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ABSTRACT

We consider the problem of model compression for Large Language Models
(LLMs) at post-training time, where the task is to compress a well-trained model
using only a small set of calibration input data. In this work, we introduce a
new low-rank approach to correct for quantization errors of both weights and ac-
tivations in LLMs: we propose to add low-rank weight matrices in full preci-
sion that act on the unquantized activations. We then solve a joint optimization
problem over the quantized representation of the weights and additional low-rank
weight matrices. We focus on the case of 4-bit weight-and-activation quantization
(W4A4). Using ranks equivalent to 10% of the original weight matrix size, our
approach reduces the accuracy gap with the original model by more than 50%.
Using ranks equivalent to 30% of the original weight matrix, the accuracy gap
is closed completely. We demonstrate our results on three recent LLMs, namely
Llama-3, Phi-3 and Mixtral models.

1 INTRODUCTION

Large Language Models (LLMs) (Abdin et al., 2024} Dubey et al., [2024; |Jiang et al., 2024)) have
demonstrated exceptional performances across a wide range of applications. However, due to their
massive size, these models require considerable computational and memory resources at inference.

Post-training quantization (PTQ) is among the most important techniques to solve both memory
and compute issues during LLM inference. The majority of quantization schemes focus on com-
pressing LLMs by using weight-only quantization (Frantar et al.| 2022} [Shao et al., [2023; Dettmers
et al.l|2023). One major limitation of PTQ is the presence of magnitude outliers in the model layer
weights, which can severely affects the quantization process (Wei et al., 2022} Xiao et al.,[2023) and
deteriorate the performances of quantized models. To handle them, several offline approaches has
been proposed in the literature, such as mixed-precision strategies (Dettmers et al., 2023), adapted
rescaling [Lin et al.|(2024)), and incoherence processing (Chee et al.| (2024)); Tseng et al.|(2024). Re-
cently, several works proposed to use additional low-rank weight matrices in full precision to correct
for quantization errors in the weights [Kang et al.|(2024); Ou et al.|(2024)).

Weight only quantization methods enable to store LLMs on smaller devices, and accelerate the
General Matrix-Vector Multiply (GEMV) operators in the decoding stage [Lin et al.| (2024); |[Frantar,
et al.| (2022), however, these approaches still require to keep activations in full precision (usually
FP16). To improve on this, several works (Ashkboos et al.| 2023} Xiao et al.| 2023} |Dettmers et al.,
2022; |Zhao et al.| [2024) aim at jointly quantizing the weights and activations (and sometime KV
cache) to compute the forward pass in low bit precision. Unlike weight quantization, the quantization
of activations requires online strategies to compute their low bit representations on the fly (Jacob
et al., |2018)).To deal with outliers in activations, (Xiao et al.| [2023) propose to scale the weights,
thus reducing the magnitude range of activations. (Ashkboos et al., [2024; [Liu et al.l 2024) propose
to process weights and activations using Hadamard transform. More recently [Zhang et al.| (2024
propose to add low-rank correction terms in full precision in order to correct for quantization errors.
Although these approaches has been shown to be effective at W4AS, they still struggle to deal with
the case where both weights and activations are quantized in lower bit precision such as W4A4,
leaving an opportunity to improve on current methods in these harder settings.

Contributions. In this work, we improve on current SOTA approaches for PTQ, and introduce
LRC, a new method that leverages low-rank weight matrices in full precision to correct for both
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weight and activation quantization errors. By jointly optimizing for quantized representations of
the original weights and full precision low-rank weights matrices, our method allows for quantiz-
ing weights, and activations (and KV caches) to 4 bits with minimal loss in accuracy. Our main
contributions are summarized below.

* We introduce a general framework that aims at jointly optimizing for quantized represen-
tations of the original weights acting on the quantized activations, as well as full precision
low-rank weights matrices operating on the unquantized activations.

* We derive an alternative scheme to solve the joint optimization problem and obtain a simple
algorithm easily compatible with recent quantization techniques, such as QuaRot (Ashk-
boos et al.,[2024) and GPTQ (Frantar et al., 2022).

» Using our quantization scheme, LRC manages to reduce the accuracy gap with original
models by more than 50% using only low-rank matrices with 10% of the original size, and
outperform all current approaches at W4A4.

1.1 RELATED WORK

Dealing with Outliers. One major limitation of quantization techniques is the presence of outliers
in both weights and activations that can deteriorate the quality of the approximations, and lead to a
considerable drop in performance. A recent line of works (Ashkboos et al., [2024; [Liu et al., [2024)
proposed to apply specific rotations (and their inverses), on both weights and activations in order to
remove outliers while preserving exactly the output of the original model. Such a pre-processing
step, in combination with the GPTQ Algorithm (Frantar et al., 2022) enabling efficient quantization
of the weights, and lead to SoTA performances in quantization at W4AS. In this work, we leverage
this pre-processing step, and consider these methods as baselines for our approach where low-rank
weight matrices in full precisions are added to the forward pass in order to correct for quantization
errors on both weights and activations, enabling to quantize LLMs at W4A4 with a 50% gain.

Low-Rank Correction. Recent works proposed to leverage low-rank matrices to reduce quanti-
zation errors in LLMs (Zhang et al.l 2024} Ou et al., [2024). In (Zhang et al 2024)), the authors
consider the case where both weights and activations are quantized, and propose to add well-chosen
low-rank matrices in full precision in the forward pass to reduce the quantization errors. To deal
with outliers, they first compute some rescaling matrices (Lin et al.| 2024; Xiao et al., 2023)) using a
calibration dataset, and then propose to add low-rank approximation of the rescaled residual errors
between the original and quantized weights obtained by SVD. In (Ou et al.| 2024), the authors im-
prove on the low-rank approach introduced in Zhang et al.| (2024) and consider to apply a PCA on
the output activation errors using a calibration dataset. However, their work only focus on the quan-
tization of the weights, leaving aside the quantization of activations. In this work, we improve on
prior research by incorporating both the empirical distribution of activations and the errors induced
by activation quantization into our analysis to optimize the low-rank weight matrices.

2 BACKGROUND ON POST-TRAINING QUANTIZATION

Weight Quantization. Weight quantization aims at obtaining new weights with a lower bit pre-
cision, reducing the memory needed to store the model, while preserving the output of the origi-
nal model. One standard approach is to perform layer-wise quantization, where quantized weights
are obtained by solving a reconstruction problem on a calibration dataset. Given a small dataset

of n sampled activations X, € R% XM at a certain layer ¢, and the associated weight matrix

W, € R%" %47 the goal is to find a matrix of quantized weights W, which minimizes the quadratic
error over the dataset (Nagel et al., [2020):

omin Ly(W) = WX, - W, X3 (1)
Weec(b)nre x4

where C(b) is the constraint set of matrices admitting a certain bit per weight b > 0 precision. Due
to the non-convexity of the constraints, finding the exact solution of the problem is hard, and many
works have focused on designing algorithms to efficiently approximate a solution (Frantar et al.,
2022; \van Baalen et al., [2024; [Lin et al., [2024; |[Egiazarian et al.,|[2024).
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Activation Quantization. While weight quantization enables to store large models at a lower
memory cost, it still requires additional memory space at inference time to perform the forward op-
erations in full precision, usually by de-quantizing weights to FP16. To reduce the memory footprint
and FLOP cost further, it is desirable to quantize the activations during inference to compute ma-
trix multiplications in lower precision, usually using specialized cuda kernels that perform GEMM
in low bit precision (Wei et al., 2022; |Yao et al.| [2022; |Wu et al. 2023} |Xiao et al., 2023). The
quantization step of activations generally happens at every layer of a model as one might want to
preserve full precision activations to perform coordinate-wise non-linear transformations of the ac-
tivations (Ashkboos et al., [2024; [X1ao et al., 2023)). Additionally, as quantizing activations require
additional operations in the forward, this step must only incur a small overhead in time and memory.
Due to this constraint, previous work consider simple, yet efficient techniques such as round-to-
nearest (RTN) (Ashkboos et al.| 2024), to quantize activations on the fly at inference time.

In our work we assume a simple on-the-fly quantization, rescaling each activation « by c -
max(abs(x)) and rounding to the nearest integer. We perform a simple hyper-parameter search
for ¢. Our main focus is deriving a low-rank correction to the weight matrix that accounts for some
of the error incurred in activation quantization.

3 Low-RANK CORRECTION

In this work, we propose to add full precision low-rank weight matrices in the forward pass that act
on the unquantized activations to correct for quantization errors of both weights and activations. In
the following, we start by presenting the proposed framework to quantize a single weight matrix
while correcting for quantization errors using additional low-rank weight matrices. Then we intro-
duce our proposed algorithm that effectively computes the quantized representations of the original
weights in low-bit precision and the low-rank weight matrices in full precision. We conclude this
section by providing a detailed overview of the approach when applied on a standard LLM.

3.1 GENERAL FRAMEWORK

Before introducing our framework, we need to establish some clarifying notations.

FP1e Notations. Given a calibration dataset X € {1, ..., D}™ of token

ids where D is the dictionary size, and a model M with L layers,
we denote (X)1<¢<r where X, € R %" the sequence of acti-
INT4 vations obtained along the forward pass of M at each layer £ when

applied on X. We also denote (W;)1<¢<1 where W, € R xdg |
FP16 the sequence of weight matrices of M which act on the activations
(X¢)1<e<1 respectively along the forward pass. In the following,

we always consider the case where n > mzax (d‘g”‘, dig“), as in
1<¢<L

INT4 W,

g

vy FP16

Xy

Figure 1: Computational practice we use 128 sentences of 2048 tokens, giving n ~ 200k
scheme of our method, where While in general d ~ 10k. We also denote for b > 0, C(b) the
both weights and activations constraint set of matrices admitting a certain bit per weight b > 0
are quantized, and a low-rank precision, and Q»(+) any quantization operator, that given an input
matrix in full precision is matrix Z € R?*? produces a matrix of same shape and satisfying
added and operates on the @Q,(Z) € C(b). Finally, we call two optimization problems equiva-
unquantized activations. lent if they have the same solutions.

Low-Rank Correction Problem. We propose to extend the framework introduced in equation [I]
for layer-wise quantization of weight matrices only, by also accounting for the errors induced by the
quantization of activations and by adding low-rank weight matrices to correct for quantization errors
of both weights and activations. Given the original activations X, obtained at layer ¢, the associated
weight matrix Wy, a bit precision for the weights b, > 0, a bit precision for the activations a, > 0,
a quantization operator @, (-) acting on the activations at inference time, and a rank 1 < k, <
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Algorithm 1 Update-Quant(W, U,V ,YY ", XY " b)
1: Input: Original weight matrix W, low-rank weight matrices U, V', covariance matrix YY'T,
cross-covariance matrix XY ', and the bit precision b.

Output: Quantized weight matrix W.
Ly <+ Cholesky(YY ")

W« (W-UVHXY(L}) 'Ly}
W + GPTQ(W, YYT, b) using Alg. of [Frantar et al|(2022)
return W

AN AN

min(d, d9"), we propose to consider the following reconstruction problem:

min LW, U, Vo) = WXy — WiQa,(X0) — UV, X453 . (2
Wi eC(be)nRE" < 4E |
UzeRd%“‘xk[)wERdi[f'xk[

Our goal here is to jointly optimize for both a quantized weight matrix W, and full precision low-
rank weight matrices Uy, V; in order to reconstruct the original output of the weight matrix W,.

Comparison between L and £4. While similar in nature with the optimization problem intro-
duced in equation [I] the reconstruction problem defined in equation [2] presents two major differ-
ences: (i) we propose to account for the quantization errors of activations by considering the quan-
tized activation Q,,(X/) as input to the quantized weight W, rather than the original activation
X. (i) Additionally, we propose to correct the quantization errors of weights and activations using
a low-rank correction matrix Uy Vf in full precision and applied on the unquantized activations Xj.
Figure|l|illustrates the computational scheme proposed in this work.

3.2 LRC ALGORITHM

Let us now present the proposed algorithm to solve equation 2} In the following we drop the de-
pendency on £ of our notations for better readability. Starting from initial low-rank weight matri-
ces U, V(0 we propose to alternatively optimize for W and (U, V) according to L. For
t=1,...,T, we propose to the following updates

WO =  argmin WX - WQ(X) - U D(VE-T X2 3)
W eC(b)NRd™ xdin
UDV® .=  argmin [[WX - WHQ,(X)-UVTX|32. 4)

UcRA™ xk YV cRA™ Xk

On the Update of W. To update ﬁ\/, we rely on already existing solvers addressing equation
We show in the next Proposition that the optimization problem defined in equation [3|can be equiva-
lently reformulated as a standard layer-wise quantization problem as defined in equation [I]

Proposition 3.1. Let us denote Y := Qu(X) € C(a) NRY" ™, and assume Y is full rank. Then,
by denoting W := (W —UD(VO)YXY T(YY ") ~L, we have that the optimization problem
defined in equation[3]is equivalent to the following reconstruction problem:

_ min_ WOV -WY3. 5)
W eC(b)NRI™ x ™

Therefore, updating W according to equation |3} is equivalent to solving equation [5, which can be
approximated by using any solvers designed for equation [T|such as (Frantar et al., 2022; [Lin et al.|
2024;|Egiazarian et al.,[2024). In practice, we use the GPTQ algorithm (Frantar et al.,[2022) that only
requires access to the target weight matrix W) and the covariance matrix Y'Y ". Note also that in
order to compute W(t), we need an access to the original weight matrix W, the cross-covariance
XY " and the current low-rank matrices U*), V'), Algorithm summarizes this step.
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Algorithm 2 Update-LR(W, W, XX, XY k)

1: Input: Original weight matrix W, quantized weight matrix ﬁ\/ covariance matrix X X ',
cross-covariance matrix XY ', and the rank k.

Output: Low-rank weight matrices U, V.

¥ I/)[\/'XXTWT .

N3 WYX W +WXY W’

Lx < Cholesky(XXT), S+ Ly XY W'

S, 8T8

3~ 21 + 22 — 23

U « eig, (%), V [WT - (XXT)—1XYTVAVT} U

return U,V

R A A S

Remark 3.2. In line [3|of Algorithm we use the Cholesky decomposition of the covariance YY T
to compute (W —UV ") XY " (YY ")~! for better numerical stability.

Remark 3.3. It is important to highlight that the choice of GPTQ (Frantar et al. 2022) in line [5]
of Algorithm [1|is arbitrary. Any alternative solver capable of efficiently addressing the problem
formulated in equation [5]could be employed in its place.

On the Update of U, V. While solving exactly equations [I] or[3]is still an open question due to
the non-convexity of the constraints, obtaining the update for U, V/, that is solving equation 4] can
be done in closed form, as shown in the following Proposition.

Proposition 3.4. Assume that X is full rank and let us denote Y := Qo (X). Then the optimization
problem defined in equationf|is equivalent to the following optimization problem:

max U (B + E(zt) - Eét))U)
UeR4™XknO,V cRd" xk

(6)
st V= [WT S (xXXH)lxyTwTu,

where O is the set of matrices with orthnormal columns,
2 =WXX W', s =WOyXT(XX")'XY (W7, and
20 =WOYX W + WXy (WO)T |

In addition, a solution can be obtained by defining U as the k unit eigenvectors of ¥ := 3 +
Z](;) — ng) associated to its k largest eigenvalues, and V' as in equation

To compute the updated U, V*) we require an access to the original weight matrix W, the

current quantized approximation W(t), and the covariance and cross-covariance X X " and XY T
respectively. The pseudo-code of this step is detailed in Algorithm [2] Note that in line [§] of the
Algorithm we denote eig,, () the operator that returns the k first unit eigenvectors of a symmetric
matrix ranked in the decreasing order w.r.t their eigenvalues.

Initialization. To initialize our algorithm, that is to instantiate U(®) and V'(©), we propose to
consider a relaxed formulation of the original optimization problem defined in equation[2] where we

remove the constraint on W. More formally we consider the following optimization problem:
min Lae(W,U, V). 7

WERdom X 4qin
out . in
UERd Xk,VE]Rd Xk

In fact, equation[7]can be solved in closed form as shown in the following Proposition.

Proposition 3.5. Let us denote Y := Q. (X) and assume that Y is full rank. Then the optimization
problem defined in equation[/]is equivalent to the following optimization problem.:
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max Tr(UTEim-,U)
WERdUM[X dm .
UERdOkaﬂO,VERdMXk (8)

st. V=W'U and W=[W-UV'| XY (YY)}

where O is the set of matrices with orthnormal columns, and X;; = WXI[I, —
Y (YY) 'YX "W . In addition, a solution can be obtained by defining U as the k unit

eigenvectors of X, corresponding to the k largest eigenvalues, and V and W as in equatioan?]

Therefore we can initialize U®) and V'(©) accordmg to equatlon I in closed form as long as we
have access to the original weight matrix W, the covariance X X " and the cross- covarlance XY'.

We present the initialization step in Algorithm [3] It is worth noting that the solution W obtained

in equation[§]can be used to measure an oracle performance of our alternative scheme, i.e. the effect
of correcting for activation quantization, assuming a perfect weight quantizer.

Algorithm 3 Init LR(W , XX T, YY" XY " k)

1: Input: Original weight matrix W, covariance matrices X X ', Y'Y ', cross-covariance matrix
XY ", and the rank k.

Output: Low-rank weight matrices U, V.

S+ WXXTWT

Ly < Cholesky(YY "), S+ Ly'YX W'

Yo +— STS

Pinit ¢ X1 — X2

U « eig,(Zir), VWU

return U,V

PRI AR

Remark 3.6. Observe that the update on W obtained in equation |5|aims at quantizing w® , which
can be seen as the optimal unconstrained weight matrix when the low-rank correction matrices are
fixed and set to U® , V().

Numerical Stability. Let us now discuss the assumptions made in our previous results. In the
proposed updates, we either need X X 7, or YY T to be full rank. To avoid the case where these
matrices are singular, we add a regularization term to these matrices, and consider instead:

.= XX +edgm, and B, =YY +¢lgn,
where I; denotes the identity matrix of size d. In practice we set ¢, = <2Tr(XX "), and

dm
similarly, €, := 1S2Tr(YY ").

LRC Algorithm. Finally, we present the full algorithm for LRC [] that aims at approximating
a solution of equation [2| Note that in practice, we accumulate batches of activations X to avoid
running out of memory, and update X, %, 3,,, as defined in lines 3 [} [5} in an online fashion
before initializing U, V' in line[6]

Application of LRC on LLMs. LRC consists of two stages: (1) the model is first pre-processed
according to the QuaRot procedure (Ashkboos et al.|[2024), where Hadamard rotation matrices are
fused with the weights to reduce the incoherence of both weights and activations, while maintaining
the outputs of the original model. (2) Then, the model is quantized using the LRC algorithm[d] where
both weights and activations are quantized, and optimized low-rank matrices in FP16 precision are
added to the forward pass of each weight matrix.

To compute the Hessians (X2, 3, X,) we follow [Frantar et al.| (2022) in using calibration dataset
taken from Wikitext-2: 128 randomly selected sequences of length 2048. We found that computa-
tion of these matrices required 64-bit precision for numerical accuracy. By default, our subroutine
for quantization follows GPTQ (Frantar et al., [2022), (we study other subroutines in the following
section). LRC works sequentially through the weight matrices of the model, computing activations
for each weight matrix, obtaining the covariance and cross-covariances matrices needed to apply
Algorithms 4] and solving the optimization problem [2|for each before moving to the next layer.
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Algorithm 4 LRC(W, X | b, a, k)
1: Input: Original weight matrix W, activation X, the bit precision for weights b, the bit precision

for activation a, the rank &, and nurgl\)er of iterations 7.
Output: Quantized weight matrix W, low-rank weight matrices U, V
3 XX T 4 eI
Y + Qu(X), B, < YY ' +¢lm
Y., — XYT
U,V < hit-LRW,%,,3,,3,,,k), using Alg.
forj\: 1,...,T do

W « Update-Quant(W, U, V, %, 5,,,b), using Alg. [l

U,V « Update-LR(W, W, %,,%,,.k), using Alg.]]
end for
return W . U,V

DY X R

—_—

4 EXPERIMENTS

We build on top of the QuaRot (Ashkboos et al.,[2024) codebase, extending the method to include
our approach. All our experiments focus on 4-bit quantization. We experiment with quantization
of Phi-3 (mini-4k-instruct), Llama-3 (8B)and Mixtral (8x7B). All results in the table are simulated
using pytorch: we leave implementation of effective kernels to other works.

4.1 BENCHMARK

We first present our main results. Our ambition is to close the gap between our main benchmark,
QuaRot, and the original FP16 model by adding ranks equivalent to 10% of the original weight
matrix size. To show the effect of the LRC algorithm relative to previous approaches (Zhang et al.,
2024;|Ou et al.;2024) we also consider a baseline of the QuaRot approach with SVD applied to the
weight-matrix error (we denote this approach as SVD in tables[T]and 2)).

We apply our LRC approach with a single iteration (denoted LRC (1)) and 5 iterations (LRC (5)).
The runtime of our approach is comparable to the QuaRot method, though we require additional
memory to store the statisitcs of the activations. Quantizing the Mixtral model on 4xA100 GPUs
required 7 hours to complete 1 iteration, or 9 hours to complete 5. In general we see only modest
accuracy improvements when running LRC for more iterations.

Table shows the wikitext-2 perplexity (PPL) and Im-eval (Gao et al.,|2024) results for each method,
on each model. The tasks we considered are PIQA (PQ), HellaSwag (HS), Arc-Easy (A-e), Arc-
challenge (A-c), Winogrande (WG) and Lambada (LA ). We also show the average accuracy across
tasks (Avg). We see that for the Phi-3 model, LRC (69.7%) recovers a substantial portion of the
FP16 accuracy (72%) relative to QuaRot (64.8%). The simpler SVD approach does not close the
accuracy gap. For the larger models Llama-3 (8B)and Mixtral, we also see improvements of several
percentage points.

To improve the accuracy of quantization, multiple approaches have considered use of groupsizing,
where weight and activation matrices are divided into groups of size e.g. 128, and each group is
scaled separately. This adds to the overall bitwidth, but improves accuracy. LRC can also be applied
with groupsizing: we repeated the experiment in Table[I]in Table[2] this time applying a groups size
of 128 to each method. Again, we see that LRC achieves multiple percentage-point improvements
relative to QuaRot that are not possible with simple SVD.

4.2 ABLATION STUDIES

We perform three ablations to study the performances of LRC in different settings. We investigate
the case where no quantization is performed on activations, and study the effect of the hyperparame-
ter choices in LRC. In particular, we focus on the effect of the rank & and the choice of the quantizer
used in line[5]of Algorithm
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Weights only. To examine the effects of loss due to activation quantization, we re-ran the expere-
ments presented above without quantizing the activations. We used the same set up as above, but
we do no apply any quantizer operator in the forward pass (i.e. @, is set to be the identity map),
such that no activation quantization is performed. Table [5] shows the performances. We see that all
methods are able to recover (almost) perfectly the accuracy of the original models in the W4 regime.
This experiment indicates that when only the weights are quantized, there is minimal error to correct
for SoTA approaches, and as a result, low-rank terms do not provide any additional improvement.

On the effect of Rank. In Figure |2, we show how
the choice of the rank affects our proposed algorithm
LRC [ at W4A4. We compare the average accu-
racy obtained across all the tasks previously described
when varying the rank, chosen as a percentage of the
size of weight matrices. Note that this choice of rank
is adaptive to the weight matrix, and ensures that the
total overhead in memory is at most this percentage.
We fix the LLM to be Phi-3 and we compare the per-
formances obtained with the QuaRot baseline where
no low-rank additional matrices are added. First we
recover that even with ranks equal to 10% of the origi-
nal matrix size, LRC outperforms QuaRot: we also see
that if we allow ranks equal to 30% of the weight-size,
LRC enables close-to-lossless performance. These re-
sults hold irrespective of the use of groupsizing.

Accuracy

—-=-- baseline
- -~ QuaRot w.0 grouping
0.64 7 QuaRot w. grouping 128
— LRC w.0 grouping

LRC w. groupsize 128

10'.0 12'.5 15'.0 17‘.5 26 ) 22‘ 5 25‘ ) 27‘ 5 30‘ o
Ranks (% w.r.t. matrix size)

Figure 2: We show the effect of the rank,
chosen as a percentage of the original
weight matrices, on the performances of
Phi-3 for Im-eval tasks when quantized at

W4A4. We also show the effect of group-
sizing activations. As baselines (dashed
lines), we plot the performances of QuaRot
with and without groupsizing, as well as
the performance of the original model.

On the effect of Quantizer. In Figure [3| we show
how the effect of applying LRC using different quan-
tizer in the update of W at W4A4 on Phi-3 . In Algo-
rithm [T} we only require to have access to a solver of
the layer-wise quantization problem. By default, we

use GPTQ |[Frantar et al|(2022) in our main experi-
ments, but here we aim at investigating the effect of additional low-rank matrices when using other
quantizers, such as simple round-to-neatest (RTN) strategies to quantize weights. We observe that,
LRC is always able to improve on its baseline version where no additional low-rank matrices are
added, and this gap is even more pronounced when using simpler quantization strategies like RTN.

5 CONCLUSION & LIMITATIONS

We have studied low-rank corrections for LLM quanti-

zation. Our main innovation is to connect the low-rank
matrix to the original, pre-quantized activations, whilst
processing the quantized activations with a quantized
weight matrix. Our method, LRC, solves jointly for
the quantization and low rank structure. We have
shown that a straight-forward approach to constructing
the ranks, using SVD is not effective. Our method has
the added complexity of computing activation statis-
tics 32, but this allows us to significantly close the ac-
curacy gap at W4A4 by incorporating low-rank weight
matrices with ranks set to 10% of the original matrix
sizes. To close the gap completely, we showed that on
Phi-3 we needed ranks equal to 30% of the model size.
Finally, we showed that LRC is composable with other
quantization techniques, including groupsizing.

0.5261
0.4649

GPTQ 128 GPTQ RTN 128 RTN
-~ Baseline RC mm quarot

Accuracy

Figure 3: We show the effect of apply-
ing LRC with two quantization schemes,
namely GPTQ and RTN, on the perfor-
mances of Phi-3 on Im-eval tasks at W4A4.

Limitations. In this work we have not studied the computational costs of adding low-rank com-
putations to the forward pass. Some works have speculated that that the low-rank computation may
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Method | Model | PPL | PQ HS A-e A-c WG LA | Avg.
FP16 6.01 | 0.808 0.775 0.786 0.566 0.733  0.653 0.72
QuaRot 7.81 0.77 0.695 0.74 0.479 0.635 0.568 | 0.648
SVD Phi-3 7.72 | 0751 0.701 0.734 0.501 0.622 0.573 | 0.647
LRC (1) 7.26 | 0.786 0.731 0.796 0.545 0.68 0.642 | 0.697
LRC (5) 7.2 0.77 0.734 0.799 0.545 0.668 0.639 | 0.693
FP1l6 6.13 | 0.807 0.792 0.778 0.533 0.726 0.76 0.733
QuaRot 7.78 | 0.765 0.74 0.721 0441 0.663 0.704 | 0.672
SVD Llama-3(8B) | 7.73 | 0.769 0.746 0.697 0.46 0.68 0.699 | 0.675
LRC (1) 8.05 | 0.773 0.736 0.749 0476 0.707 0.731 | 0.695
LRC (5) 794 | 0.764 0.742 0.758 0.483 0.705 0.739 | 0.698
FP16 3.84 | 0.837 0.84 0.834 0.596 0.766 0.784 | 0.776
QuaRot Mixtral 4.55 | 0.813 0.814 0.794 0.569 0.726 0.746 | 0.744
SVD 4.51 | 0.817 0.814 0.802 0.559 0.726  0.761 | 0.746
LRC (1) 4.42 0.81 0.801 0.811 0.561 0.724 0.818 | 0.754
LRC (5) 4.41 | 0.801 0.8 0.813 0.555 0.736 0.814 | 0.753

Table 1: Accuracy on LLM-EVAL with weight and activation quantization (W4A4) and no group-
scaling. LRC and SVD methods use low-rank matrices with 10% of the orignal matrix ranks. We
have highlighted in bold the best performances among the quantized models.

Method | Model | PPL | PQ HS A-e A-c WG LA | Avg.
FP16 6.01 | 0.808 0.775 0.786 0.566 0.733  0.653 0.72
QuaRot 7.65 | 0.778 0.7 0.768 0.511  0.665 0.548 | 0.661
SVD Phi-3 7.54 0.77 0.696  0.751 0.52 0.666  0.555 | 0.659
LRC (1) 7.28 | 0.786 0.722 0.815 0.567 0.693 0.644 | 0.704
LRC (5) 7.25 | 0.776 0.728 0.797 0.539 0.706 0.65 | 0.699
FP16 6.13 | 0.807 0.792 0.778 0.533 0.726 0.76 0.733
QuaRot 7.42 | 0.782  0.747 0.75 0.469 0.712 0.731 | 0.699
SVD Llama-3(8B) | 7.36 | 0.779 0.759 0.762  0.479 0.72 0.717 | 0.703
LRC (1) 7.03 0.78 0.762 0.77 0.505 0.715 0.764 | 0.716
LRC (5) 7.02 | 0.783 0.761 0.766 0.494 0.735 0.765 | 0.717
FP1l6 3.84 | 0.837 0.84 0.834 0.596 0.766 0.784 | 0.776
QuaRot 4.44 | 0.822 0.816 0.809 0.578 0.736 0.763 | 0.754
SVD Mixtral 441 | 0.821 0.821 0.818 0.574 0.747 0.765 | 0.758
LRC (1) 4.26 | 0.816 0.811 0.815 0.567 0.729 0.821 | 0.76
LRC (5) 4.25 | 0.817 0.812 0.817 0.572 0.738 0.815 | 0.762

Table 2: Accuracy on LLM-EVAL with weight and activation quantization (W4A4). For each
method we use a groupsize of 128 for both weights and activations. We have highlighted in bold the
best performances among the quantized models.

be computable in parallel with the low-bitwidth computation: we leave such an implementation and
a thorough study to future work.

We found that running our LRC procedure for multiple iterations did not comprehensively improve
the performance. We found that a single iteration was often sufficient, and anecdotally we found that
convergence was dependent on the damping factors used in Cholesky computations. We speculate
that larger calibration set may improve the condition of the Hessians.

Finally, our work highlights that for W4A4, there is significant information lost in quantizing activa-
tions. We have followed previous works in using a scale-then-round scheme, with hyper-parameter
search for the best scale. The need to perform activation quantization on-the-fly means that fast
(simple!) schemes are needed. this appears to be a productive direction for future improvements.
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Method | Model | PPL | PQ HS Ae Ac WG LA | Avg
FP16 6.01 | 0.808 0.775 0.786 0.566 0.733  0.653 | 0.72
QuaRot Phi3 6.3 | 0.804 0756 0.781 0.561 0.719  0.642 | 0.711
SVD 6.24 | 0.808 0.759 0.779 0.567 0.727 0.646 | 0.714
LRC 6.21 | 0.805 0.76 0.772 0558 0.723  0.641 | 0.71
FP16 6.13 | 0.807 0.792 0.778 0.533 0.726  0.76 | 0.733
QuaRot | [ o3 gy | 055 | 0805 0779 0.774 0.519 0.742 074 | 0.727
SVD 6.49 | 0.799 0.783 0.765 0.508 0.738 0.749 | 0.724
LRC 6.47 | 08 078 0761 051 0731 0.747 | 0.722
FP16 384 | 0.837 084 0834 0596 0.766 0.784 | 0.776
QuaRot | e | 398 | 0.836 0836 0825 0.593 0757 0.781 | 0.771
SVD 3.96 | 0.835 0.837 0.832 0.593 0.766 0.787 | 0.775
LRC 3.95 | 0.84 0.839 0.825 0.593 0.754 0.783 | 0.772

Table 3: Accuracy on LLM-EVAL with weight only quantization. We have highlighted in bold the
best performances among the quantized models.
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APPENDIX

.1 PROOF OF PROPOSITION[3.]]

By simply developing the objective and discarding the constant term (i.e. those independent of ‘//I\/),
we can reformulate the objective function as:

(W, WE,) —2(W, (W -UDVO) XY T)
= (W, WE,) - 2[(W,(W - U (V) "Xy Ts, 5 1)

where 3, := YY", and the second equality holds under the the assumption that Y is full rank
with n > dj,. Then by denoting

WO .— (WU Vv Xy (YY)}
we obtain that the objective is equivalent to
W -wO, (W w0z,

which conclude the proof.

.2 PROOF OF PROPOSITION[3.4]

Let us write the first order condition for V. Indeed we obtain that:
Uuv's, =U' WX, - WYX ]
where ¥, := X X ' Under the assumption that X is full rank with n > dj,, we deduce that
UTUVvT =UT[W-WYX ',
which always admits a solution. Then by denoting (U " U')~! the Moore—Penrose inverse of U ' U,
we obtain that:
Vi=U'U)"'UTW-WYX 2]

Then by plugging this expression into the original objective, we obtain the following equivalent
optimization problem:

min WX - WY —UUTU)'WUT W - WYX TE X3
UGR OUKX

andas {UU'U)"'UT: U € Rdek} spans the space of orthogonal projection onto subspaces
of dimension at most k, we can reparameterize the optimization problem as:

min  |[WX -WY -UU' W - WYX S]'X|2
UeR™xkNO

Then by developing again this expression and discarding the constant terms (i.e. those independent
of U), we recover exactly the optimization problem defined in Proposition Finally observe

=37+ E(;) - E:(,f) is symmetric but not necessarily positive semi-definite. However, observe
that for any symmetric matrix ¥ € R%¥¢, U € R%** with orthonormal columns and a > 0, we
have:

(U "SU) = Te(U (2 + alg)U) — oaTr(U'U) = Tr(U T (2 + alg)U) + ka

from which we deduces the that U can be chosen to be the £ first unit eigenvectors of 3, which
concludes the proof.

.3 PROOF OF PROPOSITION[3.3]

Observe that we can rewrite the optimization problem as:

min min  Ly(W,U, V).
UERdom xk ,VERdi“ Xk WeRdout x din

13
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Now given U € R¥"*k V ¢ R4"*k we can derive the first order condition of the inner optimiza-
tion problem, that is:

0Ly

194% %4
where 3, = YY ". Now under the assumption that Y € R%*n {5 full rank where n > dj,, we
obtain that

=0 whichgives WX, =[W-UV'|XY"

W=[W-UVvTXYyTs;!
from which we deduce the equivalent optimization problem:
min (W -UV)X|}
UeRdOul X k ,VeRd‘n Xk
where X := X — X YTE; Y. Again, by fixing U and by deriving the first order condition for
V', we obtain that:
U'UV'XXT=U"WXX"
Assuming that X is full rank, we recover the normal equation
v'ov' =U'w

which always admit a solution. Then by denoting (U T U)~" the Moore—Penrose inverse of U ' U,
we obtain that:

vi=U'v)'v™w
Plugging back this expression to the previous objective leads to the following optimization problem:

min ||(I; —-UUTU)'U"YWX|%
U R4 xk

and by denoting O := WX , we recover the PCA of O, that is:

min (I~ U@UTU)"'U)O|%
UeRd™ xk

as{UU'U)'WUT : U e Rdm“x’“} spans the space of orthogonal projection onto subspaces of
dimension at most k. Now observe that

O0" =WX[L, - Y (YY) WX W' =%

which conclude the proof.
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