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Abstract

Time-dependent density functional theory
(TDDFT) is a widely used method to investi-
gate electron dynamics under various external
perturbations such as laser fields. In this work,
we present a novel approach to accelerate
real time TDDFT based electron dynamics
simulations using autoregressive neural operators
as time-propagators for the electron density. By
leveraging physics-informed constraints and
high-resolution training data, our model achieves
superior accuracy and computational speed
compared to traditional numerical solvers. We
demonstrate the effectiveness of our model on
a class of one-dimensional diatomic molecules.
This method has potential in enabling real-time,
on-the-fly modeling of laser-irradiated molecules
and materials with varying experimental
parameters.

1. Introduction
Time-Dependent Density Functional Theory (TDDFT)
(Runge & Gross, 1984) is a widely used method to study
the evolution of electronic structure under the influence of
time-dependent potentials. It is used to calculate various
excited state properties such as excitation energies (Adamo
& Jacquemin, 2013), charge transfer (Maitra, 2017), stop-
ping power (Yost et al., 2017), optical absorption spectra
(Jacquemin et al., 2011) and non-linear optical properties
(Goncharov, 2014). Due to its favorable balance between
accuracy and computational cost, TDDFT has been applied
in various domains including photocatalysis, biochemistry,
nanoscale devices and the study of light-matter interactions
in general.

For weak perturbations, the linear response (LR) formalism
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of TDDFT is used to calculate the excitation spectrum of a
system. It is calculated using the Casida equation (Casida,
1995) as an eigenvalue problem that describes the first order
response of the density. In contrast, the electron density
is directly propagated in time under the real time (RT) for-
malism. RTTDFT can be used to calculate the nonlinear
response of the density under strong perturbations such as
ultrafast electron dynamics with strong laser fields.

There are multiple components that must be decided for
RTTDDFT calculations. These include preparation of
the initial density and orbitals, choice of the exchange-
correlation functional, the form of the time-dependent po-
tential and the choice of the time-propagation scheme. The
time evolution is a significant fraction of the computation
required (Castro et al., 2004; Gómez Pueyo et al., 2018).

Machine learning (ML) for accelerating scientific simula-
tions is a rapidly growing area of research (Carleo et al.,
2019). A variety of unsupervised and data-driven models
have been developed to solve differential equations across a
wide range of domains (Karniadakis et al., 2021).

Neural operators (NOs) (Kovachki et al., 2023) are a class
of models that map function-to-function spaces, as opposed
to the finite-dimensional vector space mappings of neural
networks. This is especially useful for partial differential
equation (PDE) problems where experimental or simulation
data is available. Fourier neural operators (FNOs) (Li et al.,
2020) are a type of NO which represent operator weights in
Fourier space. The main advantages of FNOs are that they
generalize well across function spaces, and being resolution-
invariant, they can be used for inference on higher resolution
grids than the training set grids. FNOs have also been used
for forward and inverse PDE problems in various domains
(Azizzadenesheli et al., 2024).

While many applications of ML have been developed for
ground state DFT (Snyder et al., 2012; Brockherde et al.,
2017; Fiedler et al., 2022), there have been relatively fewer
efforts focused on TDDFT. Some applications of ML for
TDDFT include development of exchange-correlation po-
tentials (Yang & Whitfield, 2023; Suzuki et al., 2020) and
predicting properties such as spectra and stopping power
(Ward et al., 2023). In this work, we demonstrate the ef-
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fectiveness of FNOs in propagating the electron density in
time under the TDDFT framework. Instead of propagat-
ing orbitals in time as done conventionally in terms of the
time-dependent Kohn-Sham equations, we use the FNO
propagator to directly evolve the density. This has two ad-
vantages: the computational cost does not scale with the
number of orbitals and larger propagation time steps can be
used, thus using fewer iterations. Section 2 contains a brief
description of TDDFT, FNOs and our proposed autoregres-
sive model. Section 3 contains results obtained with this
model for the time evolution of one-dimensional diatomic
molecules under the influence of an oscillating laser pulse.
We show that the model can be generalized across ionic
configurations, is faster and more accurate than compara-
ble numerical simulations and can also be used for higher
resolution grids. In Section 4, we discuss the physical via-
bility of the predicted densities, and then offer conclusion
in Section 5.

We use atomic units a.u. (ℏ = me = e = 1) unless specified
otherwise.

2. Methods
2.1. Time-Dependent Density Functional Theory

The time-dependent many-body Schrödinger equation de-
scribes the dynamics of systems composed of multiple inter-
acting particles. A common problem is interacting electrons
in atoms and molecules, for which the Schrödinger equation
is

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t), (1)

where r represents the collective coordinates of the N elec-
trons, Ψ(r, t) is the many-body wavefunction and Ĥ is
the Hamiltonian operator, representing the total energy of
they system. For this problem the form of Ĥ is Ĥ(t) =

T̂ + Ŵ + V̂ (t), where T̂ =
∑N

j=1 −∇2
j/2 is the kinetic

energy operator, Ŵ = 1
2

∑N
j,k
j ̸=k

1/ |rj − rk| represents the

electron-electron interaction, and V̂ (t) = vext(r, t) is the
time-dependent external potential operator which includes
the static external potential due to the ions and an external
time-dependent potential that drives the system. Note that
in writing this Schrödinger equation we are assuming the
Born-Oppenheimer approximation, i.e. we are treating the
dynamics of the ions as occurring on a much longer time
scale than the dynamics of the electrons, and can therefore
treat the ions as classical point-like particles. The initial
state Ψ(r) = Ψ(r, t0) is obtained by solving the time-
independent Schrödinger equation

ĤΨ(r) = EΨ(r) (2)

which is an eigenvalue problem where E denotes the eigen-
values and corresponds to the total energy of the system.

The many-body wavefunction Ψ contains all the information
about the system and can be used to calculate its proper-
ties. However for 3 spatial dimensions, we need to solve a
system of 3N variables and the computational cost scales
exponentially with N , rendering it intractable for all but
the simplest systems. DFT and TDDFT allow us to solve
Eq. 2 and Eq. 1 respectively by reformulating the problem
in terms of electron density rather than the wavefunction,
dramatically reducing the number of variables from 3N to
3.

The Runge-Gross theorem (Runge & Gross, 1984) states
that for a system with a given ground state many-body wave-
function Ψ0 = Ψ0 (r, t0), there exists a unique mapping
between the potential and the time-dependent density. The
density can be obtained by solving a system of fictitious
non-interacting particles governed by the time-dependent
Kohn-Sham (TDKS) equations (van Leeuwen, 1998)[
−1

2
∇2 + vs[n](r, t)

]
ϕj(r, t) = i

∂ϕj(r, t)

∂t
, j = 1, ..., N

(3)
where the electron density

n(r, t) =
∑
j

|ϕj(r, t)|2, j = 1, ..., N (4)

is the quantity of interest. The Kohn-Sham potential
vs[n](r, t) is a functional of the density n which is a func-
tion of position r and time t. The correspondence between
density and potential is established through the Kohn-Sham
potential

vS[n](r, t) = vext(r, t) + vH[n](r, t) + vXC[n](r, t). (5)

where vext(r, t) is the external potential, vH(r, t) is the
Hartree potential and vXC(r, t) is the exchange-correlation
potential. The external potential is composed of the poten-
tial of the ions and any time-dependent external perturbation
such as a laser field.

While in theory, vXC(r, t) depends on the density at all
previous time steps, the adiabatic approximation is often
used in practice (Ullrich, 2012). We use the adiabatic local
density approximation (ALDA). Under ALDA, vXC(r, t) is
approximated as:

vALDA
XC [n,Ψ0,Φ0](r, t) = vLDA

XC [n](r, t), (6)

where vLDA
XC is the LDA exchange-correlation potential in

ground-state DFT.

These coupled equations are solved through iterative numer-
ical algorithms which represent a significant computational
cost in the TDDFT workflow (Castro et al., 2004).

2



Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators

(a) Ground State Density (b) Ground State Potentials (c) Laser Field

Figure 1. Example system with d = 1.0, Z1 = 2.0, Z2 = 4.0. (a) Ground State Density, (b) Ground State Potentials, (c) Laser Field

2.1.1. TIME PROPAGATORS

The general form of the time evolution operator Û for a time
domain T is given by:

ϕi(r, T ) = Û(T, 0)ϕi(r, 0). (7)

In practice, it is applied multiple times for shorter time
periods over the domain

Û(T, 0) =

N−1∏
i=0

Û (ti +∆ti, ti) (8)

with t0 = 0, ti+1 = ti+∆ti, and tN = T . Additionally, the
evolution operator is unitary Û†(t+∆t, t) = Û−1(t+∆t, t),
which is required for conserving the electron density, and fol-
lows time-reversal symmetry Û(t+∆t, t) = Û−1(t, t+∆t).
A time propagation algorithm should account for these prop-
erties. Multiple time propagation methods have been devel-
oped for this evolution (Castro et al., 2004; Gómez Pueyo
et al., 2018). For this work, we use the Crank-Nicholson
method (Crank & Nicolson, 1947) to generate the reference
data. We then train a FNO to directly propagate the density
in time as opposed to propagating single particle orbitals.

2.1.2. MODEL SYSTEMS

We consider an external potential

vext(r, t) = vion(r) + vlas(t) , (9)

where we simulate a class of one-dimensional diatomic
molecules that serves as a model system with two interacting
electrons under the static ionic potential:

vion(r) = − Z1√
(r− d

2 )
2 + a2

− Z2√
(r+ d

2 )
2 + a2

, (10)

where Z1 and Z2 denote the charge of the atomic wells, d
denotes the bond length, and a is a softening parameter for
numerical stability.

The system is excited with a laser given by a time-dependent
external perturbing potential:

vlas(t) = A sinωt. (11)

With the dipole approximation, we can treat the laser as
spatially constant because the size of our molecule is much
small than the wavelength of the laser. Given the ground
state prepared with vion(r), we propagate the density under
the influence of the laser vlas(t).

The domain is defined by [-L, L] for time [0, T] with dis-
cretization ∆x and ∆t. We use fixed boundary conditions

ϕi(−L, t) = ϕi(L, t) = 0, ∀t ∈ [0, T ]. (12)

The ground state density, ground state potential terms and
shape of the laser pulse are shown in in Figure 1. We use the
LDA functional due to its simplicity and accuracy for such
simple one-dimensional systems. The density evolution is
calculated by solving the time-dependent Kohn-Sham equa-
tions with the external potential vext(r, t) using the Crank-
Nicholson scheme. The numerical simulation is performed
using the Octopus RT-TDDFT code (Tancogne-Dejean et al.,
2020).

2.2. Fourier neural operators

Neural operators (NOs) (Lu et al., 2019; Anandkumar et al.,
2020) extend neural networks by mapping functions to func-
tions instead of finite-dimensional vectors. While a neural
network maps Rn to Rm, a neural operator maps function
spaces, G : A → U . Our goal is to approximate the non-
linear map G† : A → U with a neural operator Gθ, parame-
terized by θ ∈ Rp.

Training involves observations {(ai, ui)}Ni=1 where ui =
G†(ai). The objective is to find parameters θ∗ minimizing
the loss:

θ∗ = min
θ∈Rp

1

N

N∑
i=1

∥ui − Gθ(ai)∥2U . (13)
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· · ·

[nt−k, · · · , nt−1, nt]

Input Sequence

P Fourier layer 1 Fourier layer 2 Fourier layer 3 Q

nt+1

Output
Step

Update Input Sequence (Add nt+1, remove nt−k)

R F−1Fν(x) + σ

W

Fourier layer

Figure 2. Autoregressive FNO architecture for predicting the density at time t+ 1 based on k previous time steps.

A neural operator Gθ(a) is defined by:

Gθ(a) = Q(vL(vL−1(. . . v1(P (a)))), (14)

with layers vl+1 as:

vl+1(x) = σ(l+1) (Wlvl(x) + (Kl(a;λ)vl) (x)) , (15)

where Kl is a non-local kernel integral operator:

(Kl(a;λ)vl) (x) =

∫
Ωl

κl(x, y, a(x), a(y);λ)vl(y)dy.

(16)

The kernel function κl(x, y, a(x), a(y)) depends on
x, y, a(x), and a(y), and is parameterized by λ. Wl is a
learnable weights matrix which corresponds to a linear trans-
formation and σl+1 is a component-wise non-linear activa-
tion function. P (a) preprocesses a into higher dimensional
space v0, and Q(vL) post-processes vL back into U .

FNOs (Li et al., 2020) use the Fourier transform for efficient
computation. With κ(x− y) as a convolution operator, we
use the convolution theorem:

(Kl(a;λ)vl) (x) = F−1 (F (κl) · F (vl)) (x), (17)

where F and F−1 are the Fourier transform and its inverse,
respectively. Parameterization in Fourier space is deter-
mined by the number of modes kmax and width of the
convolutional layers, allowing efficient kernel computation
and effective capture of global patterns using Fast Fourier
Transform.

2.3. Modeling the time-dependent electron density with
Fourier neural operators

An autoregressive model is used to predict future values
based on past observations. The model takes a slice of
Tin time steps and predicts the next time step. The input
sequence is then updated to include the new predicted value
while discarding the oldest time step.

Let nt be the density grid at time step t. The input to the
model at time step t is a sequence of Tin previous observa-
tions, denoted as:

Nt = [nt−Tin+1,nt−Tin+2, . . . ,nt] , (18)

with N0 consisting of the initial Tin time steps beginning
with the ground state density n0.

The model predicts the next time step n̂t+1 as:

n̂t+1 = Gθ(Nt) (19)

where Gθ(·) represents the autoregressive FNO model pa-
rameterized by θ.

After predicting n̂t+1, the input sequence is updated for the
next prediction. The new input sequence Nt+1 is formed by
appending n̂t+1 and removing the oldest time step nt−Tin+1:

Nt+1 = [nt−Tin+2,nt−Tin+3, . . . ,nt, n̂t+1] (20)

This architecture is shown in Figure 2. This process is
repeated iteratively to generate further predictions.

The loss function for this model is the mean squared error
(MSE) between the predicted and true densities, averaged
over all time steps and all systems. Let D denote the set of
all systems, and let T denote the set of all predicted time
steps for a given system. The loss function L(θ) is defined
as:

L(θ) = 1

|D|
∑
d∈D

1

|T |
∑
t∈T

∥∥∥n(d)
t − n̂

(d)
t

∥∥∥2
2
, (21)

where n
(d)
t is the true density and n̂

(d)
t is the predicted

density at time step t for system d.

To ensure that the density is conserved through time, we
calculate the norm of density

N =

∫ ∞

−∞
n(x, t)dx ≈

∑
i

n̂
(d)
t,i ∆x (22)
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(a) Reference Density (b) Predicted Density (c) AE in Density (d) log10(AE) in Density

Figure 3. Density evolution of the representative system. The red line denotes the initial Tin = 10 input time slices. The errors are
calculated on the predicted density slices after the red line.

and add a loss term

Lnorm(θ) = λ

(∑
i

n̂
(d)
t,i ∆x− 2

)2

, (23)

where i denotes index over grid points xi and λ is weight
term. N = 2 for the reference system.

To evaluate model performance, we use the mean absolute
error (MAE) and mean squared error (MSE) between the
reference and predicted densities.

3. Results
As baseline, we generate a set of 729 systems with varying
Z1, Z2, d parameters with fixed softening parameter a =
1.0. The domain parameters are L = 6.0 a.u. and T = 10
a.u. (0.241 fs). The discretization used is ∆x = 0.05 a.u.
and ∆t = 0.025 a.u. (0.6 as). The laser parameters are
A = 0.75 a.u. (corresponding to peak intensity I = 1.97×
1016 W cm−2) and ω = 2.0 Ha (corresponding to λ =
22.78 nm). Using this reference set, we generate datasets
with discretization ∆t = 0.2 a.u. (4.83 as), resulting in
Tn = 51 time slices, each on a grid of Xn = 241 spatial
points. The training dataset consists of 600 systems, the
validation dataset consists of 10 systems and performance
is evaluated on a test dataset of 100 systems. The networks
consist of 3 Fourier layers, trained using the Adam optimizer
with learning rate = 0.001, halving every 200 epochs.

3.1. Effect of varying input time slice

We first show that by incorporating more information in the
input time slices, the performance of the network increases.
In this case, the network consists of layers with width 64
and 16 modes. Prediction metrics are evaluated on Tn −
Tin time slices. As the number of input time slices Tin

increases, the errors decrease at the expense of the initial
data required. We show the error metrics for four models
with Tin = 5, 10, 15, 20 in Table 1. As a balance between
the accuracy and data requirements, a larger model is created
with Tin = 10, consisting of layers with 16 modes and
width 128, trained for 2000 epochs. This model serves as

the baseline for further comparisons. The reference and
predicted densities along with errors for a representative
system are shown in Figure 3.

3.2. Comparison with coarse solver

We compare the accuracy and speed of the baseline model
with a coarse solver. The baseline model is trained on a
grid with ∆t = 0.2 a.u., using data generated with a finer
grid ∆t = 0.025 a.u. Numerical results are calculated
on a comparable coarse grid ∆t = 0.2 a.u. in Octopus.
Both these results are compared with reference fine grid
numerical calculations. As show in Table 1, the baseline
model is roughly 2× faster than the numerical solver with
error reductions of about 4× MAE and 10× MSE.

3.3. Time offset

We show that the model generalizes well when used to
predict the density evolution on a time grid offset by ∆T

2 =
0.1 a.u. The domain in this case becomes [0.1, T − 0.1].
As show in Table 1, the MAE=5.779×10−3 and prediction
time per step t = 1.75 ms is comparable to the performance
of the baseline model, which was evaluated on the same
time grid as the training time grid.

3.4. Spatial super-resolution

One key advantage of FNOs is discretization invariance. We
show the performance of the model trained on a dataset
with ∆x = 0.05 a.u. (Xn = 241) on a higher resolution
grid with ∆x = 0.025 a.u. (Xn = 481). We get accurate
predictions with a reasonable increase in errors but with
the same inference speed, as shown in Table 1. This is
especially useful because the time taken per step increases
to 9 ms for the numerical solver on this grid while the model
inference time stays constant at 1.75 ms.

4. Discussion
In this section, we summarize the numerical results and
discuss the performance of the FNO time propagator for
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Model MAE (×10−3) MSE (×10−4) Time (ms)

FNO Tin = 05 8.595 4.18 1.58
FNO Tin = 10 7.087 4.10 1.62
FNO Tin = 15 6.101 3.16 1.60
FNO Tin = 20 5.652 3.32 1.60

Baseline 5.118 2.56 1.75
Octopus (Coarse) 19.616 24.69 4.00

Time Offset 5.779 2.78 1.75

Super-resolution 7.335 6.56 1.75

Table 1. Performance metrics of various models. The time column indicates the calculation/inference time to obtain the next density time
slice.

calculating physically viable densities. For the baseline case,
the MAE in density is 5.118 ×10−3 with a prediction time
of 1.75 ms per time step. This is in excellent agreement to
the reference data with a fraction of the computational cost.
This model can be used for offset time grids and for higher-
resolution space grids as well without additional training.
To compare the nature of calculated densities, we evaluate
the model on the properties of time evolution operators and
use the density to calculate an observable.

4.1. Properties of time evolution operators

As discussed in 2.1.1, time propagators for the Kohn-Sham
equations follow certain properties.

• Density conservation: The norm of the density N =∫∞
−∞ n(x, t)dx must be conserved in the model system.

For our system with two electrons, N = 2. For the
baseline system, the FNO predicted densities have a
mean norm of 1.99992 ± 0.00039, averaged over all
predicted time steps over all systems. The deviation
of the predicted norm increases with time, as shown in
Figure 4.

• Time reversal symmetry: A stable time-propagator
must follow time-reversal symmetry. As a qualitative
check, densities are predicted using the baseline model
in reverse time order. However, the MAE jumps to
0.0751, with even the MAE on the training set jumping
to 0.0741.

The FNO model follows density conservation, which
is also constrained in the loss function during train-
ing. However, time reversal symmetry is broken as
shown by the increase in MAE for reverse time order
predictions.

4.2. Dipole Moment Calculation

µ(t) =

∫ ∞

−∞
xn(x, t) dx ≈

∑
i

xi nt,i ∆x (24)

To demonstrate that the model predicted densities can
be used for calculating observables, we also compare
the dipole moments calculated using predicted and ref-
erence densities. For the baseline, the dipole moment
MSE is 0.02976 with a mean average percentage error
of 8.34 %. The error in dipole moment accumulates
across time, as shown in Figure 5.

Figure 4. Evolution of predicted density norm over time. The blue
points represent the norms of predicted density, averaged across
all systems, at varying time steps with the error bars representing
the stand deviation. The orange line represents the true norm. The
subplot shows the absolute error between reference and predicted
norm in time.
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Figure 5. Absolute error between the reference and predicted
dipole moment, averaged across all systems, at different time
steps.

The performance of the FNO time propagator in calculating
these physically relevant quantities shows that while density
predictions are accurate, the model can be improved further
by incorporating more physics-based constraints such as
time reversal symmetry and stronger density conservation.
Since the typical time scale for electron dynamics is in the
range of a few hundred femtoseconds at most, achieving
small error accumulation on this time scale seems feasible
based on our results.

4.3. Conclusion

We show that machine learned time propagators have the
potential to accelerate TDDFT calculations. A promising
direction would be the development of ML time propagators
that can predict the time evolution given just the ground
state density and the shape of a laser pulse. Such extensions
would include having the laser as a separate input for better
generalization across laser parameters and to encode time
reversal symmetry in the model structure. Extending this
work to physics-informed three-dimensional models would
enable on-the-fly modeling of the electronic response prop-
erties of laser-excited molecules and materials in various
scattering experiments that are conducted at photon sources
around the globe. This would enable fast simulations that
generalize well over the input parameters of the experimen-
tal setup. Rapid modeling would also enable the design of
laser pulses to precisely control quantum dynamics under
quantum optimal control theory (Werschnik & Gross, 2007).

Acknowledgments
This work was supported by the Center for Advanced
Systems Understanding (CASUS), which is financed by
Germany’s Federal Ministry of Education and Research

(BMBF) and by the Saxon state government out of the State
budget approved by the Saxon State Parliament. We ac-
knowledge funding from the Helmholtz Association’s Ini-
tiative and Networking Fund through Helmholtz AI.

References
Adamo, C. and Jacquemin, D. The calculations of excited-

state properties with Time-Dependent Density Functional
Theory. Chemical Society Reviews, 42(3):845–856, Jan-
uary 2013. ISSN 1460-4744. doi: 10.1039/C2CS35394F.
URL https://pubs.rsc.org/en/content/
articlelanding/2013/cs/c2cs35394f.
Publisher: The Royal Society of Chemistry.

Anandkumar, A., Azizzadenesheli, K., Bhattacharya, K.,
Kovachki, N., Li, Z., Liu, B., and Stuart, A. Neural
Operator: Graph Kernel Network for Partial Differential
Equations. In ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations, Febru-
ary 2020.

Azizzadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,
M., Kossaifi, J., and Anandkumar, A. Neural
operators for accelerating scientific simulations and
design. Nature Reviews Physics, 6(5):320–328,
May 2024. ISSN 2522-5820. doi: 10.1038/
s42254-024-00712-5. URL https://www.nature.
com/articles/s42254-024-00712-5. Pub-
lisher: Nature Publishing Group.

Brockherde, F., Vogt, L., Li, L., Tuckerman, M. E., Burke,
K., and Müller, K.-R. Bypassing the Kohn-Sham equa-
tions with machine learning. Nature Communications, 8
(1):872, October 2017. ISSN 2041-1723. doi: 10.1038/
s41467-017-00839-3. URL https://www.nature.
com/articles/s41467-017-00839-3. Pub-
lisher: Nature Publishing Group.

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld,
M., Tishby, N., Vogt-Maranto, L., and Zdeborová,
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