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Abstract

Anomaly detection is vital in many domains, such as finance, healthcare, and
cybersecurity. In this paper, we propose a novel deep anomaly detection method
for tabular data that leverages Non-Parametric Transformers (NPTs), a model
initially proposed for supervised tasks, to capture both feature-feature and sample-
sample dependencies. In a reconstruction-based framework, we train the NPT
to reconstruct masked features of normal samples. In a non-parametric fashion,
we leverage the whole training set during inference and use the model’s ability
to reconstruct the masked features to generate an anomaly score. To the best of
our knowledge, this is the first work to successfully combine feature-feature and
sample-sample dependencies for anomaly detection on tabular datasets. Through
extensive experiments on 31 benchmark tabular datasets, we demonstrate that our
method achieves state-of-the-art performance, outperforming existing methods by
2.4% and 1.2% in terms of F1-score and AUROC, respectively. Our ablation study
provides evidence that modeling both types of dependencies is crucial for anomaly
detection on tabular data.

1 Introduction

Anomaly detection is a critical task that aims to identify samples that deviate from a pre-defined
notion of normality within a dataset. Traditional approaches to anomaly detection characterize the
normal1 distribution almost exclusively using samples considered as normal, and flag data points
as anomalies based on their deviation from this distribution. Anomaly detection (AD) is especially
useful for applications involving imbalanced datasets, where standard supervised methods may fail
to achieve satisfactory performance [47]. Those applications include fraud detection [16], intrusion
detection in cybersecurity [25], astronomy [31], medical diagnosis [6], and data cleaning to remove
samples that may hinder the performance of machine learning models.

Anomaly detection encompasses both unsupervised and supervised methods. In most real-world
scenarios, labeled datasets that differentiate normal samples from anomalies are unavailable or
costly to obtain. To address this, efficient anomaly detection methods must be robust to dataset
contamination, where the training set is predominantly composed of normal samples but also includes
anomalies. However, when labeled data is available, one can consider a supervised approach to create
a training set consisting solely of normal samples, thereby indirectly incorporating label information
into the anomaly detection model.

Many general AD methods tend to work well on tasks that involve unstructured data (e.g., natural
language processing or computer vision) such as [37, 43, 23, 33, 34, 19, 24]. However, recent work

1The term normal here relates to the concept of normality in opposition to abnormal.
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[4, 29, 39] has revealed that the best-performing methods for tabular data involve models tailored
to consider the particular structure of this data type. Anomaly detection methods for structured
data typically use either feature-feature or sample-sample dependencies to identify anomalies. For
instance, in [39], the authors assume a class-dependent relationship between a subset of variables in a
sample’s feature vector and the rest of its variables. The authors thus propose a contrastive learning
framework to detect anomalies based on this assumption. Another recent method [44] identifies
anomalies in tabular datasets by focusing on sample-sample dependencies. This approach uses a
variational autoencoder to estimate the normal distribution and subsequently computes the influence
of normal samples on validation samples to construct an anomaly score. Both approaches have
demonstrated competitive results for anomaly detection in tabular datasets.

Recent work on supervised deep learning methods for tabular data [38, 1, 9, 42, 21] has also
highlighted the importance of considering the particular structure of tabular data. In particular, in
[21, 42], the authors emphasize the significance of considering both feature-feature and sample-
sample dependencies for supervised regression and classification problems on tabular data. Based on
the latter observation, we formulate the hypothesis that not only are feature-feature relations class-
dependent but sample-sample dependencies are also class-dependent, and both dependencies should
be used conjointly to identify anomalies. In particular, since interactions between samples are
learned exclusively using normal samples in the anomaly detection setup, they should be especially
discriminative in identifying anomalies during inference.

To test this hypothesis, we employ Non-Parametric Transformers (NPT) [21], first proposed for
supervised tasks on tabular datasets. NPTs leverage two attention mechanisms to capture these
relations between samples and between features: Attention Between Datapoints (ABD) and Attention
Between Attributes (ABA). We show that NPTs are particularly relevant for flagging anomalies, in
line with recent work [13] demonstrating the effectiveness of new deep learning architectures, such as
transformers [45], for anomaly detection on tabular data. We experiment on an extensive benchmark
of tabular datasets to demonstrate the capacity of our approach to detect anomalies and compare our
performances to existing AD methods. We obtain state-of-the-art results when it comes to detection
accuracy. We also test the robustness of our approach to dataset contamination and give evidence that
it can serve for unsupervised anomaly detection when the training set contamination is not too severe.
Finally, our ablation study, conducted with a reconstruction-based approach similar to our proposed
method but utilizing K-nearest neighbors (KNN) imputation, provides evidence that considering both
types of dependencies can be crucial to accurately detect anomalies on specific datasets.

The present work offers the following contributions:

• We put forward the first deep anomaly detection method to successfully combine feature-
feature and sample-sample dependencies.

• Our method shows state-of-the-art anomaly detection capacity on an extensive benchmark
of 31 tabular datasets.

• Our reconstruction-based method shows robustness to small data contamination.
• We provide evidence of the crucial role of considering both dependencies for anomaly

detection on tabular data.

2 Related works

Anomaly detection approaches can be categorized into four main types: density estimation, one-class
classification, reconstruction-based, and self-supervised.

Density Estimation The most straightforward approach to detecting samples that do not belong
to a distribution is to estimate the distribution directly and to measure the likelihood of a sample
under the estimated distribution. Several approaches found in the literature have considered using
non-parametric density estimation methods to estimate the density of the normal distribution, such
as KDE [27], GMM [32], or Copula as in COPOD [22]. Other approaches also focused on local
density estimation to detect outliers, such as Local Outlier Factor (LOF) [5]. In inference, one flags
as anomalies the samples that lie in low-probability regions under the estimated distribution.

Reconstruction Based Methods Other methods have consisted in learning to reconstruct samples
that belong to the normal distribution. In this framework, the models’ incapacity to reconstruct a
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sample correctly serves as a proxy to measure anomaly. A high reconstruction error would indicate
that a sample does not belong to the estimated normal distribution. Those approaches can involve
PCA [15] or neural networks such as diverse types of autoencoders [46, 28, 6, 19], or GANs [35, 36].

One-Class Classification The term one-class classification (OCC) was coined in [26] and describes
identifying anomalies without directly estimating the normal density. One-class classification involves
discriminative models which directly estimate a decision boundary. For instance, in kernel-based
approaches [37, 43], authors propose to characterize the support of the normal samples in a Hilbert
space and to flag as anomalies the samples that would lie outside of the estimated support. Similarly,
recent work has extended their approach by replacing kernels with deep neural networks [33]. In [10],
authors proposed DROCC that involves generating, in the course of training, synthetic anomalous
samples in order to learn a classifier on top of the one-class representation. Other OCC approaches
have relied on tree-based model such as isolation forest (IForest) [23], extended isolation forest [14],
RRCF [12] and PIDForest [8].

Self-Supervised Approaches Recent methods have also considered self-supervision as a means
to identify anomalies. In [4], authors apply several affine transformations to each sample and
train a classifier to identify from the transformed samples which transformation was applied. The
classifier only learns to discriminate between transformations using normal transformed samples:
assuming this problem is class-dependent, the classifier should fail to identify transformation applied
to anomalies. In [29], authors propose a contrastive framework in which samples are transformed
using neural mappings and are embedded in a latent semantic space using an encoder. The objective is
to learn transformations so that transformed samples still share similarities with their untransformed
counterpart while different transformations are easily distinguishable. The contrastive loss then serves
as the anomaly score in inference. Similarly, [39] also propose a contrastive framework in which they
identify samples as anomalies based on their inter-feature relations.

Deep Learning for Tabular Data Despite the effectiveness of deep learning models for numerous
tasks involving unstructured data, non-deep models remain the prevalent choice for machine learning
tasks such as classification and regression on tabular data [11, 40]. However, in recent years
scholars have shown that one could successfully resort to deep learning methods for various tasks on
tabular datasets. For instance, in [38, 17], authors discuss how regularization is crucial in training
a deep learning model tailored for tabular data. Hence, they propose a new regularization loss
to accommodate the variability between features. Similarly, [18] shows that correctly selecting a
combination of regularization techniques can suffice for a Multi-Layer Perceptron (MLP) to compete
with GBDT. Finally, [42, 21] propose deep learning models based on attention mechanisms that rely
on feature-feature, feature-label, sample-sample, and sample-label attention. Both models achieve
competitive results on several baseline datasets and emphasize sample-sample interaction’s role in
classifying samples correctly.

3 Method

In this section, we discuss the learning objective used to optimize the parameters of our model, then
we briefly present the mechanisms involved in Non-Parametric Transformers [21], the core model
used in our approach, and finally, we present NPT-AD, our method to derive an anomaly score.

3.1 Learning Objective

Reconstruction-based approaches for anomaly detection involve training a model to accurately
reconstruct normal samples while failing to reconstruct anomaly samples. Such methods effectively
identify anomalies by exploiting differences in the underlying data distributions between normal and
anomalous samples. Let Dtrain = {xi ∈ Rd}ni=1 represent the training set composed of n normal
samples with d features. Standard reconstruction-based approaches consider the task of learning a
mapping ϕθ : Rd → Rd to minimize a reconstruction loss. The parameters θ ∈ Θ are optimized to
reconstruct each sample x ∈ Rd in the training set with minimal error. Formally, the overall objective
can be expressed as

min
θ∈Θ

∑
x∈Dtrain

d(x, ϕθ(x)), (1)
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where d(x, ϕθ(x)) measures how well the model reconstructs sample x. The latter is often set to be a
distance measure such as the Euclidean distance.

The AD method proposed in [39] employs a masking strategy that maximizes the mutual information
between each sample and its masked-out part by minimizing a contrastive loss. Recently, [20]
demonstrated how stochastic masking [7] also maximizes mutual information, thereby establishing
a link between the method of [39] and stochastic masking. In stochastic masking, each entry in a
sample vector x ∈ Rd is masked with probability pmask, and the objective task is to predict the
masked-out features from the unmasked features. Formally, let m ∈ Rd be a binary vector taking
value 1 when the corresponding entry in x is masked, xm = {xj : mj = 1} represents the masked
entries of sample x, and xo = {xj : mj = 0} denotes the complement of xm, composed of the
observed features of sample x. In this framework, the objective in eq. 1 is modified to

min
θ∈Θ

∑
x∈Dtrain

d(xm, ϕθ(x
o)), (2)

where ϕθ(x
o) denotes the reconstructed masked features of sample x by the model.

Our proposed approach leverages the entire dataset in a non-parametric manner to reconstruct masked
features. This method considers feature-feature interactions and also captures relationships between
samples to optimize the reconstruction objective. Let X ∈ Rn×d denote the dataset matrix, consisting
of n training samples with d features. We introduce the matrix equivalents of m, xm, and xo, denoted
as M, XM , and XO, respectively, all in Rn×d. The reconstruction objective described in eq. 2 can
then be reformulated as

min
θ∈Θ

∑
x∈Dtrain

d
(
xm, ϕθ

(
xo | XO

))
. (3)

3.2 Non-parametric transformer (NPT)

We resort to Non-Parametric Transformer (NPT) [21] as the core model for our approach, denoted
as ϕθ in section 3.1. NPT involves both attention between features and attention between samples,
thus allowing the ability to capture feature-feature and sample-sample dependencies. More precisely,
two mechanisms involved in NPTs allow anomalies to be identified: Attention Between Datapoints
(ABD) and Attention Between Attributes (ABA). Both attention mechanisms rely on multi-head
self-attention (MHSA), which was first introduced in the natural-language processing literature
[3, 7, 45]. We discuss MHSA more thoroughly in appendix A and only detail in this section the two
mechanisms put forward in [21].

As an input, NPT receives both the dataset and a masking matrix (X,M) ∈ Rn×d × Rn×d. Before
feeding the input to the NPT, we pass each of the n data samples through a linear embedding layer to
obtain an e-dimensional embedding for each feature. Thus, as an input, NPT receives a representation
H0 ∈ Rn×d×e. A sequence of MHSA layers is applied to the input, alternating between ABA and
ABD. The model then outputs a prediction for masked features while keeping unmasked features
unchanged X̂ ∈ Rn×d.

Attention Between Datapoints (ABD) It is the key feature that differentiates NPT from standard
transformer models. This mechanism captures pairwise relation between data samples. Consider
as an input to the ABD layer the previous layer representation H(ℓ) ∈ Rn×d×e flattened to Rn×h

where h = d · e. Then, NPT applies MHSA, as seen in equation 12 in appendix A, between the data
samples flattened representations {H(ℓ)

i ∈ R1×h|i ∈ 1, . . . , n}.

ABD(H(ℓ)) = MHSA(H(ℓ)) = H(ℓ+1) ∈ Rn×h (4)

After applying ABD, the data representation is reshaped to its original dimension in Rn×d×e.

Attention Between Attributes (ABA) As already discussed, NPT alternates between ABD and
ABA layers. ABA layers should help learn per data sample representation for the inter-sample
representations. In contrast with ABD, ABA consists in applying MHSA independently to each row
in H(ℓ), i.e. to each data sample’s intermediate representation H

(ℓ)
i ∈ Rd×e, i ∈ {1, . . . , n}.

ABA(H(ℓ)) = stack
axis=n

(
MHSA(H

(ℓ)
1 ), . . . ,MHSA(H(ℓ)

n )
)
∈ Rn×d×e (5)
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Figure 1: NPT-AD inference pipeline. In step (a), mask j is applied to each validation sample. We
construct a matrix X composed of the masked validation samples and the whole unmasked training
set. In step (b), we feed X to the Non-Parametric Transformer (NPT), which tries to reconstruct the
masked features for each validation sample. On top of the learned feature-feature interactions, NPT
will use the unmasked training samples to reconstruct the mask features. In step (c), we compute the
reconstruction error that we later aggregate in the NPT-AD score.

3.3 Anomaly score

We directly derive the anomaly score from the loss optimized during training. For numerical features,
the loss corresponds to the squared difference between the reconstructed feature and its actual value.
Meanwhile, for categorical features, we use the cross-entropy loss function. The anomaly score
relies on our model’s capacity to reconstruct masked features correctly and assumes that the model
should better reconstruct normal samples. Two reasons support this assumption. First, relations
between features are class-dependent ; having observed only normal samples in the training phase,
the model should be unable to fetch the learned feature-feature interactions to reconstruct anomalies
properly. Second, sample-sample interactions seen by the model only correspond to interactions
between normal samples, making it difficult to successfully exploit interactions between normal
samples and anomalies.

As detailed in Figure 1, we consider m d-dimensional deterministic mask vectors that designate
which of the d features of each validation sample will be hidden. We set the maximum number of
features to be masked simultaneously r, and construct m =

∑r
k=1

(
d
k

)
masks. Each mask is applied

to each validation sample z ∈ Dval to obtain m different masked samples {z(1), . . . , z(m)} of the
original sample z. We use the whole unmasked training set2 Dtrain to predict the masked features
of each sample for each of the m masked vectors and construct the anomaly score for a validation
sample z as

NPT-AD(z;Dtrain) =
1

m

m∑
k=1

Lfeatures(z
(k);Dtrain), (6)

where Lfeatures(z
(k);Dtrain) designates the loss for the sample z with mask k. We also considered

other forms of aggregation, such as the maximum loss over all masks.

4 Experiments

Datasets We experiment on an extensive benchmark of tabular datasets following previous work
[39]. The benchmark is comprised of two datasets widely used in the anomaly detection literature,
namely Arrhythmia and Thyroid, a second group of datasets, the "Multi-dimensional point datasets",
obtained from the Outlier Detection DataSets (ODDS)3 containing 28 datasets. We omit the datasets
Heart and Yeast following previous work [39] and also omit the KDD dataset since it presents a
certain number of limitations [41]. Instead, we include three real-world datasets from [13] that display

2For large datasets, we resort to a random subsample of the training set for computational reasons.
3http://odds.cs.stonybrook.edu/
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Table 1: Deep models: anomaly detection F1-score (↑). We perform 5% T-test to test whether the
difference between the highest metrics for each dataset is statistically significant.

Method DROCC GOAD NeuTraL. Inter.Cont. COPOD IForest KNN NPT-AD
(abalone) (thyroid) (arrhy.)

Wine 63.0±20.0 67.0±9.4 78.2±4.5 90.0±6.3 60.0±4.5 64.0±12.8 94.0±4.9 72.5±7.7
Lympho 65.0±5.0 68.3±13.0 20.0±18.7 86.7±6.0 85.0±5.0 71.7±7.6 80.0±11.7 94.2±7.9
Glass 14.5±11.1 12.7±3.9 9.0±4.4 27.2±10.6 11.1±0.0 11.1±0.0 11.1±9.7 26.2±10.9
Verteb. 9.3±6.1 16.3±9.6 3.8±1.2 26.0±7.7 1.7±1.7 13.0±3.8 10.0±4.5 20.3±4.8
Wbc 9.0±6.2 66.2±2.9 60.9±5.6 67.6±3.6 71.4±0.0 70.0±3.7 63.8±2.3 67.3±1.7
Ecoli N/A 61.4±31.7 7.0±7.1 70.0±7.8 25.6±11.2 58.9±22.2 77.8±3.3 77.7±0.1
Ionosph. 76.9±2.8 83.4±2.6 90.6±2.4 93.2±1.3 70.8±1.8 80.8±2.1 88.6±1.6 92.7±0.6
Arrhyth. 37.1±6.8 52.0±2.3 59.5±2.6 61.8±1.8 58.2±1.4 60.9±3.3 61.8±2.2 60.4±1.4
Breastw 93.0±3.7 96.0±0.6 91.8±1.3 96.1±0.7 96.4±0.6 97.2±0.5 96.0±0.7 95.7±0.3
Pima 66.0±4.1 66.0±3.1 60.3±1.4 59.1±2.2 62.3±1.1 69.6±1.2 65.3±1.0 68.8±0.6
Vowels 66.2±8.8 31.1±4.2 10.0±6.2 90.8±1.6 4.8±1.0 25.8±4.7 64.4±3.7 88.7±1.6
Letter 55.6±3.6 20.7±1.7 5.7±0.8 62.8±2.4 12.9±0.7 15.6±3.3 45.0±2.6 71.4±1.9
Cardio 49.8±3.2 78.6±2.5 45.5±4.3 71.0±2.4 65.0±1.4 73.5±4.1 67.6±0.9 78.1±0.1
Seismic 19.1±0.9 24.1±1.0 11.8±4.3 20.7±1.9 29.2±1.3 73.9±1.5 30.6±1.4 26.2±0.7
Musk 99.4±1.5 100±0.0 99.0±0.0 100±0.0 49.6±1.2 52.0±15.3 100±0.0 100±0.0
Speech 4.3±2.0 4.8±2.3 4.7±1.4 5.2±1.2 3.3±0.0 4.9±1.9 5.1±1.0 9.3±0.8
Thyroid 72.7±3.1 72.5±2.8 69.4±1.4 76.8±1.2 30.8±0.5 78.9±2.7 57.3±1.3 77.0±0.6
Abalone 17.9±1.3 57.6±2.2 53.2±4.0 68.7±2.3 50.3±6.4 53.4±1.7 43.4±4.8 59.7±0.1
Optdig. 30.5±5.2 0.3±0.3 16.2±7.3 66.3±10.1 3.0±0.3 15.8±4.3 90.0±1.2 62.0±2.7
Satim. 4.8±1.6 90.7±0.7 92.3±1.9 92.4±0.7 77.9±0.9 86.5±1.7 93.8±1.2 94.8±0.8
Satellite 52.2±1.5 64.2±0.8 71.6±0.6 73.2±1.6 56.7±0.2 69.6±0.5 76.3±0.4 74.6±0.7
Pendig. 11.0±2.6 40.1±5.0 69.8±8.7 82.3±4.5 34.9±0.6 52.1±6.4 91.0±1.4 92.5±1.3
Annthyr. 64.2±3.3 50.3±6.3 44.1±2.3 45.4±1.8 31.5±0.5 57.3±1.3 37.8±0.6 57.7±0.6
Mnist N/A 66.9±1.3 84.8±0.5 85.9±0.0 38.5±0.4 51.2±2.5 69.4±0.9 71.8±0.3
Mammo. 32.6±2.1 33.7±6.1 19.2±2.4 29.4±1.4 53.4±0.9 39.0±3.3 38.8±1.5 43.6±0.5
Shuttle N/A 73.5±5.1 97.9±0.2 98.4±0.1 96.0±0.0 96.4±0.8 97.3±0.2 98.2±0.3
Mullcr. N/A 99.7±0.8 96.3±10.5 100±0.0 66.0±0.1 99.1±0.5 100±0.0 100±0.0
Forest N/A 0.1±0.2 51.6±8.2 44.0±4.1 18.2±0.2 11.1±1.6 92.1±0.3 58.0±10
Camp. N/A 16.2±1.8 42.1±1.7 46.8±1.4 49.5±0.1 42.4±1.0 41.6±0.4 49.8±0.3
Fraud N/A 53.1±10.2 24.3±7.8 57.9±2.8 44.7±0.9 30.3±3.7 60.5±1.5 58.1±3.2
Backd. N/A 12.7±2.9 84.4±1.8 86.6±0.1 13.4±0.4 3.8±1.2 88.5±0.1 84.1±0.1
mean 32.7 51.0 50.8 67.2 44.2 52.6 65.8 68.8
mean std 3.4 4.4 4.0 2.9 1.5 3.9 2.2 2.0
mean rk 10.8 7.8 9.0 3.5 9.7 7.0 4.9 3.0

relatively similar characteristics to KDD in terms of dimensions: fraud, campaign and backdoor. See
appendix B for more detail on the datasets’ characteristics.

Experimental settings Per the literature [50, 4], we construct the training set with a random
subsample of the normal samples representing 50% of the normal samples, we concatenate the 50%
remaining with the entire set of anomalies to constitute the validation set. Following previous work,
[4, 39], the decision threshold for the NPT-AD score is chosen such that the number of predicted
anomalies is equal to the number of existing anomalies. We report the results in tables 1, and 5 in
appendix C. Most metrics are obtained from [39], apart from NeuTraL-AD [29] which we trained
using their official code made available online, and the experiments on the fraud, campaign and
backdoor datasets. We evaluate the different methods using both the F1-Score (↑) and AUROC (↑)
metrics. We compare our method to both recent deep methods, namely GOAD [4], DROCC [10],
NeuTraL-AD [29] and the internal contrastive approach proposed in [39], and classical non-deep
methods such as Isolation Forest [23], KNN [30], RRCF [12], COPOD [22] and PIDForest [8]. We
refer the reader to [39] for implementation details of non-deep models. Notice that for DROCC,
GOAD, and NeuTraL-AD, we report in table 1 the architecture that obtained the highest mean
F1-score. The metrics obtained for the other architectures are detailed in tables 7, 8, and 10 in
appendix C.1. Moreover, due to lack of space we do not include RRCF and PIDForest in table 1, we
report their metrics in table 9 in appendix C.1. We discuss in appendix B.2 hyperparameter selection
and highlight that for most datasets, the hyperparameters remain unchanged.
Following the literature, we report the average metrics over 20 runs. Our model was trained for each
dataset on 4 or 8 Nvidia GPUs V100 16Go/32Go depending on the dataset dimension. Note that for
small and medium datasets, the model can also be trained on a single GPU.
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(a) F1-Score (↑) (b) AUROC (↑)

Figure 2: Training set contamination impact on the F1-score and AUROC. Each model was trained 5
times for each contamination share. See appendix C.2 for details on the experimental settings.

Results As seen in table 1, our model surpasses existing methods on most datasets by a significant
margin regarding the F1-Score. Moreover, our approach displays the highest mean F1-Score and
mean rank over all datasets out of the 17 tested approaches. The method of [39] ranks as the second
highest in terms of average F1-score and displays the second highest mean rank over all datasets.
Also, our approach displays a smaller variance than competing methods except for COPOD, which
performs significantly worse than our approach regarding the F1-Score and AUROC. The smaller
variance could originate from the fact that our model uses, in a non-parametric fashion, the training
set in the inference phase. This contributes to flattening the variations in the anomaly score attributed
to discrepancies in the model’s weights between runs. We also display in tables 5 and 6 in appendix
C.1 the AUROC for the same experiments and observe that we obtain the highest mean AUROC and
the lowest mean rank while also displaying a smaller variance than other tested approaches.

5 Discussion

5.1 Training set contamination

Real-life anomaly detection applications often involve contaminated training sets; anomaly detection
models must therefore be robust to small levels of dataset contamination. We experimented using a
synthetic dataset to evaluate how much NPT-AD suffers from dataset contamination compared to
recent deep AD methods. We construct a synthetic dataset using two perfectly separable distributions
for normal and anomaly samples. The synthetic training set contains 900 normal samples, and we
keep aside 100 anomaly samples to be added to the training set. We consider 11 different training
sets with contamination shares ranging from 0% to 10% with a 1% step while keeping the validation
set constant with a fixed composition of 10% anomalies and 90% normal samples. We display the
results of this experiment in figures 2 and 3 in which we show how the performance of NPT-AD
varies when the contamination share increases in comparison with NeuTraL-AD, GOAD, DROCC
and the internal contrastive approach of [39]. Our experimental results show that, as expected, the
performance of NPT-AD deteriorates as the proportion of anomalies in the training set increases.
For contamination shares lower than 2% (resp. 4%), the F1-Score (resp. AUROC) remains close
to its maximum value of 100%. However, the F1-Score and AUROC deteriorate significantly for
higher contamination levels while displaying a higher standard deviation. When anomalies constitute
10% of the training set, our approach achieves an average F1-Score slightly lower than 50% and an
average AUROC of 87%. We observe that NPT-AD suffers less from dataset contamination than [39]
and DROCC for both F1-Score and AUROC. We also notice that DROCC and the approach proposed
in [39] are particularly sensible to dataset contamination regarding the F1-Score in comparison with
NeuTraL-AD, GOAD and NPT-AD even for low contamination shares. Finally, this experiment also
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highlights that NeuTraL-AD appears significantly more robust than other tested deep methods to
training set contamination even for large contamination values.

5.2 Sample-sample dependencies ablation study

Table 2: Ablation study. Variation of the F1-Score and AUROC when preventing NPT from attending
to sample-sample interactions. Average difference over 20 runs. All hyperparameters are kept
unchanged.

Mammo. Glass BreastW Pendigits

∆F1 −1.0 −9.6 −0.5 −2.8
∆AUROC −0.1 −0.1 −0.1 −0.1

To investigate the impact of sample-sample dependencies on the effectiveness of our proposed model
in detecting anomalies, we conduct an ablation study by shuffling the columns of the unmasked
training samples used to reconstruct the test samples. This procedure essentially prevents the Non-
Parametric Transformer (NPT) from considering other samples when reconstructing masked features,
as elaborated in [21]. Our experiment was carried out on a selected subset of datasets, and is
summarized in table 2. Notably, our findings indicate a significant reduction in the F1-score across
the tested datasets, whereas the AUROC exhibits a comparatively smaller change. The reduction in
F1-score is particularly significant on glass and breastw datasets, emphasizing the role of sample-
sample dependencies on these datasets.
To further explore the combined impact of sample-sample and feature-feature dependencies, we
introduce a reconstruction-based technique similar to NPT-AD but that relies on KNN imputation
for reconstructing masked features (see alg. 1 in appendix C.3). This approach, Mask-KNN, can be
seen as approximately equivalent to NPT-AD without considering the feature-feature dependencies.
Our experimentation, is detailed in appendix C.3 and summarized in table 11. We observe that
Mask-KNN achieves competitive performance on numerous datasets where NPT-AD also performs
such as pendigits and speech. However, it notably lags behind on other datasets where NPT-AD
performs well, like forestcover and thyroid. Furthermore, NPT-AD consistently outperforms Mask-
KNN on most datasets where the method proposed in [39] excels, underscoring the pivotal role of
feature-feature dependencies in specific dataset contexts. Additionally, the results presented in tables
2 and 11 align with our observations regarding the datasets glass and breastw: as indicated by the
performance of Mask-KNN, on these datasets sample-sample dependencies play a crucial role in
anomaly detection through masking. Overall, the results in tables 11 and 2 highlight the importance
of considering both types of dependencies to accurately identify anomalies.

6 Limitations and Conclusion

Limitations As with most non-parametric models, NPT-AD tends to display higher complexity
than parametric approaches. NPT-AD can scale well for datasets with a reasonable number of features
d; however, for large values of d, our approach involves a high computational cost in terms of memory
and time. This cost originates from the complexity of NPT itself and how the anomaly score is
derived. In table 13 in appendix C.4 we observe that NPT-AD displays longer runtime for datasets
with large values of d when n is also high, e.g. Mnist or backdoor. Two factors can account for
this, first, the number of reconstruction highly depends on d which increases the inference runtime,
secondly due to the feature embeddings, the dimension of the model also increases rapidly with d.

Conclusion In this work, we have proposed a novel deep anomaly detection method designed
explicitly for tabular datasets. To the best of our knowledge, our approach is the first to utilize
both feature-feature and sample-sample dependencies to identify anomalies. Using an extensive
benchmark of tabular datasets, our experiments have demonstrated the effectiveness of our approach,
outperforming existing state-of-the-art methods in terms of F1-score and AUROC. Our experiments
further demonstrate the robustness of our method to a small training set contamination. This work
emphasizes the importance of leveraging sample-sample dependencies to detect anomalies on tabular
datasets effectively. Overall, our work invites further exploration of the potential of NPTs for other
tasks on tabular data.
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Appendix A Multi-Head Self-Attention

Scaled dot-product attention as first proposed in [45] describes a mapping between queries Qi ∈
R1×hk , keys Ki ∈ R1×hk and values Vi ∈ R1×hv to an output. The output is computed as a weighted
sum of the values, where each weight is obtained by measuring the compatibility between queries
and keys. Take Q ∈ Rn×hk , K ∈ Rm×hk and V ∈ Rm×hv the corresponding matrices in which
queries, keys, and values are stacked. Scaled dot-product attention is computed as

Attention(Q,K,V) = softmax
(
QK⊤
√
hk

)
V (7)

where, for convenience, one often sets hk = hv = h.

To foster the ability of a model to produce diverse and powerful representations of data samples,
one often includes several dot-product attention mechanisms. Multi-head dot-product attention then
describes the concatenation of k independent attention heads:

MultiHead(Q,K,V) = concat
axis=k

(O1, . . . , Ok)W
O, where (8)

Oj = Attention(QWQ
j ,KWK

j ,VWV
j ) (9)

where the embedding matrices WQ
j ,WK

j ,WV
j ∈ Rh×h/k are learned for each attention head j ∈

{1, . . . , k} and WO ∈ Rh×h serves to mix the h attention heads outputs. NPTs only include multi-
head self -attention mechanisms which consist in multi-head dot-product attention where queries,
keys, and values are identical:

MHSelfAtt(H) = MultiHead(Q = H,K = H,V = H) (10)

As described in [21], NPT follows transformer best practices to improve performances and involves a
residual branch as well as layer normalization (LN) [2] before MHSelfAtt(.).

Res(H) = HW res + MHSelfAtt (LN(H)) (11)

where W res ∈ Rh×h are learned weights. Layer normalization is also added after the residual branch
as well as a row-wised feed-forward network (rFF):

MHSA(H) = Res(H) + rFF (LN (Res (H))) ∈ Rn×h (12)
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Appendix B Datasets characteristics and experimental settings

Each experiment can be replicated using the code made available on github through the following
link: https://github.com/hugothimonier/NPT-AD/.

B.1 Dataset characteristics

In table 3, we display the main characteristics of the datasets involved in our experiments.

Table 3: Datasets characteristics

Dataset n d Outliers
Wine 129 13 10 (7.7%)

Lympho 148 18 6 (4.1%)
Glass 214 9 9 (4.2%)

Vertebral 240 6 30 (12.5%)
WBC 278 30 21 (5.6%)
Ecoli 336 7 9 (2.6%)

Ionosphere 351 33 126 (36%)
Arrhythmia 452 274 66 (15%)

BreastW 683 9 239 (35%)
Pima 768 8 268 (35%)

Vowels 1456 12 50 (3.4%)
Letter Recognition 1600 32 100 (6.25%)

Cardio 1831 21 176 (9.6%)
Seismic 2584 11 170 (6.5%)
Musk 3062 166 97 (3.2%)

Speech 3686 400 61 (1.65%)
Thyroid 3772 6 93 (2.5%)
Abalone 4177 9 29 (0.69%)
Optdigits 5216 64 150 (3%)

Satimage-2 5803 36 71 (1.2%)
Satellite 6435 36 2036 (32%)
Pendigits 6870 16 156 (2.27%)

Annthyroid 7200 6 534 (7.42%)
Mnist 7603 100 700 (9.2%)

Mammography 11183 6 260 (2.32%)
Shuttle 49097 9 3511 (7%)

Mulcross 262144 4 26214 (10%)
ForestCover 286048 10 2747 (0.9%)
Campaign 41188 62 4640 (11.3%)

Fraud 284807 29 492 (0.17%)
Backdoor 95329 196 2329 (2.44%)

14

https://github.com/hugothimonier/NPT-AD/


B.2 Experimental settings

For each dataset, we considered the same NPT architecture composed of 4 layers alternating between
Attention Between Datapoints and Attention Between Attributes and 4 attention heads. Per [21], we
consider a Row-wise feed-forward (rFF) network with one hidden layer, 4x expansion factor, GeLU
activation, and also include dropout with p = 0.1 for both attention weights and hidden layers. We
used LAMB [48] with β = (0.9, 0.999) as the optimizer and also included a Lookahead [49] wrapper
with slow update rate α = 0.5 and k = 6 steps between updates as in [21]. Similarly, following [21],
we consider a flat-then-anneal learning rate schedule: flat at the base learning rate for 70% of steps
and then anneals following a cosine schedule to 0 by the end of the training phase, and set gradient
clipping at 1. We chose r in accordance with the masking probability pmask used during training
and the total number of features d. We hypothesized that a too-high value of r for a low pmask

would pollute the anomaly score with reconstructions too challenging for the model, leading to high
reconstruction error for both normal samples and anomalies. Moreover, the hardest reconstructions,
i.e. those with a high number of masked features, would constitute a too high share of the total masks.
Indeed, for a fixed d,

(
d
k

)
as a function of k is non-decreasing for k ≤ d/2 and has an exponential

growth rate. Furthermore, raising the value of the parameter r can lead to a substantial augmentation
in the number of masks m, consequently inducing a significant upsurge in the inference runtime. We
detail in table 4 the varying hyperparameters used for each dataset in our experiments. Notice that
for most datasets, the hyperparameters remain unchanged. Variations of the hyperparameters are
motivated by a swifter convergence of the training loss or computational costs for larger datasets.

Table 4: Datasets hyperparameters. When the batch size is −1 it refers to a full pass over the training
set before an update of the weights.

Dataset epoch batch size lr ptrainmask r m e
Wine 1000 −1 0.001 0.15 1 13 8

Lympho 100 −1 0.01 0.15 4 3078 16
Glass 1000 −1 0.01 0.15 4 255 16

Vertebral 2000 −1 0.001 0.15 1 6 8
WBC 100 −1 0.01 0.15 3 4525 16
Ecoli 100 −1 0.01 0.15 3 63 16

Ionosphere 100 −1 0.001 0.15 2 561 16
Arrhythmia 100 −1 0.01 0.15 1 274 16

BreastW 500 −1 0.01 0.15 3 129 16
Pima 500 −1 0.01 0.15 4 162 16

Vowels 1000 −1 0.01 0.15 2 78 16
Letter Recognition 1000 −1 0.01 0.15 1 32 16

Cardio 100 −1 0.01 0.15 2 231 16
Seismic 100 −1 0.01 0.15 2 276 16
Musk 100 −1 0.01 0.15 2 166 16

Speech 1000 512 0.001 0.15 1 400 8
Thyroid 5000 −1 0.01 0.1 2 21 16
Abalone 1000 −1 0.0001 0.15 4 162 16
Optdigits 500 −1 0.01 0.2 1 64 16

Satimage-2 100 −1 0.01 0.2 1 36 16
Satellite 100 −1 0.01 0.2 1 36 16
Pendigits 1000 −1 0.01 0.25 2 136 16

Annthyroid 400 −1 0.01 0.15 1 6 16
Mnist 1000 −1 0.001 0.15 1 100 32

Mammography 200 −1 0.01 0.25 4 56 16
Shuttle 100 4096 0.01 0.25 3 129 64

Mulcross 100 4096 0.001 0.15 2 10 16
ForestCover 100 4096 0.01 0.15 2 55 16
Campaign 100 4096 0.001 0.15 1 62 16

Fraud 100 4096 0.001 0.2 1 29 32
Backdoor 1000 4096 0.001 0.2 1 196 32
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Appendix C Additional experiments

C.1 Additional results

In this section, we display the metrics for each of the experiments we performed. This includes
the AUROC for the approaches for which it is relevant to compute it; displayed in tables 5 and 6,
the F1-score for each architecture discussed in the original papers of NeuTraL-AD [29] in table 10,
GOAD [4] in table 8 and DROCC [10] in table 7. For each of these tables, we highlight in bold the
highest metric in the table.

Table 5: Anomaly detection AUROC(↑). We perform 5% T-test to test whether the differences
between the highest metrics for each dataset are statistically significant.

Method DROCC DROCC DROCC GOAD GOAD GOAD Internal
Cont.

NPT-AD

(Thyroid) (Arrhyth.) (Abalone) (Thyroid) (kddrev) (kdd) (Ours)
Wine 53.5±22 60.1±32 90.9±8.2 95.2±1.9 97.3±1.7 86.3±9.5 99.5±0.6 96.6±0.5
Lympho 6.4±5.2 58.6±30 83.7±12 94.8±5.6 79.7±11 59.9±15 99.5±0.3 99.9±0.1
Glass 63.5±9.1 55.5±22 75.4±8.9 62.2±14 85.5±7 82.1±6.3 88.1±5.0 82.8±2.4
Vertebral 55.0±5.1 58.0±15 41.2±10 47.0±13 52.2±3.9 49.4±4.2 51.1±3.2 54.6±3.9
WBC 6.8±1.8 41.3±25 35.4±13 95.4±0.7 66.1±12 86.6±2.9 95.4±1.1 96.3±0.3
Ecoli N/A N/A N/A 82.7±8.4 87.2±3.3 84.7±6.8 86.5±1.2 88.7±1.6
Ionosph. 19.6±5.8 83.5±5.6 80.0±2.8 92.4±1.3 96.3±1.1 96.5±1.1 98.1±0.4 97.4±1.7
Arrhyth. 53.2±7.0 52.7±8.6 51.2±8.1 80.0±1.9 73.3±5.1 64.3±8.8 81.7±0.6 80.1±0.0
Breastw 7.7±8.6 64.4±33 96.6±3.3 98.7±0.8 80.8±9.5 97.7±0.8 99.1±0.3 98.6±0.1
Pima 36.2±4.6 54.9±11 69.1±4.9 68.7±3.9 59.3±2.2 63.2±2.3 59.4±2.8 73.4±0.4
Vowels 79.4±9.5 72.0±12 95.3±2.1 81.0±2.4 98.5±0.3 97.6±0.5 99.7±0.1 99.3±0.1
Letter 77.6±3.3 73.3±5.4 90.0±1.2 60.9±0.7 89.9±0.5 87.6±0.9 92.8±0.9 96.1±0.2
Cardio 84.3±4.0 73.8±12 73.5±3.2 94.8±1.7 81.3±4.5 84.6±3.0 92.7±0.8 94.7±0.2
Seismic 58.2±2.8 60.3±4.5 56.7±1.3 69.5±1.5 67.2±1.2 67.9±1.2 62.9±1.0 69.8±0.3
Musk 2.3±5.1 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0
Speech 51.2±5.6 50.5±4.0 52.6±3.4 47.1±1.3 65.3±3.2 54.1±4.4 58.9±2.7 54.3±0.3
Thyroid 95.6±0.9 96.1±2.5 98.1±0.3 94.5±1.5 77.1±8.8 89.2±3.0 98.5±0.1 97.8±0.1
Abalone 82.4±14 52.9±26 70.6±9.7 89.2±0.9 46.0±3.7 54.3±7.8 94.3±0.6 91.6±1.2
Optdig. 84.2±4.6 89.0±4.6 89.5±2.1 66.9±3.3 95.7±0.5 93.1±1.9 97.5±1.5 97.5±0.3
Satimage 19.1±1.4 87.5±8.8 11.5±1.2 99.1±0.1 86.5±7.1 93.2±1.7 99.8±0.1 99.9±0.0
Satellite 64.6±8.9 73.1±1.3 50.2±2.2 69.1±0.8 76.3±1.0 78.2±0.9 80.6±1.7 80.3±0.9
Pendigits 58.9±7.6 50.8±15 76.6±5.4 87.5±3.9 89.2±2.9 85.1±3.4 99.5±0.1 99.9±0.0
Annthyr. 92.9±2.3 86.5±3.6 93.4±1.3 76.1±6.5 89.6±4.9 93.2±0.9 80.5±1.3 86.7±0.6
Mnist N/A N/A N/A 90.9±0.4 89.4±0.7 87.7±1.0 98.2±0.0 94.4±0.1
Mammo. 81.0±1.3 85.0±2.1 82.0±1.5 66.3±6.4 57.2±1.9 54.5±2.3 81.1±2.0 88.6±0.3
Mullcross N/A N/A N/A 100±0.0 N/A 51.3±16 100±0.0 100±0.0
Shuttle N/A N/A N/A 88.4±5.5 N/A 99.9±0.0 100±0.0 99.8±0.1
Forest N/A N/A N/A 15.9±6.6 N/A 76.0±5.3 96.2±0.6 95.8±7.9
Campaign N/A N/A N/A 38.4±2.0 N/A 50.9±2.5 73.7±1.5 79.1±0.5
Fraud N/A N/A N/A 83.5±2.7 N/A 86.3±0.8 95.2±0.5 95.7±0.1
Backdoor N/A N/A N/A 61.3±10.2 N/A 88.9±1.1 92.6±0.6 95.2±0.1
mean 39.8 50.9 53.7 77.3 64.1 78.8 88.8 89.8
mean std 4.5 9.1 3.4 3.5 3.2 3.8 1.0 0.8
mean rank 9.5 9.2 8 6.8 7.1 6.5 2.7 2.3
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Table 6: Anomaly detection AUROC(↑). We perform 5% T-test to test whether the differences
between the highest metrics for each dataset are statistically significant.

Method NeuTraL-AD NeuTraL-AD NeuTraL-AD NeuTraL-AD COPOD
(thyroid) (arrhythmia) (kddrev) (kdd)

Wine 82.9±13.1 95.4±1.9 86.0±10.3 85.2±12.9 87.5±1.7
Lympho 90.7±5.1 80.9±7.5 93.1±4.1 83.1±9.9 99.4±0.4
Glass 62.2±3.0 62.9±1.2 62.5±4.6 65.1±2.9 63.7±3.3
Vertebral 32.8±3.5 25.8±4.5 51.9±14.9 54.4±16.3 32.6±1.2
Wbc 80.4±5.0 92.6±2.2 62.4±8.2 32.5±11.6 96.3±0.5
Ecoli 43.2±9.3 53.8±9.9 52.5±10.6 49.9±10.9 81.0±1.2
Ionosphere 87.9±2.9 95.7±1.7 92.9±0.9 87.2±2.7 80.3±2.1
Arrhythmia 76.0±1.5 80.2±1.6 77.9±1.8 76.4±2.7 80.5±1.3
Breastw 86.0±2.2 96.2±1.1 95.9±1.6 91.3±5.1 99.4±0.2
Pima 55.1±1.9 60.6±1.2 57.3±2.1 57.3±3.7 65.2±0.7
Vowels 72.3±3.1 69.7±3.8 62.2±6.1 56.1±8.0 49.6±1.0
Letter 40.4±3.9 35.4±0.8 36.1±2.9 37.4±4.2 50.1±0.8
Cardio 74.6±2.7 74.3±3.1 47.7±4.2 28.9±6.3 92.2±0.3
Seismic 42.7±4.2 39.9±5.5 40.6±9.4 41.0±13.1 70.8±0.4
Musk 99.5±0.2 99.4±0.2 98.2±1.0 91.9±3.6 94.5±0.2
Speech 46.7±1.6 48.0±1.6 52.7±3.2 54.3±2.3 49.1±0.5
Thyroid 97.5±0.2 97.1±0.2 95.8±1.6 79.4±10.4 94.1±0.2
Abalone 92.9±1.0 92.7±0.8 80.8±2.4 73.9±4.6 86.3±0.3
Optdigits 72.3±7.1 82.6±5.4 84.1±4.3 78.4±7.2 68.0±0.4
Satimage 99.6±0.4 99.8±0.1 99.8±0.1 99.7±0.1 97.4±0.1
Satellite 80.7±0.4 81.0±0.4 76.8±0.6 74.0±1.6 63.5±0.2
Pendigits 88.6±5.7 98.6±0.8 97.5±0.9 93.0±3.1 90.4±0.2
Annthyroid 87.7±4.2 80.2±2.9 64.9±1.6 63.7±3.0 77.4±0.4
Mnist 97.5±0.3 97.8±0.2 93.4±0.7 89.9±1.1 77.2±0.2
Mammography 67.6±3.3 73.8±2.5 65.4±3.3 69.6±3.3 90.5±0.1
Mullcross 98.5±2.1 99.5±1.5 99.6±0.5 99.2±1.5 93.2±0.0
Shuttle 99.8±0.3 99.9±0.1 100.0±0.0 99.9±0.1 99.4±0.0
Forestcover 96.8±1.5 96.7±1.1 84.4±7.0 82.6±6.2 88.4±0.0
Campaign 75.4±4.8 70.0±2.1 76.5±0.7 76.4±0.5 78.3±0.1
Fraud 81.6±7.4 84.8±4.7 93.1±0.6 93.3±0.4 94.7±0.1
Backdoor 91.6±5.8 92.5±7.5 92.9±0.4 92.9±0.3 78.9±0.1
mean 77.5 79.3 76.6 72.8 79.7
mean std 3.5 2.5 3.6 5.1 0.6
mean rank 7.5 6.5 7.2 8 6.8
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Table 7: DROCC [10]: anomaly detection F1-score (↑) between architecture. The mean rank was
computed including all architectures of all models.

Method DROCC DROCC DROCC
(thyroid) (arrhyth.) (abalone)

Wine 20.0±19.0 32.0±35.4 63.0±20.0
Lympho 0.0±0.0 38.3±23.6 65.0±5.0
Glass 22.2±17.2 13.3±12.0 14.5±11.1
Vertebral 25.7±5.4 27.0±15.9 9.3±6.1
Wbc 0.0±0.0 18.6±16.0 9.0±6.2
Ecoli N/A N/A N/A
Ionosph. 29.9±6.8 76.3±6.4 76.9±2.8
Arrhyth. 38.8±6.2 37.9±8.0 37.1±6.8
Breastw 15.3±7.7 63.8±29.3 93.0±3.7
Pima 40.6±3.3 55.2±8.0 66.0±4.1
Vowels 33.0±16.4 20.4±15.0 66.2±8.8
Letter 39.0±4.8 31.3±6.5 55.6±3.6
Cardio 62.6±6.1 53.3±12.9 49.8±3.2
Seismic 17.7±2.5 17.9±2.7 19.1±0.9
Musk 1.3±3.3 99.7±0.9 99.4±1.5
Speech 3.4±2.4 2.1±1.9 4.3±2.0
Thyroid 68.4±3.2 69.7±5.7 72.7±3.1
Abalone 44.3±17.6 11.6±10.5 17.9±1.3
Optdigits 18.4±5.4 26.5±12.6 30.5±5.2
Satimage2 10.2±2.5 33.7±19.6 4.8±1.6
Satellite 61.3±6.3 68.1±0.7 52.2±1.5
Pendigits 7.9±2.9 10.6±7.9 11.0±2.6
Annthyr. 63.8±4.7 55.6±5.2 64.2±3.3
Mnist N/A N/A N/A
Mammo. 34.1±2.2 31.5±6.2 32.6±2.1
Shuttle N/A N/A N/A
Mullcross N/A N/A N/A
Forest N/A N/A N/A
Campaign N/A N/A N/A
Fraud N/A N/A N/A
Backdoor N/A N/A N/A
mean 21.2 28.9 32.7
mean std 4.7 8.5 3.4
mean rank 12.6 11.9 10.8
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Table 8: GOAD [4]: anomaly detection F1-score (↑) between architecture. The mean rank was
computed including all architectures of all models.

Method GOAD GOAD GOAD
(thyroid) (kddrev) (kdd)

Wine 67.0±9.4 76.0±10.8 42.2±26.9
Lympho 68.3±13.0 67.7±7.8 46.0±21.5
Glass 12.7±3.9 25.7±12 24.0±15.1
Vertebral 16.3±9.6 26.9±5.2 25.5±4.7
Wbc 66.2±2.9 16.8±16.1 57.2±6.9
Ecoli 61.4±31.7 69.3±23.7 66.1±27.8
Ionosph. 83.4±2.6 88.1±2.3 88.7±2.7
Arrhyth. 52.0±2.3 51.6±4.0 45.2±7.6
Breastw 96.0±0.6 73.5±9.4 94.8±1.0
Pima 66.0±3.1 57.3±1.9 60.2±2.0
Vowels 31.1±4.2 78.6±2.9 72.6±4.5
Letter 20.7±1.7 53.8±2.2 48.6±3.0
Cardio 78.6±2.5 48.9±5.8 58.4±4.8
Seismic 24.1±1.0 18.6±1.9 19.4±2.6
Musk 100.0±0.0 100.0±0.0 100.0±0.0
Speech 4.8±2.3 8.9±2.9 4.4±2.4
Thyroid 72.5±2.8 17.2±9.4 32.9±9.9
Abalone 57.6±2.2 6.2±1.4 6.6±1.0
Optdigits 0.3±0.3 45.8±2.6 36.5±9.9
Satimage2 90.7±0.7 20.4±10.5 21.7±2.2
Satellite 64.2±0.4 67.9±2.0 70.1±0.8
Pendigits 40.1±5.0 25.1±3.6 19.4±4.5
Annthyr. 50.3±6.3 61.4±7.8 68.0±3.7
Mnist 66.9±1.3 67.5±1.2 66.2±1.5
Mammo. 33.7±6.1 16.5±1.3 16.0±1.5
Shuttle 73.5±5.1 N/A 98.4±0.2
Mullcross 99.7±0.8 N/A 36.4±17.0
Forest 0.1±0.2 N/A 15.0±4.3
Campaign 16.2±1.8 N/A 25.6±2.1
Fraud 53.1±10.2 N/A 53.7±2.0
Backdoor 12.7±2.9 N/A 39.9±3.2
mean 50.9 38.3 47.1
mean std 4.4 4.8 6.4
mean rank 7.8 9.5 8.4
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Table 9: RRCF [12] and PIDForest [8]: F1-score (↑). The mean rank was computed including all
architectures of all models.

Method RRCF PIDForest
Wine 69.0±11.4 50.0±6.4
Lympho 36.7±18.0 70.0±0.0
Glass 15.6±13.3 8.9±6.0
Vertebral 8.0±4.8 12.0±5.2
Wbc 54.8±6.1 65.7±3.7
Ecoli 28.9±11.3 25.6±11.2
Ionosph. 72.0±1.8 67.1±3.9
Arrhyth. 50.6±3.3 22.7±2.5
Breastw 63.0±1.8 70.6±7.6
Pima 55.4±1.7 65.9±2.9
Vowels 18.0±4.6 23.2±3.2
Letter 17.4±2.2 14.2±2.3
Cardio 43.9±2.7 43.0±2.5
Seismic 24.1±3.2 29.2±1.6
Musk 38.4±6.5 35.4±0.0
Speech 3.9±2.8 2.0±1.9
Thyroid 31.9±4.7 72.0±3.2
Abalone 36.9±6.4 58.6±1.6
Optdigits 1.3±0.7 22.5±16.8
Satimage2 47.9±3.4 35.5±0.4
Satellite 55.4±1.3 46.9±3.7
Pendigits 16.3±2.6 44.6±5.3
Annthyr. 32.1±0.8 65.4±2.7
Mnist 33.5±1.7 32.6±5.7
Mammo. 27.1±1.9 28.1±4.3
Shuttle 32.0±2.2 70.7±1.0
Mullcross 100±0.0 67.4±2.1
Forest 9.9±1.5 8.1±2.8
Campaign 36.6±0.1 42.4±0.2
Fraud 17.1±0.4 41.0±0.9
Backdoor 24.5±0.1 3.4±0.2
mean 35.6 39.8
mean std 4.0 3.6
mean rank 11.7 10.7
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Table 10: NeuTraL-AD [29]: anomaly detection F1-score (↑) between architecture. The mean rank
was computed including all architectures of all models.

Method NeuTraL-AD NeuTraL-AD NeuTraL-AD NeuTraL-AD
(thyroid) (arrhythmia) (kddrev) (kdd)

Wine 51.4±26.2 78.2±4.5 62.3±26.9 62.3±28.9
Lympho 46.7±17.9 20.0±18.7 54.2±15.7 34.2±15.3
Glass 7.5±6.2 9.0±4.4 9.5±5.9 13.0±7.8
Vertebral 9.2±3.4 3.8±1.2 23.3±9.8 13.0±7.8
Wbc 40.7±10.0 60.9±5.6 21.1±10.0 13.0±7.8
Ecoli 4.0±5.8 7.0±7.1 6.5±11.1 8.0±12.5
Ionosph. 79.2±2.8 90.6±2.4 86.9±1.4 79.4±4.0
Arrhyth. 54.9±3.4 59.5±2.6 57.7±1.6 57.2±3.1
Breastw 80.2±2.0 91.8±1.3 89.6±2.9 85.6±5.6
Pima 55.4±1.7 60.3±1.4 57.2±1.9 56.8±2.5
Vowels 13.2±6.3 10.0±6.2 5.0±3.8 3.9±3.4
Letter 4.9±1.7 5.7±0.8 3.6±1.2 4.8±2.8
Cardio 46.9±3.9 45.5±4.3 14.7±5.0 3.8±2.7
Seismic 12.8±1.3 11.8±4.3 8.7±4.4 10.7±7.9
Musk 98.9±0.0 99.0±0.0 79.3±11.2 43.4±16.5
Speech 5.3±1.8 4.7±1.4 4.3±2.4 6.1±2.7
Thyroid 75.6±2.3 69.4±1.4 61.4±8.4 26.6±17.0
Abalone 60.8±4.2 53.2±4.0 45.6±8.6 47.1±8.3
Optdigits 11.9±7.0 16.2±7.3 18.5±9.6 17.1±9.4
Satimage2 85.8±9.0 92.3±1.9 92.4±1.4 91.3±0.9
Satellite 72.7±0.3 71.6±0.6 70.4±0.6 66.9±2.1
Pendigits 32.4±14.3 69.8±8.7 58.4±8.9 42.2±13.2
Annthyr. 53.5±5.1 44.1±2.3 33.2±2.1 29.1±4.3
Mnist 82.8±0.9 84.8±0.5 68.8±2.5 60.8±2.8
Mammo. 11.3±1.7 19.2±2.4 20.8±3.7 19.1±4.9
Shuttle 97.1±0.4 97.9±0.2 97.6±0.1 97.5±0.1
Mullcross 88.9±12.2 96.3±10.5 96.2±3.6 92.9±9.4
Forest 64.6±9.9 51.6±8.2 12.2±11.4 8.7±7.6
Campaign 52.0±4.1 42.1±1.7 51.6±0.1 51.2±0.8
Fraud 24.7±7.8 24.3±7.8 61.0±5.2 55.9±4.2
Backdoor 84.9±5.0 84.4±1.8 87.3±0.2 86.8±0.3
mean 48.7 50.8 47.0 41.7
mean std 5.8 4.0 5.9 7.0
mean rank 9.8 9.0 9.4 10.7
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C.2 Contamination

For this experiment, the architecture used for NPT-AD is the same as for all experiments (see section
4). The NPT was trained for 100 epochs with batch size equal to the dataset size, with learning rate
0.01, optimizer LAMB [48] with β = (0.9, 0.999), per-feature embedding dimension 16, r set to 1,
i.e. one mask for each of the 6 features, and masking probability pmask = 0.15. NeuTraL-AD [29]
and GOAD [4], and DROCC [10] were trained with hyperparameters as for the thyroid dataset in the
original papers and [39] with its default parameters in their implementation.

(a) F1-score (↑) (b) AUROC (↑)

Figure 3: Training set contamination impact on the F1-score and AUROC including DROCC. DROCC
was omitted in figure 2 since its large error bars cause the figure to be difficult to interpret.

C.3 Mask-KNN

To further investigate the impact of combining feature-feature and sample-sample dependencies, we
rely on reconstruction-based strategy which makes use of the KNN-Imputer strategy.

K-Nearest Neighbor Imputation Take a dataset D = {xi}ni=1 where xi ∈ Rd and for which
some samples might display missing values in the feature vector. K-nearest neighbor imputation
for a sample z ∈ D consists in identifying the k nearest neighbors of sample z given a distance
measure d : Rd × Rd → R, where k is a hyperparameter that must be discretionary chosen. This
distance measure only takes into account the non-missing features of sample z. Let I designate the
index of the non-missing features and z[I] the corresponding features of sample z, then the k-nearest
neighbors of sample z are identified through evaluating the distance d(z[I],x

[I]
j ) for each xj ∈ D

and ordering them to find the k smallest. Let K(z) designate the k nearest neighbors of sample z, Ī
the missing values of z, then ∀i ∈ Ī

ẑi =
1

k

∑
x∈K(z)

xi. (13)

Other imputation methods include weighting each sample inK(z) by its inverse distance to z, denoted
ω
[I]
(z,x) = 1/d(z[I],x

[I]
j ). This gives

ẑi =
1∑

x ω
[I]
(z,x)

∑
x∈K(z)

ω
[I]
(z,x)x

i. (14)

Mask-KNN Anomaly Score Consider a training set Dtrain = {xi}ntrain
i=1 , xi ∈ Rd comprised of

only normal samples and a validation set Dval = {xi}nval
i=1 for which we wish to predict the label.

In a reconstruction-based approach we construct an anomaly score based on how masked samples
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are well-reconstructed using KNN imputation as described in the previous paragraph. First, we
construct a mask bank comprised of m masks, where m =

∑r
j=1

(
d
j

)
and r designates the maximum

number of features masked simultaneously. The mask bank is comprised of all possible combinations
of j masked features for j ≤ r. Each mask corresponds to a d-dimensional vector composed of 0
and 1, where 1’s indicate that the corresponding features will be masked. Let us denote as ẑ(ℓ) the
reconstructed sample z for mask ℓ, take d : Rd ×Rd → R a distance measure, e.g. the ℓ2-norm, then
the anomaly score for sample z is given as

Mask-KNN(z) =

m∑
ℓ=1

d(z, ẑ(ℓ)) (15)

We give the pseudo-code of this method in alg. 1.

Algorithm 1 Pseudo Python Code for Mask-KNN

Require: Dtrain ∈ Rntrain×d,Dval ∈ Rnval×d, k, mask_bank, d : Rd × Rd → R
Mask-KNN← dict()
B ← random sample of size b from Dtrain

for mask ∈ mask_bank do
for idx ∈ range(nval) do

z← Dval[idx, :]
z̃← apply_mask(z, mask)
X← (z̃, B)⊤

X̂← KNNImputer(X, k)

ẑ← X̂[0, :]
Mask-KNN[idx] += d(z, ẑ)

end for
end for

Implementation For simplicity we set r to 2 for all experiments, except for large dataset (n >
200, 000) for which r was set to 1 for computational reasons. We set k, the number of neighbors, to 5
as for the vanilla KNN implementation. When present, categorical features were encoded using one-
hot encoding. Except for large datasets (n > 200, 000) with many features, d, such as ForestCover,
Fraud and Backdoor, we set B as the entire training set. Otherwise, we take a random subsample
of size b = 10, 000. We use the imputation strategy described in equation 14 to reconstruct the
masked sampled. We report the results of this experiment in table 11 and compare the performance of
Mask-KNN to KNN, the internal contrastive approach of [39] and NPT-AD. We run the algorithm 20
times for each dataset, except for ForestCover, Fraud and Backdoor, for which report an average over
10 runs for computational reasons. The mean rank, provided in table 11, was computed, including
each architecture of each approach. For completeness, we also include a table containing the mean
rank of all approaches including MasK-KNN in table 12.

Results We observe that Mask-KNN obtains satisfactory results on a significant share of the tested
datasets, e.g. pendigits, satellite; while also displaying poor performance on some datasets such as
forest or backdoor in comparison with NPT-AD. Several factors can account for this. First, NPTs
automatically select the number of relevant samples on which to rely to reconstruct the masked
features, thus making this approach much more flexible than Mask-KNN, which has a fixed number
of neighbors. Second, NPT-AD relies on attention mechanisms to learn the weights attributed to
relevant samples while Mask-KNN relies on the ℓ2-distance. Although the ℓ2-distance offers a precise
measure of similarity based on geometric distance, the attention mechanism can capture much more
complex relations between samples. Finally, NPT-AD not only relies on sample-sample dependencies
to reconstruct the mask features, but it also attends to feature-feature dependencies.

The strong performance of NPT-AD on datasets where Mask-KNN also performs well serves as
evidence supporting the fact that NPT-AD effectively captures sample-sample dependencies. More-
over, NPT-AD outperforms Mask-KNN on most datasets where the approach of [39] performs well,
highlighting the crucial role of feature-feature dependencies on specific datasets. The results dis-
played in table 11 show that NPT-AD manages to capture both feature-feature and sample-sample
dependencies to reconstruct samples when sample-sample dependencies are not sufficient.
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Table 11: Anomaly detection F1-score (↑). We perform 5% T-test to test whether the difference
between the highest metrics for each dataset is statistically significant. Apart from this table,
Mask-KNN was not included in the computation of the mean rank. The mean rank for the
F1-score of all approaches including Mask-KNN is displayed in table 12.

Method Internal Cont. KNN NPT-AD Mask-KNN
Wine 90.0±6.3 94.0±4.9 72.5±7.7 28.0±18.1

Lympho 86.7±6.0 80.0±11.7 94.2±7.9 60.0±12.2
Glass 27.2±10.6 11.1±9.7 26.2±10.9 26.7±5.4

Vertebral 26.0±7.7 10.0±4.5 20.3±4.8 24.7±5.9
Wbc 67.6±3.6 63.8±2.3 67.3±1.7 68.1±3.0
Ecoli 70.0±7.8 77.8±3.3 77.7±0.1 63.9±6.9

Ionosph. 93.2±1.3 88.6±1.6 92.7±0.6 89.7±0.9
Arrhyth. 61.8±1.8 61.8±2.2 60.4±1.4 62.9±2.4
Breastw 96.1±0.7 96.0±0.7 95.7±0.3 96.2±0.7

Pima 59.1±2.2 65.3±1.0 68.8±0.6 63.5±1.8
Vowels 90.8±1.6 64.4±3.7 88.7±1.6 84.3±4.9
Letter 62.8±2.4 45.0±2.6 71.4±1.9 56.7±3.2
Cardio 71.0±2.4 67.6±0.9 78.1±0.1 69.7±2.0
Seismic 20.7±1.9 30.6±1.4 26.2±0.7 26.2±1.7
Musk 100±0.0 100±0.0 100±0.0 100±0.0

Speech 5.2±1.2 5.1±1.0 9.3±0.8 10.2±2.9
Thyroid 76.8±1.2 57.3±1.3 77.0±0.6 31.6±5.4
Abalone 68.7±2.3 43.4±4.8 59.7±0.1 43.2±7.0
Optdigits 66.3±10.1 90.0±1.2 62.0±2.7 89.0±1.0
Satimage 92.4±0.7 93.8±1.2 94.8±0.8 93.7±1.7
Satellite 73.2±1.6 76.3±0.4 74.6±0.7 77.8±0.4
Pendigits 82.3±4.5 91.0±1.4 92.5±1.3 93.1±1.2
Annthyr. 45.4±1.8 37.8±0.6 57.7±0.6 19.6±1.2

Mnist 85.9±0.0 69.4±0.9 71.8±0.3 69.7±2.0
Mammo. 29.4±1.4 38.8±1.5 43.6±0.5 38.7±1.7
Shuttle 98.4±0.1 97.3±0.2 98.2±0.3 95.2±0.5

Mulcross 100±0.0 100±0.0 100±0.0 100±0.0
Forest 44.0±4.1 92.1±0.3 58.0±10 7.6±1.2

Campaign 46.8±1.4 41.6±0.4 49.8±0.3 42.0±0.3
Fraud 57.9±2.8 60.5±1.5 58.1±3.2 41.8±1.1

Backdoor 86.6±0.1 88.5±0.1 84.1±0.1 10.2±0.6
mean 67.2 67.7 68.8 57.5

mean std 2.9 2.2 2.0 3.1
mean rk 3.8 5.5 3.1 6.1
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Table 12: Mean rank (F1-score) for the experiments conducted, without Mask-KNN and with
Mask-KNN

Method mean rank mean rank (w/ Mask-KNN) diff.

DROCC (abalone) 10.8 11.6 +0.8
GOAD (thyroid) 7.4 8.4 +1.0
NeuTraL-AD (arrhythmia) 9.0 9.8 +0.8
Internal Cont. 3.5 3.8 +0.3
COPOD 9.7 10.3 +0.6
IForest 7.0 7.5 +0.5
KNN 4.9 5.5 +0.6
PIDForest 10.7 11.4 +0.7
RRCF 11.7 12.7 +1.0
Mask-KNN N/A 6.1 N/A
NPT-AD 3.0 3.1 +0.1

C.4 Computational time

Table 13: Runtime in seconds of NPT-AD for the training and inference phase. The training runtime
corresponds to the average training time of the model over the 20 runs with the parameters displayed
in table 4. The inference runtime corresponds to the average runtime over the 20 runs to compute
NPT-AD as shown in equation 6.

Dataset train inference
Wine 63 68
Lympho 10 283
Glass 76 6
Vertebral 128 2
Wbc 10 479
Ecoli 11 23
Ionosph. 12 76
Arrhyth. 100 223
Breastw 7 6
Pima 37 18
Vowels 62 63
Letter 105 15
Cardio 10 97
Seismic 9 189
Musk 56 168
Speech 62 64
Thyroid 253 2
Abalone 55 50
Optdigits 127 152
Satimage2 13 17
Satellite 13 23
Pendigits 78 47
Annthyr. 22 5
Mnist 478 153
Mammo. 16 24
Shuttle 16 115
Mullcross 43 44
Forest 73 409
Campaign 52 251
Fraud 141 362
Backdoor 18396 1992
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