
On the creation of narrow AI:
hierarchy and nonlocality of neural network skills

Eric J. Michaud1,3∗ Asher Parker-Sartori2 Max Tegmark1,3

1 Department of Physics, Massachusetts Institute of Technology
2 Department of EECS, Massachusetts Institute of Technology

3 The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

Abstract

We study the problem of creating strong, yet narrow, AI systems. While recent
AI progress has been driven by the training of large general-purpose foundation
models, the creation of smaller models specialized for narrow domains could be
valuable for both efficiency and safety. In this work, we explore two challenges
involved in creating narrow AI systems, having to do with basic properties of how
neural networks learn and structure their representations. The first challenge regards
when it is possible to train narrow models from scratch. Through experiments
on a synthetic task, we find that it is sometimes necessary to train networks on
a wide distribution of data to learn certain narrow skills within that distribution.
This effect arises when skills depend on each other hierarchically, and training on a
broad distribution introduces a curriculum which substantially accelerates learning.
The second challenge regards how to transfer particular skills from large general
models into small specialized models. We find that model skills are often not
perfectly localized to a particular set of prunable components. However, we find
that methods based on pruning can still outperform distillation. We investigate the
use of a regularization objective to align desired skills with prunable components
while unlearning unnecessary skills.

1 Introduction

Today, the most competent AI systems in any particular domain are general systems that are relatively
competent in every domain. The best models at math and coding are also broadly knowledgeable about
a very diverse array of topics, from Roman history to home cooking recipes to medical diagnostics.
And when domain-specific models are created today, they are typically general foundation models
fine-tuned on a particular task, rather than new models trained from scratch [1, 2], though with some
notable exceptions [3]. This state of affairs is convenient and powerful, since a single general model
can be used for a variety of applications [4].

However, generality has downsides for both efficiency and safety. For instance, AI systems used as
coding assistants possess a large amount of knowledge which is never needed in those applications.
Instead, we might like to use smaller, specialized networks which preserve the coding knowledge of
general systems without the same breadth of irrelevant knowledge. Narrow systems may also pose
fewer safety risks than general systems. For instance, narrow systems may have fewer dangerous
capabilities that pose CBRN risks [5], be easier to understand mechanistically [6, 7], or be easier to
verify properties of [8–10]. More imaginatively, for systems to operate autonomously in the world
requires a large breadth of skills, and an ecosystem of narrow “tool AI” systems may therefore reduce
loss-of-control risks and better support human agency over the long term [11].

In this work, we investigate some basic questions about how neural networks learn and represent
skills that are relevant to the problem of creating narrow AI systems. As summarized in Figure 1,

∗ericjm@mit.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(A) (B)
Distributed Representations Less-distributed Representations

Figure 1: We study two challenges to making strong, narrow-purpose AI models. (A): Data may have
hierarchical structure. If skills have a hierarchical dependence, where some skills are only learnable
after more primitive skills are learned first, then it sometimes may be necessary to train on a broad
distribution of data to learn certain narrow skills within that distribution. These dynamics may mean
that general-purpose models must be trained to achieve certain performance on some domains. (B):
Model features are distributed. By default, skills may not be localizable to a particular set of model
components (e.g. neurons). In this case, pruning of model components won’t precisely retain wanted
skills and remove unwanted skills from models. We explore methods for aligning the model features
relevant to particular domains with a smaller subset of model components while unlearning others.

we focus on two main themes. First, we consider the question of when it is possible to train well-
performing neural networks from scratch on a narrow data distribution. Through experiments on a
novel synthetic task with hierarchical structure, we find that it can be necessary to train networks on
a broad distribution to efficiently learn narrow tasks within that distribution. These results contribute
to a growing literature on how task structure influences neural network learning dynamics [12–15],
but with special relevance to the problem of creating narrow AI. Second, we consider the question
of whether one can use pruning to turn broad networks into smaller narrow ones. We find that the
nonlocality of network representations to prunable model components poses a challenge for this
goal. While distributed representations have been extensively studied in the context of neural network
interpretability [16] and in the classical connectionist literature [17, 18], we study how this property
of neural network computation impacts pruning and unlearning [5] for creating narrow AI. Our
specific contributions are as follows:

• We describe a synthetic task, compositional multitask sparse parity (CMSP), extending the
multitask sparse parity task of Michaud et al. [19]. We find that networks trained on this
task exhibit extremely strong curriculum learning effects, where it is necessary to train on a
broad distribution of tasks in order to learn certain other tasks.

• We study pruning and unlearning on our networks trained on CMSP. We observe that tasks
are often distributed and distinct subtasks are entangled, making pruning an imperfect
strategy for “narrowing” the breadth of network skills. However, we find that a simple
group-sparsity regularization objective can be used to sparsify networks and unlearn skills.

• We perform an empirical comparison of methods for creating narrow systems on MNIST
and in LLMs. We tentatively find that methods based on pruning outperform distillation and
training networks from scratch for the creation of smaller, more narrow systems.2

This work is organized as follows. In Section 2, we briefly describe methods. In Section 3 we
perform a detailed case study of training and pruning on the CMSP task. We define the task
(Section 3.1), study network training dynamics on it (Section 3.2), find distributed representations in
these networks (Section 3.3), and use a regularization method for pruning and unlearning in these
networks (Section 3.4). We then compare various methods for creating narrow models, studying
MNIST in Section 4 and language models in Section 5. We discuss related work in Section 6 and
conclude in Section 7.

2Code for the experiments in this paper can be found at: https://github.com/ejmichaud/narrow .

2

https://github.com/ejmichaud/narrow

2 Methods

Pruning: We aim to preserve the performance of a model f(·; θ) on a distribution DN while pruning
model components. Let g be a collection of parameter indices i corresponding to prunable components
of the model (e.g. the in-weights and out-weights of a neuron), and let G denote the collection of
all such groups. After ablating a specific g, we denote the new parameters θ∗g . To perform pruning,
for each g ∈ G, we compute an ablation score sg =

∣∣E(x,y)∈DN

[
L(f(x; θ), y)− L(f(x; θ∗g), y)

]∣∣,
the absolute change in the model’s expected loss L after pruning g. We sort groups by their ablation
score and prune greedily to the desired sparsity from lowest to highest ablation score. Where feasible,
we estimate sg empirically by manually ablating the group across many samples from DN . When
this is computationally intractable, we instead use a linear estimate which we refer to as an attribution
score after [20, 21]: ŝg =

∣∣∑
i∈g

∂L
∂θi

(−θi)
∣∣ = |∂L∂θ · (θ∗g − θ)|, where ∂L/∂θ is the model’s gradient

on the distribution DN , which can be computed once and reused for all g ∈ G.
Regularization: We also experiment with making networks more prunable by performing additional
training with a “group lasso” regularization penalty on the model weights [22–25]. The group lasso
penalty R is the L1 norm of the L2 norms of each parameter group: R(θ) =

∑
g∈G

√∑
i∈g θ

2
i . This

penalty incentivizes the weights to become sparse at the level of entire groups g. When we perform
“group lasso training” on a distribution DN , we minimize the loss E(x,y)∼DN

[L(f(x; θ), y)+λR(θ)].
Distillation: We also explore distilling knowledge from a teacher model using the standard algorithm
employed in [26], minimizing the KL divergence between student and teacher output distributions.

3 Case study: compositional multitask sparse parity

In this section, we conduct a detailed study of both curriculum learning and pruning on simple
synthetic task, which we call compositional multitask sparse parity (CMSP).

3.1 Defining compositional multitask sparse parity (CMSP)

The compositional multitask sparse parity (CMSP) task is a simple extension of the sparse parity
task recently studied in [27] and the multitask sparse parity task studied in [19], described below.

Barak et al. [27] studied neural network training dynamics on the sparse parity (SP) task. This is a
binary classification problem on binary strings x of length n, where the label of a given sample x
is the parity of the bits at a subset I of k indices: y = ⊕k

l=1x[Il]. Strings x are sampled uniformly.
Barak et al. observed that the loss curve for neural networks trained on this task exhibits a sharp drop
after an initial plateau, a case of the sort of “emergence” which has been observed in LLMs [28, 29]
and in other toy settings [30].

Michaud et al. [19] extended the task to multitask sparse parity (MSP). In the MSP problem, input
strings consist of m + n bits, where the first m bits are called “control bits” and the last n bits
are called “task bits”. These leading m control bits encode which “subtask” must be solved in
each problem instance. Instead of a single length-k set of indices I , a collection of m sets of
task bit indices (typically of equal length k) is chosen {I1, . . . , Im}. For each sample, only one
control bit is ON (1) while the others are OFF (0). If control bit t is ON, then that sample’s label
is the parity of bits It: y = ⊕k

l=1x[(It)l]. Michaud et al. [19] found that when subtasks are
power law distributed in frequency, where the probability that control bit i is ON is pi ∝ i−(α+1),

x y
100101001010 0
100010100011 1
010110111110 1
001101101110 0
110001101011
110111001010
011110001110
111000110100

1
0
1
1

Control Bits Task Bits

At
om

ic
C

om
po

si
tio

na
l

CMSP Samples: m=3, n=9, k=3the mean loss exhibits power-law scaling [31, 32] while individual sub-
tasks are learned at different times proportional to their frequency [33].
They conjecture that LLM learning dynamics may be similar.

One of the main limitations of the MSP task, and the associated model
of neural scaling from [19], is that subtasks are independent. However,
the world, and the problem of learning from it, intuitively has a hierar-
chical structure—in order to learn to do certain concepts and tasks, we
must first learn simpler concepts and tasks. Accordingly, humans are
taught in a curriculum, where simpler concepts and tasks are learned
first, and then composed into more complex ones later. To capture
this structure, we now introduce the toy task compositional multitask
sparse parity (CMSP). We show some CMSP samples to the right:

3

CMSP is similar to MSP, except that (1) we require subtask indices to be disjoint: Ii ∩ Ij = ∅ if
i ̸= j, and (2) multiple control bits can now be ON at the same time, in which case the label is the
parity of the bits in the union of the indices for each subtask. If control bits i, j are both ON, the label
is the parity of the task bits at indices Ii ∪ Ij . We call samples for which only one control bit is ON
“atomic” and samples for which multiple control bits are ON “composite”. So if k = 3 for all subsets
Ii, then on atomic samples networks must compute the parity of 3 input bits, on composite samples
with two control bits ON the label is the parity of 6 input bits, and so on. Above, we illustrated some
CMSP data samples with m = 3, n = 9, and k = 3.

3.2 Learning dynamics on CMSP

We find that neural network training on CMSP exhibits extremely strong curriculum learning effects.
To denote different types of CMSP samples, we list the ON control bits for those samples. So, given
a choice of m,n, k and I1, . . . , Im, D{0} denotes all samples for atomic subtask 0, and D{0,1,2,3}
denotes all samples from the composite subtask where the first four control bits are ON. For each
subtask, there are 2n possible samples in that subtask, since the m control bits are fixed but the n task
bits are free.

We first train ReLU MLPs with 1-2 hidden layers of width 128 with the Adam optimizer on CMSP
samples with m = 4, n = 64, k = 4, and 2000 samples per task (atomic or composite) per batch. We
show the learning dynamics of these networks in Figure 2. We find that when we train on a dataset
containing both atomic and composite samples D{0} ∪ D{1} ∪ D{2} ∪ D{3} ∪ D{0,1,2,3} in equal
proportion, atomic tasks are learned before composite ones.

Something interesting happens when we remove atomic samples from the dataset: we find that
learning composite tasks takes dramatically longer. When we train on D{0} ∪D{1} ∪D{2} ∪D{3} ∪
D{0,1,2,3} with 10000 samples per batch (2000 per subtask), across 40 seeds, we find that 27/40
networks converge on composite subtask D{0,1,2,3} within 2× 109 samples, and the networks that do

107 108

Training samples

0.00

0.25

0.50

0.75

1.00

Lo
ss

 (b
its

)

Training on atomic and composite tasks, composite task learned after atomic tasks

Subtask
{0}
{1}
{2}
{3}
{0,1,2,3}

106 107 108 109

Training samples

0.00

0.25

0.50

0.75

1.00

Lo
ss

 o
n

{0
,1

,2
,3

}

Training on atomic and composite tasks

{0,1,2,3}

106 107 108 109

Training samples

0.00

0.25

0.50

0.75

1.00

Lo
ss

 o
n

{0
,1

,2
,3

}

Training on composite task only

{0,1,2,3}

Figure 2: Training dynamics on compositional multitask sparse parity. Top: training dynamics for a
single network trained on four atomic subtasks {0}, {1}, {2}, {3}, and their composition {0,1,2,3}.
Bottom left: loss on compositional subtask {0,1,2,3}, when training on atomic subtasks and their
composition, as in the top subplot, across 40 network seeds (depth 3, width 128). Bottom right: loss
on compositional subtask {0,1,2,3}, when only training on samples from that composite task, without
also training on atomic tasks, across 40 network seeds (depth 3, width 128). We find that removing
the atomic tasks prevents our networks from learning the composite task. We report the minimum
loss within the previous 100 steps of training to filter out loss spikes.

4

converge typically converge within 2× 108 samples. However, when we train just on D{0,1,2,3}, with
a batch size of 2000 samples, we find that 0/40 networks converge within 2× 109 samples in Figure 2
(bottom left). It is much more efficient to train on a broader distribution in order to learn subtask
D{0,1,2,3} than just training on D{0,1,2,3} on its own.

This result makes sense given the exponential hardness of learning parities [34]. Since the atomic task
bits are disjoint in CMSP, networks can compute the parity of the composite tasks by computing the
parity of features learned for the atomic tasks, reducing the complexity of the problem. For instance,
one could imagine that depth-3 networks would compute the parity of the atomic tasks in the first
layer, then the composite tasks in the next layer. Curiously though, we find that single-hidden-layer
(depth-2) networks can still take advantage of a curriculum in Appendix A. We leave a mechanistic
analysis of how networks learn these tasks to future work.

These sorts of dynamics may be a part of the explanation for why large-scale general-purpose models
perform so strongly at many narrow, valuable tasks. We want to emphasize, however, that the toy
task where we observe these curriculum effects is fairly contrived. It is not clear to what extent there
are similarly strong effects on real-world tasks, and in many domains it is in fact possible to train
narrow specialized models by only training on data in that domain. For instance, self-driving cars do
not need to be trained on a broad corpus of text like LLMs.

Our work shows that for some types of tasks, it may be necessary to train on a broad data distribution
in order to learn some subtasks efficiently. Accordingly, we now turn to the question of how to
efficiently transfer knowledge from large models into smaller specialized ones.

3.3 Nonlocal representations in CMSP networks

If the circuitry for some subtasks were localized to a particular set of neurons, and the circuitry for
other subtasks were localized to different neurons, then the task of specializing broad networks into
narrow ones would be trivial. One could simply prune away neurons (or other model components,
e.g. attention heads in transformers) associated with some subtasks, and keep others. However, often
the situation seems more complicated than this ideal, which will be a focus for the rest of this paper.

A related problem has recently been studied in neural network interpretability, where it has been
observed that individual computational units in neural networks, such as neurons, are polysemantic,
activating across a wide variety of unrelated inputs [35, 36]. Accordingly, many assume that the true
model “features” do not align with architectural components like neurons. Multiple explanations
have been proposed for this phenomenon. One is simply that the model architecture does not always
“privilege” a particular basis [37, 38], though other incidental reasons for polysemanticity have also
been proposed [39]. Another explanation of polysemanticity is the superposition hypothesis [40,
36]. The superposition hypothesis suggests that the need to represent more features than there are
dimensions or neurons prevents features from being represented as orthogonal directions in the feature
space, and therefore all features cannot be aligned with standalone model dimensions or neurons.
Recently, studies that use sparse autoencoders to identify monosemantic model features have found
that most features are highly distributed across a large number of dimensions of activation space [16].

In our CMSP networks, we observe a related problem. By default, without any explicit regularization,
there is no incentive for the network to localize certain circuits cleanly into a particular set of neurons.
We train networks with two hidden layers on a dataset of CMSP samples with m = 6, n = 18, k = 3
with two different skill trees: {0}, {1}, {2}, {0,1,2}, and {3}, {4}, {5}, {3,4,5} until convergence.
In Figure 3, we visualize the connectivity of a 2-hidden-layer MLP trained on this dataset, and see
that the network is densely connected without obvious structure.

We attempt to prune this network to retain performance on subtask {0,1,2} while unlearning {3,4,5}.
With MLPs, our groups of parameters g are the in-weights, bias, and out-weights for each hidden
layer neuron, so that |G| is the total number of hidden neurons. We compute ablation scores on
the distribution DN = D{0,1,2} (estimated on 2000 samples) and prune greedily, as described
in Section 2. In Figure 3, we show accuracy on subtask {0,1,2} vs. sparsity with this pruning
strategy. When applied naively, network performance tends to degrade quickly, since without explicit
regularization the network is not optimized to be naively prunable (see in Appendix Figure 8 and
Figure 9 for more on how ablation scores for each subtask vary across neurons). However, when we
perform an additional 1000 steps of training on D{0,1,2} (5000 samples per batch) after pruning (after
either removing neurons from the architecture or pinning pruned weights at zero) we can recover

5

Figure 3: Top: We visualize the connectivity of 2-hidden-layer MLPs trained on a CMSP distribution
with subtasks {0}, {1}, {2}, {0,1,2}, {3}, {4}, {5}, {3,4,5}, visualized before (left) and after (right)
regularizing network weights with the group lasso sparsity penalty while training on subtask {0,1,2}.
We find that network connectivity becomes sparse after regularizing. Negative weights are shown in
blue and positive ones in red, with width proportional to the norm of the weight. Bottom: we show
how pruning affects task performance on subtasks {0,1,2} and {3,4,5} at varying sparsity levels. We
prune neurons based on the absolute change that ablating them has on the loss on subtask {0,1,2}.
We find that subtasks here are nonlocal and entangled in the “pretrained” network (left). As we
prune neurons according to their relevance on subtask {0,1,2}, at the sparsity at which performance
on subtask {0,1,2} accuracy drops below 98% (green line), we can still recover some performance
on subtask {3,4,5} with a small amount of additional training. Thus naive pruning here has not
completely and robustly unlearned subtask {3,4,5}. However, after regularizing the weights (right),
we find that not only we can more aggressively prune the network, but we have also robustly unlearned
subtask {3,4,5}. Note that the degree to which subtasks are nonlocal and entangled in the pretrained
networks depends on seed and width, and we show a variety of additional curves in Figure 10.

performance at higher sparsity levels. Since we are training just on compositional samples, 1000 steps
is not enough to re-learn this task on its own, so if we can recover performance, that will be because
the mechanisms for the task were somewhat preserved after pruning. We observe that often, the tasks
{0,1,2} and {3,4,5} are entangled – when we prune as aggressively as we can while being able to
recover performance on subtask {0,1,2}, we can often still recover some performance on subtask
{3,4,5}. However, for our CMSP networks the degree of entanglement is highly seed-dependent,
and sometimes the subtasks are disentangled enough that pruning as aggressively as possible on
one subtask does robustly unlearn the other. We show pruning curves across seeds and widths in
Appendix Figure 10.

3.4 Regularizing to “narrow” networks

We find that we can use a simple regularization penalty to simultaneously unlearn some tasks while
incentivizing the network to move its features to be less distributed, allowing for more aggressive
pruning. As described in Section 2, we simply perform additional training on D{0,1,2} with a group

6

Figure 4: Left: We compare the performance of distillation, training from scratch, and two pruning
approaches for creating small networks that classify MNIST even digits. Pruning-based approaches
Pareto-dominate distillation, achieving high compression ratios with fewer datapoints. All points are
averaged over 10 individual training runs. Right: When pruning using group lasso, it often helps
to first prune rapidly, degrading performance, and then recover performance with no regularization.
Each line represents a single training run, with a new point logged every 2,000 datapoints. Darker
lines correspond to more aggressive pruning runs that attain lower final neuron counts.

lasso sparsity penalty on the network weights. We aim for this penalty to “clean up” circuitry [41]
not relevant to prediction on D{0,1,2} while also sparsifying the weights across groups of parameters,
allowing for easier pruning.

We apply this regularization to our CMSP networks, training with penalty strength λ = 10−3 with
a batch size of 2000 for 10000 steps. With this regularized network, we then re-compute neuron
ablation scores and prune. In Figure 3 we find that, in CMSP networks, this method is effective at
unlearning skills and making the network more prunable. We find that we can prune more aggressively
while retaining performance on subtask {0,1,2}, and we are not able to recover performance on
{3,4,5} at any sparsity level.

4 Pruning vs distillation: MNIST

We now consider the problem of creating narrow systems in more natural domains, first on MNIST.
As our narrow subtask, we choose only even digits from the original MNIST dataset [42]. We
compare the resources required to achieve good performance on this narrow task when (1) training
from scratch on the narrow task, and (2) distilling models from a general teacher on this task, (3) using
group-lasso regularization to prune a large general model and (4) using attribution-based pruning and
then recovery training on a large general model. Our teacher model is a ReLU MLP with two hidden
layers each of width 1200, as in [26], and achieves 98.7% accuracy on the test set. When pruning,
we use this same teacher model as our initial model and prune its hidden neurons to create a smaller
network.

When using distillation (2), we use the approach of Hinton et al. [26] with T = 20. When pruning
with the group lasso penalty (3), we use λ values ranging from 0.001 to 0.008. Unlike in Section 3.4,
we regularize and prune simultaneously, pruning neurons when their L2 norm drops below 0.05.
When the number of remaining neurons drops below a target threshold, we remove the pruning
penalty and continue training to recover lost performance during pruning. When we prune up front
and then separately recover performance (4), we use attribution scores as described in Section 2.

To compare methods, we require that each method reach a test-set accuracy of 97 percent, and we
then plot the frontier of neuron count versus datapoints subject to that threshold. As seen in Figure 4
(right), it is often optimal to first aggressively prune the network down to the desired size and further
train it until it reaches the requisite accuracy.

We find that while group lasso pruning is highly sensitive to choices in hyperparameters, both pruning
methods Pareto-dominate distillation and training from scratch, especially at high neuron counts.
Moreover, while other methods cannot consistently bridge the 97 percent accuracy threshold with

7

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

1

2

3

4

5

Lo
ss

 (n
at

s)

Pruning curves: regularized vs. unregularized
base model
group lasso =0.0005, 70k steps
group lasso =0.0003, 70k steps
group lasso =0.001, 70k steps
30% pruned
63% pruned
80% pruned
Baseline performance

101 102 103 104

Recovery steps

1

2

3

Lo
ss

 (n
at

s)

Recovery training after pruning
group lasso =0.0005, 70k steps
group lasso =0.0003, 70k steps
group lasso =0.001, 70k steps
Pruning base network to 80% neuron sparsity
Llama-3.2-1B unpruned

Figure 5: Left: Neuron sparsity vs. loss curve for LLMs finetuned with group lasso regularization
with varying λ for 70k steps, as compared to the base network. Regularization flattens the sparsity vs.
loss curve, at the cost of slightly degrading model performance. Right: After pruning our networks
to 30%, 63%, and 80% sparsity for our runs with λ of 5e-4, 3e-4, and 1e-3, respectively, we recover
performance with additional training. We find that we can recover performance lost during pruning,
including in the network that was pruned without first using group-lasso regularization training. The
plot shows an exponential moving average of batch losses, with individual batch losses shaded in
back.

fewer than 25 hidden neurons, aggressive pruning can consistently shrink the network’s size to a
lower absolute limit.

5 Pruning vs distillation: LLMs on Python documents

We next study LLMs. As our narrow task DN , we choose next-token prediction on Python documents
in the GitHub Code Dataset.

We first prune the neurons in the MLP blocks of Llama-3.2-1B [43]. Later, we will also consider
pruning residual stream dimensions, which involves pruning all model parameters that “read to” or
“write from” a dimension of the residual stream [37]. We use attribution scores when pruning, and
show that the attribution scores correlate moderately with true ablation scores in Appendix Figure 11.
In Figure 5 (left), we show neuron sparsity vs loss curves. When pruning neurons naively, we see
that loss increases quickly at low sparsity levels. We also experiment with applying group lasso
regularization while further training on Python documents (learning rate of 2e-6, max length 512, 18
documents per batch) and find that this training does indeed level out the sparsity vs. loss curve, albeit
at a slight cost to the loss. Fortunately, we find that we can recover lost performance after pruning by
doing a small amount of additional training on Python documents in Figure 5 (right). We find that
despite the loss increasing substantially after naively pruning, we can also quickly recover that lost
performance, and overall this strategy seems to be more efficient than using group lasso training. We
therefore next compare naive pruning + recovery training against distillation and training networks
from scratch.

We train networks with the Llama 3 [43] architecture of varying shape and size. We use a learning
rate of 5e-4, sequence length of 1024, and batch size of 64. For distillation, we use Llama-3.1-8B as a
teacher with T = 2. For pruning + recovery, we prune Llama-3.2-1B to varying levels of neuron and
residual stream sparsity, shown in Appendix Table 3. In Appendix Figure 12 we show learning curves
for these three approaches. In Figure 6, we tentatively find that pruning substantially outperforms
training from scratch and distilling a model from scratch on the data-parameter frontier. Given a
target narrow network size and a fixed data budget, if one already has access to a general model, it
appears to be more efficient to prune that model than it is to perform distillation.

8

https://huggingface.co/datasets/codeparrot/github-code

We discuss one last finding: pruning random model components performs about as well as pruning
lowest-attribution components [44]. In Appendix Figure 13, we find that after a moderate number of
recovery steps, attribution pruning and random pruning result in the same recovered performance.
This result is in line with our earlier discussion of nonlocality, and the empirical findings of Bricken
et al. [16], that monosemantic features are distributed widely across model components. While some
studies have found some geometric similarity between functionally similar features [45, 46], in our
case it does not seem like the relevant features for our task are localized into a set of “Python” vs.
“non-Python” neurons, at least that attribution pruning identifies.

Unlearning: We evaluate whether neuron pruning can robustly unlearn downstream tasks. We
consider three pruning methods applied to Llama-3.2-1B at sparsity levels of 30%, 63%, and 80%:
(i) random neuron pruning, (ii) attribution-based pruning on Python code, and (iii) models trained
with group-lasso regularization on Python documents from Figure 5. We evaluate each pruned
model on five benchmarks: counterfact [47], AI2-ARC (ARC-Easy) [48], and WMDP-Bio, WMDP-
Cyber, and WMDP-Chem [49] for hazardous knowledge. For each model, we first measure baseline
accuracy immediately after pruning, then fine-tune on each benchmark’s training set with batch size 4,
sweeping learning rates in [1e-6, 5e-6, 1e-5, 2e-5/5e-5, 1e-4/5e-5] and reporting the best-performing
configuration. This protocol tests whether pruned models have robustly "unlearned" these capabilities
or can rapidly reacquire them through fine-tuning.

Table 1: Downstream task performance across sparsity levels. We prune Llama-3.2-1B using various
techniques to create narrow Python-specific models, then evaluate on other tasks to assess whether
pruning led to unlearning. Accuracies are reported for the pruned model w/o and w/ finetuning on a
train set of each benchmark (Base→FT).

Method Spar. counterfact AI2-ARC WMDP Bio WMDP Cyber WMDP Chem
Base 0% 0.18→0.49 0.65→0.67 0.52→0.62 0.35→0.59 0.24→0.28
Random 30% 0.00→0.50 0.24→0.25 0.22→0.27 0.27→0.27 0.24→0.24
Attribution 30% 0.12→0.65 0.35→0.69 0.36→0.56 0.27→0.55 0.37→0.24
Group Lasso 30% 0.06→0.47 0.25→0.25 0.24→0.31 0.26→0.27 0.24→0.24
Random 63% 0.00→0.45 0.25→0.25 0.23→0.27 0.26→0.28 0.24→0.24
Attribution 63% 0.02→0.52 0.25→0.30 0.23→0.34 0.26→0.32 0.27→0.30
Group Lasso 63% 0.03→0.45 0.25→0.25 0.24→0.29 0.27→0.30 0.27→0.30
Random 80% 0.00→0.42 0.26→0.25 0.26→0.28 0.23→0.26 0.24→0.27
Attribution 80% 0.00→0.47 0.25→0.25 0.23→0.27 0.26→0.28 0.26→0.32
Group Lasso 80% 0.02→0.44 0.25→0.25 0.24→0.29 0.26→0.29 0.26→0.24

6 Related Work

Distillation. Many works have built on the original distillation work of Hinton et al. [26], seeking to
transfer intermediate representations [50, 51] and applying these techniques to language models [52,
53], often after pruning [54, 55]. Relevant to our discussion, Turc et al. [56] showed that pretraining
the student before distillation can substantially improve results.

Pruning. Even early approaches to pruning used second-order methods for pruning weights [57, 58],
whereas our “attribution” scores are first-order. When training vision models, Zhou et al. [25] and
Wen et al. [24] used a group lasso penalty like we do, albeit while training on the full data distribution.
Sanh et al. [59] proposed “movement pruning” to prune weights during transfer learning. A variety
of works have applied structured pruning to LLMs [60, 61], including Xia et al. [62] who develop
a method for task-specific pruning. Vural and Erdogdu [63] provide evidence that pruning boosts
sample efficiency by directing gradient updates to a sparse set of important directions.

Task Structure and Learning Dynamics. Several works have lately investigated the relationship
between task structure and learning dynamics [12–15]. Liu et al. [64] also briefly study a task similar
to CMSP to show that hierarchical relationships between tasks cause what they call “domino” learning
dynamics. We also highlight the “Skill it!” paper of Chen et al. [65], who empirically investigate
hierarchical learning dependencies for real LLM tasks.

Machine Unlearning. Many approaches to unlearning have been proposed [66–70]. Guo et al. [71]
study how applying unlearning fine-tuning to different model components affects unlearning success,
inspired by a mechanistic understanding of how knowledge is retrieved in LLMs. Lee et al. [72]

9

show that distillation can be applied after unlearning fine-tuning to more robustly remove unwanted
capabilities. Highly relevant is the work of Cloud et al. [73], who apply “gradient routing” during
training to localize capabilities to different model components, allowing pruning to be used for
unlearning.

7 Discussion

Limitations: This work explored some aspects of neural network learning which are relevant to
the creation of narrow AI systems. Much work remains to be done in determining how relevant our
findings are to real-world networks in various domains. We first emphasize that CMSP is a toy task,
an existence proof that curriculum learning effects can be quite strong, but it is still unclear whether
these dynamics occur on more natural datasets. For our pruning experiments, we emphasize that our
greedy attribution pruning approach is quite simple, and we cannot rule out that more sophisticated
pruning strategies would be more successful in preserving some skills while unlearning others [74].
Also, we did not optimally scale hyperparameters in our LLM experiments, so the performance of
each of our models in Section 5 is likely imperfect. While we found that pruning a pre-existing Llama
model was more efficient than training a model from scratch on Python documents, this could be due
to our imperfect training setup, and not because one needs to train on a broad distribution of data to
learn Python documents due to curriculum effects.

200m 500m 1b 2b 3b
Parameters

100m

200m

500m

1b

2b

5b

Tr
ai

ni
ng

 To
ke

ns

Frontier for loss=1.7 nats
Scratch w/ hard targets
Scratch w/ distillation
Pruning Llama-3.2-1B

Figure 6: Frontier of network parame-
ters vs. data required to achieve a certain
cross-entropy loss on Python documents.
For the task of creating a LLM special-
ized on Python documents, we find that
pruning Llama-3.2-1B and then perform-
ing recovery training is much more effi-
cient than training LLMs from scratch
or distilling LLMs from scratch on the
soft targets of Llama-3.2-8B.

Conclusion: In this work, we have studied some po-
tential challenges involved in creating narrow AI sys-
tems, having to do both with the structure of data and
the structures learned internally by neural networks. Un-
derlying this work is a perspective from mechanistic in-
terpretability, that neural networks compute a variety of
sparse features [35], each with a distributed representa-
tion [36, 16, 46], and that these features are computed
from each other hierarchically in circuits [75–77]. First,
we found that in order to learn certain complex features,
we may have to first train on a broad set of samples which
encourage the learning of simpler features. Second, be-
cause features are distributed across model components,
it is a nontrivial problem to move a set of task-specific
features and circuits into a smaller network, especially
while unlearning unneeded circuits.

While a neural network’s computation across the whole
data distribution may be quite complex, we hope that
the computation that networks perform on any particu-
lar task will be reducible to something less complex. That
less complex computation, whatever it is, might be in-
terpretable as a circuit [76, 77], or reduce to a simple
program [78], or, as we studied here, could be instantiated
in a much smaller network. However, this hope, and the
question of whether it is possible to create narrow-purpose versions of today’s models, probes at
a basic question about the nature of the intelligence of these models. If their apparent generality
indeed results from their having learned a large, diverse set of crystallized, task-specific circuits,
then we ought in principle to be able to create competent, specialized versions of these models by
just transferring the relevant task-specific circuits. However, if the intelligence of our models, and
intelligence more generally, is better understood as resulting from a single unified algorithm, then
the basic prospect of creating narrow AI systems that are as strong as truly general ones could be a
challenge.

Acknowledgments and Disclosure of Funding

We thank Ziming Liu, Josh Engels, David D. Baek, Tom McGrath, and Jamie Simon for helpful
conversations and feedback. E.J.M. was supported by the NSF via the Graduate Research Fellowship
Program (Grant No. 2141064) and under Cooperative Agreement PHY-2019786 (IAIFI).

10

References
[1] ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue

Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801, 2025.

[2] Paul Kassianik, Baturay Saglam, Alexander Chen, Blaine Nelson, Anu Vellore, Massimo
Aufiero, Fraser Burch, Dhruv Kedia, Avi Zohary, Sajana Weerawardhena, et al. Llama-3.1-
foundationai-securityllm-base-8b technical report. arXiv preprint arXiv:2504.21039, 2025.

[3] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[4] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[5] Fazl Barez, Tingchen Fu, Ameya Prabhu, Stephen Casper, Amartya Sanyal, Adel Bibi, Aidan
O’Gara, Robert Kirk, Ben Bucknall, Tim Fist, et al. Open problems in machine unlearning for
ai safety. arXiv preprint arXiv:2501.04952, 2025.

[6] Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review.
arXiv preprint arXiv:2404.14082, 2024.

[7] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems
in mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

[8] Max Tegmark and Steve Omohundro. Provably safe systems: the only path to controllable agi.
arXiv preprint arXiv:2309.01933, 2023.

[9] David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia,
Steve Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards guar-
anteed safe ai: A framework for ensuring robust and reliable ai systems. arXiv preprint
arXiv:2405.06624, 2024.

[10] Max Tegmark, Sören Mindermann, Vanessa Wilfred, and Wan Sie Lee. The singapore consensus
on global ai safety research priorities. Conference report, 2025 Singapore Conference on
AI: International Scientific Exchange on AI Safety, Singapore, April 2025. URL https:
//file.go.gov.sg/sg-consensus-ai-safety.pdf.

[11] Eric Drexler, K.˙ Reframing superintelligence: Comprehensive ai services as general
intelligence. Future of Humanity Institute Technical Report, 2019. Available at https:
//www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_
FHI-TR-2019-1.1-1.pdf.

[12] Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P Dick, and Hidenori Tanaka.
Compositional capabilities of autoregressive transformers: A study on synthetic, interpretable
tasks. arXiv preprint arXiv:2311.12997, 2023.

[13] Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities
emerge multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural
Information Processing Systems, 36:50173–50195, 2023.

[14] Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka.
Emergence of hidden capabilities: Exploring learning dynamics in concept space. Advances in
Neural Information Processing Systems, 37:84698–84729, 2024.

[15] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural net-
works: leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference
on Learning Theory, pages 2552–2623. PMLR, 2023.

11

https://file.go.gov.sg/sg-consensus-ai-safety.pdf
https://file.go.gov.sg/sg-consensus-ai-safety.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf

[16] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds,
Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan
Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing
language models with dictionary learning. Transformer Circuits Thread, 2023. https:
//transformer-circuits.pub/2023/monosemantic-features/index.html.

[17] Paul Smolensky. Tensor product variable binding and the representation of symbolic structures
in connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

[18] Geoffrey E Hinton. Learning distributed representations of concepts. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 8, 1986.

[19] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. Advances in Neural Information Processing Systems, 36:28699–28722, 2023.

[20] Neel Nanda. Attribution patching: Activation patching at industrial scale, 2023. URL https:
//www.neelnanda.io/mechanistic-interpretability/attribution-patching.

[21] Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated
circuit discovery. arXiv preprint arXiv:2310.10348, 2023.

[22] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

[23] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

[24] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. Advances in neural information processing systems, 29, 2016.

[25] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part IV 14, pages 662–677. Springer, 2016.

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[27] Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

[28] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[29] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[30] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

[31] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[32] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

12

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://www. neelnanda. io/mechanistic-interpretability/attribution-patching
https://www. neelnanda. io/mechanistic-interpretability/attribution-patching

[33] Nayara Fonseca, Seok Hyeong Lee, Chris Mingard, Ard Louis, et al. An exactly solvable model
for emergence and scaling laws in the multitask sparse parity problem. Advances in Neural
Information Processing Systems, 37:39632–39693, 2024.

[34] Itamar Shoshani and Ohad Shamir. Hardness of learning fixed parities with neural networks.
arXiv preprint arXiv:2501.00817, 2025.

[35] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
doi: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

[36] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy mod-
els of superposition. Transformer Circuits Thread, 2022. https://transformer-circuits.
pub/2022/toy_model/index.html.

[37] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

[38] Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged bases in the transformer
residual stream. Transformer Circuits Thread, page 24, 2023.

[39] Victor Lecomte, Kushal Thaman, Rylan Schaeffer, Naomi Bashkansky, Trevor Chow, and Sanmi
Koyejo. What causes polysemanticity? an alternative origin story of mixed selectivity from
incidental causes. arXiv preprint arXiv:2312.03096, 2023.

[40] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic
structure of word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018.

[41] Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

[42] Yann LeCun. The mnist database of handwritten digits, 1998. URL http://yann.lecun.
com/exdb/mnist/.

[43] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[44] Shuyao Xu, Liu Jiayao, Zhenfeng He, Cheng Peng, and Weidi Xu. The surprising effectiveness
of randomness in llm pruning. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of Experts,
Quantization, Hardware, and Inference.

[45] Yuxiao Li, Eric J Michaud, David D Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark.
The geometry of concepts: Sparse autoencoder feature structure. Entropy, 27(4):344, 2025.

[46] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian
Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham,
Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom
Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

[47] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

13

https://distill.pub/2017/feature-visualization
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

[48] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[49] Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D
Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark:
Measuring and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.

[50] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[51] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

[52] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[53] V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[54] JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question
answering model. arXiv preprint arXiv:1910.06360, 2019.

[55] AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. Meta
AI Blog. Retrieved March 2025, 2024.

[56] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962,
2019.

[57] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 598–605.
Morgan Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1989/hash/
6c9882bbac1c7093bd25041881277658-Abstract.html.

[58] Babak Hassibi and David G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Stephen J. Hanson, Jack D. Cowan, and C. Lee Giles,
editors, Advances in Neural Information Processing Systems 5, pages 164–171. Mor-
gan Kaufmann, 1993. URL https://proceedings.neurips.cc/paper/1992/hash/
647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.

[59] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

[60] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

[61] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[62] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and
accurate models. arXiv preprint arXiv:2204.00408, 2022.

[63] Nuri Mert Vural and Murat A. Erdogdu. Pruning is optimal for learning sparse features in
high-dimensions, 2024. URL https://arxiv.org/abs/2406.08658.

[64] Ziming Liu, Yizhou Liu, Eric J Michaud, Jeff Gore, and Max Tegmark. Physics of skill learning.
arXiv preprint arXiv:2501.12391, 2025.

[65] Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christo-
pher Ré. Skill-it! a data-driven skills framework for understanding and training language
models. Advances in Neural Information Processing Systems, 36:36000–36040, 2023.

14

https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
https://proceedings.neurips.cc/paper/1992/hash/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
https://arxiv.org/abs/2406.08658

[66] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In
2015 IEEE symposium on security and privacy, pages 463–480. IEEE, 2015.

[67] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. arXiv preprint
arXiv:1912.03817, 2019. doi: 10.48550/arXiv.1912.03817. URL https://arxiv.org/abs/
1912.03817.

[68] Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in
Neural Information Processing Systems, 37:105425–105475, 2024.

[69] Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms.
arXiv preprint arXiv:2310.20150, 2023.

[70] Kang Gu, Md Rafi Ur Rashid, Najrin Sultana, and Shagufta Mehnaz. Second-order infor-
mation matters: Revisiting machine unlearning for large language models. arXiv preprint
arXiv:2403.10557, 2024.

[71] Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite.
Mechanistic unlearning: Robust knowledge unlearning and editing via mechanistic localization,
2024. URL https://arxiv.org/abs/2410.12949.

[72] Bruce W. Lee, Addie Foote, Alex Infanger, Leni Shor, Harish Kamath, Jacob Goldman-Wetzler,
Bryce Woodworth, Alex Cloud, and Alexander Matt Turner. Distillation robustifies unlearning,
2025. URL https://arxiv.org/abs/2506.06278.

[73] Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul, Joseph Miller, and Alexander Matt Turner.
Gradient routing: Masking gradients to localize computation in neural networks. arXiv preprint
arXiv:2410.04332, 2024.

[74] Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search:
Efficient neural architecture search via channel pruning and structural reparameterization. arXiv
preprint arXiv:2206.01198, 2022.

[75] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

[76] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

[77] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.
Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the
biology of a large language model. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/biology.html.

[78] Eric J Michaud, Isaac Liao, Vedang Lad, Ziming Liu, Anish Mudide, Chloe Loughridge,
Zifan Carl Guo, Tara Rezaei Kheirkhah, Mateja Vukelić, and Max Tegmark. Opening the ai
black box: Distilling machine-learned algorithms into code. Entropy, 26(12):1046, 2024.

A Additional results on CMSP

Here we include some additional results on CMSP. We first explore whether network shape influences
learning dynamics when learning composite tasks (w/ corresponding atomic tasks in the training
dataset) vs. when learning an atomic task on its own. We find that the effect of depth is similar
between composite vs. atomic tasks. This suggests that our networks do not necessarily need to be
deep in order to take advantage of compositional structure in this task. Note that a previous version of

15

https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/2410.12949
https://arxiv.org/abs/2506.06278
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

this manuscript suggested the opposite–we had observed that deeper networks learn composite CMSP
tasks faster than shallow networks, but it turns out that deeper networks also learn standalone atomic
tasks faster than shallow networks. We show loss curves of networks with depth 3 and 128 neurons
in each layer, networks with depth 2 and 128 neurons in the single hidden layer, and networks with
depth 2 and 361 in the hidden layer.

107 108 109

Training samples

0.0

0.5

1.0

Lo
ss

 o
n

{0
,1

,2
,3

}

Compositional subtask loss dynamics

Depth 2, width 128
Depth 2, width 361
Depth 3, width 128

105 106 107 108

Training samples

0.0

0.5

1.0

Lo
ss

 o
n

{0
}

Atomic subtask loss dynamics

Depth 2, width 128
Depth 2, width 361
Depth 3, width 128

Figure 7: Impact of network shape on CMSP learning. Top: Forty runs of training with different
seeds on CMSP dataset (m = 4, n = 64, k = 4)D{0} ∪D{1} ∪D{2} ∪D{3} ∪D{0,1,2,3}. 27/40 runs
converge with two hidden layers versus 19/40 runs with a single hidden layer with width 128 and
16/40 runs with a single hidden layer and width 361. Bottom: Forty runs of training on a standalone
atomic task m = 1, n = 64, k = 4.

We also show how ablation scores vary across neurons in our unregularized networks. With the setup
in Section 3.3, we show ablation scores for each neuron for each subtask in Figure 8 and Figure 9.
We find that there are neurons which have high scores across most subtasks, even subtasks in different
“skill trees” ({0,1,2} versus {3,4,5}).

In Figure 10 we show sparsity vs accuracy curves from pruning like in Figure 3 (bottom left), across
seeds and network sizes. In our unregularized networks, there is a lot of variation between runs in
how entangled the different subtasks are.

B Additional results on LLMs

B.1 Additional plots

We also show some additional results with LLMs. In Figure 11, we show how attribution scores
correlate with ablation scores in LLMs. We show results for pruning both neurons and residual stream
dimensions.

In Figure 12, we show learning curves across runs when training from scratch on Python documents,
when performing distillation, and when performing recovery training after pruning both neurons and
residual stream dimensions, to varying target sparsities, of Llama-3.2-1B.

In Figure 13, we show recovery curves after pruning neurons and residual stream dimensions from
Llama-3.2-1B to varying sparsity levels. We find that pruning random components performs roughly
as well as pruning components with the lowest attribution scores.

16

0 20 40 60
hidden neuron i

10 1

100

101

102

ab
s c

ha
ng

e
in

 lo
ss

 fr
om

 a
bl

at
io

n

0 20 40 60
hidden neuron i

10 1

100

101

102

ab
s c

ha
ng

e
in

 lo
ss

 fr
om

 a
bl

at
io

n [0]
[1]
[2]
[3]
[4]
[5]
[0, 1, 2]
[3, 4, 5]

Figure 8: For each hidden neuron in the first hidden layer (left) and the second hidden layer (right)
in a CMSP network, we show the ablation score of that neuron for each subtask. For some neurons,
ablation scores are high across multiple subtasks, even from separate “skill trees”.

0 10 20 30 40 50 60
hidden neuron i

[0] layer 0
[0] layer 1
[1] layer 0
[1] layer 1
[2] layer 0
[2] layer 1
[3] layer 0
[3] layer 1
[4] layer 0
[4] layer 1
[5] layer 0
[5] layer 1

[0, 1, 2] layer 0
[0, 1, 2] layer 1
[3, 4, 5] layer 0
[3, 4, 5] layer 1

Ablation scores across layers and subtasks

1

0

1

lo
g1

0(
ab

la
tio

n
sc

or
e)

Figure 9: Ablation scores for each subtask and each neuron. This is simply a different way of
visualizing the results in Figure 8.

B.2 Additional experimental details

When training networks from scratch and distilling from scratch (Figure 12 and Figure 6, we train
transformers with the Llama 3 architecture [43] of varying size, listed in Table 2.

Table 2: Transformer model configurations explored
Hidden size #Layers #Heads Intermediate size

256 4 4 1,024
512 8 8 2,048
768 12 12 3,072
864 16 16 3,456
1,024 16 16 4,096
1,280 20 20 5,120
1,536 24 24 6,144
1,792 28 28 7,168
2,048 32 32 8,192

17

0.5

0.75

1.0
W

id
th

64
Ac

cu
ra

cy

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

0.5

0.75

1.0

W
id

th
12

8
Ac

cu
ra

cy

0.5

0.75

1.0

W
id

th
25

6
Ac

cu
ra

cy

0.5

0.75

1.0

W
id

th
51

2
Ac

cu
ra

cy

0.1 0.7 0.9 0.98
Sparsity

0.5

0.75

1.0

W
id

th
10

24
Ac

cu
ra

cy

0.1 0.7 0.9 0.98
Sparsity

0.1 0.7 0.9 0.98
Sparsity

0.1 0.7 0.9 0.98
Sparsity

0.1 0.7 0.9 0.98
Sparsity

Pruning "pretrained" unregularized MLPs based on subtask {0,1,2} ablation scores

Subtask {0,1,2}, no recovery training
Subtask {3,4,5}, no recovery training

Subtask {0,1,2}, 1k recovery steps
Subtask {3,4,5}, 1k recovery steps

Figure 10: Pruning sparsity vs accuracy curves for pretrained CMSP networks. We train MLPs of
varying width and random seed on a CMSP dataset with two skill trees, as in Figure 3. We prune
neurons based on ablation score on subtask {0,1,2}. On some networks, ablating neurons to maximum
sparsity while preserving performance on subtask {0,1,2} robustly unlearns subtask {3,4,5}. However,
for other networks, the subtasks seem more entangled, and we can recover performance on subtask
{3,4,5} even after ablating to the maximum extent we can still recover 98% accuracy on subtask
{0,1,2} (green line).

When we prune Llama-3.2-1B, we prune neurons and residual stream dimensions with the sparsity
combinations shown in Table 3.

Table 3: Neuron and residual sparsity configurations when using attribution pruning on Llama-3.2-1B.
Neuron sparsity Residual sparsity

0.50 0.50
0.80 0.50
0.90 0.50
0.95 0.50
0.80 0.80
0.90 0.90

18

10 6 10 5 10 4 10 3

Abs Attribution Score

10 7

10 6

10 5

10 4

10 3

10 2
Ab

s A
bl

at
io

n
Sc

or
e

Pearson r = 0.44

Neurons

10 5 10 4 10 3 10 2

Abs Attribution Score

10 6

10 5

10 4

10 3

10 2

10 1

Ab
s A

bl
at

io
n

Sc
or

e

Pearson r = 0.39

Residual Stream Dimensions

Figure 11: Comparison of ablation vs. attribution scores for Llama-3.2-1B neurons (left) and residual
stream dimensions (right), evaluated on a single batch of Python code documents. For each figure, we
fully ablate model components and compare the absolute change in loss (Abs Ablation Score, simply
called “ablation score” elsewhere in the paper) with the absolute value of the linear estimate of this
change computed from model gradients (Abs Attribution Score, called “attribution score” elsewhere).
Note that the correlation between the log of these scores is 0.80 for neurons and 0.05 for residual
stream components.

Figure 12: Training curves of LLMs on Python documents when training from scratch (left), training
from scratch but with distillation of a larger pretrained LLM (center), and when training pruned
pretrained models (right) to recover performance lost during training.

C Compute estimates

We estimate the compute used for each of our experiments.

For the CMSP training experiments shown in Figure 2 and Figure 7, we ran 4 configurations each
with 40 different seeds. We ran each job on a GPU, but on a cluster with a variety of different node
configurations and GPUs. Jobs generally took between 5-60 minutes to complete, for between 13-160
total hours of GPU time.

For the experiments shown in Figure 3 and Figure 10, each run, across 5 choices of seed and 5
choices of width, trained networks on a CMSP task, ran pruning experiments, performed group-lasso
training, and pruned again. Each such run took between 5-120 minutes on our cluster with varying
GPU configurations, for a total time of 2-50 hours of GPU time.

19

101 102 103 104

Recovery steps

1

2
3

5

10

Cr
os

s-
en

tro
py

 lo
ss

 (n
at

s)
50% neuron, 20% residual sparsity
80% neuron, 50% residual sparsity
90% neuron, 90% residual sparsity
Attribution pruning
Random pruning

Figure 13: Recovery training curves after pruning neurons and residual stream dimensions, for
Llama-3.2-1B on Python code documents. We compare recovery performance when pruning based on
attribution scores vs. choosing components randomly. Attribution scores are computed across 1024
documents with a max length of 1024 tokens. We find that pruning with attribution scores is better
than pruning random components, however this gap is eventually recovered. For instance, at step
5365 when our run with 50% neuron sparsity and 20% residual sparsity first matches the performance
of the original model (≈ 1.3 nats), the performance on randomly-pruned model is almost identical at
1.301 nats.

For our MNIST experiments shown in Figure 4, we plot a total of 54 points, each of which is averaged
over 10 training runs. We estimate that each run took around 2 minutes on our cluster, totaling to
around 18 hours of GPU time.

For our LLM experiments, we ran our experiments on A100-80GB nodes, with a single GPU
allocated per experiment. When we trained models from scratch on Python documents, we used
9 configurations with job lengths between 1-3 days. For distillation we had 9 configurations with
job lengths between 2-3 days, though some jobs failed. For the group lasso training experiments
in Figure 5, we show 3 configurations trained with job lengths of 3 days, and we performed recovery
training on these models with a job length of 1 day. We estimate that the total time for these jobs was
less than 1600 hours of A100 time, though the full set of experiments we attempted in the work that
led to this manuscript could be over 5000 hours.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions in our introduction, and these match the
contents of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations section in Section 7 as well as addressing possible
limitations throughout the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Answer: [NA]

21

Justification: We do not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we describe in good detail our experimental setup in each section. Our
contributions are primarily exploratory analysis of learning and pruning on toy and real
datasets, and we believe we describe the datasets and network architectures well enough to
reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have linked a github in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include experimental details in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In Figure 2, Figure 7, and Figure 10 we directly show results across all seeds
instead of plotting the mean and variance. In Figure 4 we currently report means without
error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include compute estimates for our experiments in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While we are motivated by some broader concerns around societal impact, the
work done here is relatively small-scale and exploratory. We discuss positive impacts in the
Introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly reference the datasets and models we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work did not involve crowdsourcing nor work with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs in non-standard ways.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Case study: compositional multitask sparse parity
	Defining compositional multitask sparse parity (CMSP)
	Learning dynamics on CMSP
	Nonlocal representations in CMSP networks
	Regularizing to ``narrow'' networks

	Pruning vs distillation: MNIST
	Pruning vs distillation: LLMs on Python documents
	Related Work
	Discussion
	Additional results on CMSP
	Additional results on LLMs
	Additional plots
	Additional experimental details

	Compute estimates

