
Under review as a conference paper at ICLR 2022

m-MIX: GENERATING HARD NEGATIVES VIA MULTI-
PLE SAMPLES MIXING FOR CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Negative pairs are essential in contrastive learning, which plays the role of avoiding
degenerate solutions. Hard negatives can improve the representation ability on the
basis of common negatives. Inspired by recent hard negative mining methods via
mixup operation in vision, we propose m-mix, which generates hard negatives dy-
namically. Compared with previous methods, m-mix mainly has three advantages:
1) adaptively chooses samples to mix; 2) simultaneously mixes multiple samples; 3)
automatically and comprehensively assigns different mixing weights to the selected
mixing samples. We evaluate our method on two image classification datasets, five
node classification datasets (PPI, DBLP, Pubmed, etc), five graph classification
datasets (IMDB, PTC MR, etc), and downstream combinatorial tasks (graph edit
distance and clustering). Results show that our method achieves state-of-the-art
performance on most benchmarks under self-supervised settings.

1 INTRODUCTION

Graph neural networks (GNNs) (Li et al., 2015; Gilmer et al., 2017; Wang et al., 2017) reconcile
the expressive power of graphs in modeling interaction with the unparalleled capacity of deep
models in learning representations. They process variable-size permutation-invariant graphs and
learn low-dimensional representations through an iterative process of transferring, transforming,
and aggregating the representations from topological neighbors. However, vanilla GNN training
(Kipf & Welling, 2016) calculates loss only from the costly and limited labeled nodes, ignoring the
information contained in large amounts of unlabeled nodes. To address this issue, recent studies
(Hassani & Khasahmadi, 2020; Zhu et al., 2020; You et al., 2020; Wan et al., 2020; Chen et al., 2020a)
introduce contrastive learning (He et al., 2020; Chen et al., 2020b; Oord et al., 2018; Chen et al.,
2020c; Chen & He, 2020) into self-supervised learning on graphs. In general, graph-level contrastive
methods (Chen et al., 2020b) require a large number of negative samples to avoid degenerate solutions
and boost the performance. However, such a large number of negatives are computational and hard to
store. Fortunately, mining or generating hard negatives is an efficient way to reduce the number of
negatives and improve accuracy, which is important for contrastive learning.

Existing hard negative mining methods are almost from vision, and they can be generally divided into
two categories: (1) Adversarial based methods (Hu et al., 2020) and (2) Mixing based methods (Kim
et al., 2020; Lee et al., 2020; Verma et al., 2021; Kalantidis et al., 2020b). Adversarial-based methods
update negative samples before updating encoder networks (He et al., 2016), i.e., maximize the
similarity between negative pairs before updating encoders, and such a strategy is basically inspired
by adversarial training (Goodfellow et al., 2014). Mixing-based methods are inspired by classical
data augmentation methods namely mixup (Zhang et al., 2017), which is used to help classify samples
close to the boundary. In contrastive learning, mixing based methods generate hard negatives by
mixing the positive sample and negative samples with pre-defined mixing weights, which can mainly
lead to two problems: 1) due to sampling the mixed negative sample randomly (Kim et al., 2020) and
using static pre-defined mixing weight, the information of similarity between two samples will be
ignored (two samples with larger similarity should be sampled with higher probability and mixed with
larger weights). 2) Mix operation is conducted between every two samples, limiting the generated
negatives’ difficulty for contrastive learning. To address the above two issues, we propose m-mix,
which generates hard negatives via multiple samples mixing with different weights.

The main contributions of this paper can be summarized as follows.

1

Under review as a conference paper at ICLR 2022

1) We propose m-mix to mine hard negatives, which mixes multiple samples and assigns different
mixing weights dynamically. Then, we give a theoretical analysis of why the proposed strategy of
assigning mixing weights can help generate more difficult hard negatives rather than random. We
further give the Rademacher complexity bound (Mohri & Rostamizadeh, 2009) of m-mix. To our
best knowledge, this is the first attempt to mix multiple samples in contrastive learning.

2) To emphasize the mixing weights between similar samples (correspondingly, weights of the
instance itself will decrease), we propose a diversity loss, greatly improving the stability of m-mix.

3) We further design two revised modules for denoising and better generality, named m-mix-wp and
m-mix-op, where the former utilizes the structural information (adjacency matrix) for increasing
accuracy in graphs. The latter does not require structural information, which can be applied in vision.

4) For graph,m-mix discards the non-linear projection head (Chen et al., 2020b) and directly contrasts
in output space. We theoretically analyze the effect of combinations of sample size and contrastive
dimension. Extensive experimental results on both vision and graph data show that the proposed
m-mix outperforms most of the previous state-of-the-art methods in self-supervised learning.

2 RELATED WORKS

This paper explores hard negatives mining by mixing multiple samples, especially in the context of
contrastive learning. We discuss recent contrastive learning and hard negatives mining methods here.

Contrastive learning in Vision. Contrastive learning has become a popular paradigm for self-
supervised representation learning on various kinds of data. It works by discriminating positive
pairs (two views of the same input image) from negative ones (views of different images). As a
pioneering work, CPC (Oord et al., 2018) proposes InfoNCE loss to discriminate positive pairs and
negative pairs from sequential data. CMC (Tian et al., 2019) generalizes CPC to multi-view settings,
and DIM (Hjelm et al., 2019) introduces information theory interpretation of contrastive learning
through local-global mutual information maximization. Later works mainly generate two views of
the same input through random, multiple-stage data augmentations like flipping, cropping, resizing,
rotation, etc (Hjelm et al., 2019; Chen et al., 2020b). To address the issues of storing a large number
of negative samples, MoCo (He et al., 2020) adopts the memory bank (Wu et al., 2018) strategy and
uses a momentum-based technique to update two encoders asynchronously. SimCLR (Chen et al.,
2020b) directly regards other samples within the same training batch as negatives. Recent works have
been paying attention to negative-sample free methods with asymmetric structures (Grill et al., 2020;
Chen & He, 2020), or hard negatives (Hu et al., 2020; Robinson et al., 2020; Kalantidis et al., 2020a).

Hard negative mining in contrastive learning. Hard negatives mining refers to generate negative
pairs, which are difficult to discriminate. We divide previous hard negatives mining methods into two
categories. 1) Gradient-based. Inspired by adversarial training (Goodfellow et al., 2014), Adco(Hu
et al., 2020) tries generating hard negatives via adversarial optimization. In detail, the negatives in the
memory bank (He et al., 2020) are first optimized by maximizing contrastive loss, then the encoder
network (He et al., 2016) are optimized by minimizing contrastive loss, where the two steps are
running alternately. 2) Mixing based. Inspired by classical data augmentation method Mixup (Zhang
et al., 2017) and its numerous variants (Shen et al., 2020; Verma et al., 2019), MoCHi (Kalantidis
et al., 2020b) proposes mixing negative samples and positive samples in feature space, where for each
positive embedding, MoCHi first finds the most similar negative sample and mixes the two samples’
embeddings. Then, i-mix (Lee et al., 2020) proposes mixing two samples in input space, where two
samples are first mixed before feeding to the encoder. The concurrent work DACL (Verma et al.,
2021) uses the same idea. Further, DACL conducts experiments on both graph and image datasets.

Contrastive learning in Graph. Early works including DGI (Velickovic et al., 2018) and Info-
Graph (Sun et al., 2019) adopt the idea of local-global contrastive objective (Hjelm et al., 2019)
to node/graph representation learning respectively by contrasting node-graph pairs. Then, MV-
GRL (Hassani & Khasahmadi, 2020) uses fixed diffusion operations such as heat kernel (Kondor &
Lafferty, 2002) and Personalized PageRank (Page et al., 1999) to generate views of the original graph.
Then, local-global contrastive objective is adopted and MVGRL achieves state-of-the-art performance
on both node classification and graph classification tasks. Inspired by MoCo, GCC (Qiu et al., 2020)
generates node views through sub-graph sampling with random walks, where the different sub-graphs
are taken as negatives. Then, GRACE (Zhu et al., 2020) and its variant GCA (Zhu et al., 2021)

2

Under review as a conference paper at ICLR 2022

Augmentation

Revised
module

MLP

𝒥!"#$

Similarity

Scale

Revise

Softmax

Weighted mixing

……

……

Readout Readout

Scale
Softmax

GNN layer

𝒥%&'()

𝒎-mix

Figure 1: Framework (left) of the proposed m-mix, where the revised module is discussed in ”bridge
mixing with prior knowledge” and we provide two different revised modules. Green and red dash
lines in left figure denote mixing weights λi 6= 0 and λi = 0, respectively. The blue dash line in the
right figure means that only m-mix-wp uses the prior knowledge while m-mix-op doesn’t. For graph
classification, we additionally add graph level contrastive objective function in Eq. 9.

introduce SimCLR to graph, and different nodes are taken as negatives. Depart the success of hard
negatives mining in vision, hard negatives in graph contrastive learning is still never explored.

3 THE PROPOSED m-MIX

In this section, we present m-mix in detail, starting with preliminaries, followed by the model
framework as well as two designed revised modules (m-mix-op for vision and m-mix-wp for graph).

3.1 PRELIMINARIES

Graph neural network. Denote G = {V, ξ} as a graph, where V = {v1, v2, · · · vN} and ξ ∈ V ×V
represent the node set and the edge set, respectively. Let X ∈ RN×F be the feature matrix and
A ∈ RN×N be the adjacency matrix, where xi ∈ RF is the node feature of vi and Aij = 1 if
edge (vi, vj) ∈ ξ. For self-supervised learning without node labeling in G, it aims to learn a GNN
encoder gθ(X,A), which takes graph features and adjacency matrix as input, and outputs node/graph
semantic embeddings. Generally, GNN learns node representations by aggregating the features of
their neighborhood nodes. Formally, we define the l-th layer of GNN is:

z
(l)
i = COM (l)

(
z

(l−1)
i , AGG(l)

({
(z

(l−1)
i , z

(l−1)
j) : j ∈ N (i)

}))
(1)

where z(l)
i is the hidden representation of node i at the l-th layer, and z(0)

i = xi. COM(·) andAGG(·)
are COMBINE and AGGREGATE functions respectively. N (i) represents the neighborhoods of
node vi. Note that the information of N (i) is included in adjacency matrix A. On graph-level tasks,
a READOUT function will be adopted to summarize all the nodes’ representations.

Mixup. There are mainly two kinds of mixup: Geometric-Mixup (Zhou et al., 2021) and Binary-
Mixup(Zhang et al., 2017), where the former creates a new sample corresponding to sample x by
taking its weighted-geometric mean with another randomly chosen sample x̃. Then the new sample
is created by x+ = xλx̃1−λ, where λ is the pre-defined value. The later one creates new sample by
x+ = xλ �m + x̃� (1−m), where m means a binary mask from Bernoulli distribution. In line
with the previous method (Kalantidis et al., 2020b), we mainly discuss the later kind of mixing.

3.2 TOWARDS HARD NEGATIVES VIA MULTIPLE SAMPLES MIXING

Multiple samples mixing. Given a set of node features X = {x1,x2, · · · ,xN}. Through a GNN
encoder, we can get the embeddings Z = {z1, z2, · · · , zN}, where Z ∈ RN×F ′ . N and F ′ mean
samples size and feature dimension, respectively. Then, for multiple samples mixing, we define a set
of mixing weights λ = {λi}Ni=1, the generated new sample ẑi can be formulated as:

ẑi = λ1z1 + λ2z2 + · · ·+ λNzN =

N∑
j

λjzj , s.t.

N∑
i

= 1 (2)

3

Under review as a conference paper at ICLR 2022

In the previous methods (Zhang et al., 2017; Kalantidis et al., 2020b), λ can be statically pre-defined
or randomly sampled from Bernoulli distribution, which we argue may not be able to effectively mine
the hard negatives completely (we also set the baseline under this condition in the ablation study).
Proposition 1 Given two negative pairs (zi, zj) and (zi, zk), which satisfiesH(zi, zj) > H(zi, zk)
andH(·, ·) is a similarity metric function, assign larger mixing weight to pair (zi, zj) than (zi, zk)
will generate more difficult negative pair.

Quantification of mixing weights. The proof is given in Appendix C. Proposition 1 says similar
negatives pairs should be assigned larger mixing weights. Thus, to quantify the mixing weights, we
design two methods: one to learn mixing weights in original space and the other is in space after
linear projection. For the former case, we can quantify the mixing weights in each iteration by:

λj =
exp(H(zi, zk))∑
k exp(H(zi, zk))

s.t. 0 <= j <= N (3)

whereH means a similarity metric function. In this paper, we use dot product after l2 normalization.
This definition is simple yet shown empirically effective in our experiments. We denote the above
method as mo-mix. However, the similarity is often measured in semantic space rather than in the
original space. Besides, the definition in Eq. 3 ignores homogenization (Vaswani et al., 2017), i.e.,
although two instances zi and zj are similar in original space, but the mixing weights of zi− > zj
and zj− > zi may should be different in many cases (Kipf & Welling, 2016; Veličković et al., 2017).
Hence, we propose another approach to quantify mixing weights in two different spaces as follow:

λj =
exp(H(z>i pm, z

>
j pn))∑

k exp(H(z>i pm, z
>
k pn))

s.t. 0 <= j <= N (4)

where pm and pn are two learnable weights. By the two learnable weights with different values, the
above issue can be mitigated. We denote the definition in Eq. 4 as mp-mix.

Reduce self-mixing weights. Recall we aim to increase the mixing weights between similar negative
pairs. However, mixing weight of the sample itself is also an important parameter. Take an example,
for zi in Eq. 2, if λi is very large (correspondingly, different λj will be very small), the hard negatives
may not be generated. To address this issue, we pertinently propose two methods targeted to mo-mix
and mp-mix. For mo-mix, it directly computes the similarity of original space, so we directly set the
λi = C, where C is a pre-defined value. Correspondingly, mixing weights of other instances are:

λj =
(1− C) exp(H(zi, zj)∑

k exp(H(zi, zk)
s.t. 0 <= j <= N, j 6= i (5)

While mp-mix is more flexible than mo-mix, as mp-mix has two learnable weights to trade-off. We
design a new diversity loss to reduce the mixing weights of the instance itself as follow:

LDiv = − 1

N

∑
i

(
z>i pm
‖z>i pm‖2

− z>i pn
‖z>i pn‖2

)2

= 2 · (z>i pm)>(z>i pn)

‖z>i pm‖2‖z>i pn‖2
− 2 (6)

By the diversity loss, we project features into two diversified spaces, reducing self-mixing weights.

Bridge mixing with prior knowledge. Although mo-mix and mp-mix are comprehensive enough,
there are still two practical issues to consider. First, for each sample, we will compute the similarity in
the original space or projected space of N − 1 other instances, which is computational and expensive;
Second, each generated new sample is mixed by all the old instances, which may bring much noise.
To address these issues, we further design two revised modules. 1) Utilize the prior knowledge of the
adjacency matrix. Usually, nodes and its’ neighbors have some similar properties, which makes them
more similar than other nodes. Thus, one of the practical solutions is for each node, narrowing down
the mining scope of mixing to corresponding neighbor nodes and we denote this method m-mix-wp
(with prior). 2) Pre-define a threshold θ, and if H(zi, zj) < θ or H(z>i pm, z

>
j pn) < θ, we set

λj = 0 and we denote this method m-mix-op (without prior). Although both two revised modules
can solve the mentioned problems, m-mix-wp achieves better performance than m-mix-op (due to
prior knowledge). However, In the vision domain, there is no prior knowledge of the adjacency
matrix. Thus, we can only use the m-mix-op for image data. We denote m-mix-wp as m-mix later.

Relation to GAT. Our m-mix is somewhat similar to GAT (Veličković et al., 2017), since both
m-mix and GAT use similarity to re-weights. We clarify the differences between them here. 1)

4

Under review as a conference paper at ICLR 2022

Methodology, GAT requires the structural information (adjacency matrix), while m-mix-op doesn’t.
This also makes m-mix-op can be applied in vision and other domains, while GAT can’t. Besides,
the diversified loss is proposed to reduce the mixing weights of the node itself. 2) Technology, GAT
uses concatenate operation and a learnable weight to calculate similarity, which aims to increase the
representation ability of GAT, while both mp-mix-op and mp-mix-wp directly adopt normalized dot
product in original space or projected space, which aims to generate more difficult negative pairs. We
also give experimental comparison between GAT and mp-mix in Table 4.

3.3 FRAMEWORK AND OBJECTIVE

For graph G = (X,A), we first generate two views Ga = (Xa,Aa), Gb = (Xb,Ab) by graph aug-
mentation. Then, take the generated views to GNN encoder f , we can obtain the node representations
of two graph views Za, Zb. Then, for branch Za, we generate hard negatives Ẑa by the proposed
m-mix followed an MLP module in graph datasets. For node i in view a, the node-level loss is:

Linfo−N (g(ẑai)) = − log
eH(g(ẑai),zbi)/τ∑N

j=1,j 6=i e
H(g(ẑai),g(ẑaj))/τ +

∑N
j=1 e

H(g(ẑai),zbj)/τ
, (7)

where g denotes the MLP module, which is commonly used in previous methods (Grill et al., 2020;
Chen & He, 2020). The objective is similar to view b. H(·, ·) means similarity metric function
between two vectors (should be the same with H in Eq. 3 and Eq. 4), and τ means temperature
hyper-parameter (Chen et al., 2020b). Then, the total objectives can be formulated as:

Jnode(G) =
1

2N

∑
u

[
Linfo−N (ẑai) + Linfo−N (zbi)

]
+ Ldiv (8)

The above objective can capture local information (node-level), while for graph level tasks (graph
classification, graph edit distance), we need global information (graph-lvel). Hence, we design
graph-level contrastive objectives. Consider given M graphs, and denote the graph representation
matrix as H = {h1,h2, · · · ,hM}, where H ∈ RM×F ′ . The objectives can be formulated as:

Jgraph = − 1

M

[
M∑
i=1

log
eH(hai ,h

b
i)∑

j,j 6=i e
H(hai ,h

a
j) +

∑
j e
sim(hai ,h

b
j)

+ Jnode(Gi)

]
(9)

3.4 THEORETICAL ANALYSIS

Theorem 1 (Empirical Rademacher Complexity of m-mix.) Given a hypothesis set Hf and a
set of samples Z = {z1, z2, · · · , zN}, we assume that RZ(Hf) and Rm

Z (Hf) are the empirical
Rademacher complexity of hypothesis classHf of original data and after m-mix mixed data. Then,
the different between two Redemacher complexity RZ(Hf) −Rm

Z (Hf) is less than or equal to a
constant multiple of the sample variance of the norm of the input samples:

RZ(Hf)−Rm
Z (Hf) ≤ C

√
s2‖x‖2
N

(10)

where C is a constant related to self mixing weight and s2 is the sample variance of sample set.

The above result gives Rademacher complexity of m-mix data, where the proof are given in Appendix
C. Besides, since Rm

Z (Hf) ≤ RZ(Hf), data generated by m-mix allows the neural networks more
robust (also influenced by sample size N and self mixing weight λi).
Theorem 2 (Suitable contrastive dimension without projection head). Denote Y ∈ RN×U as the
one-hot label matrix, where U is the number of class. Assume the contrastive dimension is large
enough i.e., F ′ > N . When U << N < F ′ which mostly holds in practice, then for any δ > 0 and
C > 0, if the sample size satisfies:

N >
µ2

C

(
log

(
7 +

1

N

)
+ 2 logF ′ − log δ

)
, (11)

then with probability at least 1− δ, Φ =WZ − 2τ−1‖Wε‖∞IF ′ is restricted diagonally dominant
with sparsity s, where W is the least-square projection Z>(ZZ>), and ε is the learned noise in
contrastive dimension.

5

Under review as a conference paper at ICLR 2022

Table 1: Mean accuracy for supervised and unsupervised learning on node classification. X: node
features; A: adjacency matrix; Y: labels; D: diffusion matrix in (Tian et al., 2019); S: affinity matrix
in this paper; †: our reproduce otherwise the numbers are quoted from original papers by default.
Diff means we use diffusion as data augmentation.

method
dataset input mode Cora Citeseer Pubmed

su
pe

rv
is

ed

MLP (Velickovic et al., 2018) X, Y 55.1 46.5 71.4
ICA (Getoor, 2005) A,Y 75.1 69.1 73.9

LP (Zhu et al., 2003) A,Y 68.0 45.3 63.0
MANIREG (Belkin et al., 2006) X, A, Y 59.5 60.1 70.7
SEMIEMB (Weston et al., 2012) X, Y 59.0 59.6 71.7
PLANETOID (Yang et al., 2016) X, Y 75.7 64.7 77.2

CHEBISHEV (Defferrard et al., 2016) X, A, Y 81.2 69.8 74.4
GCN (Kipf & Welling, 2016) X, A, Y 81.5 70.3 79.0
MONET (Monti et al., 2017) X, A, Y 81.7 ± 0.5 – 78.8 ± 0.3

JKNET (Xu et al., 2018b) X, A, Y 82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4
GAT (Velickovic et al., 2018) X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

un
su

pe
rv

is
ed

LINEAR (Velickovic et al., 2018) X 47.9 ± 0.4 49.3 ± 0.2 69.1 ± 0.3
DEEPWALK (Perozzi et al., 2014) X,A 70.7 ± 0.6 51.4 ± 0.5 74.3 ± 0.9

GAE (Kipf & Welling, 2016) X,A 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5
VERSE (Tsitsulin et al., 2018) X, D, A 72.5 ± 0.3 55.5 ± 0.4 –

DGI (Velickovic et al., 2019) X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
DGI† (Velickovic et al., 2019) X, D 83.5 ± 0.7 71.8 ± 0.4 78.0 ± 0.4
GRAPHCL (You et al., 2020) X, A 82.3 ± 0.1 73.1 ± 0.2 –

GRAPHCL† (You et al., 2020) X, A 83.4 ± 0.7 72.4 ± 0.4 79.4 ± 0.7
GRACE† (Zhu et al., 2020) X, A 82.2 ± 0.6 71.6 ± 0.6 78.4 ± 0.5

MVGRL (Hassani & Khasahmadi, 2020) X, D, A 86.8 ± 0.5 73.3 ± 0.5 80.1 ± 0.7
MVGRL† (Hassani & Khasahmadi, 2020) X, D, A 84.1 ± 0.9 73.5 ± 0.6 80.4 ± 1.1

ou
rs MVGRL+(mo-mix) X, D, A 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2

MVGRL+(mp-mix w/o div) X, D, A 85.1 ± 0.8 74.4 ± 0.9 81.8 ± 0.7
MVGRL+(mp-mix) X, D, A 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3

This property implies that Φ is actually screening consistent variable for any β ∈ Bτ (s, ρ), where
Bτ (s, ρ) = {β ∈ RF ′ : min

i∈supp(β)
|βi| ≥ τ, supp(β) ≤ s, maxi∈supp(β) |βi|

mini∈supp(β) |βi|
≤ ρ} and supp(f) means

support set of f . Note that the set of β is the obtained least square solution, i.e., β =WY , where Y
is the label. The proof is given in Appendix C. We analyze on both optimal solution and non-optimal
solution for contrastive learning. We can draw a conclusion for least square solver, and the sample
size and contrastive dimension should be appropriate (note that not the larger the better). This is
consistent with our experimental results (see Fig. 2 and Fig. 3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset and implementation. For graph datasets, we consider five popular node classification
benchmarks: Cora, Citeseer, Pubmed, DBLP and PPI, and five graph classification benchmarks:
MUTAG (Kriege & Mutzel, 2012), PTC MR (Kriege & Mutzel, 2012), IMDB-BINARY and IMDB-
MULTI (Yanardag & Vishwanathan, 2015), REDDIT-BINARY (Yanardag & Vishwanathan, 2015).
For data augmentation, we consider mo-mix and mp-mix can be applied in methods with simclr-like
framework, hence, we choose edge dropping, node feature masking in GRACE (Zhu et al., 2020) and
diffusion in MVGRL (Hassani & Khasahmadi, 2020). The model is implemented with PyTorch and
each trial is executed on a single Tesla V100 GPU. For image datasets, we main evaluate our method
on basis of SimCLR on CIFAR-10 and CIFAR-100 benchmarks, where the data augmentation in
images is in line with SimCLR (Chen et al., 2020b), i.e., Random Resized Crop to 32 × 32, Random
Horizontal Flip, Color Jitter and Gray Scale. See Appendix A for more details of hyper-parameters.

4.2 COMPARISON WITH PREVIOUS ARTS

Baselines. We compare our method with both supervised and unsupervised learning methods. On
node classification tasks, we compare our method on recent popular self-supervised methods, such
as GRAPH-CL (You et al., 2020), MVGRL (Hassani & Khasahmadi, 2020). Results show our

6

Under review as a conference paper at ICLR 2022

Table 2: Mean 10-fold cross validation accuracy on supervised and unsupervised learning. RANDOM:
Random walk; N2VEC, S2VEC, G2VEC: Node to vector, sub-graph to vector, graph to vector; w/o
div: our method without diversity loss in Eq. 6

methods
datasets MUTAG PTC MR IMDB-BIN IMDB-MULTI REDDIT-BIN

ke
rn

el

SP (Borgwardt & Kriegel, 2005) 85.2 ± 2.4 58.2 ± 2.4 55.6 ± 0.2 38.0 ± 0.3 64.1 ± 0.1
GK (Shervashidze et al., 2009) 81.7 ± 2.1 57.3 ± 1.4 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2
WL (Shervashidze et al., 2011) 80.7 ± 3.0 58.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 68.8 ± 0.4

DGK (Yanardag & Vishwanathan, 2015) 87.4 ± 2.7 60.1 ± 2.6 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4
MLG (Kondor & Pan, 2016) 87.9 ± 1.6 63.3 ± 1.5 66.6 ± 0.3 41.2 ± 0.0 –

su
pe

rv
is

ed

GRAPHSAGE (Hamilton et al., 2017) 85.1 ± 7.6 63.9 ± 7.7 72.3 ± 5.3 50.9 ± 2.2 –
GCN (Kipf & Welling, 2016) 85.6 ± 5.8 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0

GIN-0 (Xu et al., 2018a) 89.4 ± 5.6 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5
GIN-ε (Xu et al., 2018a) 89.0 ± 6.0 63.7 ± 8.2 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3

GAT-ε (Velickovic et al., 2018) 89.4 ± 6.1 66.7 ± 5.1 70.5 ± 2.3 47.8 ± 3.1 85.2 ± 3.3
PATCHY (Niepert et al., 2016) 92.6 ± 4.2 60.0 ± 4.8 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6

un
su

pe
rv

is
ed

RANDOM (Gärtner et al., 2003) 83.7 ± 1.5 57.9 ± 1.3 50.7 ± 0.3 34.7 ± 0.2 –
N2VEC (Grover & Leskovec, 2016) 72.6 ± 10.2 58.6 ± 8.0 – – –

S2VEC (Adhikari et al., 2018) 61.1 ± 15.8 60.0 ± 6.4 55.3 ± 1.5 36.7 ± 0.8 71.5 ± 0.4
G2VEC (Narayanan et al., 2017) 83.2 ± 9.6 60.2 ± 6.9 71.1 ± 0.5 50.4 ± 0.9 75.8 ± 1.0
INFOGRAPH (Sun et al., 2019) 89.0 ± 1.1 61.7 ± 1.4 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4

GRAPHCL (You et al., 2020) 86.8 ± 1.3 – 71.1 ± 0.4 – 89.5 ± 0.8
GCC-MOCO (Qiu et al., 2020) – – 73.8 ± 1.1 50.3 ± 0.8 87.6 ± 0.9
GCC-RAND (Qiu et al., 2020) – – 75.6 ± 0.9 50.9 ± 0.6 87.8 ± 0.7

MVGRL (Hassani & Khasahmadi, 2020) 89.7 ± 1.1 62.5 ± 1.7 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6
MVGRL† (Hassani & Khasahmadi, 2020) 90.1 ± 0.7 62.2 ± 1.1 74.4 ± 0.8 51.2 ± 0.7 85.1 ± 0.4

ou
rs MVGRL+(mo-mix) 91.8 ± 0.4 64.5 ± 0.4 75.1 ± 0.7 52.6 ± 0.5 88.4 ± 0.4

MVGRL+(mp-mix w/o div) 90.7 ± 1.3 63.7 ± 0.9 75.1 ± 0.7 52.0 ± 0.7 88.1 ± 0.6
MVGRL+(mp-mix) 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4 88.7 ± 0.4

methods (both mo-mix and mp-mix) achieve state-of-the-art performance on Citeseer and Pubmed.
On graph classification tasks, we compare our result with GCC (Qiu et al., 2020), MVGRL (Hassani
& Khasahmadi, 2020) and GRAPH-CL (You et al., 2020). Experimental results show that our method
outperforms all of the unsupervised methods except on REDDIT-BINARY. For the results of other
baseline models, we follow the results reported by (Hassani & Khasahmadi, 2020).

Node classification. The results of node classification in Table 1 show that mp-mix achieves
state-of-the-art results over both unsupervised and self-supervised methods. Specifically, mp-mix
outperforms existing unsupervised methods by 2.3% and 2.5% accuracy on Citeseer and Pubmed.
mo-mix outperforms 1.6% and 1.2% accuracy than original baseline MVGLR. Note that our repro-
duced accuracy of MVGRL on Cora dataset doesn’t match with the original paper reported. Other
researchers also point out this problem in these sites12. Furthermore, we also report mp-mix without
diversity loss, and the results show diversity loss can make m-mix more stable, also boost accuracy.

Graph classification. Table 2 gives classification accuracy on graph, where MVGRL+(mp-mix)
outperforms existing state-of-the-art methods (Hassani & Khasahmadi, 2020; Qiu et al., 2020)
by 1.9%, 2.4%, 1.7% on MUTAG, PTC MR, IMDB-MULTI, respectively. On IMDB-BIN and
REDDIT-BIN, mp-mix achieves 1.2% and 3.6% accuracy rather than baseline MVGRL.

Comparison of m-mix-wp, m-mix-op and binary mix. In Section 3, we design an approach to
avoid utilizing prior adjacency matrix named m-mix-wp. We evaluate this approach in both vision
and graph domains. We also compare our method with binary mixing. For the implementation of
binary mixing, we choose the most similar negative sample of each query positive sample in one
batch and mix them with mixing weight 0.5 as default. In vision datasets, we choose SimCLR (Chen
et al., 2020b) as baselines, and use ResNet-18 (He et al., 2016) as backbone. We set max epoch as
500, and use Adam optimizer with learning rate 1e-3. We evaluate the pre-trained model with a linear
model, where the baseline code is from this site3. Table 3 shows the accuracy with different mixing
strategies, where multiple samples mixing achieves better results rather than binary mixing. Note
that there’s no prior adjacency matrix information in vision. Thus, we only compare our m-mix-op

1https://github.com/kavehhassani/mvgrl/issues/2
2 https://github.com/hengruizhang98/mvgrl
3https://github.com/leftthomas/SimCLR

7

https://github.com/kavehhassani/mvgrl/issues/2
https://github.com/hengruizhang98/mvgrl
https://github.com/leftthomas/SimCLR

Under review as a conference paper at ICLR 2022

Table 3: Top-1 accuracy on graph and vision datasets with different mixing strategies.
Method Cora Citeseer PubMed Method CIFAR-10 CIFAR-100
MVGRL 84.3 ± 1.1 73.1 ± 0.7 80.1 ± 0.8 SimCLR 89.21 61.53

MVGRL+(binary-mix) 84.9 ± 0.9 74.1 ± 0.5 81.4 ± 0.7 SimCLR+(binary-mix) 89.47 61.82
MVGRL+(mo-mix-op) 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2 SimCLR+(mo-mix-op) 90.09 62.86
MVGRL+(mo-mix-wp) 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 SimCLR+(mo-mix-wp) ∼ ∼

Table 4: Mean accuracy on DBLP and PPI datasets. GRACE† means our reproduce result. It is
modified to GRACE (GAT) by replacing the encoder with GAT.

Dataset Protocol GRACE GRACE† GRACE (GAT) GRACE+(mp-mix w/o div) GARCE+(mp-mix)
DBLP Transductive 84.2 ± 0.1 83.8 ± 0.2 84.3 ± 0.2 85.2 ± 0.2 85.6 ± 0.1

PPI Inductive 66.2 ± 0.1 66.3 ± 0.2 66.3 ± 0.1 67.3 ± 0.2 67.8 ± 0.1

Table 5: Accuracy with different mixing methods across seven graph datasets. The first line MVGRL
means taking normalized adjacency and diffusion matrix as input to perform contrasting and the
objective function is the same as (Hassani & Khasahmadi, 2020). The remaining lines use objectives
of this paper Jnode in Eq. 8 and Jgraph in Eq. 9. MVGRL+(random mix) means the designed
baseline. Here we report the results with best-tuned hyper-parameters under different methods.

method
task node classification graph classification

Cora Citeseer Pubmed MUTAG PTC MR IMDB-BIN IMDB-MULTI

MVGRL 84.1 ± 0.9 73.5 ± 0.6 80.4 ± 1.1 90.1 ± 0.7 62.2 ± 1.1 74.4 ± 0.8 51.2 ± 0.7
MVGRL† 84.3 ± 1.1 73.1 ± 0.7 80.1 ± 0.8 89.7 ± 0.8 62.8 ± 1.0 73.8 ± 0.4 51.3 ± 0.7

MVGRL+(random-mix) 84.1 ± 1.6 73.8 ± 1.1 81.1 ± 1.0 89.9 ± 1.3 63.1 ± 1.4 74.2 ± 1.0 52.0 ± 0.9
MVGRL+(mo-mix) 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2 91.8 ± 0.4 64.5 ± 0.4 75.1 ± 0.7 52.6 ± 0.5
MVGRL+(mp-mix) 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4

with binary-mix. The reason why the accuracy of m-mix-op is slightly lower than m-mix-wp is that
m-mix-wp utilizes the prior knowledge while m-mix-op doesn’t. We think one of the directions
worth exploring is estimating “adjacency knowledge” across images in vision.

4.3 ABLATION STUDY

32 64 128 256 512 1024 2048
Dimension

74

76

78

80

82

Ac
cu

ra
cy

Sample size
1000
1500
2000
3000
10000

(a) Without diversity loss

32 64 128 256 512 1024 2048
Dimension

76

78

80

82

Ac
cu

ra
cy

Sample size
1000
1500
2000
3000
10000

(b) With diversity loss

Figure 2: Classification accuracy on Pubmed dataset with
different sample sizes and different hidden dimensions.

Comparison with GAT. As dis-
cussed in Section 3, mp-mix without
diversity loss is somewhat similar to
GAT (Veličković et al., 2017), while
mo-mix and mp-mix are completely
different from GAT on both method
and technology. Here, we further de-
sign experiments to clarify the differ-
ence. We evaluate mp-mix with the
baseline GRACE (Zhu et al., 2020) on
DBLP and PPI benchmarks. Table 4
provides accuracy. After replacing the
backbone GNN in GRACE with GAT,
we only get 0.4% and 0.0% accuracy
improvement on DBLP and PPI datasets. However, when we use multiple samples mixing methods,
mp-mix outperforms baseline GRACE 1.4% and 1.6% accuracy on DBLP and PPI, respectively.

Mixing weights. To further explore the effect of different mixing weights, we design a baseline,
i.e., random generate mixing weights from Gaussian distribution and regularize them with Softmax
function. Table 5 shows the accuracy of different mixing weights. Although randomly generated
value can get a little improvement against baseline MVGRL, it suffers from instability (variance is
large). Then, by replacing the random mix with the proposed mo-mix and mp-mix with diversity
loss, the performance is improved with a large range in both accuracy and stability.

Contrastive dimension and sample size. Contrastive learning usually requires a large number of
negative pairs to learn more information from the negatives. To evaluate the robustness of our method

8

Under review as a conference paper at ICLR 2022

Table 6: Accuracy (top) and AUC (bottom) score on COIL-DEL. HIST-KERNEL means vertex edge
hist kernel; n means number of nodes in sampled sub-graph. We use the implementation of the two
kernel methods, i.e., HIST-KERNEL (Hido & Kashima, 2009) and WL-KERNEL (Shervashidze
et al., 2011) provided by (Sugiyama et al., 2018) to produce the reported results.

n HIST-KERNEL WL-KERNEL supervised MVGRL MVGRL+(mp-mix)

A
cc

ur
ac

y 50 0.153 ± 0.131 0.934 ± 0.017 0.813 ± 0.019 0.713 ± 0.034 0.741 ± 0.039
20 0.160 ± 0.103 0.826 ± 0.014 0.783 ± 0.031 0.824 ± 0.021 0.856 ± 0.011
15 0.138 ± 0.076 0.791 ± 0.037 0.814 ± 0.014 0.847 ± 0.014 0.842 ± 0.017
10 0.129 ± 0.059 0.751 ± 0.034 0.903 ± 0.009 0.891 ± 0.032 0.911 ± 0.008

A
U

C

50 0.501 ± 0.001 0.525 ± 0.001 0.587 ± 0.009 0.649 ± 0.014 0.663 ± 0.021
20 0.507 ± 0.002 0.564 ± 0.008 0.782 ± 0.009 0.788 ± 0.005 0.794 ± 0.003
15 0.503 ± 0.001 0.594 ± 0.017 0.781 ± 0.031 0.801 ± 0.015 0.813 ± 0.024
10 0.507 ± 0.003 0.626 ± 0.009 0.832 ± 0.011 0.861 ± 0.007 0.854 ± 0.010

w.r.t the number of negative samples (i.e., subgraph sample size), we try different combinations
of sample size and contrastive dimension. Fig. 2(a) shows the result on Pubmed. Different from
the conclusion in vision (He et al., 2020; Chen et al., 2020b), showing that using large contrastive
dimension can get better results (saturate at 4096), we find that a proper combination of contrastive
dimension and the sample size is important in graph contrastive learning, which is in line with
Theorem 2. Empirically, a smaller contrastive dimension (i.e., 256) forces to pull samples in a
lower-dimensional hyper-sphere uniformly, which is more difficult than pulling in a large dimensional
hyper-sphere. However, when the contrastive dimension is too small (32), the information can not
be fully represented. Thus, The best accuracy is obtained when the contrastive dimension is set as
256. On the other hand, we can not ignore the advantage of large contrastive dimension, that is, the
stability (standard-deviation, see error bar in Fig. 2) of m-mix can significantly improve and the
convergence rate (see Fig. 3 in Appendix B) is faster than that of low contrastive dimension.

Transferability in downstream tasks. To evaluate transferability of m-mix in downstream tasks,
we conduct extensive experiments on node clustering and graph edit distance, which follows (Li
et al., 2019). We conduct graph edit experiments on (Riesen & Bunke, 2008). In line with (Riesen &
Bunke, 2008), our pre-trained models are evaluated by two metrics: 1) pair AUC - the area under
the ROC curve for classifying pairs of graphs as similar or not on a fixed set of 1000 pairs and
2) triplet accuracy - the accuracy of correctly assigning higher similarity to the positive pair in a
triplet than the negative pair on a fixed set of 1000 triplets. The comparison of edit distance mainly
includes two kinds of methods: 1) kernel-based, such as HIST-KERNEL (Hido & Kashima, 2009)
and WL-KERNEL (Shervashidze et al., 2011). 2) Deep learning-based, i.e., supervised and MVGRL
pre-trained. The results in Table 6 show that our method outperforms other GNN methods. We
find that with a larger number of nodes, kernel-based methods outperform GNN-based methods.
That’s because kernel-based methods treat each node equally, while GNN-based methods are likely
to pay more attention to important nodes in a sub-graph. This also explains why the AUC score of
GNN-based methods is higher than kernel-based methods but has a lower Accuracy.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a new mp-mix to mine hard negatives for contrastive learning, which
mixes multiple samples and assigns different mixing weights dynamically. To our best knowledge,
this is the first attempt at mixing multiple samples, and also the first work for learning mixing weights
dynamically. Then, we analyze why the proposed strategy of assigning mixing weight is better than
others. We further provide theoretical analysis to Redamacher complexity bound of mp-mix, and
we also provide theoretical analysis on the relation of contrastive dimension and sample size. The
experiments are conducted on two image classification datasets, five node classification datasets, and
five graph classification datasets, where our method achieves state-of-the-art performance on most
of the datasets. To further evaluate our method’s transferability, we conduct extensive downstream
experiments on clustering and graph edit distance. The results imply our method can bring a stable
model with high transferability. Due to the high generality of our method, we hope our method can
be applied in other domains, such as NLP (Gao et al., 2021) and cross modal (Conde & Turgutlu,
2021) pretraining, which we leave in future work.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 170–182.
Springer, 2018.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Deli Chen, Yanyai Lin, Lei Li, Xuancheng Ren Li, Jie Zhou, Xu Sun, et al. Distance-wise graph
contrastive learning. arXiv preprint arXiv:2012.07437, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Marcos V Conde and Kerem Turgutlu. Clip-art: Contrastive pre-training for fine-grained art classifi-
cation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3956–3960, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375, 2016.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129–143. Springer, 2003.

Lise Getoor. Link-based classification. In Advanced methods for knowledge discovery from complex
data, pp. 189–207. Springer, 2005.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

10

Under review as a conference paper at ICLR 2022

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In 2009 Ninth IEEE International
Conference on Data Mining, pp. 179–188. IEEE, 2009.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR, 2019.

Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco: Adversarial contrast for efficient
learning of unsupervised representations from self-trained negative adversaries. arXiv preprint
arXiv:2011.08435, 2020.

Yannis Kalantidis, Mert Bülent Sariyildiz, Noé Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. In NeurIPS, 2020a.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. arXiv preprint arXiv:2010.01028, 2020b.

Sungnyun Kim, Gihun Lee, Sangmin Bae, and Se-Young Yun. Mixco: Mix-up contrastive learning
for visual representation. arXiv preprint arXiv:2010.06300, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. arXiv preprint arXiv:1603.06186,
2016.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the 19th international conference on machine learning, volume 2002, pp. 315–322,
2002.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. arXiv preprint
arXiv:1206.6483, 2012.

Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. I-mix: A
domain-agnostic strategy for contrastive representation learning. arXiv preprint arXiv:2010.08887,
2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International Conference on Machine
Learning, pp. 3835–3845. PMLR, 2019.

Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to evaluate
overlapping community finding algorithms. arXiv preprint arXiv:1110.2515, 2011.

11

Under review as a conference paper at ICLR 2022

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-iid processes.
2009.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning, pp. 2014–2023. PMLR, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. Symmetric graph
convolutional autoencoder for unsupervised graph representation learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6519–6528, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1150–1160, 2020.

Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recognition
and machine learning. In Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 287–297. Springer,
2008.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

Jorge M Santos and Mark Embrechts. On the use of the adjusted rand index as a metric for evaluating
supervised classification. In International conference on artificial neural networks, pp. 175–184.
Springer, 2009.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, and Trevor Darrell. Rethinking image
mixture for unsupervised visual representation learning. arXiv e-prints, pp. arXiv–2003, 2020.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Mahito Sugiyama, M Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borgwardt. graphkernels:
R and python packages for graph comparison. Bioinformatics, 34(3):530–532, 2018.

12

Under review as a conference paper at ICLR 2022

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph
embeddings from similarity measures. In Proceedings of the 2018 world wide web conference, pp.
539–548, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. stat, 1050:21, 2018.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International Conference on Machine Learning, pp. 6438–6447. PMLR, 2019.

Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. Towards domain-agnostic
contrastive learning. In International Conference on Machine Learning, pp. 10530–10541. PMLR,
2021.

Sheng Wan, Shirui Pan, Jian Yang, and Chen Gong. Contrastive and generative graph convolutional
networks for graph-based semi-supervised learning. arXiv preprint arXiv:2009.07111, 2020.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889–898, 2017.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere, 2020.

Xiangyu Wang, Chenlei Leng, and David B Dunson. On the consistency theory of high dimen-
sional variable screening. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
540ae6b0f6ac6e155062f3dd4f0b2b01-Paper.pdf.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural networks: Tricks of the trade, pp. 639–655. Springer, 2012.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018b.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

13

https://proceedings.neurips.cc/paper/2015/file/540ae6b0f6ac6e155062f3dd4f0b2b01-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/540ae6b0f6ac6e155062f3dd4f0b2b01-Paper.pdf

Under review as a conference paper at ICLR 2022

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33,
2020.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars:
On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Qiang Zhou, Chaohui Yu, Zhibin Wang, Qi Qian, and Hao Li. Instant-teaching: An end-to-end
semi-supervised object detection framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4081–4090, 2021.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, 2021.

14

Under review as a conference paper at ICLR 2022

Table 7: Statistics of classification datasets. For graph classification dataset, # NODES, # EDGES
imply average number of nodes and edges in each graph.

statistics node classification graph classification
Citeseer Cora Pubmed DBLP PPI MUTAG PTC MR IMDB-BIN IMDB-MUL REDDIT-BIN

graphs 1 1 1 1 24 188 344 1000 1500 2000
nodes 3327 2708 19717 17716 56944 17.93 14.29 19.77 13.0 508.52
edges 4732 5429 105734 44338 818716 19.79 14.69 193.06 65.93 497.75
classes 6 7 3 4 121 2 2 2 3 2

A IMPLEMENTATION DETAILS

Dataset statistic information. For node classification in transductive learning, we use Cora4,
Citeseer5, Pubmed6 and DBLP citation networks (Sen et al., 2008) where documents (nodes) are
connected through citation relations (edges). For graph classification, we use the following datasets:
MUTAG (Kriege & Mutzel, 2012) containing MUTAGenic compounds, PTC MR (Kriege & Mutzel,
2012) containing 344 chemical compounds represented as graphs which report the carcinogenicity
for rats, IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) containing 1,000
actors/actresses who played roles in movies in IMDB. In each graph, nodes represent actors/actresses,
and there is an edge between them if they appear in the same movie. These graphs are derived from
the Action and Romance genres. All the graph datasets can be downloaded on this site 7. Last, we
predict protein roles in inductive learning protocol, in terms of their cellular functions from gene
ontology, within the protein-protein interaction (PPI) network to evaluate the generalization ability of
the proposed m-mix across multiple graphs. The PPI dataset contains multiple graphs, with each
corresponding to human tissue. The graphs are constructed by (Hamilton et al., 2017), where each
node has multiple labels that are a subset of gene ontology sets (121 in total), and node features
include positional gene sets, motif gene sets, and immunological signatures (50 in total). Following
previous methods (Zhu et al., 2020; Hamilton et al., 2017), we select twenty graphs consisting of
44,906 nodes as the training set, two graphs containing 6,514 nodes as the validation, and the rest
four graphs containing 12,038 nodes as the test set. The detailed statistic information can be viewed
in Table 7.

Hyper-parameter details. We choose GCN (Kipf & Welling, 2016) as our backbones, whose
parameters are initialized through Xavier initialization (Glorot & Bengio, 2010). The model is trained
using Adam (Kingma & Ba, 2014) with a learning rate of 3e-4 and τ is set 1. Instead of using grid
search to select the optimal number of GCN layers in different datasets (Hassani & Khasahmadi,
2020; Sun et al., 2019), our method only uses a single-layer network as the backbone. For graph
classification, We search BatchSize from [256, 512, 1024, 2048], which can be trained on a single
GPU. For node classification, we follow DGI (Velickovic et al., 2018) and set the number of epochs
to 2000 and select BatchSize from [2, 4, 8] (note that on large graphs, we have to sample some
subgraphs instead of using the full graph for training). We also use early stopping with the patience
of 30 to prevent overfitting. We search the dimension of hidden space of both node and graph
representations from [32, 64, · · · , 2048]. For mo-mix, we set C as 0.2 as default.

Evaluation Protocol. In line with (Hassani & Khasahmadi, 2020; Park et al., 2019), we evaluate
our approach under the linear evaluation protocol for both node and graph classification. For node
classification, we report the mean classification accuracy with standard deviation on the test nodes
after 50 runs of training followed by a linear classifier. For graph classification, we follow the standard
protocol in InfoGraph (Sun et al., 2019) and report the mean 10-fold cross-validation accuracy with
standard deviation after 5 runs followed by a linear SVM (Hearst et al., 1998). We also conduct
experiments on two downstream tasks: graph edit distance and node clustering, which we discuss in
Appendix B.

Implementation details of baseline MVGRL and GRACE. For MVGRL+(mp-mix), in line with
(Hassani & Khasahmadi, 2020), for a given dataset, the node features are processed as follows. If the
dataset contains initial node features, they are normalized using the standard score. If the dataset does

4https://relational.fit.cvut.cz/dataset/Cora
5http://networkrepository.com/Citeseer.php
6https://deepai.org/dataset/Pubmed
7https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

15

https://relational.fit.cvut.cz/dataset/Cora
http://networkrepository.com/Citeseer.php
https://deepai.org/dataset/Pubmed
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Under review as a conference paper at ICLR 2022

Table 8: Normalized MI (NMI) and adjusted rand index (ARI) score on node clustering. The score is
directly calculated by scikit-learn.

method Cora Citeseer Pubmed
NMI ARI NMI ARI NMI ARI

un
su

pe
rv

is
ed

VGAE (Kipf & Welling, 2016) 0.3292 0.2547 0.2605 0.2056 0.3108 0.3018
MGAE (Wang et al., 2017) 0.5111 0.4447 0.4122 0.4137 0.2822 0.2483
ARGA (Pan et al., 2018) 0.4490 0.3520 0.3500 0.3410 0.2757 0.2910

ARVGA (Pan et al., 2018) 0.4500 0.3740 0.2610 0.2450 0.1169 0.0777
GALA (Park et al., 2019) 0.5767 0.5315 0.4411 0.4460 0.3273 0.3214

MVGRL (Hassani & Khasahmadi, 2020) 0.6291 0.5696 0.4696 0.4497 0.3609 0.3386
MVGRL+ (mp-mix) 0.6483 0.5917 0.4736 0.4628 0.3704 0.3431

not contain initial node features but carries node labels, they are used as the initial node features (only
in graph classification datasets). Otherwise, if the dataset has neither, the node features are initialized
with node degrees. For GRACE+(mp-mix), we adopt the same augmentation in GRACE (Zhu
et al., 2020), with 0.1 and 0.0 probability masking features in view (a) and (b), respectively, and
dropping edges with 0.1 and 0.4 probability on DBLP. For the PPI dataset, we drop edges with 0.3,
0.4 probability and mask features with 0.1 and 0.0 probability.

Detail of ablation experiments on different sample sizes and contrastive dimension. We test our
method under different sample sizes and contrastive dimension. We set the epoch as 2000 and record
the accuracy every 10 epochs. We find with a higher contrastive dimension, the model’s stability is
increasing, meanwhile, the convergence rate is faster than the low dimension. When set contrastive
dimension as 2048, the best model can be obtained in 200 epochs, while set hidden dimension as 64,
the convergence rate of the model is much slower (best results are got about 2000 epochs). From
Figure 3, we can easily observe that with a large contrastive dimension, initialed embedding has
remarkable representation ability. We guess it is because, with a larger contrastive dimension, the
initialized node embedding vector is closer to the optimal solution (orthogonal in hypersphere).

B ADDITIONAL EXPERIMENTS

0 250 500 750 1000 1250 1500 1750 2000
epoch

60

65

70

75

80

ac
c (10000, 2048)

(10000, 1024)
(10000, 512)
(10000, 256)
(10000, 128)
(10000, 64)
(10000, 32)

Figure 3: Accuracy with different batch / hidden pairs over
training epochs. For instance, (10000, 2048) means training
with N = 10000, F ′ = 2048.

Cluster setup and results. Followed
by (Hassani & Khasahmadi, 2020),
we evaluate our method under clus-
tering evaluation protocol and cluster
the learned representations using the
K-Means algorithm for node classifi-
cation. In detail, we set the number
of clusters to the number of ground-
truth classes and report the average
normalized mutual information score
(NMI) (McDaid et al., 2011) and ad-
justed rand score (ARI) (Santos & Em-
brechts, 2009).

Details of graph edit distance.
Graph edit distance between graphs
G1 and G2 is defined as the minimum
number of edit operations needed to
transform G1 to G2. Typically the edit
operations include add / remove / sub-
stitute nodes and edges. However computing the graph edit distance is NP-complete problem in
general (Zeng et al., 2009), therefore approximations have to be used. There’s also some attempts by
deep graph model (Li et al., 2019). In detail, they construct triplet pairs through edit graph (substitute
and remove) edges, which is also an unsupervised model. For instance, they substitute kp edges from
graph G1 to generate G1p, then substitute kn edges to generate G1n. By set kp < kn, then, they regard
the graph edit distance between (G1,G1p) is shorter than (G1,G1n). But actually, the edit-distance

16

Under review as a conference paper at ICLR 2022

Table 9: Performance on graph classification datasets with different objective functions.
METHODS MUTAG PTC MR IMDB-BIN IMDB-MULTI REDDIT-BIN

mp-mix (Jnode only) 91.4 ± 0.4 63.7 ± 0.4 74.9 ± 0.6 51.6 ± 0.5 88.4 ± 0.3
mp-mix (Jgraph only) 89.4 ± 0.7 61.0 ± 0.6 73.5 ± 0.6 50.7 ± 0.4 84.3 ± 0.7
mp-mix (w/o Ldiv) 90.7 ± 1.3 63.7 ± 0.9 75.1 ± 0.7 52.0 ± 0.7 88.1 ± 0.6

mp-mix 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4 88.7 ± 0.4

Table 10: Performance on graph and node classification datasets of different branches. za, ha means
only use the attentive branch output as the final output. Average is the average ensemble, which
means z = (za + za)/2 and h = (hb + hb)/2. Same with the ensemble property, the aggregated
output is more stable than individual output.

Branch Cora Citeseer Pubmed MUTAG PTC MR IMDB-BIN IMDB-MULTI

za, ha 85.3 ± 0.3 75.6 ± 0.3 82.7 ± 0.4 91.1 ± 0.5 64.5 ± 0.5 75.5 ± 0.7 52.6 ± 0.6
zb, hb 85.5 ± 0.4 75.5 ± 0.4 82.7 ± 0.5 91.8 ± 0.6 64.1 ± 0.5 75.1 ± 0.6 52.4 ± 0.5

Average 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4

between (G1,G1p) can be smaller than (G1,G1n) due to symmetry and isomorphism. However, the
probability of such cases is typically low and decreases rapidly with increasing graph sizes. Finally,
they train their model on these triplet pairs and evaluate other triplets. Simpler than theirs, we don’t
need to design special pretext tasks on different tasks, but only use the pre-trained model to evaluate
this task.

Effect of graph level contrastive loss. Graph classification usually requires global information of
one graph, where node level contrastive learning methods usually learn local information. To further
explore the effect of contrastive learning in different levels. We conduct experiments with graph-level
only, node-level only. Table 9 shows Jgraph can helpfully improve graph level representation, while
without Jnode, GNN encoder can not extract fine-grained information.

Effect of architecture aggregating. To demonstrate our performance is not due to GNN architecture.
We reported the accuracy of two branches (view (a) and view (b)), note that the difference between
the two branches is only augmentation hyper-parameters. As Table 10 shows, both two branches
achieve remarkable results.

More discussion of m-mix. Based on multiple samples mixing on graph learning and vision, our
method can be further applied in the language domain. We think the revised module is an interesting
direction to explore. Except using prior knowledge and using threshold, we can also mix by clustering-
based methods, i.e., using clustering methods to construct image-level adjacency matrix, which may
generate more useful hard negatives. We leave such ideas for future work.

C PROOFS

Proof of Proposition 1

Proof Given two negative pairs (zi, zj) and (zi, zk), where zi is the i-th sample’s embedding.
Denote λi as the mixing weight of zi. For simplicity, we consider the dot product as the similarity
metric function. For multiple instance mixing, we have that ẑi =

∑
i λizi. Then, the similarity of

mixed sample and original can be written as:

H(ẑi, zj) = (
∑
i

λizi)
>zj =

∑
i 6=j,i 6=k

(λi · z>i zj) + λj · z>j zj + λkz
>
k zj (12)

where the
∑
i6=j,i 6=k(λi · z>i zj) is irrelevant to negative pairs (zi, zj) and (zi, zk). Thus, we assume∑

λi,i6=j,i 6=k is a constant. Now we consider another group of mixing weights (λ′1, · · · , λ′N), which
satisfies λj = λ′k and λk = λ′j (Note that the reason why we consider this condition is for any group

17

Under review as a conference paper at ICLR 2022

(λ′i), we can find the corresponding group (λi), which can satisfy this condition). We have:

H(ẑ′i, zj) = (
∑
i

λ′izi)
>zj =

∑
i 6=j,i 6=k

(λ′i · z>i zj) + λ′j · z>j zj + λ′kz
>
k zj

H(ẑ′i, zk) = (
∑
i

λ′izi)
>zk =

∑
i 6=j,i 6=k

(λ′i · z>i zk) + λ′j · z>j zk + λ′kz
>
k zk

(13)

Recall the z are l2 normalized embedding, i.e., z>z = 1. Thus, we can obtainH(ẑi, zj) > H(ẑ′i, zj).
ForH(ẑi, zj) andH(ẑ′i, zk), since we have λj = λ′k and λj > λk, we can get λkz>k zj > λ′j · z>j zk.
Finally, we can get H(ẑi, zj) > max(H(ẑ′i, zj),H(ẑ′i, zk)), i.e., we generate a more difficult
negative pair by assigning similar instances with larger mixing weights.

Proof of Theorem 1.
Proof Since we discard the projection head, we consider the empirical Rademacher complexity in a
linear classification hypothesis h(z) = w>z. For original data, the Rademacher complexity can be
written as:

RZ(Hf) = Eσ

[
1

N
sup
‖w‖2≤Θ

N∑
i=1

σiw
>zi

]
= Eσ

[
1

N
sup
‖w‖2≤Θ

w>
N∑
i=1

σizi

]

=
1

N
Eσ

[
sup
‖w‖2≤Θ

w>
N∑
i=1

σizi

]
=

1

N
Eσ

[
Θ‖

N∑
i=1

σizi‖2

]

≤ Θ

N

(
Eσ

[
‖
N∑
i=1

σizi‖22

]) 1
2

=
Θ

N
(

N∑
i=1

‖zi‖2)
1
2

(14)

where Θ is a constant that regularizes the l2 norm of the weight vector. Then, we introduce
Rademacher complexity Rb

Z(Hf) of binary mixed data as intervening variable, where the gen-
erated data can be written as: z′i = λzi + (1− λ)zj . Then, we have:

Rb
Z(Hf) ≤ Θ

N

(
N∑
i=1

‖z′i‖22

) 1
2

=
Θ

N

(
N∑
i=1

∥∥Ezj [λzi + (1− λ)zj]
∥∥2

2

)

=
Θ

N

(
N∑
i=1

∥∥λzi + (1− λ)Ezj [zj]
∥∥2

2

) 1
2

≤ Θ

N

(
N∑
i=1

(∥∥λzi‖22+
∥∥ (1− λ)Ezj [zj]‖22

)) 1
2

=
Θ

N

(
λ2

N∑
i=1

‖zi‖22 + (1− λ)2
N∑
i=1

∥∥Ezj [zj]
∥∥2

2

) 1
2

(15)
where Ezj [λzi + (1− λ)zj] is the expectation of linear combination of input data by binary mixup.
Then, we give the Rademacher complexity of m-mixed data:

Rm
Z (Hf) ≤ Θ

N
(

N∑
i=1

‖z′i‖22)
1
2 =

Θ

N

 N∑
i=1

Eλ

∥∥∥∥∥∥λizi +
∑
j

λjzj

∥∥∥∥∥∥
2

2

 (16)

where λi is pre-defined in mo−mix, and we can set λ = λi to simplify the proof. Compare Eq. 16
with Eq. 15, we can find the different term is mixing term in RHS. Fix the first term, since all the
embeddings z are in l2 normalization, then, it holds Eλ‖

∑
j λjzj‖22 ≤

∥∥(1− λ)Ezj [zj]
∥∥2

2
. Then,

combining Eq. 14, Eq. 15 and Eq.16, we can get:

RZ(Hf)−Rm
Z (Hf) ≤

Θ
√

1− λ2
i

N
(

N∑
i=1

‖zi‖22 −
N∑
i=1

‖Ezj [zj]
2
2)

1
2

=
Θ
√

1− λ2
i√

N

(
s2 (‖zi‖2) + ‖z̄‖22 − ‖z̄‖22

) 1
2 =

Θ
√

1− λ2
i√

N

√
s2‖z‖2 ≥ 0

(17)

18

Under review as a conference paper at ICLR 2022

where s is the variance of original data. Note that above equation holds when λi =
min{λ1, λ2, · · · , λN |λi 6= 0}. Then, we can complete the proof. �

Proof of Theorem 2.
Proof Split the infoNCE by numerator and denominator parts, we have:

Linfo = E(x,y)∼ppos [−f(x)>f(y)/τ] + E (x,y)∼ppos
{x−
i
}N
i=1
∼pdata

[
log(ef(x)>f(y)/τ +

∑
i

ef(x)>f(x−i)/τ)

]
(18)

Followed by (Wang & Isola, 2020), the Linfo is equal to pulling embedding to F ′ hyper-sphere
uniformly. We consider contrastive embedding in both orthogonal solution (optimal) and non-
orthogonal solution. For orthogonal solution, we have Ii 6=jZ>i Zj = 0 and {Z>i Zi = 1}Ni=0. For
linear classification or linear regression, we haveW = Z>(ZZ>)−1. TakeW to Φ, we can obtain
Φ = IF ′ − 2τ−1ηIF ′ , where Φ is the diagonal matrix, then, we can complete the proof. Consider in
non-orthogonal solution, if we have:

min
i
|Φii| > 2sρmax

ij
|Φ|+ 2τ−1‖Z>(ZZ>)−1ε‖∞ (19)

Then, the proof is finished because Φ− 2τ−1‖Z>(ZZ>)−1ε‖∞ is already a restricted diagonally
dominant matrix. From Lemma 3 and 4 of (Wang et al., 2015), we can obtain a union bounds:

P (max
i 6=j
|Φ| > c4kt

√
N

F ′
) ≥ 5(p2 − p)−CN + 2(p2 − p)−t

2/2 (20)

and

P (‖Wε‖)∞ ≤
2σ
√
c2kt
√
N

(1− c−1
0)F ′

< 4F ′e−CN + 2F ′e−t
2/2 (21)

where t is any constant which satisfies t > 0, ci is some constants which satisfy c0 > 1, 0 < c1 <
1 < c2 and c3 > 0. k is the conditional number of Z. Then, let t =

√
CN/µ for µ > 0, which

satisfies the definition of t > 0. We can obtain:

N

F ′
(c1k

−1 − 2c4
√
Cksρ

µ
− 2σ

√
c2Ck

1− c−1
0 τµ

) > 0 (22)

where τ/σ evaluates the signal-to-noise ratio. Take µ as the variable, we can derive µ > 2c4
√
Ck2ρs
c1

+
2σ
√
c2Ck

2

c1τ(1−c−1
0)

, where the RHS is larger than 1, i.e., µ > 1. Then we have:

Pnon−orth < (p+ 5p2)e−CN + 2p2e−CN/µ (23)

Recall we assume F ′ > N and prove µ > 1, then we can complete the proof for any δ > 0, there’s at
least 1− δ satisfies N ≥ µ2

C (log(7 + 1/N) + 2 logF ′ − log δ). �

D VISUALIZATION

Our m-mix can adaptively select which samples should be mixed and gives them different mixing
weights. We randomly select anchor sample in CIFAR-10 and CIFAR-100 datasets, and visualize the
mixing samples selected by m-mix in Fig. 4 and Fig. 5

19

Under review as a conference paper at ICLR 2022

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Figure 4: Visualization of multiple samples mixing on cifar-10, where anchor means the input query
image and mix samples mean the selected mixing instances by m-mix.

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Figure 5: Visualization of multiple samples mixing on cifar-100.

20

	Introduction
	Related Works
	The proposed m-mix
	Preliminaries
	Towards Hard Negatives via Multiple Samples Mixing
	Framework and Objective
	Theoretical analysis

	Experiments
	Experimental setups
	Comparison with previous arts
	Ablation study

	Conclusion and Discussions
	Implementation Details
	Additional Experiments
	Proofs
	Visualization

