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Abstract

Knowledge distillation as a broad class of methods has led to the development of lightweight and
memory efficient models, using a pre-trained model with a large capacity (teacher network) to train a
smaller model (student network). Recently, additional variations for knowledge distillation, utilizing
activation maps of intermediate layers as the source of knowledge, have been studied. Generally, in
computer vision applications it is seen that the feature activation learned by a higher-capacity model
contains richer knowledge, highlighting complete objects while focusing less on the background.
Based on this observation, we leverage the teacher’s dual ability to accurately distinguish between
positive (relevant to the target object) and negative (irrelevant) areas. We propose a new type of dis-
tillation, called angular margin-based distillation (AMD). AMD uses the angular distance between
positive and negative features by projecting them onto a hypersphere, motivated by the near angular
distributions seen in many feature extractors. Then, we create a more attentive feature from encoded
knowledge by the angular distance by introducing an angular margin to the positive feature. Trans-
ferring such knowledge from the teacher network enables the student model to harness the teacher’s
better discrimination of positive and negative features, thus distilling superior student models. The
proposed method is evaluated for various student-teacher network pairs on three public datasets.
Furthermore, we show that the proposed method has advantages in compatibility with other learning
techniques, such as using fine-grained features, augmentation, and other distillation methods.

1 Introduction

In the past decade, convolutional neural networks (CNN) have been widely deployed into many commercial appli-
cations. Various architectures that go beyond convolutional methods have also been developed. However, a core
challenge in all of them is that they are accompanied by high computational complexity, and large storage require-
ments (Gou et al., 2021; Cho & Hariharan, 2019). For this reason, application of deep networks is still limited to
environments that have massive computational support. In emerging applications, there is growing demand for apply-
ing deep nets on edge, mobile, and Iot devices (Li et al., 2018; Plastiras et al., 2018; Jang et al., 2020; Wu et al., 2016).
To move beyond these limitations, many studies have developed a lightweight form of neural models which assure
performance while ‘lightening’ the network scale (Li et al., 2018; Plastiras et al., 2018; Cho & Hariharan, 2019; Jang
et al., 2020; Han et al., 2016; Hinton et al., 2015; Wu et al., 2016).

Knowledge distillation (KD) is one of the promising solutions that can reduce the network size and develop an efficient
network model (Cho & Hariharan, 2019; Yim et al., 2017; Gou et al., 2021). The concept of knowledge distillation is
that the network consists of two networks, a larger one called teacher and a smaller one called student (Hinton et al.,
2015). During training the student, the teacher transfers its knowledge to the student, using the logits from the final
layer. So, the student can retain the teacher model’s classification performance.

Recently, feature-based distillation methods for KD have been studied to learn richer information from the teacher
for better-mimicking and performance improvement (Gou et al., 2021; Wang & Yoon, 2021). Romero et al. (2015)
firstly introduced the use of intermediate representations in FitNets using feature-based distillation. This method
enables the student to mimic the teacher’s feature maps in intermediate layers. In attention transfer (Zagoruyko &
Komodakis, 2017; Wang et al., 2020b; Ji et al., 2021; Gou et al., 2021) which is one of the popular methods for
feature-based distillation, spatial attention maps are used as the source of knowledge for distillation with intermediate
layers, where the maps are computed by summation of the squared activations and represent where it concentrates.
The method encourages the student to generate similar normalized maps as the teacher. However, these studies have
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only focused on mimicking the teacher’s activation from a layer (Wang & Yoon, 2021), not considering the teacher’s
dual ability to accurately distinguish between positive (relevant to the target object) and negative (irrelevant). The
emphasized positive feature regions that encapsulate regions of the target object are crucial to predicting the correct
class. In general, a higher-capacity model shows better performance, producing those regions with more attention and
precision compared to the smaller network. This gives an insight that the transfer of distinct regions of the positive
and negative pairs from teacher to student could significantly improve performance.

In this paper, based on this motivation, we propose an angular margin based distillation (AMD), that is motivated by
training discriminative angular distance on a hypersphere manifold. Recent insights have shown that features learnt
in deep-networks often exhibit an angular distribution, usually leveraged via a hyperspherical embedding (Choi et al.,
2020; Liu et al., 2016; 2017). Such embeddings lead to improved discriminative power, and feature separability. In
terms of loss-functions these can be implemented by using angular features that correspond to the geodesic distance
on the hypersphere and incorporating a preset constant margin. In this work, we show that leveraging such spherical
embeddings also improves knowledge distillation. Firstly, to get more activated features, spatial attention maps are
computed and decoupled into two parts: positive and negative maps. Secondly, we construct a new form of knowledge
by projecting the features onto the hypersphere to reflect the angular distance between them. Then, we introduce
an angular margin to the positive feature to get a more attentive representation of the feature. Finally, during the
distillation, the student tries to mimic the more separated decision regions of the teacher to improve the classification
performance. Therefore, the proposed method trains the student model effectively.

The contributions of this paper are:

• We propose a new knowledge distillation, called angular margin distillation (AMD), using the angular dis-
tance of attentive features on the hypersphere.

• We experimentally show that the proposed method results in significant improvements with different combi-
nations of networks and also outperforms other attention based methods across three datasets having different
complexities.

• We corroborate results from previous studies which suggest that the performance of a higher capacity teacher
model is not necessarily better.

• We rigorously validate the advantages of the proposed distillation method with various aspects using visual-
ization of activation maps, classification accuracy, and reliability diagrams.

The rest of the paper is organized as follows. In section 2, we describe related work. In section 4, we provide an
overview of the proposed method. In section 5, we describe our experimental results and analysis. In section 6, we
discuss our findings and conclusions.

2 Related Work

Knowledge Distillation. Knowledge distillation, a transfer learning method, trains a smaller model by shifting knowl-
edge from a larger model. KD is firstly introduced by Buciluǎ et al. (2006) and is further explored by Hinton et al.
(2015). The main concept of KD is using soft labels by a trained teacher network. That is, mimicking soft probabilities
helps students get knowledge of teachers, which improves beyond using hard labels (training labels) alone. Cho &
Hariharan (2019) explore which combination of student-teacher is good to obtain the better performance. They show
that using a teacher trained by early stopping the training improves the efficacy of KD. KD can be categorized into two
approaches that use the outputs of the teacher (Gou et al., 2021). One is response-based KD, which uses the posterior
probabilities with softmax loss. The other is feature-based KD using the intermediate features with normalization.
Feature-based methods can be performed with the response-based method to complement traditional KD (Gou et al.,
2021).

Attention Transfer. To capture the better knowledge of a teacher network, Zagoruyko & Komodakis (2017) suggest
activation-based attention transfer (AT), which uses a sum of squared attention mapping function computing statistics
across the channel dimension. Although the depth of teacher and student is different, knowledge can be transferred by
the attention mapping function, which matches the depth size as one. The activation-based spatial attention maps are
created as: fd

sum(A) =
∑c

j=1 |Aj |d, where f is a computed attention map, A is an output of a layer, c is the number
of channels for the output, j is the number for the channel, and d > 1. A higher value of d corresponds to a heavier
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weight on the most discriminative parts defined by activation level. AT (feature-based distillation method) shows better
effectiveness when used with traditional KD (response-based KD) (Zagoruyko & Komodakis, 2017).

Spherical Feature Embeddings. The majority of existing methods (Sun et al., 2014; Wen et al., 2016) rely on
Euclidean distance for feature distinction. These approaches could not solve the problem that classification under
open-set protocol shows a meaningful result only when successfully narrowing maximal intra-class distance. To
solve this problem, an angular-softmax (A-softmax) function is proposed to distinguish the features by increasing
the angular margins between features (Liu et al., 2017). According to its geometric interpretation, using A-softmax
function equivalents to the projection of features onto the hypersphere manifold, which intrinsically matches the
preliminary condition that features also lie on a manifold. Applying the angular margin penalty corresponds to the
geodesic distance margin penalty in the hypersphere (Liu et al., 2017). A-softmax function encourages learned features
to be discriminative on hypersphere manifold. For this reason, the A-softmax function shows superior performance
to the original softmax function when tested on several classification problems (Liu et al., 2017). On the other hand,
Choi et al. (2020) introduced angular margin based contrastive loss (AMC-loss) as an auxiliary loss, employing the
discriminative angular distance metric that corresponds to geodesic distance on a hypersphere manifold. AMC-loss
increases inter-class separability and intra-class compactness, improving performance in classification. The method
can be combined with other deep techniques, because it easily encodes the angular distributions obtained from many
types of deep feature learners (Choi et al., 2020).

3 Background

3.1 Traditional Knowledge Distillation

In standard knowledge distillation (Hinton et al., 2015), the loss for training a student is:

L = (1 − λ)LC + λLK, (1)

where, LC denotes the standard cross entropy loss, LK is KD loss, and λ is a hyperparameter; 0 < λ < 1. The
error between the output of the softmax layer of a student network and the ground-truth label is penalized by the
cross-entropy loss:

LC = H(softmax(aS), y), (2)

where H(·) is a cross entropy loss function, aS is the logits of a student (inputs to the final softmax), and y is a ground
truth label. The outputs of student and teacher are matched by KL-divergence loss:

LK = τ2KL(zT , zS), (3)

where, zT = softmax(aT /τ) is a softened output of a teacher network, zS = softmax(aS/τ) is a softened output
of a student, and τ is a hyperparameter; τ > 1. Feature distillation methods using intermediate layers can be used with
the standard knowledge distillation that uses output logits. When they are used together, in general, it is beneficial
to guide the student network towards inducing more similar patterns of teachers and getting a better classification
performance. Thus, we also utilize the standard knowledge distillation with our proposed method.

3.2 Attention Map

Denote an output map as A ∈ Rc×h×w, where c is the number of output channels, h is the height for the size of output,
and w is width for the size of the output. The attention map for the teacher is given as follows:

f l
T =

c∑
j=1

|Al
T,j |2 (4)

Here, AT is an output of a layer from a teacher, l is a specific layer, c is the number of channels, j is the number for
the output channel, and T denotes a teacher network. The attention map for the student is f l′

S =
∑c′

j′=1 |Al′

S,j′ |2, where
AS is an output of a layer from a student, l′ is the corresponding layer of l, c′ is the number of channels for the output,
j′ is the number for the output channel, and S denotes a student network. If the student and teacher use the same depth
for transfer, l′ can be the layer at the same depth as l; if not, l′ can be the end of the same block for the teacher. From
the attention map, we obtain positive and negative maps and we project features onto hypersphere to calculate angular
distance for distillation. The details are explained in section 4.

3



Under review as submission to TMLR

Figure 1: Schematics of teacher-student knowledge transfer with the proposed method

3.3 Spherical Feature with Angular Margin

In order to promote the learned features to have an angular distribution, (Liu et al., 2017; Wang et al., 2018a) proposed
to introduce the angular distance between features W and weights x. For example, W T x = ∥W∥∥x∥cos(θ), where
bias is set as 0 for simplicity, and θ is the angle between W and x. Then, the normalization of feature and weight
makes the outputs only depend on the angle between weights and features and further, ∥x∥ is replaced to a constant s
such that the features are distributed on a hypersphere with a radius of s. To enhance the discrimination power, angular
margin m is applied to the angle of the target. Finally, ouptut logits are used to formulate probability with angular
margin m as below (Liu et al., 2017; Wang et al., 2018a):

Gi = log

(
es·(cos(m·θyi

))

es·(cos(m·θyi
)) +

∑J
j=1,j ̸=yi

es·(cos(θj))

)
, (5)

where yi is a label and θyi
is a target angle for class i, θj is an angle obtained from j-th element of output logits, and

J is the class number. Liu et al. (2017) and Wang et al. (2018a) utilized output logits to obtain more discriminative
features for classification on a hypersphere manifold, which performs better than using original softmax function. We
adopt Equation 5 to create the new type of feature-knowledge in the intermediate layers instead of output logits in the
final classifier, thereby more attentive feature maps are transferred to the student model.

4 Proposed Method

The overall approach for the proposed method is illustrated in Figure 1. The proposed method utilizes features from
intermediate layers. The approach for extracting AM knowledge is illustrated in Figure 2. To obtain the angular
distance between positive and negative features, first, we generate attention maps from outputs of intermediate layers.
And then, we obtain positive and negative features and calculate probabilities for distillation. The details for obtaining
the positive and negative maps and angular margin based knowledge are explained follows.

4.1 Generating Attention Maps

To transfer activated features from teacher to student, the output of intermediate layers are used. To match the dimen-
sion size between teacher and student models, we create the normalized attention maps (Zagoruyko & Komodakis,
2017), which has benefits in generating maps discriminatively between positive and negative features. This reduces
the need for any additional training procedure for matching the channel dimension sizes between teacher and student.
We use the power value d = 2 for generating the attention maps, which shows the best results as reported in previous
methods (Zagoruyko & Komodakis, 2017).
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Figure 2: Schematics of teacher-student AM knowledge transfer. Based on the attention maps, positive and negative
maps are obtained. Based on their angle features, angular probability is calculated. To enhance the discrimination
power, angular margin m is multiplied to the positive angle. After then, angular margin based knowledge is obtained
and go through to AM loss function to transfer the knowledge. The details are explained in section 4.2.

4.2 Angular Margin Computation

Although the activation map-based distillation provides additional context information for student model learning,
there is still room to craft an attentive activation map that can distill a superior student model in KD. To further refine
the original attention map, we propose an angular margin-based distillation (AMD) that encodes new knowledge
using the angular distance between positive (relevant to the target object) and negative features (irrelevant) on the
hypersphere.

In this section, the details for extracting the proposed knowledge using positive and negative features are explained.
For a clear notation, we write the normalized positive map as Qp = f/∥f∥ where f is the output map extracted from
the intermediate layer in networks. Further, we can obtain the normalized negative map by Qn = 1 − Qp.

Then, to make the positive map more attentive, we insert an angular margin m into the positive features. In this way,
a new feature-knowledge encoding attentive feature can be defined as follows:

Gl(Qp, Qn) = log

(
es·(cos(mθpl

))

es·(cos(mθpl
)) + es·(cos(θnl

))

)
, (6)

where θpl
= cos−1(Qp) and θnl

= cos−1(Qn) for lth layer in the networks, and m is a scalar angular margin.
Gl ∈ R1×h×w reflects the angular distance between positive and negative features in lth layer. For transferring
knowledge, we aim to make the student’s Gl(QSp, QSn) approximate the teacher’s Gl(QT p, QT n) by decreasing the
angular distance between feature maps.

4.3 Angular Margin based Distillation Loss

With redesigned knowledge encoding terms as above, we finally define the angular margin distillation (AMD) loss
that accounts for the knowledge gap between the teacher and student activations as:

LAM (QT p, QT n, QSp, QSn) = 1
3|L|

∑
(l,l′)∈L

∥∥∥Ĝl(QT p, QT n) − Ĝl′
(QSp, QSn)

∥∥∥2

F

A

+
∥∥∥Q̂l

T p − Q̂l′

Sp

∥∥∥2

F

P

+
∥∥∥Q̂l

T n − Q̂l′

Sn

∥∥∥2

F

N

 , (7)

Here, Ĝ denotes a function for normalization for output of function G, Q̂ is a normalized map. L collects the layer
pairs (l and l′), and ∥ · ∥F is the Frobenius norm (Tung & Mori, 2019). This criterion encourages the student to learn
more attentive features from the teacher network. We will verify the performance of each component (A, P, and N) in
Section 5.2.
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The final loss (LAMD) of our proposed method combines all the distillation losses, including the conventional logit
distillation (Equation 3). Thus, our overall learning objective can be written as:

LAMD = λ1LC + λ2LK + γLA, (8)

where LC is a cross-entropy loss, LK is a knowledge distillation loss, LA denotes the angular margin based loss from
LAM , and λ1, λ2, and γ are hyperparameters to control the balance between different losses.

Global and Local Feature Distillation. So far, we only consider the global feature (i.e., preserving its dimension and
size). However, we point out that the global feature sometimes does not transfer more informative knowledge and rich
spatial information across contexts of an input. Therefore, we also suggest utilizing local features during distillation.
Specifically, the global feature is the original feature without a map division. Local features are determined by the
division of the global feature. We split the global feature map from each layer by 2 for the width and height sizes of
the maps to create four (2 × 2) local feature maps. That is, one local map has h/2 × w/2 size, where h and w are the
height and width sizes of the global map. Similar to before, local features encoding the attentive angle can be extracted
for both teacher and student. Then, the losses considering global and local features for our method are:

LAglobal = LAM (QT , QS), LAlocal = 1
K

K∑
k=1

LAM (Qk
T , Qk

S), (9)

where QT and QS are global features of the teacher and student for distillation, and Qk
T and Qk

S are local features of
the teacher and student, respectively, for k-th element of K, where K is the total number of local maps from a map;
K = 4. When LAglobal and LAlocal are used together, we applied weights of 0.2 for local and 0.8 for global features to
make a balance for learning.

5 Experiments

In this section, we present experimental validation of the proposed method. We evaluate the proposed method, AMD,
with various combinations of teacher and student, which have different architectural styles. We run experiments on
three public datasets that have different complexities. We examine the sensitivity with several different hyperparame-
ters (γ and m) for the proposed distillation and discuss which setting is the best. To demonstrate the detailed contri-
bution, we report the results with various aspects, using classification accuracy as well as activation maps extracted by
Grad-CAM (Selvaraju et al., 2017). Finally, we investigate performance enhancement by combining previous methods
including filtered feature based distillation.

5.1 Dataset Description and Experimental Settings

5.1.1 Dataset

CIFAR-10. CIFAR-10 dataset (Krizhevsky & Hinton, 2009) includes 10 classes with 5000 training images per class
and 1000 testing images per class. Each image is an RGB image of size 32×32. We use the 50000 images as the
training set and 10000 as the testing set. The experiments on CIFAR-10 helps validate the efficacy of our models with
less time consumption.

CINIC-10. We extend our experiments on CINIC-10 (Darlow et al., 2018). CINIC-10 comprises of augmented
extension in the style of CIFAR-10, but the dataset contains 270,000 images whose scale is closer to that of ImageNet.
The images are equally split into each ‘train’, ‘test’, and ‘validate’ sets. The size of the images is 32×32. There are
ten classes with 9000 images per class.

Tiny-ImageNet / ImageNet. To extend our experiments on a larger scale dataset having more complexity, we use
Tiny-ImageNet (Le & Yang, 2015). The size of the images for Tiny-ImageNet is 64×64. We pad them to 68×68,
then they are randomly cropped to 64×64, and horizontally flipped, for augmentation to account for the complexity
of the dataset. The training and testing sets are of size 100k and 10k respectively. The dataset includes 200 classes.
For ImageNet (Deng et al., 2009), The dataset has 1k categories with 1.2M training images. The images are randomly
cropped and then resized to 224×224 and horizontally flipped.
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5.1.2 Settings for experiments

Table 1: Architecture of WRN used in experiments. Down-
sampling is performed in the first layers of conv3 and conv4.
16 and 28 mean depth and k is width (channel multiplication)
of the network.

Group
Name

Output
Size WRN16-k WRN28-k

conv1 32×32 3×3, 16 3×3, 16

conv2 32×32
[

3×3, 16k
3×3, 16k

]
×2

[
3×3, 16k
3×3, 16k

]
×4

conv3 16×16
[

3×3, 32k
3×3, 32k

]
×2

[
3×3, 32k
3×3, 32k

]
×4

conv4 8×8
[

3×3, 64k
3×3, 64k

]
×2

[
3×3, 64k
3×3, 64k

]
×4

1×1 average pool, 10-d fc, softmax

For experiments on CIFAR-10, CINIC-10, and Tiny-
ImageNet, we set the batch size as 128, the total epochs
as 200 using SGD with momentum 0.9, a weight decay
of 1×10−4, and the initial learning rate lr as 0.1 which
is decayed by a factor of 0.2 at epochs 40, 80, 120,
and 160. For ImageNet, we use SGD with momentum
of 0.9 and the batch size is set as 256. We run a total
epoch of 100. The initial learning rate lr is 0.1 decayed
by 0.1 in 30, 60, and 90 epochs.

In experiments, we use the proposed method with
WideResNet (WRN) (Zagoruyko & Komodakis, 2016)
for teacher and student models to evaluate the classifi-
cation accuracy, which is popularly used for KD (Cho
& Hariharan, 2019; Zagoruyko & Komodakis, 2017;
Yim et al., 2017; Tung & Mori, 2019). Their network
architectures are described in Table 1.

To determine optimal parameters λ1 and λ2 for KD,
we tested with different values for λ1 and λ2 for train-
ing based on KD on CIFAR-10 dataset. As shown in

Figure 3, when λ1 is 0.1 and λ2 is 0.9 (τ = 4) with KD, the accuracy of a student (WRN16-1) trained with WRN16-3
as a teacher is the best. If λ1 is small and λ2 is large, the distillation effect of KD is increased. Since the accuracy
depends on λ1 and λ2, we referred to previous studies (Cho & Hariharan, 2019; Tung & Mori, 2019; Ji et al., 2021)
to choose the popular parameters for experiments. The parameters of (λ1 = 0.1, λ2 = 0.9, τ = 4), (λ1 = 0.4, λ2 =
0.6, τ = 16), (λ1 = 0.7, λ2 = 0.3, τ = 16), and (λ1 = 1.0, λ2 = 1.0, τ = 4) are used for KD on CIFAR-10, CINIC-10,
Tiny-ImageNet, and ImageNet, respectively.

Figure 3: Accuracy (%) of students (WRN16-1)
trained with a teacher (WRN16-3) on CIFAR-10 for
various λ2. λ1 is obtained by 1 - λ2.

We perform baseline comparisons with traditional KD (Hin-
ton et al., 2015), attention transfer (AT) (Zagoruyko &
Komodakis, 2017), relational knowledge distillation (RKD)
(Park et al., 2019), variational information distillation (VID)
(Ahn et al., 2019), similarity-preserving knowledge distilla-
tion (SP) (Tung & Mori, 2019), correlation congruence for
knowledge distillation (CC) (Peng et al., 2019), contrastive
representation distillation (CRD) (Tian et al., 2019), attentive
feature distillation and selection (AFDS) (Wang et al., 2020b),
and attention-based feature distillation (AFD) (Ji et al., 2021)
that is a new feature linking method considering similarities
between the teacher and student features, including state-of-
the-art approaches. Note, the distillation methods are per-
formed with traditional KD to see if they enhance standard
KD, keeping the same setting as the proposed method. The
constant parameter s and margin parameter m for the pro-
posed method are 64 and 1.35, respectively. The loss weight

γ of the proposed method is 5000. We determine the hyperparameters empirically, considering the distillation effects
by the capacity of models. A more detailed description of parameters appears in section 5.4. All experiments were
repeated five times, and the averaged best accuracy and the standard deviation of performance are reported.

No augmentation method is applied for CIFAR-10 and CINIC-10. For the proposed method, additional techniques,
such as using the other hidden layers for generating better distillation effects from teachers or reshaping the dimension
size of the feature maps, are not applied. All of our experiments are run on a 3.50 GHz CPU (Intel® Xeon(R) CPU
E5-1650 v3), 48 GB memory, and NVIDIA TITAN Xp (3840 NVIDIA® CUDA® cores and 12 GB memory) graphic
card (NVIDIA, 2016).
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Figure 4: Accuracy (%) for Full KD and ESKD. (a) and (b) are on CIFAR-10, and (c) and (d) are on CINIC-10,
respectively. T and S denotes teacher and student models, respectively.

To obtain the best performance, we adopt early-stopped KD (ESKD) (Cho & Hariharan, 2019) for training teacher and
student models, leveraging its effects across the board in improving the efficacy of knowledge distillation. As shown
in Figure 4, the early stopped model of a teacher tends to train student models better than Full KD that uses a fully
trained teacher.

5.2 Attention based Distillation

Table 2: Details of teacher and student network architectures. ResNet (He et al., 2016) and WideResNet (Zagoruyko
& Komodakis, 2016) are denoted by ResNet (depth) and WRN (depth)-(channel multiplication), respectively.

Setup Compression type Teacher Student # of params (teacher) # of params (student) Compression ratio
(a) Channel WRN16-3 WRN16-1 1.5M 0.18M 11.30%
(b) Depth WRN28-1 WRN16-1 0.37M 0.18M 47.38%
(c) Depth+Channel WRN16-3 WRN28-1 1.5M 0.37M 23.85%
(d) Different architecture ResNet44 WRN16-1 0.66M 0.18M 26.47%

In this section, we explore the performance of attention based distillation approaches with different types of combi-
nations for teacher and student. We set four types of combinations for teacher and student that consist of the same or
different structure of networks. The four types of combinations are described in Table 2. Since the proposed method is
relevant to using attention maps, we implemented various baselines that are state-of-the-art attention based distillation
methods, including AT (Zagoruyko & Komodakis, 2017), AFDS (Wang et al., 2020b), and AFD (Ji et al., 2021). As
described in section 2, AT (Zagoruyko & Komodakis, 2017) uses activation-based spatial attention maps for trans-
ferring from teacher to student. AFDS (Wang et al., 2020b) includes attentive feature distillation and accelerates the
transfer-learned model by feature selection. Additional layers are used to calculate a transfer importance predictor
used to measure the importance of the source activation maps and enforce a different penalty for training a student.
AFD (Ji et al., 2021) extracts channel and spatial attention maps and identifies similar features between teacher and

Table 3: Accuracy (%) on CIFAR-10 with various knowledge distillation methods. The methods denoted by “*” are
attention based distillation. “g” and “l” denote using global and local feature distillation, respectively.

Setup
Method

Teacher Student KD AT∗ SP RKD VID AFDS∗ AFD∗ AMD
(g) (g+l)

(a) 87.76 84.11 85.29 85.79 85.69 85.45 85.40 – 86.23 86.28 86.36
±0.12 ±0.12 ±0.15 ±0.14 ±0.11 ±0.09 ±0.14 ±0.13 ±0.06 ±0.10

(b) 85.59 84.11 85.48 85.79 85.77 85.47 84.92 85.53 85.84 86.04 86.10
±0.13 ±0.12 ±0.12 ±0.12 ±0.07 ±0.12 ±0.13 ±0.13 ±0.11 ±0.12 ±0.10

(c) 87.76 85.59 86.57 86.77 86.56 86.38 86.64 – 87.24 87.13 87.35
±0.12 ±0.12 ±0.16 ±0.11 ±0.09 ±0.22 ±0.24 ±0.03 ±0.14 ±0.10

(d) 86.41 84.11 85.44 85.95 85.41 85.50 85.17 85.14 85.78 86.22 86.34
±0.20 ±0.21 ±0.06 ±0.05 ±0.12 ±0.06 ±0.11 ±0.13 ±0.09 ±0.07 ±0.05
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Table 4: Accuracy (%) on CINIC-10 with various knowledge distillation methods. The methods denoted by “*” are
attention based distillation. AMD outperforms RKD (Park et al., 2019). “g” and “l” denote using global and local
feature distillation, respectively. ca setup consists of WRN28-3 teacher and WRN16-1 student with compression ratio
of 5.31%.

Setup
Method

Teacher Student KD AT∗ SP VID AFDS∗ AFD∗ AMD
(g) (g+l)

(a) 75.40

72.05
±0.12

74.31 74.63 74.43 74.35 – 74.13 75.04 75.18
±0.12 ±0.10 ±0.13 ±0.14 ±0.05 ±0.12 ±0.11 ±0.09

(b) 75.59 74.66 74.73 74.94 73.85 74.54 74.36 75.14 75.21
±0.15 ±0.08 ±0.02 ±0.11 ±0.08 ±0.08 ±0.04 ±0.06 ±0.04

(ca) 76.97 74.26 74.19 75.05 74.06 – 74.20 74.72 75.17
±0.05 ±0.06 ±0.11 ±0.10 ±0.15 ±0.12 ±0.07 ±0.07

(d) 74.30 74.47 74.67 74.46 74.43 74.64 73.31 74.93 75.10
±0.15 ±0.09 ±0.05 ±0.17 ±0.10 ±0.12 ±0.13 ±0.07 ±0.10

Table 5: Accuracy (%) on Tiny-ImageNet with various knowledge distillation methods. The methods denoted by “*”
are attention based distillation. AMD outperforms VID (Ahn et al., 2019) and RKD (Park et al., 2019). “g” and “l”
denote using global and local feature distillation, respectively. bb setup consists of WRN40-1 teacher and WRN16-
1 student with compression ratio of 32.53%. cb setup comprises of WRN40-2 teacher and WRN16-1 student with
compression ratio of 8.27%.

Setup
Method

Teacher Student KD AT∗ SP AFDS∗ AFD∗ AMD
(g) (g+l)

(a) 58.16

49.45
±0.20

49.99 49.72 49.27 – 50.00 50.32 49.92
±0.30 ±0.15 ±0.15 ±0.19 ±0.23 ±0.07 ±0.04

(bb)
54.74 49.56 49.79 49.89 49.46 50.04 50.15 49.97
±0.24 ±0.17 ±0.22 ±0.20 ±0.28 ±0.27 ±0.10 ±0.18

(cb)
59.92 49.67 49.62 49.59 – 49.78 49.88 50.07
±0.15 ±0.13 ±0.16 ±0.25 ±0.24 ±0.20 ±0.10

(d) 54.66 49.52 49.45 49.13 49.55 49.44 49.92 50.08
±0.14 ±0.16 ±0.28 ±0.20 ±0.13 ±0.27 ±0.09 ±0.16

Table 6: Top-1 and Top-5 accuracy (%) on ImageNet with various knowledge distillation methods. The methods de-
noted by “*” are attention based distillation. “g” and “l” denote using global and local feature distillation, respectively.

Teacher Student KD AT∗ RKD SP CC AFD∗ CRD(+KD) AMD
(g) (g+l)

Top-1 73.31 69.75 70.66 70.70 70.59 70.79 69.96 71.38 71.17(71.38) 71.58 71.47
Top-5 91.42 89.07 89.88 90.00 89.68 89.80 89.17 – 90.13(90.49) 90.50 90.49

student, which are used to control the distillation intensities for all possible pairs and compensate for the limitation
of learning to transfer (L2T) (Jang et al., 2019) using manually selected links. We implemented AFDS (Wang et al.,
2020b) when the dimension size of features for intermediate layers from the student is the same as the one from the
teacher to concentrate on the distillation effects. We use four datasets that have varying degrees of difficulty in a
classification problem. These baselines are used in the following experiments as well.

Table 3 presents the accuracy of various knowledge distillation methods for all setups in Table 2 on CIFAR-10 dataset.
The proposed method, AMD (global+local), has the best performing results in all cases. Table 4 describes the CINIC-
10 results. In most cases, AMD (global+local) achieves the best results. For experiments on Tiny-ImageNet, as
illustrated in Table 5, AMD outperforms previous methods, and AMD (global) shows better results in (a) and (bb)
setups. For (cb) and (d) setups, AMD (global+local) provides better results. For experiments on ImageNet, standard
KD is not applied to baselines and Full KD is utilized. Teacher and student networks are ResNet34 and ResNet18,
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respectively. The results of baselines are referred from prior works (Tian et al., 2019; Ji et al., 2021). As described in
Table 6, AMD (global) outperforms other distillation methods, increasing the top-1 and top-5 accuracy by 1.83% and
1.43% over the results of learning from scratch, respectively.

Compared to KD, AT obtains better performance in most cases across datasets. That is, the attention map helps the
teacher to transfer its knowledge. Even though there is a case that AT shows lower performance than KD in Table 5,
AMD outperforms KD in all cases. It verifies that applying the discriminative angular distance metric for knowledge
distillation maximizes the attention map’s efficacy of transferring the knowledge and performs to complement the
traditional KD for various combinations of teacher and student. The accuracies of SP with setup (a) and (d), and
AFD with setup (d), are even lower than the accuracy of learning from scratch, while AMD performs better than other
methods as shown in Table 5. When the classification problem is harder, AMD (global) can perform better than AMD
(global+local) in some cases. When the teacher and student have different channels or architectural styles, AMD
(global+local) can generate a better student than AMD (global).

Figure 5: Accuracy (%) of students (WRN16-1) trained
with teachers (WRN16-3 and WRN28-1) on CIFAR-10
for various loss functions.

Components of AMD Loss Function. As described
in Equation 7, angular margin distillation loss function
(LAM (QT p, QT n, QSp, QSn)) incldues three components
(A, P, N). To verify the performance of each component
in AMD loss, we experiment with each component sepa-
rately. As shown in Figure 5, among all components, A
provides the strongest contribution. Also, the combination
of all the components (AMD) shows a much higher perfor-
mance. This result indicates that all components (AMD)
are critical to distilling the best student model.

By using KD, SP, and AMD (global), Figure 6 plots LA vs.
accuracy for WRN16-1 students trained with WRN16-3,
WRN28-1, and ResNet44 teachers, on CIFAR-10 testing
set. As shown in Figure 6, when the loss value is smaller,

the accuracy is higher. Thus, these plots verify that LA and performance are correlated.

Figure 6: LA vs. Accuracy (%) for (from left to right) WRN16-1 students (S) trained with WRN16-3, WRN28-1, and
ResNet44 teachers (T), on CIFAR-10.

5.3 Various Capacity of Teachers

To understand the effect of the capacity of the teacher, we implemented various combinations of teacher and student,
where the teacher has a different capacity/ We use well-known benchmarks for image classification which are WRN
(Zagoruyko & Komodakis, 2016), ResNet (He et al., 2016), and MobileNetV2 (M.NetV2) (Sandler et al., 2018). We
applied the same settings as in the experiments of the previous section.

The results in classification accuracy for the student models are described in Table 7 across three datasets, trained with
attention based and non-attention based methods (Hinton et al., 2015; Zagoruyko & Komodakis, 2017; Tung & Mori,
2019). The number of trainable parameters are noted in in brackets. For all cases, the proposed method, AMD, shows
the highest accuracy. When the complexity of the dataset is higher and the depth of teacher is largely different from the
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Table 7: Accuracy (%) with various knowledge distillation methods for different combinations of teachers and stu-
dents. “Teacher” and “Student” denote results of the model used to train the distillation methods and trained from
scratch, respectively. “g” and “l” denote using global and local feature distillation, respectively.

Method CIFAR-10 CINIC-10 Tiny-ImageNet

Teacher

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN M.Net WRN WRN WRN
28-1 40-1 16-3 16-8 16-3 16-8 28-1 40-1 28-3 40-2 16-3 28-3 V2 40-1 40-2 16-3

(0.4M, (0.6M, (1.5M, (11.0M, (1.5M, (11.0M, (0.4M, (0.6M, (3.3M, (2.2M, (1.5M, (3.3M, (0.6M, (0.6M, (2.3M, (1.6M,
85.84) 86.39) 88.15) 89.50) 75.65) 77.97) 73.91) 74.49) 77.14) 76.66) 75.65) 77.14) 80.98) 55.28) 60.18) 58.78)

Student
WRN16-1 WRN28-1 WRN16-1 ResNet20 WRN16-1 ResNet20

(0.2M, (0.4M, (0.2M, (0.3M, (0.2M, (0.3M,
84.11±0.21) 85.59±0.13) 72.05±0.12) 72.74±0.09) 49.45±0.20) 51.75±0.19

KD 85.48 85.42 86.57 86.68 74.31 74.17 74.66 74.45 74.26 74.29 75.12 74.97 76.69 49.56 49.67 51.72
±0.12 ±0.11 ±0.16 ±0.08 ±0.10 ±0.16 ±0.08 ±0.03 ±0.06 ±0.09 ±0.11 ±0.07 ±0.06 ±0.17 ±0.13 ±0.13

AT 85.79 85.79 86.77 87.00 74.63 74.23 74.73 74.55 74.19 74.48 75.33 75.18 77.34 49.79 49.62 51.65
±0.12 ±0.11 ±0.11 ±0.05 ±0.13 ±0.14 ±0.02 ±0.06 ±0.11 ±0.08 ±0.11 ±0.09 ±0.10 ±0.22 ±0.16 ±0.05

SP 85.77 85.90 86.56 86.94 74.43 74.34 74.94 74.86 75.04 74.81 75.29 75.50 73.71 49.89 49.59 51.87
±0.07 ±0.11 ±0.09 ±0.08 ±0.11 ±0.13 ±0.11 ±0.07 ±0.10 ±0.09 ±0.10 ±0.09 ±0.10 ±0.20 ±0.25 ±0.09

AMD 86.04 86.03 87.13 87.22 75.04 74.93 75.14 75.12 74.72 74.95 75.66 75.61 78.45 50.15 49.88 51.89
(g) ±0.12 ±0.09 ±0.14 ±0.17 ±0.11 ±0.09 ±0.06 ±0.07 ±0.07 ±0.20 ±0.08 ±0.06 ±0.03 ±0.11 ±0.20 ±0.25

AMD 86.10 86.15 87.35 87.31 75.18 75.20 75.21 75.10 75.22 75.04 75.75 75.76 78.62 49.97 50.07 52.12
(g+l) ±0.10 ±0.06 ±0.10 ±0.15 ±0.09 ±0.05 ±0.04 ±0.04 ±0.07 ±0.06 ±0.08 ±0.11 ±0.04 ±0.18 ±0.10 ±0.15

one of the student, AMD (global) tends to generate a better student than AMD (global+local). When a larger capacity
of students is used, the accuracy observed is higher. This is seen in the results from WRN16-1 and ResNet20 students
with WRN16-3 and WRN28-3 teachers on CINIC-10 dataset. For the combinations, ResNet20 students having a
larger capacity than WRN16-1 generate better results. Furthermore, on CIFAR-10, when a WRN16-3 teacher is used,
a WRN28-1 student achieves 87.35% for AMD (global+local), whereas a WRN16-1 student achieves 86.36% for
AMD (global+local). On Tiny-ImageNet, when AMD (global+local) is used, the accuracy of a ResNet20 student is
52.12%, which is higher than the accuracy of a WRN16-1 student, which is 49.92%.

Compared to KD, in most cases, AT achieves better performance. However, when the classification problem is difficult,
such as when using Tiny-ImageNet, and when WRN40-2 teacher and WRN16-1 student are used, both AT and SP show
worse performance than KD. When the WRN16-3 teacher and ResNet20 student are used, KD and AT perform worse
than the model trained from scratch. The result of AT is even lower than that of KD. So, there are cases where AT and
SP cannot complement the performance of the traditional KD. On the other hand, for the proposed method, the results
are better than the baselines in all the cases. Interestingly, on CIFAR-10 and CINIC-10, the result of a WRN16-1
student trained by AMD with a WRN28-1 teacher is even better than the result of the teacher. Therefore, we conclude
that the proposed method maximizes the attention map’s efficacy of transferring the knowledge and complements
traditional KD.

Also, when applying the larger teacher model and the smaller student model, the performance degradation of AMD
can occur. For example, on CINIC-10, WRN16-1 student trained with WRN40-1 (0.6M) teacher outperforms the one
trained with WRN40-2 (2.3M) teacher. Both AMD and other methods produce some cases with lower performance
when a better (usually larger) teacher is used. These findings support previous research (Cho & Hariharan, 2019;
Stanton et al., 2021; Wang & Yoon, 2021) that a better teacher does not always guarantee a better student.

5.4 Sensitivity Analysis

In this section, we investigate sensitivity for hyperparameters (γ and m) used for the angular margin based attention
distillation.

5.4.1 Effect of angular distillation hyperparameter γ

The results of a student model (WRN16-1) for AMD (global) trained with teachers (WRN16-3 and WRN28-1) by
using various γ on CIFAR-10 (the first row) and CINIC-10 (the second row) are depicted in Figure 7 (m = 1.35).
When γ is 5000, all results show the best accuracy. For CIFAR-10, when WRN16-3 is used as a teacher, the accuracy
of γ = 3000 is higher than that of γ = 7000. However, for WRN28-1 as a teacher, the accuracy of γ = 7000 is higher
than that of γ = 3000. When γ is 1000, the accuracy is lower than KD, implying that it does not complement KD and
adversely affects the performance. On the other hand, for CINIC-10, when the WRN16-3 teacher is used, the result
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Figure 7: Accuracy (%) of students (WRN16-1) for AMD (global) with various γ, trained with teachers (WRN16-3
and WRN28-1) on CIFAR-10 and CINIC-10. “T” and “S” denote teacher and student, respectively.

Figure 8: Accuracy (%) of students (WRN16-1) for AMD (global) with various angular margin m, trained with teach-
ers (WRN16-3 and WRN28-1) on CIFAR-10 and CINIC-10. “T” and “S” denote teacher and student, respectively.

of γ = 7000 is better than that of γ = 3000. But, for the WRN28-1 teacher, γ = 3000 is higher than that of γ = 7000.
Therefore, γ values between 3000 and 7000 achieve good performance, while too small or large γ values do not help
much with improvement. Therefore, setting the proper γ value is important for performance. We recommend using γ
as 5000, which produces the best results across datasets and combinations of teacher and student.

5.4.2 Analysis of angular margin m

The results of a student model (WRN16-1) for AMD (global) trained with teachers (WRN16-3 and WRN28-1) by
various angular margin m on CIFAR-10 (the first row) and CINIC-10 (the second row) are illustrated in Figure 8 (γ =
5000). As described in section 4.2, using the large value of m corresponds to producing more distinct positive features
in the attention map and making a large gap between positive and negative features for distillation. When m is 1.35
for the WRN16-3 teacher, the WRN16-1 student shows the best performance of 86.28% on CIFAR-10. When m = 1.5
for CINIC-10, the student’s accuracy is 75.13%, which is higher than when m = 1.35. When the teacher is WRN28-1,
the student produces the best accuracy with m = 1.35 on both datasets. The student model with m = 1.35 performs
better than the one with m = 1.1 and 2.0. When the complexity of the dataset is higher, using m (1.5) which is larger
than 1.35 can produce a good performance. When m = 1.0 (no additional margin applied to the positive feature) for
CIFAR-10 and CINIC-10 with setup (b), the results are 85.81% and 74.83%, which are better than those of 85.31%
and 74.75% from m = 2.0, respectively. This result indicates that it is important to set an appropriate m value for
our method. We believe that angular margin plays a key role in determining the gap between positive and negative
features. As angular margin increases, the positive features are further emphasized, and in this case of over-emphasis
by a much larger m, the performance is worse than that of the smaller m. We recommend using a margin m of around
1.35 (m > 1.0), which generates the best results in most cases.

5.5 Analysis with Activation Maps

To analyze results with intermediate layers, we adopt Grad-CAM (Selvaraju et al., 2017) which uses class-specific
gradient information to visualize the coarse localization map of the important regions in the image. In this section,
we present the activation maps from intermediate layers and the high level of the layer with various methods. The red
region is more crucial for the model prediction than the blue one.
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Figure 9: Activation maps for different levels of students (WRN16-1) trained with a teacher (WRN16-3) on CIFAR-
10.

5.5.1 Activation maps for the different levels of layers

The activation maps from intermediate layers with various methods are shown in Figure 9. The proposed method,
AMD, shows intuitively similar activated regions to the traditional KD (Hinton et al., 2015) in the low-level. However,
at mid-level and high-level, the proposed method represents the higher activations around the region of a target object,
which is different from the previous methods (Hinton et al., 2015; Zagoruyko & Komodakis, 2017). Thus, the proposed
method can classify positive and negative areas more discriminatively, compared to the previous methods (Hinton
et al., 2015; Zagoruyko & Komodakis, 2017). The high-level activation maps with various input images are described
in Figure 10. The activation from proposed method is seen to be more centered on the target. The result shows that the
proposed method performs better in focusing on the foreground object distinctly with high weight, while being less
distracted by the backgroun compared to other methods (Hinton et al., 2015; Zagoruyko & Komodakis, 2017). With
higher weight over regions of interest, the student from the proposed method has a stronger discrimination ability.
Therefore, the proposed method guides student models to increase class separability.

Figure 10: Activation maps of high-level from students (WRN16-1) trained with a teacher (WRN16-3) for different
input images on CIFAR-10.
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5.5.2 Activation maps for global and local distillation of AMD

Figure 11: Activation maps of high-level from students (WRN16-1) for AMD trained with a teacher (WRN16-3) for
different input images on CIFAR-10.

To investigate the impact of using global and local features for AMD, we illustrate relevant results in Figure 11. When
both global and local features are used for distillation, the activated area is located and shaped more similar to the
teacher, than using the global feature only. Also, AMD (global+local) focuses more on the foreground object with
higher weights than AMD (global). AMD (global+local) guides the student to focus more on the target regions and
finds discriminative regions. Thus, using global and local features is better than using global features alone for the
proposed method.

5.6 Combining with Existing Methods

Even if a model shows good performance in classification, it may have miscalibration problems (Guo et al., 2017)
and does not always obtain improved results from combining with other robust methods. In this section, to evaluate
generalizability of models trained by each method and to explore if the method can complement other methods, we
implement experiments with various existing methods. We use the method in various ways to demonstrate how easily
it can be combined with any previous learning tasks. We trained students with fine-grained features (Wang et al., 2019;
2020a), Mixup (Zhang et al., 2018) augmentation, and one of the baselines such as SP (Tung & Mori, 2019) that is not
based on the attention feature based KD. WRN16-1 students were trained with WRN16-3 and WRN28-1 teachers. We
examine whether the proposed method can be combined with other techniques and compare the results to baselines.

5.6.1 Fine-grained feature-based distillation

If the features of teacher and student are compatible, it results in a student achieving ‘minor gains’ (Wang et al., 2019).
To perform better distillation and to overcome the problem of learning minor gains, a technique for generating a fine-
grained feature has been used (Wang et al., 2019; 2020a). For distillation with AMD and creating the fine-grained
(masked) feature, a binary mask is adopted when the negative feature is created. For example, if the probability of
the point for the negative map is higher than 0.5, the point is multiplied by 1, otherwise by 0. Then, compared to
non-masking, it boosts the difference between teacher and student, where the difference can be more focused on loss
function for training. The results for AMD with or without using masked feature-based distillation are presented in
Figure 12. The parameter γ for training a student based on AMD without masked features is 5000 for all setups across
datasets. When masked features are used for AMD, to generate the best results, γ of 3000 is applied to setup (b) on
CIFAR-10, setup (ca) on CINIC-10, and all setups on Tiny-ImageNet. For CIFAR-10, AMD (global+local) without
masked features has the best performing result in most cases. AMD (global+local) with masked features shows the
best with setup (d). For CINIC-10, the results of AMD with masked features for setup (d) show the best. For Tiny-
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Figure 12: Accuracy (%) from students (WRN16-1) for AMD trained with a teacher (WRN16-3) with/without masked
features. “g”, “l”, and “m” denote global, local, and masked feature, respectively.

ImageNet, in most cases, AMD with masked features performs the best. Therefore, when the complexity of a dataset is
high, fine-grained features can help more effectively improve the performance, and the smaller parameter of γ, 3000,
generates better accuracy. Also, AMD (global+local) with masked features produces better performance than AMD
(global) with the one. For setup (d) – different architectures for teacher and student – with/without masked features,
AMD (global+local) outperforms AMD (global). This could be due to the fact that the teacher’s features differ from
the student’s because the two networks have different architectures, resulting in different distributions. So, masked
features with both global and local distillation influence more on setup (d) than other setups. The difference between
AMD (global) and AMD (global+local) with masked features is also discriminatively shown with the harder problem
in classification. If the student’s and teacher’s architectural styles are similar, the student is more likely to achieve
plausible results (Wang & Yoon, 2021).

5.6.2 Applying augmentation methods

Mixup (Zhang et al., 2018) is one most commonly used augmentation methods. We demonstrate here that AMD
complements Mixup. Mixup’s parameter is set to αMixup = 0.2. A teacher is trained with the original training set and
learns from scratch. A student is trained with Mixup and the teacher model is implemented as a pre-trained model.

As described in Figure 13, with Mixup, most of the methods generate better results. However, when a WRN28-1
teacher is used, the performance of the student from AFD is degraded. Also, compared to the baselines, AMD obtains
more gains from Mixup. To study the generalizability and regularization effects of Mixup, we measured expected
calibration error (ECE) (Naeini et al., 2015; Guo et al., 2017) and negative log likelihood (NLL) (Guo et al., 2017) for
each method. ECE is a metric to measure calibration, representing the reliability of the model (Guo et al., 2017). A
probabilistic model’s quality can be measured by using NLL (Guo et al., 2017). The results of training from scratch
with Mixup show a higher ECE and NLL than the results of training without Mixup, as seen in Table 8. However,
the methods, including knowledge distillation, generate lower ECE and NLL. This implies that knowledge distillation
from teacher to student influences the generation of a better model not only for accuracy but also for reliability. In
both (a) and (b), with Mixup, AMD (global+local) shows robust calibration performance. Therefore, we confirm that
an augmentation method such as Mixup gets the benefits from AMD in generating better calibrated performance. As
can be seen in Figure 14, WRN16-1 trained from scratch with Mixup produces underconfident predictions (Zhang
et al., 2018), compared to KD (Hinton et al., 2015) with Mixup. AMD (global+local) with Mixup achieves the best
calibration performance. These results support the advantage of AMD, that it can be easily combined with common
augmentation methods to improve the performance in classification with good calibration.

5.6.3 Combination with other distillation methods

To demonstrate how AMD can perform with the other distillation methods, we adopt SP (Tung & Mori, 2019) which
is not an attention based distillation method. A teacher is trained with the original training set and learns from scratch.
SP (Tung & Mori, 2019) is applied while a student is being trained. We compare with baselines, depicted in Figure
15. In all cases, with SP, the accuracy is increased. Compared to the other attention based methods, AMD gets more
gains by SP. Therefore, AMD can be enhanced and can perform well with the other distillation methods such as SP.
We additionally analyzed the reliability described in Table 9. AMD (global+local) with SP shows the lowest ECE
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Figure 13: Accuracy (%) of students (WRN16-1) for knowledge distillation methods, trained with Mixup and a teacher
(WRN16-3) on CIFAR-10. “T” and “S” denote teacher and student, respectively. “g” and “l” denote using global and
local feature distillation, respectively. “Student” is a result of WRN16-1 trained from scratch.

Table 8: ECE (%) and NLL (%) for various knowledge distillation methods with Mixup on CIFAR-10. “g” and “l”
denote using global and local feature distillation, respectively. The results (ECE, NLL) for WRN16-3 and WRN28-1
teachers are (1.469%, 44.42%) and (2.108%, 64.38%), respectively.

Setup Method w/o Mixup w/ Mixup
ECE NLL ECE NLL

Student 2.273 70.49 7.374 (+5.101) 90.58 (+20.09)

(a)

KD (Hinton et al., 2015) 2.065 63.34 1.818 (-0.247) 55.62 (-7.71)
AT (Zagoruyko & Komodakis, 2017) 1.978 60.48 1.652 (-0.326) 50.84 (-9.64)

AFD (Ji et al., 2021) 1.890 56.71 1.651 (-0.240) 50.22 (-6.49)
AMD (g) 1.933 59.67 1.645 (-0.288) 50.33 (-9.34)

AMD (g+l) 1.895 57.60 1.592 (-0.304) 49.68 (-7.92)

(b)

KD (Hinton et al., 2015) 2.201 68.75 1.953 (-0.249) 58.81 (-9.93)
AT (Zagoruyko & Komodakis, 2017) 2.156 67.14 1.895 (-0.261) 56.51 (-10.62)

AFDS (Wang et al., 2020b) 2.197 68.53 1.978 (-0.219) 58.86 (-9.68)
AFD (Ji et al., 2021) 2.143 66.05 1.900 (-0.243) 57.68 (-8.37)

AMD (g) 2.117 66.47 1.869 (-0.248) 56.05 (-10.42)
AMD (g+l) 2.123 67.51 1.853 (-0.270) 55.15 (-12.36)

Figure 14: Reliability diagrams of students (WRN16-1) for knowledge distillation methods, trained with Mixup and a
teacher (WRN16-3) on CIFAR-10. For the results of each method, the left is the result without Mixup, and the right is
with Mixup.

and NLL values. It verifies that AMD with SP can generate a model having higher reliability with better accuracy.
Thus, the proposed method can be used with an additional distillation method. Also, the proposed method with
SP can perform with different combinations of teacher and student with well-calibrated results. As illustrated in
Figure 16, with SP (Tung & Mori, 2019), AT (Zagoruyko & Komodakis, 2017) and AFD (Ji et al., 2021) produce
more overconfident predictions, compared to AMD (global+local) with SP (Tung & Mori, 2019) that gives the best
calibration performance. Conclusively, our empirical findings reveal that AMD can perform with other distillation
methods such as SP (Tung & Mori, 2019) to generate more informative features for distillation from teacher to student.
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Figure 15: Accuracy (%) of students (WRN16-1) for knowledge distillation methods, trained with SP and a teacher
(WRN16-3) on CIFAR-10. “T” and “S” denote teacher and student, respectively. “g” and “l” denote using global and
local feature distillation, respectively. “Student” is a result of WRN16-1 trained from scratch.

Table 9: ECE (%) and NLL (%) for various knowledge distillation methods with SP on CIFAR-10. “g” and “l” denote
using global and local feature distillation, respectively. The results (ECE, NLL) for WRN16-3 and WRN28-1 teachers
are (1.469%, 44.42%) and (2.108%, 64.38%), respectively.

Setup Method w/o SP w/ SP
ECE NLL ECE NLL

(a)

AT (Zagoruyko & Komodakis, 2017) 1.978 60.48 1.861 (-0.118) 56.22 (-4.26)
AFD (Ji et al., 2021) 1.890 56.71 1.881 (-0.010) 56.73 (-0.02)

AMD (g) 1.933 59.67 1.808 (-0.125) 54.74 (-4.93)
AMD (g+l) 1.895 57.60 1.803 (-0.092) 53.80 (-3.80)

(b)

AT (Zagoruyko & Komodakis, 2017) 2.156 67.14 2.095 (-0.060) 65.38 (-1.75)
AFDS (Wang et al., 2020b) 2.197 68.53 2.128 (-0.069) 66.61 (-1.92)

AFD (Ji et al., 2021) 2.143 66.05 2.118 (-0.024) 65.39 (-0.66)
AMD (g) 2.117 66.47 2.058 (-0.059) 63.37 (-3.10)

AMD (g+l) 2.123 67.51 2.043 (-0.080) 63.23 (-4.28)

Figure 16: Reliability diagrams of students (WRN16-1) for knowledge distillation methods, trained with SP and a
teacher (WRN16-3) on CIFAR-10. For the results of each method, the left is the result without SP, and the right is
with SP.

6 Conclusion

In this paper, we proposed an angular margin based knowledge distillation (AMD) method. Our analysis shows
that the proposed method trains the student model effectively in KD. Through multiple combinations of the models
and showing great performance on the more challenging dataset, we have verified the robustness of the proposed
approaches. We have presented the effects of using global and local feature distillation for AMD with activation maps.
Furthermore, we have confirmed that the proposed method can be easily combined with previous studies. Fine-grained
features can be applied to AMD to obtain better performance. Also, other approaches, such as Mixup and SP, can be
implemented with AMD for better performance and lower calibration error.
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In future work, we aim to extend the idea presented in this paper to explore the distillation effects with different
hypersphere feature embedding methods (Wang et al., 2018b; Deng et al., 2019). In addition, our approach could
provide insights for further advancement in other applications such as object detection and semantic segmentation.
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