Number of Columns Used

0.810

0.815

0.820

0.825

0.830

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-Boost
LP-Boost CG-Boost

ERLP-Boost

MD-Boost

Adaboost
Test Accuracy vs Ensemble Sparsity on Depth 3

30 40 50 60 70 80 90 100
Average Number of Columns Used

0.822

0.824

0.826

0.828

0.830

0.832

0.834

0.836

0.838

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost
QRLP-Boost

LP-Boost
CG-Boost

ERLP-Boost

MD-Boost

Adaboost
Test Accuracy vs Ensemble Sparsity on Depth 5

20 40 60 80 100
Average Number of Columns Used

0.824

0.826

0.828

0.830

0.832

0.834

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

QRLP-BoostLP-Boost

CG-Boost

ERLP-Boost

MD-Boost

Adaboost

Test Accuracy vs Ensemble Sparsity on Depth 10

Figure 8: Reweighting of an existing Adaboost ensemble of 100 trees: average testing accuracy compared to
average ensemble sparsity over all datasets for decision trees of depth 1, 3, 5, and 10.

{−1, +1}), but rather a real-valued score (hj : X 7→ [−1, 1]) representing its confidence in the prediction.
These scores are typically derived from the class proportions in the training examples reaching each leaf
during tree construction. Confidence-rated outputs allow for finer-grained voting, where each tree contributes
proportionally to (an estimate of) its certainty.

Figure 9 provides a summary of the results using boxplots across datasets. Additional analyses —including
anytime performance, as well as sparsity–accuracy trade-offs on individual datasets— are presented in Ap-
pendix D.6. In line with the observations of Demiriz et al. (2002), we find no significant improvement in
final test performance when using confidence-rated trees as opposed to standard CART trees. However, we
do observe that the relative final performance of the methods sometimes slightly changes. For instance, MD-
Boost often benefits from confidence-rated outputs, while QRLP-Boost and ERLP-Boost tend to degrade
in performance when using confidence-rated decision stumps. This likely stems from the limited capacity
of shallow trees to produce meaningful confidence estimates. For deeper trees, these effects diminish. For
the remaining methods, performance differences between binary and confidence-rated voting are negligible.
Appendix D.6 further shows that confidence-rated outputs do not consistently improve anytime performance.
That said, for moderately deep trees (depths 3 and 5), we occasionally observe slightly improved anytime
behavior of confidence-rated trees in the early iterations, especially for NM-Boost, QRLP-Boost, LP-Boost
and ERLP-Boost.

Observation 16 We do not observe a significant performance difference when using confidence-rated trees
versus normal CART trees.

7 Experiments with Optimal Trees as Base Learners

Thus far, we have relied on the popular CART heuristic algorithm to generate decision tree base learners.
In this section, we evaluate the impact of replacing CART with optimal decision trees (ODTs) instead,

19

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost
10.0%

7.5%

5.0%

2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Confidence-Rated CART over CART (Depth 1)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost
10.0%

7.5%

5.0%

2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Confidence-Rated CART over CART (Depth 3)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost
10.0%

7.5%

5.0%

2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Confidence-Rated CART over CART (Depth 5)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost
10.0%

7.5%

5.0%

2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Confidence-Rated CART over CART (Depth 10)

Figure 9: Boxplot showing relative improvement of using confidence-rated CART trees over regular CART
trees in the trained ensembles over all datasets, for decision trees of depth 1, 3, 5, and 10, over 5 seeds.
For visualization purpose, a few extreme outliers were removed.

leveraging recent advances in ODTs learning algorithms. Indeed, in the last years, the scalability of these
algorithms has improved, making them a suitable alternative to heuristics like CART (van der Linden et al.,
2025). Examples of these scalable algorithms are LDS-DL8.5 (Kiossou et al., 2022), MurTree (Demirović
et al., 2022), and Blossom (Demirović et al., 2023). For a broader empirical analysis of ODTs, we refer to
van der Linden et al. (2025). We decide to conduct experiments with Blossom, due to its memory efficiency
at deeper depths and its native support for sample weighting. Blossom maximizes the training accuracy
given the maximum tree depth.

To our knowledge, the only prior study evaluating ensembles with optimal trees is Aglin et al. (2021), who
investigate LP-Boost and MD-Boost on a limited number of small datasets (up to 958 data points) with
trees of depth at most 3. They show that on some datasets, optimal trees can improve performance, but
they might also decrease performance on others. They conclude that the objective of the totally corrective
method has a large effect on the performance of optimal decision tree ensembles. Our findings support this
conclusion: we see significant variation in the effect of optimal decision trees on the performance of totally
corrective methods.

Figure 10 shows the anytime behavior of NM-Boost, QRLP-Boost, and LP-Boost on the ringnorm dataset.
In general, we find that the final test accuracy when using optimal decision trees is often lower than with
CART trees. However, in early iterations, ensembles using optimal decision trees often outperform those
using CART. This behavior is consistent across other datasets and totally corrective formulations. This
suggests that optimal trees may be individually stronger, making a small number of them more effective
than a small number of CART trees. However, their reduced diversity may hinder the ensemble’s overall
performance as more trees are added.

20

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on ringnorm

0 20 40 60 80 100
Iterations

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on ringnorm

0 20 40 60 80 100
Iterations

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on ringnorm

Figure 10: Anytime behavior of several totally corrective boosting methods on the ringnorm dataset, using
base learner decision trees of depth 1, 3, or 5 trained either with CART (full line) or with an optimal
algorithm (dashed line), the error bars indicate standard deviation over 5 seeds.

Observation 17 Only in the first iterations do optimal decision tree ensembles outperform those built with
CART trees.

Figure 11 illustrates the improvement in predictive performance (aggregated over all datasets) achieved when
using ODTs instead of CART trees in the trained ensembles. The results confirm that ODTs negatively
affect the final performance of the totally corrective methods, especially for shallow trees. In contrast, the
performance of Adaboost remains largely unaffected. These findings refine and extend the observations from
Aglin et al. (2021): although performance improvements can occasionally be observed on specific datasets,
the average effect of using ODTs is a reduction in ensemble performance. Detailed per-dataset results that
support these conclusions are provided in Appendix D.7.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

40%

30%

20%

10%

0%

10%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Optimal Trees over CART (Depth 1)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

40%

30%

20%

10%

0%

10%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Optimal Trees over CART (Depth 3)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

40%

30%

20%

10%

0%

10%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Optimal Trees over CART (Depth 5)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

40%

30%

20%

10%

0%

10%

Re
la

tiv
e

Te
st

in
g

Ac
cu

ra
cy

 D
iff

er
en

ce

Testing Accuracy Improvement of Optimal Trees over CART (Depth 10)

Figure 11: Relative improvement of the testing accuracy of boosting approaches when using optimal decision
trees vs. CART trees over all datasets, for depth 1, 3, 5, and 10 tree ensembles, over 5 seeds.

21

Published in Transactions on Machine Learning Research (10/2025)

Observation 18 Across all tree depths and nearly all datasets, the final performance of totally corrective
methods is degraded when using optimal decision trees compared to heuristic CART trees.

We conjecture that this performance drop results from increased correlation among base learners when using
optimal decision trees. Boosting is most effective when the base learners are diverse —i.e., low correlation
between base learners— which is typically achieved when these learners are weak, exhibiting high bias and
low variance. In contrast, optimal decision trees are likely stronger individual predictors with lower bias,
but their construction leads to less diversity across iterations. This reduced diversity may ultimately hinder
the ensemble’s overall predictive performance.

Interestingly, this degradation in performance is not observed for Adaboost. Using optimal decision trees
neither improves nor harms its predictive accuracy. A possible explanation is that Adaboost updates the
ensemble stage-wise, without re-optimizing the weights of previously added trees, thereby preserving early
diversity. In contrast, totally corrective methods reweight all trees at each iteration, eventually assigning zero
weight to underperforming base learners. This can amplify tree similarity. In other words, while Adaboost’s
heuristic strategy may buffer against the reduced diversity of optimal trees, totally corrective approaches
—though more principled— may exacerbate it.

8 Conclusions

In this paper, we conducted an extensive empirical study of totally corrective boosting methods based on
column generation. We compared four existing methods, two novel formulations, and three state-of-the-art
heuristic baselines across 20 datasets, varying tree depth and base learners. Our evaluation focused on two
key dimensions: testing accuracy and sparsity of the ensemble. We found that totally corrective methods can
outperform or match heuristic benchmarks, especially when using shallow trees. With decision stumps —the
common default in boosting— the proposed NM-Boost and QRLP-Boost achieved the best performance
among totally corrective methods, with NM-Boost achieving state-of-the-art accuracy using significantly
fewer trees.

As tree depth increases, heuristic methods such as XGBoost and LightGBM tend to gain an advantage
in predictive performance. Nevertheless, totally corrective methods remain competitive and often offer a
favorable accuracy-sparsity trade-off. We observed that the best-performing methods are typically those
that balance ensemble size with careful margin-based optimization, especially NM-Boost, LP-Boost, and
QRLP-Boost. These methods often lie on the Pareto frontier between accuracy and sparsity, achieving high
accuracy with compact ensembles.

Our margin analysis revealed that neither minimum margin nor margin variance alone is sufficient to explain
generalization behavior. QRLP-Boost often yields smooth margin distributions, while NM-Boost promotes
focus on misclassified datapoints. Yet, both strategies can generalize well, depending on the dataset. We also
studied hyperparameter sensitivity and found that while most totally corrective methods are stable under
tuning, their performance can be strongly influenced by it. In particular, MD-Boost and LP-Boost can suffer
when their hyperparameters are not well aligned with the dataset.

We further evaluated the reweighting ability of totally corrective methods in a post-processing scenario,
where they reassign weights to pre-trained Adaboost ensembles. While this procedure can improve sparsity
and sometimes accuracy, it does not match the performance of fully-trained totally corrective ensembles.
This underscores that the strength of totally corrective approaches lies not just in weight optimization, but
also in the dynamic generation of new base learners during training.

When replacing CART trees with optimal decision trees, we found that performance often drops, particularly
for totally corrective methods. This effect is likely caused by reduced diversity among the optimally con-
structed trees, leading to higher correlation and lower ensemble variance. Interestingly, Adaboost is largely
unaffected by this, possibly because its stage-wise training preserves early diversity.

Our study has a few limitations. All methods were trained using the same base learners (CART or Blossom) to
ensure fairness, though this may favor or disadvantage certain approaches. Despite extensive hyperparameter
tuning, some methods may benefit from even finer calibration. Finally, our conclusions are based on binary

22

Published in Transactions on Machine Learning Research (10/2025)

classification problems and may not fully transfer to regression, multi-class settings, or real-world applications
with different structures.

Future work could explore more flexible formulations that adapt ensemble size to the strength of individ-
ual learners, or investigate how different types of base learners (e.g., mixed CART and optimal trees or
CART trees of different depths) can be used together. Studying totally corrective methods in regression and
multi-class tasks, stopping criteria, and applying these techniques in practical domains are also promising
directions. Our reweighting experiments also motivate further research into voting schemes, ensemble thin-
ning, and hybrid strategies combining heuristic and totally corrective learning to achieve both sparsity and
performance.

Broader Impact Statement

Some of the datasets used in our experiments (in particular, adult and compas propublica) contain sensitive
attributes and are known to reflect societal biases. We stress that our use of these datasets is for method-
ological benchmarking, with no intention for the trained models to be directly deployed. We caution against
an uncritical application of our work and emphasize that any real-world use in sensitive domains should
be accompanied by thorough fairness assessments and, where necessary, appropriate mitigation strategies.
Finally, we argue that sparse ensembles —such as those obtained through linear programming boosting
approaches— offer practical advantages for the detection and auditing of potential biases.

Acknowledgments

This work used the Dutch national e-infrastructure with the support of the SURF Cooperative using grant
no. EINF-13069. It was also enabled by support provided by Calcul Québec and the Digital Research
Alliance of Canada, the SCALE AI Chair in Data-Driven Supply Chains, and the Fonds de recherche du
Québec – Nature et technologies (FRQNT) through a Team Research Project (327090). We thank Gurobi
Optimization for extending our license to support large-scale experiments.

References
G. Aglin, S. Nijssen, and P. Schaus. Assessing Optimal Forests of Decision Trees. In 2021 IEEE 33rd

International Conference on Tools with Artificial Intelligence (ICTAI), pp. 32–39. IEEE Computer Society,
2021.

J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M.
Rivas, J.C. Fernández, and F. Herrera. Keel: a software tool to assess evolutionary algorithms for data
mining problems. Soft Computing, 13(3):307–318, 2009.

J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. García. Keel data-mining software tool: Data set
repository, integration of algorithms and experimental analysis framework. J. Multiple Valued Log. Soft
Comput., 17:255–287, 2011.

V. Aziz, O. Wu, I. Nowak, E.M.T. Hendrix, and J. Kronqvist. On optimizing ensemble models using column
generation. Journal of Optimization Theory and Applications, 203(2):1794–1819, 2024.

P. Bartlett, Y. Freund, W.S. Lee, and R.E. Schapire. Boosting the margin: a new explanation for the
effectiveness of voting methods. The Annals of Statistics, 26(5):1651 – 1686, 1998.

B. Becker and R. Kohavi. Adult. UCI Machine Learning Repository, 1996.

J. Bi, T. Zhang, and K.P. Bennett. Column-generation boosting methods for mixture of kernels. In Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’04, pp. 521–526. Association for Computing Machinery, 2004.

C.S. Bojer and J.P. Meldgaard. Kaggle forecasting competitions: An overlooked learning opportunity.
International Journal of Forecasting, 37(2):587–603, 2021.

23

Published in Transactions on Machine Learning Research (10/2025)

V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci. Deep neural networks and
tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems, 35(6):7499–7519,
2024.

L. Breiman. Prediction games and arcing algorithms. Neural Comput., 11(7):1493–1517, 1999.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794.
ACM, 2016.

S. Datta, S. Nag, and S. Das. Boosting with lexicographic programming: Addressing class imbalance without
cost tuning. IEEE Transactions on Knowledge and Data Engineering, 32(5):883–897, 2020.

A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation.
Machine Learning, 46(1):225–254, 2002.

E. Demirović, A. Lukina, E. Hebrard, J. Chan, J. Bailey, C. Leckie, K. Ramamohanarao, and P.J. Stuckey.
Murtree: Optimal decision trees via dynamic programming and search. Journal of Machine Learning
Research, 23(26):1–47, 2022.

E. Demirović, E. Hebrard, and L. Jean. Blossom: an anytime algorithm for computing optimal decision trees.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 7533–7562. PMLR, 2023.

F. Ding, M. Hardt, J. Miller, and L. Schmidt. Retiring adult: new datasets for fair machine learning. In
Proceedings of the 35th International Conference on Neural Information Processing Systems, NIPS ’21.
Curran Associates Inc., 2024.

Y. Emine, A. Forel, I. Malek, and T. Vidal. Free lunch in the forest: Functionally-identical pruning of boosted
tree ensembles. Proceedings of the AAAI Conference on Artificial Intelligence, 39(16):16488–16495, 2025.

C. Feng, A. Sutherland, S. King, S. Muggleton, and R. Henery. Statlog project, 1993.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings of the Thir-
teenth International Conference on International Conference on Machine Learning, ICML’96, pp. 148–156.
Morgan Kaufmann Publishers Inc., 1996.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

W. Gao and Z. Zhou. On the doubt about margin explanation of boosting. Artificial Intelligence, 203:1–18,
2013.

A.J. Grove and D. Schuurmans. Boosting in the limit: maximizing the margin of learned ensembles. In
Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, AAAI ’98/IAAI ’98, pp. 692–699, USA, 1998. American Association for Artificial
Intelligence.

T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class adaboost. Statistics and its Interface, 2(3):349–360,
2009.

C. Hinrichs, V. Singh, L. Mukherjee, G. Xu, M.K. Chung, and S.C. Johnson. Spatially augmented LPboosting
for AD classification with evaluations on the ADNI dataset. NeuroImage, 48(1):138–149, 2009.

H. Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: with Applications
in R. Springer, 2013.

A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano. Heart Disease. UCI Machine Learning Repository,
1989.

24

Published in Transactions on Machine Learning Research (10/2025)

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu. LightGBM: A highly efficient
gradient boosting decision tree. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

M. Kelly, R. Longjohn, and K. Nottingham. The UCI machine learning repository, 2025.

H.S. Kiossou, P. Schaus, S. Nijssen, and V.R. Houndji. Time constrained DL8.5 using limited discrepancy
search. In ECML/PKDD (5), 2022.

S. Makridakis, E. Spiliotis, and V. Assimakopoulos. M5 accuracy competition: Results, findings, and con-
clusions. International Journal of Forecasting, 38(4):1346–1364, 2022. Special Issue: M5 competition.

S. Makridakis, E. Spiliotis, R. Hollyman, F. Petropoulos, N. Swanson, and A. Gaba. The M6 forecasting
competition: Bridging the gap between forecasting and investment decisions. International Journal of
Forecasting, 2024.

R. Mitsuboshi, K. Hatano, and E. Takimoto. Boosting as Frank-Wolfe. In OPT 2022: Optimization for
Machine Learning (NeurIPS 2022 Workshop), 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

R. Quinlan. Thyroid Disease. UCI Machine Learning Repository, 1986.

C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, and R. Tib-
shirani. DELVE: Data for evaluating learning in valid experiments, 1996.

G. Rätsch, T. Onoda, and K.R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287–320, 2001.

G. Rätsch, M.K. Warmuth, and K.A. Glocer. Boosting algorithms for maximizing the soft margin. In
Advances in Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

J. Roy, M. Marchand, and F. Laviolette. A column generation bound minimization approach with PAC-
Bayesian generalization guarantees. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 1241–1249. PMLR,
2016.

C. Shen and H. Li. On the dual formulation of boosting algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32:2216–2231, 2009.

C. Shen and H. Li. Boosting through optimization of margin distributions. IEEE Transactions on Neural
Networks, 21:659–666, 2010.

C. Shen, H. Li, and A. van den Hengel. Fully corrective boosting with arbitrary loss and regularization.
Neural Networks, 48:44–58, 2013.

P. Turney. Pima Indians diabetes data set, 1990.

E. Uchoa, A. Pessoa, and L. Moreno. Optimizing with Column Generation: Advanced branch-cut-and-
price algorithms (Part I). Technical Report L-2024-3, Cadernos do LOGIS-UFF, Universidade Federal
Fluminense, Engenharia de Produção, 2024.

J.G.M. van der Linden, D. Vos, M.M. de Weerdt, S. Verwer, and E. Demirović. Optimal or greedy decision
trees? revisiting their objectives, tuning, and performance, 2025. arXiv preprint.

D. Wagner, D. Heider, and G. Hattab. Secondary Mushroom. UCI Machine Learning Repository, 2021.

M.K. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the margin.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 1001–1008.
Association for Computing Machinery, 2006.

25

Published in Transactions on Machine Learning Research (10/2025)

M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan. Entropy regularized LPBoost. In Algorithmic
Learning Theory, pp. 256–271. Springer Berlin Heidelberg, 2008.

S. Zhai, T. Xia, M. Tan, and S. Wang. Direct 0-1 loss minimization and margin maximization with boosting.
In Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

M. Zwitter and M. Soklic. Breast Cancer. UCI Machine Learning Repository, 1988.

A Datasets

In this section, we provide more details about the datasets used. We study 13 datasets commonly used in
related works (Bi et al., 2004; Rätsch et al., 2007; Warmuth et al., 2008; Shen & Li, 2010; Mitsuboshi et al.,
2022) which were proposed as binary classification benchmark by Rätsch et al. (2001) and originally sourced
from UCI (Kelly et al., 2025), DELVE (Rasmussen et al., 1996) and STAT-LOG (Feng et al., 1993). We
retrieved some datasets from the KEEL repository (Alcalá-Fdez et al., 2009; 2011). Some of the challenges
were transformed from multi-class to binary classification by Rätsch et al. (2001). Given that many of these
datasets are synthetic, we decided to supplement them with seven well-known and publicly available real-
world datasets. Table 3 summarizes the key statistics of the benchmark datasets and the supplementary
datasets, after preprocessing.

All features are binarized as this streamlines presentation and comparison of models, and it also allows us
to conduct experiments with optimal decision trees, whose state-of-the-art learning methods require binary
features. Features are separated into numerical and categorical types. Numerical features are discretized
into four equal-sized bins and transformed via one-hot encoding, producing binary indicators for each bin.
Categorical features are one-hot encoded with the first category dropped. In some cases, binarization leads to
a large number of features. To reduce computational effort, we therefore conduct feature selection if needed.
Features are ranked by their contribution to reducing impurity in a random forest model, and subsets of
features are iteratively evaluated for validation accuracy using a forward stepwise selection approach. The
subset is selected as the smallest feature set that maximizes predictive performance, see James et al. (2013).
Below, we explicitly indicate when we did feature selection.

Banana is an artificial dataset where instances belong to two clusters with a banana shape. There are two
features corresponding to the x and y axis, respectively. See https://sci2s.ugr.es/keel/dataset.php?
cod=182 for the data repository.

Breast cancer is a dataset sourced from the University Medical Centre, Institute of Oncology in Ljubljana
(Slovenia) (Zwitter & Soklic, 1988). The challenge is to forecast recurrence events for patients with breast
cancer stages I to III, see https://doi.org/10.24432/C51P4M.

Diabetes is a dataset from the National Institute of Diabetes and Digestive and Kidney Disease for which
we need to predict —based on diagnostic measurements— whether a patient has diabetes (Turney, 1990).
All patients here are females at least 21 years old of Pima Indian heritage, see https://10.0.68.224/
7zcc8v6hvp.1.

A solar flare is a sudden burst of energy and radiation from the sun. The data contains observations of
solar activity, specifically focusing on sunspots and solar flares, and the challenge is to predict the occurrence
of a type of solar flare, see http://dx.doi.org/10.5281/zenodo.18110.

German credit is a dataset of customers who take a credit from a bank. Each customer is classified as
having good or bad credit risks according to a set of customer attributes (Hofmann, 1994), see https:
//doi.org/10.24432/C5NC77.

Image is a dataset with the task to determine the type of surface of each region in an image. The instances
are drawn randomly from a database of 7 outdoor images. The images were hand-segmented to create a
classification for every pixel. Each instance is a 3× 3 region, see https://doi.org/10.24432/C5GP4N.

26

https://sci2s.ugr.es/keel/dataset.php?cod=182
https://sci2s.ugr.es/keel/dataset.php?cod=182
https://doi.org/10.24432/C51P4M
https://10.0.68.224/7zcc8v6hvp.1
https://10.0.68.224/7zcc8v6hvp.1
http://dx.doi.org/10.5281/zenodo.18110
https://doi.org/10.24432/C5NC77
https://doi.org/10.24432/C5NC77
https://doi.org/10.24432/C5GP4N

Published in Transactions on Machine Learning Research (10/2025)

The heart dataset has as challenge to predict heart disease in patients, it is a combined set from four
locations: Cleveland, Hungary, Switzerland, and Long Beach VA (Janosi et al., 1989), see https://doi.
org/10.24432/C52P4X.

The ringnorm dataset is an artificial binary classification dataset. The challenge is to classify two 20-
dimensional Gaussian distributions with N(0, 4I) and N(µ, I), with µ = (a, a, . . . , a) and a = 1/

√
20, see

http://dx.doi.org/10.5281/zenodo.18110.

The problem posed in the splice dataset is to recognize the boundaries between exons (the parts of DNA
sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced out). Splicing
is the removal of superfluous points on a DNA sequence during protein creation. We reduced the number of
binarized features from 240 to 61, see https://doi.org/10.24432/C5M888.

The task in the thyroid dataset is to detect if a given patient is healthy or suffers from hypothyroidism.
The data is originally sourced from the Garavan Institute in Sydney, Australia (Quinlan, 1986), see https:
//doi.org/10.24432/C5D010.

The task for the titanic dataset is to predict if a passenger survived the Titanic shipwreck based on passenger
attributes. We did not use the benchmark version by Rätsch et al. (2001), as this contains only 24 data
points, and used the version publicly available with 887 data points, see http://dx.doi.org/10.5281/
zenodo.18110. We reduced the number of binarized features from 333 to 94.

The twonorm dataset is an artificial binary classification dataset. The challenge is to classify two 20-
dimensional Gaussian distributions with means (a, a, . . . , a) and (−a,−a, . . . ,−a) and a = 2/

√
20, see http:

//dx.doi.org/10.5281/zenodo.18110.

Waveform is an artificial binary classification dataset of waveform data, with each sample containing 40
attributes, with added noise. Each class is a random convex combination of two of the waveforms, see
http://dx.doi.org/10.5281/zenodo.18110.

Below, we describe the datasets that are not part of the benchmark by Rätsch et al. (2001), but were selected
by us as a supplementary challenge.

Adult is a well-known classification dataset for predicting whether annual income of an individual exceeds
$50K per year based on census data (Becker & Kohavi, 1996), see https://doi.org/10.24432/C5XW20.
The dataset is studied in many related binary classification studies, among others in Demiriz et al. (2002)
and Zhai et al. (2013).

Furthermore, we utilize the folktables library to construct four additional datasets based on census data.
This library was constructed to address limitations of the adult dataset, such as outdated feature encodings
and overly specific or unrepresentative target thresholds. We use two standardized challenges, see Ding et al.
(2024): (i) predict whether a low-income individual, not eligible for Medicare, has coverage from public
health insurance (public coverage), and (ii) predict whether an adult is employed (employment). We
study both challenges in two states, California (CA) and Texas (TX), which exhibit significantly different
population characteristics in terms of demographics, income distributions, and socio-economic diversity. For
both challenges, we randomly sampled 25% of the 2018 data to keep the dataset size manageable. For
the public coverage datasets, we left out redundant features and reduced from 622 to 57 (California) and
from 591 to 130 (Texas). Datasets can be retrieved via the folktables Python library, using the specific
challenges as mentioned in Ding et al. (2024).

Compas (Correctional Offender Management Profiling for Alternative Sanctions) is a dataset for which
we need to predict criminal defendant’s likelihood of reoffending in Broward County, Florida, see https:
//www.kaggle.com/datasets/danofer/compass. We preprocessed the data such that we remain with 14
features.

Finally, we include secondary mushroom, a dataset of simulated mushrooms for binary classification into
edible and poisonous. Compared to the primary mushroom dataset, this simulated data contains 7.5× more
examples, which helps us to study scalability of algorithms to larger datasets (Wagner et al., 2021), see
https://doi.org/10.24432/C5FP5Q. We reduced the number of binarized features from 111 to 63.

27

https://doi.org/10.24432/C52P4X
https://doi.org/10.24432/C52P4X
http://dx.doi.org/10.5281/zenodo.18110
https://doi.org/10.24432/C5M888
https://doi.org/10.24432/C5D010
https://doi.org/10.24432/C5D010
http://dx.doi.org/10.5281/zenodo.18110
http://dx.doi.org/10.5281/zenodo.18110
http://dx.doi.org/10.5281/zenodo.18110
http://dx.doi.org/10.5281/zenodo.18110
http://dx.doi.org/10.5281/zenodo.18110
https://doi.org/10.24432/C5XW20
https://www.kaggle.com/datasets/danofer/compass
https://www.kaggle.com/datasets/danofer/compass
https://doi.org/10.24432/C5FP5Q

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Summary of the datasets

Dataset Features Data Points Class distribution

B
en

ch
m

ar
ks

banana 8 5300 55.1%
breast cancer 36 263 72.6%
diabetes 112 768 65.1%
german credit 80 1000 72.1%
heart 52 270 57.4%
image 72 2086 55.0%
ringnorm 80 7400 50.9%
solar flare 36 144 57.6%
splice 61 2991 55.0%
thyroid 20 215 70.2%
titanic 94 887 61.4%
twonorm 80 7400 50.7%
waveform 84 5000 66.6%

Su
pp

le
m

en
ta

ry

adult 19 48,842 76.1%
compas 14 7206 54.9%
employment CA2018 84 75,660 57.3%
employment TX2018 84 52,089 58.0%
public coverage CA2018 57 34,638 63.2%
public coverage TX2018 130 24,732 81.2%
secondary mushroom 63 61,069 55.2%

B Formulations

In this section, we provide the mathematical programming formulations of the benchmarked LP-based boost-
ing techniques. In most cases, except for QRLP-Boost and ERLP-Boost, we solve the primal formulation
because these are often simpler in terms of variables and constraints than their dual counterpart and there-
fore, faster to solve, as shown in Shen et al. (2013). Nonetheless, we provide both the primal and dual
formulations for most methods.

Table 4: Notation overview for primal formulations.

Primal notation Meaning
xi features for data point i
yi label for data point i
hj base learner j, part of the set H
wj weight for each base learner hj in the ensemble
ρi margin for data point i
ξi slack variable for each data point i
M number of data points in the training set
T number of base learners in H
C regularization hyperparameter

We adapt and unify the notation from the original papers to match the one introduced in Section 2. The
notation used for the primal formulations is summarized in Table 4. For the duals, we use the variable
ui to denote the sample weights, i.e., a score provided to each data point i in the dataset that indicates
misclassification or distance to the decision boundary for the current ensemble H (and is usually used to
weight the examples when fitting a new base learner).

28

Published in Transactions on Machine Learning Research (10/2025)

B.1 LP-Boost

LP-Boost is proposed in Demiriz et al. (2002). The tradeoff hyperparameter C is tuned to balance be-
tween misclassification error and margin maximization. In Demiriz et al. (2002), multiple alternative but
equivalent formulations are provided; we found the following formulation to be the most robust in terms of
hyperparameter sensitivity. The LP-Boost primal problem is formulated as:

minimizew,ξ

T∑
j=1

wj + C

M∑
i=1

ξi (18)

subject to yi

T∑
j=1

wj hj(xi) + ξi ≥ 1, ∀i = 1, . . . , M, (19)

wj ≥ 0, ∀j = 1, . . . , T, (20)
ξi ≥ 0, ∀i = 1, . . . , M. (21)

The corresponding dual formulation is:

maximizeu

M∑
i=1

ui (22)

subject to
M∑

i=1
ui yi hj(xi) ≤ 1, ∀j = 1, . . . , T, (23)

0 ≤ ui ≤ C, ∀i = 1, . . . , M. (24)

B.2 CG-Boost

CG-Boost is a quadratic program proposed in Bi et al. (2004). Just as in LP-Boost, C is tuned to balance
misclassification error and margin maximization, but CG-Boost regularizes the weights w with the L2 norm
instead of the L1 norm.

minimizew,ξ
1
2

T∑
j=1

w2
j + C

M∑
i=1

ξi (25)

subject to yi

T∑
j=1

wj hj(xi) + ξi ≥ 1, ∀i = 1, . . . , M, (26)

wj ≥ 0, ∀ j = 1, . . . , T, (27)
ξi ≥ 0, ∀ i = 1, . . . , M. (28)

For the corresponding dual, the primal variable w remains in the dual:

maximizeu minimizew

M∑
i=1

ui −
1
2

T∑
j=1

w2 (29)

subject to
M∑

i=1
ui yi hj(xi) ≤ wj , ∀ j = 1, . . . , T, (30)

0 ≤ ui ≤ C, ∀ i = 1, . . . , M. (31)

29

Published in Transactions on Machine Learning Research (10/2025)

B.3 ERLP-Boost

A line of research has focused on developing alternative LP-Boost formulations with proven iteration bounds.
Total-Boost (Warmuth et al., 2006) and Soft-Boost (Rätsch et al., 2007) have, in contrast to LP-Boost, an
iteration bound, of O(2

ϵ2 ln M
C) iterations to produce a linear combination of base learners for which the soft

margin is within ϵ of the maximum minimum soft margin. Total-Boost and Soft-Boost only differ in the
capping parameter, as Total-Boost uses C = 1, whereas Soft-Boost has C ∈ [1, M].

As mentioned in Section 3, ERLP-Boost (Warmuth et al., 2008) performs similarly to LP-Boost and Soft-
Boost overall but offers a theoretical bound on the number of iterations and typically achieves a faster
reduction in error than Soft-Boost during the early stages of training. In ERLP-Boost, the hyperparameter
C balances the tradeoff between entropy regularization and the original LP-Boost objective (the worst-case
margin), by constraining the maximum weight assigned to each example in the distribution.

We solve the following convex programming dual in an iterative fashion, i.e., we solve and obtain a new
distribution u in each iteration until convergence. This makes ERLP-Boost potentially slower in terms of
computational time per generated base learner.

minimizeu,ξ

M∑
i=1

ξi + 1
η

∆(u, u0), (32)

subject to
M∑

i=1
uiyihj(xi) ≤ ξi, ∀j = 1, . . . , T, (33)

M∑
i=1

ui = 1, (34)

0 ≤ ui ≤
1
C

, ∀i = 1, . . . , M. (35)

Here, η is a small constant calculated by:

max
(

0.5,
ln M
1
2 ϵstop

)
, (36)

with ϵstop a small constant also used to set the maximum number of iterations and the convergence criterion:

Maximum iterations = max
(

4
ϵstop/2 ,

8
(ϵstop/2)2

)
. (37)

We obtain the relative entropy term ∆(u0, u) as follows:
M∑

i=1
ui

(
log(u0

i + ϵ) + ui − u0
i

u0
i + ϵ

)
, (38)

which is the first order expanded KL-divergence with a small perturbation on u0 to prevent issues near zero.
Note that we obtain the weights wj as the dual values of the soft margin constraint after convergence or the
maximum number of iterations are reached.

B.4 MD-Boost

MD-Boost is proposed in Shen & Li (2010) and focuses on the distribution of margins. Here, the tradeoff
hyperparameter C balances the normalized average margin and the normalized margin variance, i.e., the
first and second moments of the margin distribution, respectively. The matrix A ∈ RM×M is given by:

A =


1 − 1

M−1 · · · − 1
M−1

− 1
M−1 1 · · · − 1

M−1
...

...
. . .

...
− 1

M−1 − 1
M−1 · · · 1

 . (39)

30

Published in Transactions on Machine Learning Research (10/2025)

The calculations with A can place a large computational burden when the number of data points M is large.
As suggested in Shen & Li (2010), we can approximate A by its identity matrix. In line with the original
work, we decided to use this approximation for all datasets, as we observed no performance decrease but a
significant speedup.

maximizew,ρ

M∑
i=1

ρi −
1
2 ρ⊤Aρ (40)

subject to ρi = yi

T∑
j=1

wj hj(xi), ∀ i = 1, . . . , M, (41)

T∑
j=1

wj = C, ∀ j = 1, . . . , T (42)

wj ≥ 0, ∀ j = 1, . . . , T. (43)

The dual formulation is given by:

minimizer,u r + 1
2C

(u− 1)⊤A−1(u− 1) (44)

subject to
M∑

i=1
ui yi hj(xi) ≤ r, ∀ j = 1, . . . , T. (45)

Note that the dual variable u is unbounded and is no longer a distribution, see Shen & Li (2010).

C Hyperparameters

Hyperparameter tuning is conducted as follows. We split the dataset into a 60% training set, 20% validation
set, and 20% test set. We perform 5-fold cross-validation for each dataset and method, evaluating 10
hyperparameter values uniformly spaced within the ranges shown in Table 5. This way, we ensure that each
method has a similar opportunity to find good models. We select the best hyperparameter based on the
validation set performance, and report statistics on the test set.

Note that, except for ERLP-Boost and QRLP-Boost, each totally corrective method has only a single
hyperparameter. For both ERLP-Boost and QRLP-Boost, we decided to only tune the trade-off parameter
C between relative entropy and the maximum edge, and set ϵ to 0.01, as this is also done this way in the
original ERLP-Boost paper, see Warmuth et al. (2008). For MD-Boost, we decided to use the Moore-Penrose
pseudo inverse approximation of the matrix A, as this did not yield an observable performance decrease and
does decrease computational time significantly.

For the Adaboost, XGBoost, and LightGBM benchmarks, we solely tune the learning rate.

D Complementary Results

In this section, we provide detailed and complementary results. First, in Section D.1, we report computational
times per dataset and method, and in Section D.2, we report the global performances (testing accuracy and
sparsity) of all studied boosting approaches across all considered datasets, for depths-3 and depth-10 CART
decision tree base learners, respectively. We display in Section D.3 the anytime predictive performance of the
different benchmarked methods on the adult dataset. Afterward, in Section D.4, we show the performance
across hyperparameter values for all datasets. Next, we provide the detailed results for the reweighting of
Adaboost ensembles experiment in Section D.5. We display the complete results for the confidence-rated
voting experiment in Section D.6, and finally, we provide the full results for the optimal decision trees
experiments in Section D.7.

31

Published in Transactions on Machine Learning Research (10/2025)

Table 5: Hyperparameter ranges used for each method (applied consistently across datasets).

Method Hyperparameter range
NM-Boost {10−4, . . . , 10−0.33}
QRLP-Boost {1, . . . , 0.06M}
LP-Boost {10−4, . . . , 10−0.33}
CG-Boost {10−4, . . . , 10−0.33}
ERLP-Boost {1, . . . , 0.06M}
MD-Boost {1, . . . , 120}
Adaboost {10−3, . . . , 1}
XGBoost {10−3, . . . , 1}
LightGBM {10−3, . . . , 1}

D.1 Computational Time

Table 6 shows the total CPU time for obtaining an ensemble of CART trees for each dataset and method.
We only report results for depth-1 base learners as we do not observe a significant difference in CPU times
between different depths. Note that this was expected, since considering more complex base learners does not
increase the search space (number of variables and their domains) of the optimization problems underlying
totally corrective formulations (it only affects the base learners’ building, which is negligible using CART
trees). Note that we disabled early stopping for all totally corrective methods to allow each to construct
ensembles with the same number of base learners. Therefore, CPU times could be significantly reduced, as in
most cases the totally corrective methods converged before 100 iterations, see, for instance, Figures 2 and 3.

As expected, the heuristic methods require only a fraction of the time compared to the totally corrective
methods to train. For the smaller datasets (≤ 1000 examples) the training time is less than a minute, but
the larger datasets require significantly more time. Nevertheless, even for the largest datasets (with up to
75,660 examples and 130 features, as detailed in Table 3), the running times remain practically reasonable,
especially given the observed improvement in the accuracy/sparsity trade-off (as summarized in Figure 1).

Table 6: Computational times in seconds for different boosting methods using CART trees of depth 1,
averaged over five seeds. The last row shows the mean and median CPU time in seconds.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost LightGBM
Dataset CPU time CPU time CPU time CPU time CPU time CPU time CPU time CPU time CPU time

banana 434.5 ± 2.1 235.8 ± 1.0 425.3 ± 2.4 433.4 ± 2.0 156.2 ± 1.3 436.1 ± 3.9 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
breast cancer 21.5 ± 0.3 13.0 ± 0.3 21.7 ± 0.4 22.3 ± 0.1 9.2 ± 0.3 22.4 ± 0.2 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
diabetes 63.1 ± 0.5 37.0 ± 0.3 63.4 ± 0.7 66.3 ± 0.7 24.3 ± 0.4 65.3 ± 0.6 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
german credit 83.1 ± 1.5 47.8 ± 0.5 83.1 ± 1.0 86.5 ± 1.0 31.5 ± 0.6 84.1 ± 0.9 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
heart 22.9 ± 0.3 13.5 ± 0.1 22.5 ± 0.2 23.2 ± 0.3 9.1 ± 0.4 23.0 ± 0.4 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
image 173.5 ± 1.0 95.8 ± 0.5 169.3 ± 0.7 172.0 ± 1.6 62.3 ± 0.5 104.4 ± 83.5 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
ringnorm 640.4 ± 6.0 345.2 ± 2.2 620.6 ± 5.0 611.6 ± 2.5 215.2 ± 2.4 610.2 ± 3.9 0.5 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
solar flare 12.5 ± 0.1 7.6 ± 0.3 12.2 ± 0.1 12.6 ± 0.1 5.2 ± 0.6 12.5 ± 0.2 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
splice 257.6 ± 2.4 140.6 ± 1.0 244.9 ± 1.7 246.2 ± 2.6 89.9 ± 1.0 245.8 ± 2.0 0.3 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
thyroid 18.1 ± 0.3 10.5 ± 0.3 18.0 ± 0.3 18.6 ± 0.1 7.2 ± 0.2 18.3 ± 0.2 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
titanic 73.5 ± 0.6 42.3 ± 0.2 71.5 ± 0.4 76.5 ± 0.8 27.3 ± 0.5 75.1 ± 0.6 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
twonorm 646.3 ± 3.8 343.1 ± 1.5 618.3 ± 4.8 611.7 ± 4.1 217.4 ± 1.2 613.3 ± 4.7 0.5 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
waveform 433.1 ± 2.6 231.5 ± 2.0 408.6 ± 3.2 410.1 ± 3.8 148.2 ± 0.7 409.6 ± 2.3 0.4 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
adult 2481.4 ± 89.6 2220.2 ± 23.5 2618.7 ± 99.7 2617.9 ± 96.1 1485.8 ± 5.4 2670.4 ± 18.4 1.1 ± 0.2 0.3 ± 0.0 0.1 ± 0.0
compas 588.4 ± 3.2 320.6 ± 2.0 579.7 ± 2.0 586.9 ± 5.6 214.1 ± 1.2 589.4 ± 6.0 0.2 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
employment CA2018 2618.4 ± 19.5 2516.0 ± 118.4 2467.1 ± 15.0 2370.0 ± 8.1 2273.2 ± 13.3 2363.6 ± 17.6 2.6 ± 0.0 0.7 ± 0.0 0.3 ± 0.0
employment TX2018 2614.5 ± 126.1 2413.0 ± 34.2 2548.1 ± 9.1 2507.8 ± 27.7 1562.1 ± 12.8 2496.8 ± 28.7 1.8 ± 0.0 0.7 ± 0.2 0.2 ± 0.0
public coverage CA2018 2527.5 ± 3.2 1594.0 ± 8.2 2612.0 ± 96.2 2647.7 ± 10.7 1083.4 ± 7.0 2661.9 ± 8.3 1.1 ± 0.1 0.4 ± 0.1 0.1 ± 0.0
public coverage TX2018 2068.9 ± 19.8 1125.5 ± 4.6 2039.5 ± 12.7 2052.6 ± 13.0 755.0 ± 3.9 2033.1 ± 16.4 1.4 ± 0.0 0.4 ± 0.0 0.1 ± 0.0
mushroom secondary 2451.2 ± 7.4 2581.5 ± 116.2 2599.1 ± 127.5 2586.1 ± 16.4 1835.9 ± 16.9 2569.6 ± 17.8 2.1 ± 0.3 0.5 ± 0.0 0.2 ± 0.0

Mean/Median 911.5/433.8 716.7/233.7 912.2/417.0 908.0/421.8 510.6/152.2 905.2/422.9 0.7/0.2 0.3/0.2 0.1/0.0

32

Published in Transactions on Machine Learning Research (10/2025)

D.2 Accuracy-Sparsity Performances

We report in Tables 7 and 8 the global performances (testing accuracy and sparsity) of the different totally
corrective boosting methods and benchmarked heuristics, for all considered datasets, for depths-3 and depth-
10 CART decision tree base learners, respectively. They complement the average results and the per-dataset
results for depths-1 and depth-5 CART decision tree base learners provided and discussed in Section 6.1.

As can be observed in Table 8, Adaboost stopped after one iteration on the heart dataset with depth-10
trees due to perfect training accuracy. While this results in a particularly sparse and interpretable model
(i.e., a single decision tree), we note that including additional trees enhances generalization —as for this
experiment, the other boosting approaches all reach better testing accuracies than Adaboost.

Table 7: Testing accuracy and number of non-zero weights for different boosting methods using CART
trees of depth 3, averaged over five seeds. Bold highlights the best accuracy among all methods, while a
star∗ marks the best among totally corrective methods. The last row shows the mean and median for both
statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost LightGBM

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670 ± 0.014 14 0.670 ± 0.014 77 0.670 ± 0.014 11 0.675∗ ± 0.018 100 0.670 ± 0.014 77 0.670 ± 0.014 15 0.671 ± 0.015 100 0.672 ± 0.015 100 0.675 ± 0.018 100
breast cancer 0.857∗ ± 0.049 11 0.834 ± 0.040 86 0.819 ± 0.035 15 0.819 ± 0.035 100 0.792 ± 0.036 12 0.804 ± 0.054 9 0.838 ± 0.041 100 0.823 ± 0.031 100 0.842 ± 0.009 100
diabetes 0.765∗ ± 0.023 9 0.729 ± 0.027 91 0.755 ± 0.017 21 0.735 ± 0.008 100 0.751 ± 0.022 30 0.748 ± 0.018 26 0.774 ± 0.016 100 0.771 ± 0.020 100 0.777 ± 0.020 100
german credit 0.878∗ ± 0.021 58 0.856 ± 0.021 93 0.870 ± 0.023 62 0.869 ± 0.029 100 0.833 ± 0.022 23 0.814 ± 0.023 14 0.875 ± 0.029 100 0.870 ± 0.016 100 0.881 ± 0.018 100
heart 0.870 ± 0.020 9 0.848 ± 0.038 38 0.881∗ ± 0.034 23 0.867 ± 0.034 100 0.837 ± 0.061 11 0.863 ± 0.042 23 0.885 ± 0.027 100 0.911 ± 0.014 100 0.911 ± 0.025 100
image 0.950∗ ± 0.005 41 0.947 ± 0.005 67 0.945 ± 0.014 34 0.946 ± 0.011 100 0.902 ± 0.011 12 0.893 ± 0.032 12 0.941 ± 0.010 100 0.957 ± 0.007 100 0.953 ± 0.006 100
ringnorm 0.934 ± 0.005 93 0.935∗ ± 0.002 100 0.928 ± 0.006 55 0.935∗ ± 0.005 100 0.900 ± 0.009 27 0.911 ± 0.007 31 0.906 ± 0.006 100 0.943 ± 0.001 100 0.940 ± 0.002 100
solar flare 0.690 ± 0.062 4 0.648 ± 0.070 24 0.669 ± 0.077 3 0.641 ± 0.089 100 0.655 ± 0.038 9 0.697∗ ± 0.086 9 0.697 ± 0.083 100 0.614 ± 0.091 100 0.593 ± 0.105 100
splice 0.969 ± 0.008 41 0.978∗ ± 0.007 100 0.973 ± 0.006 89 0.972 ± 0.007 100 0.964 ± 0.006 25 0.945 ± 0.008 16 0.979 ± 0.006 100 0.981 ± 0.006 100 0.980 ± 0.006 100
thyroid 0.944∗ ± 0.038 3 0.940 ± 0.035 7 0.944∗ ± 0.032 4 0.940 ± 0.035 100 0.940 ± 0.035 6 0.944∗ ± 0.032 8 0.935 ± 0.027 100 0.944 ± 0.032 100 0.907 ± 0.025 100
titanic 0.793 ± 0.030 3 0.766 ± 0.021 98 0.802 ± 0.024 36 0.804 ± 0.026 100 0.806∗ ± 0.026 19 0.798 ± 0.034 12 0.808 ± 0.024 100 0.816 ± 0.018 100 0.820 ± 0.028 100
twonorm 0.960 ± 0.004 95 0.960 ± 0.004 85 0.957 ± 0.002 52 0.961∗ ± 0.005 100 0.941 ± 0.003 24 0.924 ± 0.006 29 0.954 ± 0.006 100 0.964 ± 0.004 100 0.960 ± 0.005 100
waveform 0.900 ± 0.010 98 0.903 ± 0.008 100 0.903 ± 0.008 82 0.905∗ ± 0.011 100 0.888 ± 0.011 22 0.875 ± 0.008 18 0.893 ± 0.009 100 0.923 ± 0.006 100 0.915 ± 0.008 100
adult 0.815 ± 0.003 81 0.785 ± 0.013 2 0.817 ± 0.001 86 0.817 ± 0.001 91 0.820 ± 0.001 100 0.821∗ ± 0.001 40 0.820 ± 0.001 100 0.820 ± 0.001 100 0.820 ± 0.001 100
compas 0.668 ± 0.010 15 0.667 ± 0.015 100 0.671∗ ± 0.015 40 0.668 ± 0.018 100 0.667 ± 0.015 96 0.665 ± 0.014 58 0.668 ± 0.012 100 0.670 ± 0.013 100 0.671 ± 0.014 100
employment CA2018 0.740 ± 0.003 21 0.751∗ ± 0.001 100 0.743 ± 0.002 21 0.744 ± 0.002 71 0.751∗ ± 0.002 73 0.736 ± 0.003 12 0.744 ± 0.002 100 0.754 ± 0.001 100 0.753 ± 0.001 100
employment TX2018 0.747 ± 0.002 49 0.760 ± 0.005 100 0.751 ± 0.004 62 0.751 ± 0.001 86 0.761∗ ± 0.004 58 0.745 ± 0.012 23 0.753 ± 0.002 100 0.764 ± 0.003 100 0.763 ± 0.004 100
public coverage CA2018 0.703 ± 0.006 71 0.689 ± 0.011 5 0.710 ± 0.004 98 0.709 ± 0.003 100 0.712∗ ± 0.002 100 0.708 ± 0.005 90 0.709 ± 0.003 100 0.716 ± 0.002 100 0.714 ± 0.001 100
public coverage TX2018 0.849 ± 0.002 6 0.850 ± 0.003 100 0.851 ± 0.002 6 0.850 ± 0.002 100 0.852∗ ± 0.002 54 0.852∗ ± 0.002 22 0.851 ± 0.002 100 0.855 ± 0.002 100 0.854 ± 0.003 100
mushroom secondary 0.994 ± 0.003 72 0.995 ± 0.001 98 0.995 ± 0.002 77 0.996∗ ± 0.001 81 0.887 ± 0.009 24 0.830 ± 0.026 20 0.928 ± 0.014 100 0.997 ± 0.000 100 0.991 ± 0.000 100

Mean/Median 0.835∗/0.853∗ 39.7/31 0.826/0.841 73.5/92 0.833/0.835 43.9/38 0.830/0.835 96.5/100 0.816/0.827 40.1/24.5 0.812/0.817 24.4/19 0.831/0.845 100/100 0.838/0.839 100/100 0.836/0.848 100/100

Table 8: Testing accuracy and number of non-zero weights for different boosting methods using CART trees
of depth 10, averaged over five seeds. Bold highlights the best accuracy among all methods, while a
star∗ marks the best among totally corrective methods. The last row shows the mean and median for both
statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost XGBoost LightGBM

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 14 0.670∗ ± 0.014 2 0.670∗ ± 0.014 1 0.670∗ ± 0.014 100 0.670∗ ± 0.014 4 0.670∗ ± 0.014 49 0.670 ± 0.014 100 0.670 ± 0.014 100 0.670 ± 0.014 100
breast cancer 0.849∗ ± 0.043 4 0.830 ± 0.038 22 0.804 ± 0.054 41 0.838 ± 0.046 100 0.815 ± 0.028 7 0.789 ± 0.047 34 0.853 ± 0.044 100 0.838 ± 0.035 100 0.830 ± 0.032 100
diabetes 0.708 ± 0.011 3 0.716 ± 0.016 23 0.691 ± 0.032 67 0.740∗ ± 0.018 100 0.725 ± 0.027 10 0.738 ± 0.038 81 0.760 ± 0.000 100 0.738 ± 0.032 100 0.755 ± 0.019 100
german credit 0.875 ± 0.029 4 0.860 ± 0.030 19 0.875 ± 0.029 76 0.886∗ ± 0.021 100 0.882 ± 0.030 12 0.852 ± 0.031 99 0.894 ± 0.019 100 0.879 ± 0.024 100 0.890 ± 0.016 100
heart 0.837 ± 0.022 1 0.833 ± 0.031 1 0.833 ± 0.012 1 0.841 ± 0.025 100 0.844 ± 0.015 1 0.859∗ ± 0.049 15 0.830 ± 0.022 1 0.896 ± 0.025 100 0.893 ± 0.038 100
image 0.956 ± 0.008 7 0.951 ± 0.007 26 0.951 ± 0.008 53 0.957∗ ± 0.005 100 0.951 ± 0.009 10 0.953 ± 0.011 15 0.958 ± 0.005 100 0.955 ± 0.005 100 0.955 ± 0.006 100
ringnorm 0.920 ± 0.004 25 0.924 ± 0.007 90 0.915 ± 0.005 95 0.929∗ ± 0.006 100 0.920 ± 0.004 33 0.916 ± 0.010 34 0.937 ± 0.007 100 0.945 ± 0.004 100 0.951 ± 0.004 100
solar flare 0.655 ± 0.079 6 0.648 ± 0.051 74 0.641 ± 0.056 8 0.648 ± 0.059 100 0.710∗ ± 0.071 59 0.614 ± 0.126 24 0.641 ± 0.064 100 0.614 ± 0.088 100 0.593 ± 0.105 100
splice 0.974 ± 0.004 2 0.969 ± 0.011 17 0.966 ± 0.008 76 0.984∗ ± 0.004 100 0.968 ± 0.008 10 0.969 ± 0.015 31 0.980 ± 0.004 100 0.982 ± 0.004 100 0.983 ± 0.005 100
thyroid 0.944∗ ± 0.032 2 0.935 ± 0.027 14 0.944∗ ± 0.028 1 0.940 ± 0.035 100 0.940 ± 0.024 5 0.944∗ ± 0.032 16 0.944 ± 0.032 100 0.944 ± 0.032 100 0.907 ± 0.025 100
titanic 0.796 ± 0.025 6 0.792 ± 0.016 67 0.794 ± 0.036 37 0.807∗ ± 0.032 100 0.780 ± 0.031 14 0.793 ± 0.024 22 0.802 ± 0.022 100 0.809 ± 0.019 100 0.819 ± 0.018 100
twonorm 0.945 ± 0.008 12 0.954 ± 0.004 30 0.935 ± 0.007 95 0.968∗ ± 0.003 100 0.952 ± 0.004 36 0.957 ± 0.004 44 0.963 ± 0.004 100 0.966 ± 0.001 100 0.968 ± 0.003 100
waveform 0.924 ± 0.006 20 0.919 ± 0.006 29 0.913 ± 0.007 95 0.928∗ ± 0.005 100 0.917 ± 0.010 17 0.910 ± 0.007 15 0.931 ± 0.006 100 0.930 ± 0.008 100 0.928 ± 0.008 100
adult 0.815 ± 0.003 31 0.816∗ ± 0.002 1 0.815 ± 0.003 1 0.816∗ ± 0.002 96 0.816∗ ± 0.002 1 0.816∗ ± 0.003 86 0.816 ± 0.002 100 0.816 ± 0.003 100 0.820 ± 0.001 100
compas 0.664 ± 0.014 2 0.667∗ ± 0.012 100 0.664 ± 0.015 1 0.666 ± 0.014 100 0.667∗ ± 0.014 100 0.666 ± 0.015 93 0.664 ± 0.015 100 0.666 ± 0.012 100 0.668 ± 0.015 100
employment CA2018 0.746 ± 0.003 16 0.744 ± 0.001 98 0.742 ± 0.002 1 0.754∗ ± 0.001 76 0.746 ± 0.002 53 0.749 ± 0.001 17 0.752 ± 0.002 100 0.757 ± 0.001 100 0.754 ± 0.001 100
employment TX2018 0.754 ± 0.005 13 0.755 ± 0.003 88 0.750 ± 0.003 1 0.764∗ ± 0.003 91 0.754 ± 0.002 42 0.757 ± 0.004 17 0.762 ± 0.004 100 0.766 ± 0.003 100 0.765 ± 0.003 100
public coverage CA2018 0.704 ± 0.003 34 0.709 ± 0.005 99 0.695 ± 0.005 100 0.721∗ ± 0.005 100 0.707 ± 0.002 60 0.713 ± 0.004 18 0.717 ± 0.003 100 0.719 ± 0.003 100 0.718 ± 0.003 100
public coverage TX2018 0.850 ± 0.002 8 0.855 ± 0.003 56 0.846 ± 0.002 1 0.856∗ ± 0.002 100 0.849 ± 0.003 21 0.848 ± 0.003 12 0.856 ± 0.002 100 0.859 ± 0.003 100 0.856 ± 0.004 100
mushroom secondary 0.999∗ ± 0.000 19 0.999∗ ± 0.000 29 0.999∗ ± 0.000 73 0.999∗ ± 0.000 86 0.993 ± 0.002 14 0.968 ± 0.024 85 0.999 ± 0.000 100 0.999 ± 0.000 100 0.999 ± 0.000 100

Mean/Median 0.829/0.843∗ 11.4/7.5 0.827/0.831 44.2/29 0.822/0.824 41.2/39 0.836∗/0.839 97.5/100 0.830/0.830 25.4/14 0.824/0.832 40.4/27.5 0.836/0.841 95/100 0.837/0.849 100/100 0.836/0.843 100/100

D.3 Anytime Performance

We report in Figure 12 the testing accuracy of the different considered boosting approaches at each performed
iteration during the ensemble training, for the adult dataset. This complements the results provided in
Section 6.2 for the image and ringnorm datasets. Consistent with our previous observations, we note that
the anytime performance of methods is especially different in early iterations, but gets close together for all
methods later.

33

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost Adaboost XGBoost lightGBM

0 20 40 60 80 100
Iterations

0.74

0.76

0.78

0.80

0.82

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on adult

0 20 40 60 80 100
Iterations

0.74

0.76

0.78

0.80

0.82

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on adult

0 20 40 60 80 100
Iterations

0.74

0.76

0.78

0.80

0.82

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on adult

0 20 40 60 80 100
Iterations

0.74

0.76

0.78

0.80

0.82

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on adult

Figure 12: Anytime behavior on the adult dataset for selected methods (all other methods in gray), for
CART decision trees of depth 1, 3, 5, and 10. Error bars indicate the standard deviation over 5 seeds.

D.4 Hyperparameter Sensitivity

Figure 13 displays the trade-offs between testing accuracy and number of used columns (i.e., base learners),
for the considered totally corrective boosting methods, for depth-1 decision trees, over all tested datasets
and all hyperparameter values. This complements the results presented in Section 6.5 for two datasets and
depth-1 and depth-5 trees.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 1 Testing Accuracy vs Number of Columns (All Hyperparameters and Data sets)

0 20 40 60 80 100
Number of Columns Used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Depth 1 Testing Accuracy vs Number of Columns (All Hyperparameters and Data sets)

Figure 13: Average testing accuracy compared to average ensemble sparsity over all datasets and all
hyperparameter values for depth 1 trees, over 5 seeds. The methods are split over two columns for
visualization purposes.

34

Published in Transactions on Machine Learning Research (10/2025)

D.5 Reweighting Behavior

We provide the per-dataset results of our reweighting experiments in Tables 9, 10, 11, and 12, for trees of
depth 1, 3, 5, and 10, respectively. This complements the aggregate results provided in Section 6.6.

Table 9: Testing accuracy and number of non-zero weights for different boosting methods for a reweighting
experiment using 100 depth 1 trees generated by Adaboost. A star∗ marks the best among totally
corrective methods. The last row shows mean and median for both statistics. †Adaboost hyperparameters
were not tuned for the reweighting experiment.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost†

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.625∗ ± 0.016 2 0.620 ± 0.016 11 0.625∗ ± 0.016 1 0.625∗ ± 0.016 100 0.620 ± 0.016 11 0.620 ± 0.016 11 0.620 ± 0.016 100
breast cancer 0.830∗ ± 0.068 5 0.792 ± 0.075 12 0.770 ± 0.058 0 0.789 ± 0.054 100 0.808 ± 0.056 12 0.800 ± 0.054 12 0.792 ± 0.040 100
diabetes 0.769∗ ± 0.029 7 0.752 ± 0.044 36 0.755 ± 0.033 27 0.743 ± 0.031 100 0.752 ± 0.038 36 0.766 ± 0.011 36 0.761 ± 0.033 100
german credit 0.790 ± 0.034 20 0.803∗ ± 0.023 33 0.793 ± 0.017 29 0.795 ± 0.021 100 0.800 ± 0.038 33 0.771 ± 0.018 33 0.808 ± 0.022 100
heart 0.807 ± 0.043 10 0.837∗ ± 0.022 20 0.819 ± 0.022 11 0.826 ± 0.019 100 0.830 ± 0.022 20 0.763 ± 0.036 20 0.819 ± 0.032 100
image 0.816 ± 0.027 10 0.815 ± 0.013 13 0.813 ± 0.029 10 0.818 ± 0.023 100 0.821∗ ± 0.018 13 0.787 ± 0.023 13 0.805 ± 0.012 100
ringnorm 0.912∗ ± 0.005 29 0.899 ± 0.006 29 0.910 ± 0.005 29 0.910 ± 0.004 100 0.882 ± 0.006 29 0.885 ± 0.005 29 0.894 ± 0.006 100
solar flare 0.690 ± 0.062 7 0.710 ± 0.035 9 0.703 ± 0.035 3 0.717∗ ± 0.074 100 0.703 ± 0.047 9 0.634 ± 0.056 9 0.710 ± 0.056 100
splice 0.944 ± 0.008 41 0.944 ± 0.008 44 0.945 ± 0.006 39 0.948∗ ± 0.005 100 0.938 ± 0.011 44 0.944 ± 0.005 45 0.942 ± 0.010 100
thyroid 0.940 ± 0.035 6 0.926 ± 0.009 8 0.944∗ ± 0.032 3 0.940 ± 0.035 100 0.926 ± 0.009 8 0.944∗ ± 0.032 8 0.949 ± 0.034 100
titanic 0.794 ± 0.019 18 0.791 ± 0.028 28 0.799∗ ± 0.023 3 0.789 ± 0.024 100 0.796 ± 0.025 28 0.797 ± 0.022 28 0.802 ± 0.033 100
twonorm 0.954 ± 0.005 50 0.940 ± 0.001 50 0.956∗ ± 0.002 48 0.955 ± 0.003 100 0.924 ± 0.003 50 0.935 ± 0.021 50 0.945 ± 0.002 100
waveform 0.889∗ ± 0.006 32 0.885 ± 0.002 34 0.888 ± 0.005 32 0.889∗ ± 0.005 100 0.878 ± 0.006 34 0.856 ± 0.013 34 0.883 ± 0.002 100
adult 0.815 ± 0.001 10 0.816∗ ± 0.002 21 0.814 ± 0.003 11 0.814 ± 0.003 100 0.815 ± 0.002 22 0.813 ± 0.003 22 0.815 ± 0.002 100
compas propublica 0.665 ± 0.010 9 0.672 ± 0.017 16 0.660 ± 0.013 4 0.660 ± 0.013 100 0.672 ± 0.017 16 0.673∗ ± 0.016 16 0.670 ± 0.016 100
employment CA2018 0.734 ± 0.003 6 0.737∗ ± 0.002 12 0.734 ± 0.003 6 0.734 ± 0.003 100 0.736 ± 0.000 12 0.723 ± 0.002 12 0.723 ± 0.004 100
employment TX2018 0.736 ± 0.003 6 0.738 ± 0.001 12 0.736 ± 0.003 6 0.736 ± 0.003 100 0.739∗ ± 0.003 12 0.713 ± 0.004 12 0.731 ± 0.003 100
public coverage CA2018 0.702∗ ± 0.004 20 0.699 ± 0.004 29 0.680 ± 0.005 3 0.680 ± 0.006 100 0.698 ± 0.004 29 0.699 ± 0.003 29 0.695 ± 0.004 100
public coverage TX2018 0.847∗ ± 0.003 26 0.846 ± 0.001 28 0.825 ± 0.006 3 0.825 ± 0.006 100 0.846 ± 0.001 29 0.847∗ ± 0.002 29 0.844 ± 0.002 100
mushroom secondary 0.739 ± 0.002 13 0.747 ± 0.000 16 0.739 ± 0.002 13 0.739 ± 0.002 100 0.748∗ ± 0.003 16 0.741 ± 0.002 16 0.739 ± 0.002 100

Mean/Median 0.800∗ / 0.800 16.4 / 10.0 0.798 / 0.798 23.1 / 20.5 0.795 / 0.796 14.1 / 8.0 0.797 / 0.792 100.0 / 100.0 0.797 / 0.804∗ 23.1 / 21.0 0.786 / 0.779 23.2 / 21.0 0.797 / 0.804 100 / 100

Table 10: Testing accuracy and number of non-zero weights for different boosting methods for a reweighting
experiment using 100 depth 3 trees generated by Adaboost. A star∗ marks the best among totally
corrective methods. The last row shows the mean and median for both statistics. †Adaboost hyperparameters
were not tuned for the reweight experiment.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost†

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 11 0.670∗ ± 0.014 53 0.670∗ ± 0.014 10 0.670∗ ± 0.014 100 0.670∗ ± 0.014 53 0.670∗ ± 0.014 53 0.675 ± 0.005 100
breast cancer 0.823 ± 0.009 15 0.830∗ ± 0.024 46 0.826 ± 0.037 24 0.830∗ ± 0.040 100 0.823 ± 0.015 46 0.815 ± 0.051 46 0.838 ± 0.041 100
diabetes 0.762∗ ± 0.035 24 0.762∗ ± 0.026 99 0.751 ± 0.036 60 0.743 ± 0.022 100 0.753 ± 0.034 99 0.753 ± 0.017 99 0.756 ± 0.025 100
german credit 0.876∗ ± 0.037 50 0.865 ± 0.023 90 0.857 ± 0.020 65 0.864 ± 0.018 100 0.850 ± 0.024 90 0.802 ± 0.020 90 0.875 ± 0.029 100
heart 0.900∗ ± 0.028 10 0.881 ± 0.019 99 0.874 ± 0.022 47 0.889 ± 0.026 100 0.874 ± 0.025 99 0.852 ± 0.063 99 0.881 ± 0.022 100
image 0.947∗ ± 0.011 28 0.929 ± 0.008 62 0.944 ± 0.010 31 0.946 ± 0.009 100 0.922 ± 0.017 62 0.911 ± 0.010 62 0.941 ± 0.010 100
ringnorm 0.924∗ ± 0.003 46 0.910 ± 0.004 66 0.924∗ ± 0.005 48 0.924∗ ± 0.005 100 0.894 ± 0.004 66 0.856 ± 0.007 66 0.906 ± 0.006 100
solar flare 0.676 ± 0.091 7 0.683 ± 0.101 31 0.697∗ ± 0.086 6 0.683 ± 0.086 100 0.676 ± 0.099 31 0.655 ± 0.076 31 0.697 ± 0.077 100
splice 0.979∗ ± 0.006 35 0.976 ± 0.007 100 0.977 ± 0.008 90 0.978 ± 0.006 100 0.966 ± 0.007 100 0.940 ± 0.008 100 0.979 ± 0.007 100
thyroid 0.944 ± 0.032 2 0.944 ± 0.032 18 0.944 ± 0.032 2 0.940 ± 0.024 100 0.944 ± 0.028 18 0.949∗ ± 0.034 18 0.944 ± 0.032 100
titanic 0.800 ± 0.017 7 0.810∗ ± 0.025 90 0.809 ± 0.017 41 0.801 ± 0.017 100 0.808 ± 0.029 90 0.808 ± 0.023 90 0.807 ± 0.020 100
twonorm 0.956∗ ± 0.003 71 0.946 ± 0.005 98 0.953 ± 0.005 66 0.955 ± 0.005 100 0.937 ± 0.004 98 0.906 ± 0.008 98 0.950 ± 0.002 100
waveform 0.894 ± 0.014 49 0.888 ± 0.009 70 0.892 ± 0.014 46 0.895∗ ± 0.015 100 0.885 ± 0.006 70 0.872 ± 0.007 70 0.893 ± 0.009 100
adult 0.812 ± 0.002 30 0.812 ± 0.001 100 0.814 ± 0.003 57 0.814 ± 0.003 100 0.819∗ ± 0.001 100 0.810 ± 0.005 100 0.820 ± 0.001 100
compas propublica 0.664 ± 0.016 27 0.663 ± 0.017 88 0.668∗ ± 0.015 22 0.668∗ ± 0.016 100 0.663 ± 0.018 88 0.666 ± 0.012 88 0.668 ± 0.014 100
employment CA2018 0.738 ± 0.002 9 0.746∗ ± 0.003 62 0.738 ± 0.002 9 0.738 ± 0.002 100 0.746∗ ± 0.003 62 0.736 ± 0.012 62 0.744 ± 0.002 100
employment TX2018 0.748 ± 0.006 39 0.752∗ ± 0.002 76 0.742 ± 0.004 8 0.742 ± 0.004 100 0.752∗ ± 0.002 73 0.746 ± 0.005 76 0.753 ± 0.002 100
public coverage CA2018 0.708∗ ± 0.004 81 0.700 ± 0.005 99 0.706 ± 0.004 73 0.707 ± 0.004 100 0.708∗ ± 0.003 99 0.703 ± 0.005 99 0.710 ± 0.003 100
public coverage TX2018 0.851 ± 0.003 8 0.851 ± 0.002 97 0.851 ± 0.001 4 0.851 ± 0.002 100 0.852∗ ± 0.003 97 0.849 ± 0.002 97 0.851 ± 0.002 100
mushroom secondary 0.952 ± 0.017 49 0.945 ± 0.000 73 0.953∗ ± 0.017 48 0.953∗ ± 0.017 100 0.926 ± 0.012 71 0.889 ± 0.023 71 0.928 ± 0.014 100

Mean/Median 0.831∗ / 0.837 29.9 / 27.5 0.828 / 0.841∗ 75.8 / 82.0 0.830 / 0.839 37.9 / 43.5 0.830 / 0.841∗ 100.0 / 100.0 0.823 / 0.837 75.6 / 80.5 0.809 / 0.812 75.8 / 82.0 0.831 / 0.845 100 / 100

D.6 Effect of Confidence-Rated Voting

In this appendix, we provide additional results of our experiments using confidence-rated voting for CART
tree-based learners (Section 6.7). Figures 14 and 15 show the anytime behavior of the considered boosting
approaches using standard CART trees and confidence-rated CART trees on depth 1, 3, 5, and 10 (top to
bottom) decision trees, for the twonorm and waveform datasets, respectively. For visualization purposes, we
split the methods over three columns, ensuring the axes have the same range. As mentioned in Demiriz et al.
(2002), tree stumps have too little confidence information and therefore confidence-rated boosting has little
effect. On depths 3 and 5, we sometimes see slightly improved anytime behavior of confidence-rated trees
in the early iterations, especially for NM-Boost, QRLP-Boost, LP-Boost, and ERLP-Boost. However, the
performance difference is never significant or structurally observed for all datasets, and the final performance

35

Published in Transactions on Machine Learning Research (10/2025)

Table 11: Testing accuracy and number of non-zero weights for different boosting methods for a reweighting
experiment using 100 depth 5 trees generated by Adaboost. A star∗ marks the best among totally
corrective methods. The last row shows the mean and median for both statistics. †Adaboost hyperparameters
were not tuned for the reweight experiment.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost†

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670 ± 0.014 12 0.670 ± 0.014 73 0.670 ± 0.014 1 0.670 ± 0.014 100 0.670 ± 0.014 73 0.676∗ ± 0.000 86 0.670 ± 0.014 100
breast cancer 0.857 ± 0.026 7 0.853 ± 0.028 46 0.868 ± 0.017 17 0.872∗ ± 0.022 100 0.849 ± 0.032 46 0.853 ± 0.054 46 0.849 ± 0.034 100
diabetes 0.729 ± 0.014 23 0.751 ± 0.015 100 0.745 ± 0.019 97 0.745 ± 0.020 100 0.753 ± 0.017 100 0.756∗ ± 0.015 100 0.753 ± 0.022 100
german credit 0.880 ± 0.021 22 0.895∗ ± 0.023 100 0.884 ± 0.026 90 0.886 ± 0.010 100 0.888 ± 0.024 100 0.857 ± 0.021 100 0.893 ± 0.022 100
heart 0.863 ± 0.015 3 0.874 ± 0.032 100 0.896∗ ± 0.009 42 0.893 ± 0.007 100 0.878 ± 0.015 100 0.870 ± 0.031 100 0.900 ± 0.015 100
image 0.956 ± 0.007 21 0.954 ± 0.008 50 0.957∗ ± 0.004 24 0.957∗ ± 0.002 100 0.948 ± 0.009 50 0.935 ± 0.010 50 0.955 ± 0.005 100
ringnorm 0.928∗ ± 0.003 52 0.916 ± 0.004 91 0.927 ± 0.004 52 0.928∗ ± 0.004 100 0.905 ± 0.004 91 0.863 ± 0.007 91 0.920 ± 0.005 100
solar flare 0.655 ± 0.079 6 0.641 ± 0.052 29 0.676∗ ± 0.097 5 0.641 ± 0.056 100 0.634 ± 0.064 29 0.641 ± 0.056 29 0.648 ± 0.046 100
splice 0.978 ± 0.005 26 0.983 ± 0.003 100 0.982 ± 0.005 91 0.984∗ ± 0.003 100 0.970 ± 0.008 100 0.963 ± 0.009 100 0.983 ± 0.005 100
thyroid 0.940 ± 0.024 3 0.940 ± 0.024 18 0.944∗ ± 0.019 1 0.940 ± 0.024 100 0.935 ± 0.027 18 0.935 ± 0.027 18 0.940 ± 0.024 100
titanic 0.793 ± 0.024 7 0.802 ± 0.022 100 0.797 ± 0.029 43 0.788 ± 0.024 100 0.811∗ ± 0.024 100 0.804 ± 0.028 100 0.792 ± 0.027 100
twonorm 0.960 ± 0.004 47 0.959 ± 0.002 100 0.963 ± 0.003 79 0.968∗ ± 0.003 100 0.951 ± 0.003 100 0.921 ± 0.008 100 0.965 ± 0.004 100
waveform 0.926∗ ± 0.006 61 0.925 ± 0.007 98 0.926∗ ± 0.010 85 0.926∗ ± 0.009 100 0.916 ± 0.003 98 0.882 ± 0.006 98 0.928 ± 0.008 100
adult 0.811 ± 0.002 15 0.807 ± 0.003 100 0.814∗ ± 0.002 72 0.814∗ ± 0.001 100 0.812 ± 0.000 100 0.814∗ ± 0.001 100 0.819 ± 0.002 100
compas propublica 0.665 ± 0.014 59 0.663 ± 0.010 100 0.669 ± 0.017 56 0.667 ± 0.017 100 0.664 ± 0.012 100 0.670∗ ± 0.017 100 0.668 ± 0.016 100
employment CA2018 0.747 ± 0.002 58 0.748∗ ± 0.003 92 0.739 ± 0.002 11 0.739 ± 0.003 100 0.748∗ ± 0.002 92 0.739 ± 0.002 92 0.748 ± 0.002 100
employment TX2018 0.757 ± 0.004 59 0.758∗ ± 0.003 94 0.743 ± 0.003 9 0.743 ± 0.003 100 0.757 ± 0.005 95 0.750 ± 0.005 94 0.758 ± 0.003 100
public coverage CA2018 0.706 ± 0.002 61 0.691 ± 0.004 100 0.713∗ ± 0.004 97 0.713∗ ± 0.004 100 0.709 ± 0.004 100 0.704 ± 0.006 100 0.714 ± 0.002 100
public coverage TX2018 0.850 ± 0.001 4 0.852 ± 0.001 99 0.849 ± 0.002 6 0.849 ± 0.001 100 0.853∗ ± 0.001 99 0.850 ± 0.001 99 0.850 ± 0.001 100
mushroom secondary 0.999∗ ± 0.000 45 0.996 ± 0.001 96 0.999∗ ± 0.000 66 0.999∗ ± 0.000 100 0.992 ± 0.002 96 0.962 ± 0.008 96 0.998 ± 0.000 100

Mean/Median 0.833 / 0.853 29.6 / 22.5 0.834 / 0.853 84.3 / 98.5 0.838∗ / 0.859 47.2 / 47.5 0.836 / 0.861∗ 100.0 / 100.0 0.832 / 0.851 84.3 / 98.5 0.822 / 0.851 85.0 / 98.5 0.838 / 0.849 100 / 100

Table 12: Testing accuracy and number of non-zero weights for different boosting methods for a reweighting
experiment using 100 depth 10 trees generated by Adaboost. A star∗ marks the best among totally
corrective methods. The last row shows the mean and median for both statistics. †Adaboost hyperparameters
were not tuned for the reweight experiment.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost†

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670 ± 0.014 10 0.670 ± 0.014 62 0.670 ± 0.014 1 0.670 ± 0.014 100 0.670 ± 0.014 62 0.684∗ ± 0.000 78 0.670 ± 0.014 100
breast cancer 0.834 ± 0.032 3 0.842∗ ± 0.039 39 0.830 ± 0.062 1 0.838 ± 0.046 100 0.842∗ ± 0.039 39 0.842∗ ± 0.042 39 0.849 ± 0.040 100
diabetes 0.671 ± 0.029 2 0.719 ± 0.029 85 0.740 ± 0.030 59 0.762∗ ± 0.007 85 0.695 ± 0.026 85 0.732 ± 0.030 85 0.752 ± 0.021 100
german credit 0.848 ± 0.027 3 0.880 ± 0.024 100 0.878 ± 0.023 74 0.886∗ ± 0.020 100 0.871 ± 0.026 100 0.879 ± 0.026 100 0.890 ± 0.020 100
heart 0.830∗ ± 0.022 1 0.830∗ ± 0.022 1 0.830∗ ± 0.022 1 0.830∗ ± 0.022 1 0.830∗ ± 0.022 1 0.830∗ ± 0.022 1 0.830 ± 0.022 100
image 0.948 ± 0.005 6 0.952 ± 0.006 66 0.953 ± 0.006 14 0.955∗ ± 0.004 100 0.951 ± 0.007 66 0.951 ± 0.007 66 0.955 ± 0.006 100
ringnorm 0.908 ± 0.009 5 0.929∗ ± 0.008 100 0.927 ± 0.006 100 0.928 ± 0.006 100 0.928 ± 0.008 100 0.924 ± 0.006 100 0.931 ± 0.008 100
solar flare 0.662 ± 0.051 4 0.662 ± 0.026 65 0.655 ± 0.022 1 0.662 ± 0.059 100 0.641 ± 0.035 65 0.676∗ ± 0.083 65 0.648 ± 0.055 100
splice 0.965 ± 0.008 2 0.971 ± 0.010 78 0.974∗ ± 0.012 57 0.972 ± 0.013 80 0.968 ± 0.008 78 0.972 ± 0.011 78 0.979 ± 0.007 100
thyroid 0.944∗ ± 0.032 3 0.940 ± 0.024 8 0.940 ± 0.024 1 0.944∗ ± 0.019 100 0.940 ± 0.024 8 0.935 ± 0.027 8 0.940 ± 0.024 100
titanic 0.787 ± 0.010 4 0.793 ± 0.015 89 0.791 ± 0.017 14 0.803∗ ± 0.018 100 0.789 ± 0.015 89 0.791 ± 0.014 89 0.792 ± 0.010 100
twonorm 0.944 ± 0.008 18 0.963 ± 0.002 100 0.966 ± 0.003 100 0.967∗ ± 0.003 100 0.957 ± 0.002 100 0.955 ± 0.004 100 0.966 ± 0.005 100
waveform 0.914 ± 0.011 10 0.926 ± 0.010 100 0.927 ± 0.008 98 0.929∗ ± 0.007 100 0.923 ± 0.007 100 0.923 ± 0.009 100 0.931 ± 0.010 100
adult 0.816 ± 0.002 2 0.812 ± 0.002 100 0.816 ± 0.002 40 0.817∗ ± 0.002 100 0.815 ± 0.002 100 0.816 ± 0.002 100 0.816 ± 0.003 100
compas propublica 0.664 ± 0.012 57 0.665∗ ± 0.013 100 0.664 ± 0.015 1 0.664 ± 0.015 100 0.665∗ ± 0.013 100 0.665∗ ± 0.010 100 0.665 ± 0.013 100
employment CA2018 0.746 ± 0.002 89 0.748 ± 0.004 100 0.748 ± 0.002 84 0.748 ± 0.001 100 0.750∗ ± 0.002 99 0.747 ± 0.001 99 0.752 ± 0.001 100
employment TX2018 0.753 ± 0.011 82 0.753 ± 0.004 98 0.758∗ ± 0.004 77 0.758∗ ± 0.004 100 0.756 ± 0.003 98 0.753 ± 0.003 98 0.760 ± 0.002 100
public coverage CA2018 0.704 ± 0.005 35 0.709 ± 0.001 100 0.707 ± 0.002 100 0.715∗ ± 0.004 100 0.714 ± 0.003 100 0.703 ± 0.004 100 0.714 ± 0.003 100
public coverage TX2018 0.847 ± 0.002 2 0.853 ± 0.004 99 0.850 ± 0.004 68 0.848 ± 0.003 100 0.855∗ ± 0.004 99 0.847 ± 0.002 99 0.853 ± 0.003 100
mushroom secondary 0.999∗ ± 0.000 15 0.999∗ ± 0.000 89 0.999∗ ± 0.000 34 0.999∗ ± 0.000 100 0.999∗ ± 0.000 89 0.995 ± 0.002 89 0.999 ± 0.000 100

Mean/Median 0.823 / 0.832 17.6 / 4.5 0.831 / 0.836∗ 79.0 / 93.5 0.831 / 0.830 46.2 / 48.5 0.835∗ / 0.834 93.3 / 100.0 0.828 / 0.836∗ 78.9 / 93.5 0.831 / 0.836∗ 79.7 / 93.5 0.835 / 0.839 100 / 100

36

Published in Transactions on Machine Learning Research (10/2025)

is often identical. Figure 16 displays the testing accuracy and sparsity of the different boosting approaches,
averaged across all datasets, for both standard CART trees and confidence-rated CART trees, for the different
tree depths. Finally, Tables 13, 14, 15 and 16 show the testing accuracy and sparsity of each tested approach
for each individual dataset, for confidence-rated trees of depth 1, 3, 5 and 10, respectively.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Te

st
in

g
Ac

cu
ra

cy

Depth 1 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on twonorm

0 20 40 60 80 100
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on twonorm

Figure 14: Anytime behavior for the twonorm dataset and 1, 3, 5, and 10 depth CART decision trees
compared to confidence-rated trees (dashed line), error bars indicate standard deviation over 5 seeds. The
methods are split over three columns for visualization purposes.

37

Published in Transactions on Machine Learning Research (10/2025)

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 1 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 3 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 5 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on waveform

0 20 40 60 80 100
Iterations

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

Ac
cu

ra
cy

Depth 10 on waveform

Figure 15: Anytime behavior for the waveform dataset and 1, 3, 5, and 10 depth CART decision trees
compared to confidence-rated trees (dashed line), error bars indicate standard deviation over 5 seeds. The
methods are split over three columns for visualization purposes.

38

Published in Transactions on Machine Learning Research (10/2025)

20 40 60 80 100
Average Number of Columns Used

0.785

0.790

0.795

0.800

0.805

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost
NM-Boost (CR) QRLP-Boost

QRLP-Boost (CR)

LP-Boost

LP-Boost (CR)

CG-Boost
CG-Boost (CR)

ERLP-Boost

ERLP-Boost (CR)MD-Boost

MD-Boost (CR)

Test Accuracy vs Ensemble Sparsity on Depth 1

30 40 50 60 70 80 90 100
Average Number of Columns Used

0.805

0.810

0.815

0.820

0.825

0.830

0.835

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost
NM-Boost (CR)

QRLP-Boost

QRLP-Boost (CR)

LP-Boost LP-Boost (CR)
CG-Boost

CG-Boost (CR)

ERLP-Boost

ERLP-Boost (CR)
MD-Boost

MD-Boost (CR)

Test Accuracy vs Ensemble Sparsity on Depth 3

20 30 40 50 60 70 80 90 100
Average Number of Columns Used

0.815

0.820

0.825

0.830

0.835

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-Boost

NM-Boost (CR)QRLP-Boost

QRLP-Boost (CR)LP-Boost

LP-Boost (CR) CG-BoostCG-Boost (CR)

ERLP-Boost
ERLP-Boost (CR)

MD-Boost

MD-Boost (CR)

Test Accuracy vs Ensemble Sparsity on Depth 5

20 40 60 80 100
Average Number of Columns Used

0.815

0.820

0.825

0.830

0.835

Av
er

ag
e

Te
st

in
g

Ac
cu

ra
cy

NM-BoostNM-Boost (CR) QRLP-Boost

QRLP-Boost (CR)

LP-Boost LP-Boost (CR)

CG-Boost

CG-Boost (CR)
ERLP-Boost

ERLP-Boost (CR)MD-Boost

MD-Boost (CR)

Test Accuracy vs Ensemble Sparsity on Depth 10

Figure 16: Average testing accuracy compared to average ensemble sparsity over all datasets for 1, 3, 5,
and 10 depth CART trees with either hard voting or confidence-rated (CR) soft voting.

Table 13: Testing accuracy and number of non-zero weights for different boosting methods using confidence-
rated CART trees of depth 1, averaged over five seeds. A star∗ marks the best among totally corrective
methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.625∗ ± 0.016 4 0.622 ± 0.014 4 0.625∗ ± 0.016 2 0.625∗ ± 0.016 100 0.620 ± 0.016 100 0.625∗ ± 0.016 4
breast cancer 0.785 ± 0.080 3 0.804 ± 0.058 35 0.770 ± 0.058 0 0.792 ± 0.040 100 0.792 ± 0.058 94 0.815∗ ± 0.051 22
diabetes 0.768∗ ± 0.019 4 0.758 ± 0.021 100 0.732 ± 0.039 4 0.751 ± 0.025 100 0.764 ± 0.020 100 0.757 ± 0.020 17
german credit 0.807∗ ± 0.026 26 0.786 ± 0.024 100 0.732 ± 0.007 2 0.790 ± 0.027 100 0.768 ± 0.024 100 0.805 ± 0.021 43
heart 0.822 ± 0.022 17 0.789 ± 0.028 100 0.774 ± 0.064 9 0.833∗ ± 0.035 100 0.767 ± 0.045 73 0.826 ± 0.025 21
image 0.856∗ ± 0.010 22 0.807 ± 0.010 15 0.833 ± 0.017 13 0.843 ± 0.003 100 0.784 ± 0.024 12 0.768 ± 0.025 12
ringnorm 0.929 ± 0.002 60 0.871 ± 0.018 64 0.929 ± 0.002 58 0.931∗ ± 0.002 100 0.863 ± 0.006 100 0.906 ± 0.002 30
solar flare 0.703 ± 0.071 7 0.738∗ ± 0.064 31 0.662 ± 0.091 3 0.738∗ ± 0.068 100 0.738∗ ± 0.047 85 0.710 ± 0.071 14
splice 0.943∗ ± 0.007 53 0.927 ± 0.013 83 0.942 ± 0.007 29 0.943∗ ± 0.010 100 0.915 ± 0.011 81 0.924 ± 0.009 12
thyroid 0.940 ± 0.035 5 0.916 ± 0.032 8 0.912 ± 0.017 4 0.944∗ ± 0.032 100 0.907 ± 0.025 64 0.944∗ ± 0.032 38
titanic 0.800∗ ± 0.019 12 0.799 ± 0.021 45 0.791 ± 0.022 4 0.793 ± 0.024 100 0.797 ± 0.021 84 0.798 ± 0.028 22
twonorm 0.961∗ ± 0.003 60 0.917 ± 0.002 100 0.960 ± 0.005 58 0.961∗ ± 0.003 100 0.910 ± 0.003 100 0.951 ± 0.004 46
waveform 0.889∗ ± 0.006 53 0.865 ± 0.004 100 0.885 ± 0.003 35 0.888 ± 0.004 100 0.859 ± 0.006 100 0.850 ± 0.003 12
adult 0.814∗ ± 0.003 15 0.786 ± 0.014 5 0.812 ± 0.003 12 0.813 ± 0.003 96 0.810 ± 0.005 96 0.812 ± 0.004 14
compas propublica 0.659 ± 0.015 6 0.672∗ ± 0.018 100 0.656 ± 0.015 4 0.656 ± 0.015 100 0.668 ± 0.018 65 0.672∗ ± 0.017 13
employment CA2018 0.740∗ ± 0.003 17 0.733 ± 0.008 18 0.740∗ ± 0.003 18 0.740∗ ± 0.003 76 0.735 ± 0.003 84 0.734 ± 0.003 11
employment TX2018 0.744∗ ± 0.003 18 0.742 ± 0.003 24 0.744∗ ± 0.003 19 0.742 ± 0.003 91 0.736 ± 0.003 83 0.731 ± 0.005 10
public coverage CA2018 0.696 ± 0.004 27 0.698 ± 0.005 100 0.680 ± 0.005 3 0.680 ± 0.005 100 0.688 ± 0.006 100 0.704∗ ± 0.003 55
public coverage TX2018 0.847 ± 0.004 43 0.846 ± 0.002 24 0.829 ± 0.002 5 0.830 ± 0.002 100 0.845 ± 0.003 96 0.848∗ ± 0.002 67
mushroom secondary 0.787 ± 0.006 46 0.697 ± 0.073 33 0.817∗ ± 0.005 54 0.810 ± 0.004 86 0.736 ± 0.003 23 0.753 ± 0.008 22

Mean/Median 0.806∗/0.804∗ 24.9/17.5 0.789/0.788 54.5/40 0.791/0.782 16.8/7 0.805/0.802 97.5/100 0.785/0.776 82.0/89.5 0.797/0.802 24.2/19

39

Published in Transactions on Machine Learning Research (10/2025)

Table 14: Testing accuracy and number of non-zero weights for different boosting methods using confidence-
rated CART trees of depth 3, averaged over five seeds. A star∗ marks the best among totally corrective
methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670 ± 0.014 14 0.672 ± 0.015 81 0.675∗ ± 0.018 11 0.670 ± 0.014 100 0.673 ± 0.017 100 0.670 ± 0.014 20
breast cancer 0.838∗ ± 0.019 17 0.838∗ ± 0.026 90 0.823 ± 0.035 15 0.834 ± 0.047 100 0.804 ± 0.064 89 0.785 ± 0.028 21
diabetes 0.752 ± 0.026 6 0.738 ± 0.017 100 0.758∗ ± 0.019 11 0.732 ± 0.038 100 0.756 ± 0.036 100 0.730 ± 0.035 46
german credit 0.875∗ ± 0.029 50 0.835 ± 0.025 100 0.855 ± 0.028 72 0.852 ± 0.022 100 0.827 ± 0.036 100 0.776 ± 0.030 33
heart 0.881∗ ± 0.034 7 0.867 ± 0.036 86 0.867 ± 0.040 31 0.878 ± 0.025 100 0.852 ± 0.042 100 0.774 ± 0.072 26
image 0.947 ± 0.005 41 0.926 ± 0.015 100 0.953 ± 0.009 39 0.954∗ ± 0.007 100 0.880 ± 0.022 89 0.876 ± 0.025 17
ringnorm 0.937 ± 0.005 88 0.910 ± 0.003 100 0.933 ± 0.004 69 0.938∗ ± 0.003 100 0.896 ± 0.005 100 0.887 ± 0.012 37
solar flare 0.614 ± 0.074 11 0.655 ± 0.079 100 0.669∗ ± 0.064 7 0.648 ± 0.059 100 0.628 ± 0.122 100 0.669∗ ± 0.099 54
splice 0.975 ± 0.006 34 0.967 ± 0.008 100 0.975 ± 0.004 89 0.976∗ ± 0.005 100 0.952 ± 0.004 100 0.935 ± 0.005 45
thyroid 0.940∗ ± 0.024 2 0.940∗ ± 0.024 100 0.940∗ ± 0.024 4 0.940∗ ± 0.035 100 0.940∗ ± 0.024 50 0.940∗ ± 0.024 75
titanic 0.804 ± 0.014 11 0.810 ± 0.032 100 0.803 ± 0.027 21 0.821∗ ± 0.022 100 0.802 ± 0.026 100 0.806 ± 0.024 100
twonorm 0.961 ± 0.003 92 0.935 ± 0.005 100 0.959 ± 0.005 74 0.963∗ ± 0.004 100 0.927 ± 0.005 100 0.920 ± 0.029 65
waveform 0.911 ± 0.011 94 0.890 ± 0.004 100 0.911 ± 0.006 82 0.913∗ ± 0.009 100 0.883 ± 0.007 100 0.848 ± 0.006 45
adult 0.817 ± 0.002 88 0.817 ± 0.003 81 0.817 ± 0.001 82 0.817 ± 0.001 96 0.816 ± 0.002 100 0.818∗ ± 0.001 41
compas propublica 0.666 ± 0.012 21 0.668 ± 0.015 100 0.668 ± 0.013 49 0.669∗ ± 0.014 100 0.669∗ ± 0.013 100 0.661 ± 0.006 52
employment CA2018 0.746∗ ± 0.002 69 0.737 ± 0.009 25 0.743 ± 0.003 74 0.743 ± 0.002 76 0.745 ± 0.002 100 0.737 ± 0.003 16
employment TX2018 0.755 ± 0.001 85 0.756∗ ± 0.002 100 0.753 ± 0.003 89 0.754 ± 0.001 91 0.752 ± 0.002 100 0.744 ± 0.005 20
public coverage CA2018 0.708 ± 0.004 92 0.702 ± 0.014 81 0.711 ± 0.004 98 0.711 ± 0.003 100 0.705 ± 0.002 100 0.713∗ ± 0.003 95
public coverage TX2018 0.852 ± 0.003 94 0.851 ± 0.001 81 0.852 ± 0.001 92 0.852 ± 0.002 100 0.850 ± 0.002 100 0.853∗ ± 0.002 85
mushroom secondary 0.998∗ ± 0.001 75 0.769 ± 0.085 22 0.998∗ ± 0.000 82 0.998∗ ± 0.001 86 0.852 ± 0.009 97 0.893 ± 0.033 28

Mean/Median 0.832/0.845∗ 49.5/45.5 0.814/0.826 87.3/100 0.833∗/0.837 54.5/70.5 0.833∗/0.843 97.5/100 0.810/0.821 96.2/100 0.802/0.796 46.0/43

Table 15: Testing accuracy and number of non-zero weights for different boosting methods using confidence-
rated CART trees of depth 5, averaged over five seeds. A star∗ marks the best among totally corrective
methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 14 0.670∗ ± 0.014 3 0.670∗ ± 0.014 9 0.670∗ ± 0.014 100 0.670∗ ± 0.014 81 0.670∗ ± 0.014 88
breast cancer 0.830 ± 0.043 4 0.864∗ ± 0.044 100 0.838 ± 0.057 27 0.811 ± 0.012 100 0.853 ± 0.058 100 0.777 ± 0.035 58
diabetes 0.752∗ ± 0.010 23 0.739 ± 0.034 100 0.730 ± 0.013 75 0.735 ± 0.013 100 0.748 ± 0.024 100 0.748 ± 0.018 83
german credit 0.882 ± 0.028 23 0.874 ± 0.024 100 0.887∗ ± 0.019 80 0.882 ± 0.029 100 0.861 ± 0.032 100 0.825 ± 0.018 44
heart 0.841 ± 0.025 3 0.878∗ ± 0.009 100 0.878∗ ± 0.030 38 0.878∗ ± 0.022 100 0.870 ± 0.042 100 0.867 ± 0.014 72
image 0.949 ± 0.005 19 0.954∗ ± 0.010 100 0.953 ± 0.006 43 0.954∗ ± 0.007 100 0.939 ± 0.007 100 0.921 ± 0.017 78
ringnorm 0.939∗ ± 0.007 82 0.916 ± 0.006 100 0.937 ± 0.003 70 0.937 ± 0.005 100 0.899 ± 0.008 100 0.855 ± 0.017 47
solar flare 0.648 ± 0.059 6 0.634 ± 0.041 100 0.641 ± 0.071 5 0.641 ± 0.071 100 0.648 ± 0.080 100 0.669∗ ± 0.056 15
splice 0.975 ± 0.006 20 0.975 ± 0.007 100 0.980 ± 0.003 84 0.981∗ ± 0.003 100 0.971 ± 0.006 100 0.967 ± 0.006 100
thyroid 0.940 ± 0.024 3 0.940 ± 0.035 47 0.949∗ ± 0.023 1 0.944 ± 0.028 100 0.944 ± 0.019 57 0.921 ± 0.054 99
titanic 0.810∗ ± 0.024 6 0.800 ± 0.012 100 0.810∗ ± 0.028 14 0.799 ± 0.025 100 0.800 ± 0.025 100 0.796 ± 0.028 48
twonorm 0.960 ± 0.003 55 0.947 ± 0.006 100 0.960 ± 0.002 74 0.964∗ ± 0.003 100 0.938 ± 0.003 100 0.910 ± 0.012 31
waveform 0.921∗ ± 0.011 67 0.912 ± 0.008 100 0.918 ± 0.008 76 0.920 ± 0.010 100 0.899 ± 0.007 100 0.867 ± 0.005 92
adult 0.816 ± 0.002 82 0.815 ± 0.007 81 0.817 ± 0.002 90 0.818∗ ± 0.002 96 0.818∗ ± 0.002 100 0.818∗ ± 0.002 62
compas propublica 0.668 ± 0.014 28 0.666 ± 0.011 100 0.668 ± 0.014 61 0.670∗ ± 0.014 100 0.667 ± 0.015 100 0.668 ± 0.016 68
employment CA2018 0.748 ± 0.002 69 0.746 ± 0.006 62 0.748 ± 0.003 75 0.749∗ ± 0.002 75 0.749∗ ± 0.003 100 0.741 ± 0.003 31
employment TX2018 0.756 ± 0.002 88 0.759∗ ± 0.002 100 0.758 ± 0.003 91 0.759∗ ± 0.002 91 0.757 ± 0.002 100 0.746 ± 0.006 21
public coverage CA2018 0.712 ± 0.005 96 0.707 ± 0.012 81 0.716∗ ± 0.005 99 0.714 ± 0.003 100 0.708 ± 0.005 100 0.715 ± 0.004 62
public coverage TX2018 0.849 ± 0.002 57 0.852 ± 0.002 100 0.852 ± 0.002 98 0.852 ± 0.001 100 0.852 ± 0.002 100 0.855∗ ± 0.001 81
mushroom secondary 0.998 ± 0.000 44 0.944 ± 0.041 62 0.999∗ ± 0.000 80 0.999∗ ± 0.000 86 0.940 ± 0.006 94 0.959 ± 0.030 60

Mean/Median 0.833/0.835 39.5/25.5 0.830/ 0.858∗ 86.8/100 0.835∗/0.845 59.5/74.5 0.834/0.835 97.4/100 0.827/0.853 96.6/100 0.815/0.821 62.0/62

40

Published in Transactions on Machine Learning Research (10/2025)

Table 16: Testing accuracy and number of non-zero weights for different boosting methods using confidence-
rated CART trees of depth 10, averaged over five seeds. A star∗ marks the best among totally corrective
methods. The last row shows the mean and median for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 14 0.670∗ ± 0.014 4 0.670∗ ± 0.014 10 0.670∗ ± 0.014 100 0.670∗ ± 0.014 100 0.670∗ ± 0.014 100
breast cancer 0.819 ± 0.019 4 0.830 ± 0.024 74 0.819 ± 0.026 28 0.808 ± 0.025 100 0.823 ± 0.035 81 0.845∗ ± 0.037 56
diabetes 0.704 ± 0.036 2 0.740∗ ± 0.026 100 0.697 ± 0.032 63 0.734 ± 0.015 100 0.687 ± 0.043 99 0.716 ± 0.019 100
german credit 0.866 ± 0.030 3 0.887∗ ± 0.016 100 0.876 ± 0.032 66 0.881 ± 0.024 100 0.872 ± 0.020 87 0.871 ± 0.022 89
heart 0.837 ± 0.022 1 0.833 ± 0.031 1 0.833 ± 0.012 1 0.841 ± 0.025 100 0.844∗ ± 0.015 1 0.589 ± 0.055 2
image 0.955∗ ± 0.008 7 0.950 ± 0.011 100 0.952 ± 0.011 47 0.952 ± 0.011 100 0.944 ± 0.009 83 0.943 ± 0.018 99
ringnorm 0.926 ± 0.004 21 0.924 ± 0.006 100 0.908 ± 0.006 98 0.935∗ ± 0.003 100 0.915 ± 0.008 100 0.919 ± 0.005 88
solar flare 0.683∗ ± 0.077 7 0.683∗ ± 0.026 99 0.655 ± 0.049 10 0.648 ± 0.059 100 0.628 ± 0.063 99 0.676 ± 0.035 75
splice 0.963 ± 0.005 2 0.970 ± 0.005 100 0.968 ± 0.009 76 0.979∗ ± 0.005 100 0.968 ± 0.010 100 0.977 ± 0.003 100
thyroid 0.949 ± 0.023 3 0.953∗ ± 0.029 51 0.949 ± 0.023 1 0.949 ± 0.023 100 0.944 ± 0.019 39 0.935 ± 0.034 67
titanic 0.800 ± 0.017 12 0.774 ± 0.010 100 0.789 ± 0.036 34 0.803∗ ± 0.017 100 0.797 ± 0.027 82 0.796 ± 0.031 100
twonorm 0.946 ± 0.005 11 0.948 ± 0.006 100 0.932 ± 0.006 89 0.968∗ ± 0.002 100 0.949 ± 0.002 100 0.950 ± 0.002 100
waveform 0.912 ± 0.003 9 0.917 ± 0.005 100 0.913 ± 0.002 93 0.926∗ ± 0.009 100 0.920 ± 0.011 100 0.906 ± 0.009 87
adult 0.817∗ ± 0.002 4 0.816 ± 0.002 100 0.816 ± 0.002 90 0.816 ± 0.002 96 0.816 ± 0.002 1 0.816 ± 0.002 96
compas propublica 0.666∗ ± 0.014 76 0.665 ± 0.014 100 0.664 ± 0.014 86 0.666∗ ± 0.014 100 0.665 ± 0.013 100 0.664 ± 0.014 100
employment CA2018 0.746 ± 0.003 24 0.747 ± 0.002 100 0.743 ± 0.002 16 0.748 ± 0.001 76 0.749∗ ± 0.002 100 0.742 ± 0.002 64
employment TX2018 0.755 ± 0.003 12 0.755 ± 0.008 81 0.750 ± 0.004 11 0.757 ± 0.003 91 0.758∗ ± 0.004 100 0.751 ± 0.003 60
public coverage CA2018 0.710 ± 0.005 38 0.711 ± 0.005 100 0.696 ± 0.007 99 0.715∗ ± 0.005 100 0.708 ± 0.006 100 0.697 ± 0.003 61
public coverage TX2018 0.849 ± 0.002 11 0.851 ± 0.003 100 0.841 ± 0.002 97 0.855∗ ± 0.002 100 0.849 ± 0.002 100 0.847 ± 0.002 79
mushroom secondary 0.999∗ ± 0.000 14 0.999∗ ± 0.000 100 0.999∗ ± 0.000 78 0.999∗ ± 0.000 86 0.993 ± 0.004 100 0.996 ± 0.002 86

Mean/Median 0.829/0.828 13.8/10 0.831/0.831 85.5/100 0.823/0.826 54.6/64.5 0.832∗/0.829 97.5/100 0.825/0.833∗ 83.6/100 0.815/0.831 80.5/87.5

D.7 Experiments with Optimal Trees as Base Learners

We report in Tables 17, 18, 19, and 20 the per-dataset performances of the different considered boosting
approaches, for optimal decision trees of depths 1, 3, 5, and 10 (respectively) trained with the Blossom
algorithm. They complement the results provided in Section 7.

Table 17: Testing accuracy and number of non-zero weights for different boosting methods using optimal
decision trees of depth 1, averaged over five seeds. Bold highlights the best accuracy among all methods,
while a star∗ marks the best among totally corrective methods. The last row shows the mean and median
for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.625∗ ± 0.016 2 0.620 ± 0.016 3 0.625∗ ± 0.016 1 0.625∗ ± 0.016 100 0.620 ± 0.016 3 0.620 ± 0.016 3 0.625 ± 0.016 100
breast cancer 0.740 ± 0.055 2 0.732 ± 0.044 2 0.770∗ ± 0.058 0 0.732 ± 0.044 80 0.732 ± 0.044 2 0.732 ± 0.044 2 0.789 ± 0.038 100
diabetes 0.744 ± 0.013 2 0.716 ± 0.021 13 0.743 ± 0.019 1 0.749∗ ± 0.024 100 0.716 ± 0.021 13 0.729 ± 0.022 10 0.773 ± 0.026 100
german credit 0.737 ± 0.022 4 0.726 ± 0.025 5 0.739 ± 0.018 1 0.740∗ ± 0.019 100 0.726 ± 0.025 5 0.726 ± 0.025 4 0.808 ± 0.029 100
heart 0.726∗ ± 0.022 3 0.644 ± 0.054 9 0.711 ± 0.032 1 0.719 ± 0.041 100 0.637 ± 0.042 9 0.693 ± 0.056 5 0.807 ± 0.025 100
image 0.757∗ ± 0.013 7 0.719 ± 0.018 14 0.757∗ ± 0.015 6 0.717 ± 0.018 100 0.717 ± 0.018 14 0.717 ± 0.018 10 0.824 ± 0.016 100
ringnorm 0.884∗ ± 0.005 38 0.724 ± 0.009 41 0.880 ± 0.006 37 0.724 ± 0.009 100 0.723 ± 0.009 35 0.780 ± 0.006 5 0.911 ± 0.003 100
solar flare 0.724∗ ± 0.058 3 0.634 ± 0.074 9 0.697 ± 0.055 2 0.559 ± 0.026 100 0.634 ± 0.074 8 0.648 ± 0.080 6 0.662 ± 0.096 100
splice 0.813∗ ± 0.013 2 0.633 ± 0.031 4 0.813∗ ± 0.013 1 0.813∗ ± 0.013 100 0.647 ± 0.034 4 0.647 ± 0.034 4 0.943 ± 0.009 100
thyroid 0.930 ± 0.039 3 0.935 ± 0.037 5 0.944∗ ± 0.032 3 0.935 ± 0.037 100 0.935 ± 0.037 5 0.926 ± 0.037 4 0.940 ± 0.024 100
titanic 0.787∗ ± 0.017 2 0.781 ± 0.026 5 0.779 ± 0.021 1 0.779 ± 0.021 100 0.781 ± 0.026 5 0.783 ± 0.022 5 0.807 ± 0.029 100
twonorm 0.779∗ ± 0.023 19 0.601 ± 0.041 27 0.604 ± 0.032 26 0.558 ± 0.022 100 0.601 ± 0.041 25 0.677 ± 0.019 6 0.949 ± 0.004 100
waveform 0.806∗ ± 0.009 8 0.805 ± 0.010 8 0.805 ± 0.009 6 0.800 ± 0.008 100 0.805 ± 0.010 8 0.806∗ ± 0.008 6 0.885 ± 0.002 100
adult 0.780∗ ± 0.003 3 0.780∗ ± 0.003 3 0.780∗ ± 0.003 2 0.780∗ ± 0.003 100 0.780∗ ± 0.004 3 0.780∗ ± 0.004 3 0.815 ± 0.002 100
compas propublica 0.660 ± 0.013 4 0.662∗ ± 0.012 6 0.660 ± 0.013 3 0.662∗ ± 0.012 100 0.662∗ ± 0.012 6 0.662∗ ± 0.012 6 0.670 ± 0.017 100
employment CA2018 0.668∗ ± 0.002 4 0.632 ± 0.002 14 0.668∗ ± 0.002 1 0.641 ± 0.001 76 0.632 ± 0.002 15 0.634 ± 0.015 9 0.738 ± 0.002 100
employment TX2018 0.671∗ ± 0.002 2 0.600 ± 0.002 19 0.671∗ ± 0.002 1 0.615 ± 0.008 91 0.600 ± 0.002 19 0.602 ± 0.003 10 0.740 ± 0.002 100
public coverage CA2018 0.680∗ ± 0.006 4 0.672 ± 0.007 6 0.680∗ ± 0.005 2 0.679 ± 0.006 100 0.672 ± 0.007 6 0.672 ± 0.007 6 0.700 ± 0.005 100
public coverage TX2018 0.829∗ ± 0.001 8 0.826 ± 0.002 13 0.829∗ ± 0.002 3 0.827 ± 0.002 100 0.826 ± 0.002 13 0.828 ± 0.002 7 0.843 ± 0.003 100
mushroom secondary 0.666∗ ± 0.007 7 0.612 ± 0.015 23 0.658 ± 0.003 21 0.614 ± 0.003 86 0.621 ± 0.004 23 0.627 ± 0.005 3 0.754 ± 0.002 100

Mean/Median 0.750∗ / 0.742∗ 6.3 / 3.5 0.703 / 0.694 11.4 / 8.5 0.741 / 0.741 6.0 / 2.0 0.713 / 0.722 96.7 / 100.0 0.703 / 0.694 11.1 / 8.0 0.714 / 0.705 5.7 / 5.5 0.799 / 0.807 100 / 100

41

Published in Transactions on Machine Learning Research (10/2025)

Table 18: Testing accuracy and number of non-zero weights for different boosting methods using optimal
decision trees of depth 3, averaged over five seeds. Bold highlights the best accuracy among all methods,
while a star∗ marks the best among totally corrective methods. The last row shows the mean and median
for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670 ± 0.014 3 0.669 ± 0.023 7 0.671∗ ± 0.015 3 0.670 ± 0.020 100 0.670 ± 0.024 7 0.667 ± 0.019 8 0.670 ± 0.014 100
breast cancer 0.808∗ ± 0.055 2 0.755 ± 0.049 8 0.808∗ ± 0.062 1 0.796 ± 0.062 100 0.766 ± 0.064 7 0.770 ± 0.067 7 0.823 ± 0.019 100
diabetes 0.757∗ ± 0.013 2 0.747 ± 0.029 23 0.751 ± 0.023 18 0.752 ± 0.023 100 0.747 ± 0.022 25 0.745 ± 0.014 11 0.769 ± 0.019 100
german credit 0.756∗ ± 0.033 8 0.724 ± 0.038 23 0.732 ± 0.009 0 0.749 ± 0.028 100 0.738 ± 0.042 20 0.742 ± 0.041 12 0.867 ± 0.021 100
heart 0.807∗ ± 0.040 3 0.770 ± 0.046 19 0.804 ± 0.038 7 0.741 ± 0.063 100 0.756 ± 0.046 11 0.778 ± 0.031 11 0.889 ± 0.023 100
image 0.899∗ ± 0.047 7 0.764 ± 0.019 22 0.890 ± 0.034 6 0.765 ± 0.021 100 0.756 ± 0.024 21 0.768 ± 0.020 11 0.943 ± 0.011 100
ringnorm 0.906∗ ± 0.005 61 0.773 ± 0.008 99 0.884 ± 0.008 71 0.771 ± 0.012 100 0.772 ± 0.013 93 0.801 ± 0.010 16 0.916 ± 0.003 100
solar flare 0.655 ± 0.115 3 0.648 ± 0.046 11 0.683∗ ± 0.067 3 0.634 ± 0.104 100 0.648 ± 0.051 12 0.662 ± 0.046 7 0.697 ± 0.051 100
splice 0.940 ± 0.006 11 0.890 ± 0.007 20 0.946∗ ± 0.007 6 0.905 ± 0.007 100 0.887 ± 0.017 19 0.901 ± 0.006 11 0.979 ± 0.002 100
thyroid 0.949∗ ± 0.031 2 0.940 ± 0.019 5 0.940 ± 0.035 1 0.935 ± 0.017 100 0.940 ± 0.019 5 0.940 ± 0.019 8 0.944 ± 0.032 100
titanic 0.790 ± 0.023 2 0.782 ± 0.026 16 0.798∗ ± 0.037 1 0.794 ± 0.028 100 0.789 ± 0.029 16 0.787 ± 0.029 12 0.812 ± 0.026 100
twonorm 0.830∗ ± 0.017 20 0.661 ± 0.014 99 0.744 ± 0.010 68 0.653 ± 0.008 100 0.708 ± 0.016 71 0.790 ± 0.009 9 0.954 ± 0.004 100
waveform 0.818∗ ± 0.019 9 0.762 ± 0.014 24 0.787 ± 0.008 18 0.784 ± 0.009 100 0.768 ± 0.008 23 0.783 ± 0.018 15 0.884 ± 0.008 100
adult 0.807∗ ± 0.002 7 0.799 ± 0.002 20 0.805 ± 0.002 6 0.799 ± 0.002 100 0.798 ± 0.002 20 0.799 ± 0.002 19 0.819 ± 0.001 100
compas propublica 0.670∗ ± 0.014 8 0.666 ± 0.011 30 0.669 ± 0.013 5 0.665 ± 0.016 100 0.665 ± 0.010 26 0.664 ± 0.010 26 0.668 ± 0.015 100
employment CA2018 0.719∗ ± 0.002 2 0.685 ± 0.004 26 0.719∗ ± 0.002 1 0.686 ± 0.004 76 0.682 ± 0.003 27 0.689 ± 0.004 14 0.744 ± 0.002 100
employment TX2018 0.729∗ ± 0.002 3 0.686 ± 0.003 27 0.728 ± 0.003 1 0.698 ± 0.002 78 0.693 ± 0.002 26 0.700 ± 0.006 15 0.754 ± 0.004 100
public coverage CA2018 0.693∗ ± 0.006 5 0.691 ± 0.004 22 0.692 ± 0.004 3 0.689 ± 0.006 100 0.691 ± 0.005 23 0.691 ± 0.005 14 0.711 ± 0.002 100
public coverage TX2018 0.851∗ ± 0.002 23 0.848 ± 0.002 93 0.850 ± 0.002 14 0.846 ± 0.002 100 0.847 ± 0.002 100 0.851∗ ± 0.002 7 0.851 ± 0.003 100
mushroom secondary 0.781 ± 0.006 12 0.740 ± 0.003 35 0.778 ± 0.012 11 0.735 ± 0.002 86 0.743 ± 0.008 33 0.802∗ ± 0.005 11 0.809 ± 0.011 100

Mean/Median 0.792∗ / 0.798∗ 9.7 / 6.0 0.750 / 0.751 31.4 / 22.5 0.784 / 0.782 12.2 / 5.5 0.753 / 0.750 97.0 / 100.0 0.753 / 0.752 29.2 / 22.0 0.767 / 0.774 12.2 / 11.0 0.825 / 0.821 100 / 100

Table 19: Testing accuracy and number of non-zero weights for different boosting methods using optimal
decision trees of depth 5, averaged over five seeds. Bold highlights the best accuracy among all methods,
while a star∗ marks the best among totally corrective methods. The last row shows the mean and median
for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 4 0.668 ± 0.015 10 0.670∗ ± 0.014 1 0.670∗ ± 0.014 100 0.670∗ ± 0.014 11 0.670∗ ± 0.014 8 0.670 ± 0.014 100
breast cancer 0.823 ± 0.041 2 0.781 ± 0.049 11 0.808 ± 0.040 3 0.826∗ ± 0.040 100 0.789 ± 0.075 10 0.808 ± 0.044 11 0.819 ± 0.042 100
diabetes 0.718 ± 0.007 6 0.716 ± 0.035 32 0.713 ± 0.050 14 0.732∗ ± 0.020 100 0.705 ± 0.024 21 0.717 ± 0.034 9 0.761 ± 0.017 100
german credit 0.798∗ ± 0.031 15 0.725 ± 0.043 25 0.732 ± 0.009 0 0.782 ± 0.025 100 0.716 ± 0.057 22 0.741 ± 0.041 10 0.893 ± 0.016 100
heart 0.819 ± 0.054 3 0.830∗ ± 0.038 5 0.789 ± 0.064 13 0.767 ± 0.053 100 0.778 ± 0.059 8 0.811 ± 0.052 9 0.904 ± 0.014 100
image 0.950∗ ± 0.007 12 0.861 ± 0.013 27 0.939 ± 0.004 17 0.839 ± 0.005 100 0.863 ± 0.009 21 0.874 ± 0.007 10 0.954 ± 0.005 100
ringnorm 0.919∗ ± 0.008 43 0.863 ± 0.010 98 0.904 ± 0.003 57 0.844 ± 0.012 100 0.859 ± 0.015 47 0.871 ± 0.012 20 0.921 ± 0.006 100
solar flare 0.634 ± 0.091 2 0.676 ± 0.047 11 0.697∗ ± 0.040 1 0.697∗ ± 0.034 100 0.683 ± 0.026 12 0.648 ± 0.040 16 0.683 ± 0.026 100
splice 0.958∗ ± 0.005 8 0.924 ± 0.010 43 0.930 ± 0.008 43 0.941 ± 0.009 100 0.934 ± 0.013 48 0.951 ± 0.011 8 0.984 ± 0.004 100
thyroid 0.949 ± 0.023 1 0.949 ± 0.031 4 0.949 ± 0.023 1 0.958∗ ± 0.023 100 0.949 ± 0.031 4 0.958∗ ± 0.023 5 0.944 ± 0.032 100
titanic 0.808∗ ± 0.022 7 0.770 ± 0.025 22 0.785 ± 0.027 16 0.788 ± 0.034 100 0.764 ± 0.035 18 0.771 ± 0.034 7 0.816 ± 0.021 100
twonorm 0.872∗ ± 0.018 16 0.790 ± 0.014 83 0.851 ± 0.014 58 0.744 ± 0.014 100 0.782 ± 0.012 51 0.823 ± 0.013 8 0.963 ± 0.004 100
waveform 0.856∗ ± 0.010 9 0.832 ± 0.009 28 0.815 ± 0.019 25 0.800 ± 0.017 100 0.827 ± 0.007 28 0.836 ± 0.013 8 0.925 ± 0.014 100
adult 0.818∗ ± 0.001 11 0.812 ± 0.003 48 0.814 ± 0.001 16 0.812 ± 0.002 96 0.812 ± 0.004 42 0.814 ± 0.002 48 0.819 ± 0.002 100
compas propublica 0.668∗ ± 0.014 30 0.666 ± 0.009 56 0.668∗ ± 0.012 1 0.665 ± 0.015 100 0.666 ± 0.009 51 0.667 ± 0.012 28 0.669 ± 0.015 100
employment CA2018 0.733 ± 0.003 21 0.720 ± 0.001 50 0.734∗ ± 0.002 2 0.721 ± 0.004 76 0.719 ± 0.001 47 0.717 ± 0.002 62 0.748 ± 0.002 100
employment TX2018 0.736∗ ± 0.003 23 0.722 ± 0.005 69 0.736∗ ± 0.003 16 0.722 ± 0.003 91 0.721 ± 0.004 71 0.722 ± 0.003 37 0.756 ± 0.005 100
public coverage CA2018 0.696 ± 0.004 7 0.693 ± 0.005 55 0.694 ± 0.005 15 0.686 ± 0.008 100 0.690 ± 0.004 53 0.697∗ ± 0.004 30 0.713 ± 0.005 100
public coverage TX2018 0.848 ± 0.002 8 0.847 ± 0.003 99 0.846 ± 0.003 53 0.850∗ ± 0.003 100 0.846 ± 0.004 94 0.849 ± 0.003 39 0.851 ± 0.003 100
mushroom secondary 0.844 ± 0.020 18 0.842 ± 0.012 45 0.822 ± 0.011 12 0.788 ± 0.006 86 0.831 ± 0.006 46 0.884∗ ± 0.007 18 0.997 ± 0.001 100

Mean/Median 0.806∗ / 0.819∗ 12.3 / 8.5 0.784 / 0.786 41.0 / 37.5 0.795 / 0.798 18.2 / 14.5 0.782 / 0.785 97.5 / 100.0 0.780 / 0.780 35.2 / 35.0 0.791 / 0.810 19.6 / 10.5 0.839 / 0.835 100 / 100

42

Published in Transactions on Machine Learning Research (10/2025)

Table 20: Testing accuracy and number of non-zero weights for different boosting methods using optimal
decision trees of depth 10, averaged over five seeds. Bold highlights the best accuracy among all methods,
while a star∗ marks the best among totally corrective methods. The last row shows the mean and median
for both statistics.

NM-Boost QRLP-Boost LP-Boost CG-Boost ERLP-Boost MD-Boost Adaboost

Dataset Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols. Acc. Cols.

banana 0.670∗ ± 0.014 5 0.670∗ ± 0.014 11 0.670∗ ± 0.014 1 0.670∗ ± 0.014 100 0.670∗ ± 0.014 11 0.670∗ ± 0.014 10 0.670 ± 0.014 100
breast cancer 0.785 ± 0.051 2 0.811 ± 0.064 6 0.823∗ ± 0.039 1 0.811 ± 0.043 100 0.785 ± 0.035 6 0.800 ± 0.067 8 0.826 ± 0.028 100
diabetes 0.710 ± 0.031 2 0.706 ± 0.024 5 0.694 ± 0.023 25 0.716∗ ± 0.019 100 0.703 ± 0.024 9 0.692 ± 0.044 14 0.760 ± 0.013 100
german credit 0.833 ± 0.045 1 0.839∗ ± 0.042 6 0.732 ± 0.009 0 0.794 ± 0.042 100 0.821 ± 0.024 6 0.785 ± 0.042 11 0.881 ± 0.023 100
heart 0.848∗ ± 0.032 1 0.844 ± 0.030 1 0.844 ± 0.030 1 0.796 ± 0.052 100 0.844 ± 0.030 1 0.826 ± 0.058 5 0.844 ± 0.030 100
image 0.950∗ ± 0.005 5 0.935 ± 0.008 16 0.940 ± 0.004 31 0.927 ± 0.006 100 0.938 ± 0.007 14 0.936 ± 0.010 19 0.954 ± 0.008 100
ringnorm 0.930∗ ± 0.004 18 0.913 ± 0.007 31 0.910 ± 0.008 46 0.889 ± 0.010 100 0.923 ± 0.006 18 0.914 ± 0.009 100 0.934 ± 0.005 100
solar flare 0.648 ± 0.077 2 0.634 ± 0.056 8 0.641 ± 0.071 1 0.662∗ ± 0.046 100 0.662∗ ± 0.040 7 0.662∗ ± 0.063 13 0.648 ± 0.040 100
splice 0.967∗ ± 0.007 2 0.965 ± 0.007 4 0.962 ± 0.013 1 0.964 ± 0.006 100 0.959 ± 0.007 5 0.950 ± 0.008 26 0.978 ± 0.002 100
thyroid 0.953∗ ± 0.021 1 0.949 ± 0.031 4 0.944 ± 0.028 1 0.953∗ ± 0.025 100 0.949 ± 0.031 3 0.953∗ ± 0.021 4 0.944 ± 0.032 100
titanic 0.765 ± 0.022 2 0.739 ± 0.024 10 0.763 ± 0.064 7 0.766∗ ± 0.037 100 0.728 ± 0.026 11 0.747 ± 0.042 17 0.802 ± 0.008 100
twonorm 0.924∗ ± 0.009 25 0.891 ± 0.006 12 0.882 ± 0.006 54 0.828 ± 0.013 100 0.864 ± 0.014 33 0.889 ± 0.010 95 0.965 ± 0.003 100
waveform 0.884∗ ± 0.015 5 0.859 ± 0.012 24 0.858 ± 0.004 47 0.852 ± 0.009 100 0.857 ± 0.013 28 0.874 ± 0.008 33 0.925 ± 0.008 100
adult 0.814∗ ± 0.002 25 0.814∗ ± 0.002 89 0.810 ± 0.002 69 0.812 ± 0.002 76 0.814∗ ± 0.003 21 0.813 ± 0.002 66 0.816 ± 0.002 100
compas propublica 0.667∗ ± 0.015 45 0.667∗ ± 0.013 100 0.666 ± 0.016 1 0.665 ± 0.013 100 0.666 ± 0.013 100 0.667∗ ± 0.013 100 0.665 ± 0.014 100
employment CA2018 0.742 ± 0.002 2 0.732 ± 0.002 75 0.743∗ ± 0.002 1 0.730 ± 0.002 61 0.733 ± 0.003 73 0.737 ± 0.003 16 0.749 ± 0.000 100
employment TX2018 0.750∗ ± 0.005 2 0.739 ± 0.003 71 0.750∗ ± 0.004 1 0.732 ± 0.005 81 0.738 ± 0.005 82 0.742 ± 0.004 13 0.759 ± 0.003 100
public coverage CA2018 0.689∗ ± 0.007 7 0.680 ± 0.005 44 0.665 ± 0.007 70 0.668 ± 0.007 100 0.683 ± 0.009 21 0.683 ± 0.004 15 0.714 ± 0.003 100
public coverage TX2018 0.832∗ ± 0.007 12 0.812 ± 0.007 63 0.816 ± 0.001 0 0.821 ± 0.003 100 0.819 ± 0.005 49 0.832∗ ± 0.002 13 0.854 ± 0.002 100
mushroom secondary 0.999∗ ± 0.000 10 0.943 ± 0.016 22 0.999∗ ± 0.000 46 0.937 ± 0.020 81 0.944 ± 0.015 29 0.937 ± 0.021 14 0.999 ± 0.000 100

Mean/Median 0.818∗ / 0.823∗ 8.7 / 3.5 0.807 / 0.813 30.1 / 14.0 0.806 / 0.813 20.2 / 1.0 0.800 / 0.804 95.0 / 100.0 0.805 / 0.817 26.4 / 16.0 0.805 / 0.806 29.6 / 14.5 0.834 / 0.835 100 / 100

43

	Introduction
	Preliminaries
	Related Works
	New Totally Corrective Formulations
	Negative Margins Boosting
	Quadratically Regularized LP-Boost

	Experimental Design
	Experiments with CART Trees as Base Learners
	Accuracy-Sparsity Performance
	Anytime Performance
	Ensemble Sparsity
	Margin Analysis
	Hyperparameter Sensitivity
	Reweighting Behavior
	Effect of Confidence-Rated Voting

	Experiments with Optimal Trees as Base Learners
	Conclusions
	Datasets
	Formulations
	LP-Boost
	CG-Boost
	ERLP-Boost
	MD-Boost

	Hyperparameters
	Complementary Results
	Computational Time
	Accuracy-Sparsity Performances
	Anytime Performance
	Hyperparameter Sensitivity
	Reweighting Behavior
	Effect of Confidence-Rated Voting
	Experiments with Optimal Trees as Base Learners

