
Published as a conference paper at ICLR 2024

ECONTROL: FAST DISTRIBUTED OPTIMIZATION WITH
COMPRESSION AND ERROR CONTROL

Yuan Gao1,3∗ Rustem Islamov2∗ Sebastian U. Stich3

1Universität des Saarlandes, 2Universität Basel, 3CISPA Helmholtz Center for Information Security
{yuan.gao, stich}@cispa.de, rustem.islamov@unibas.ch

ABSTRACT

Modern distributed training relies heavily on communication compression to reduce
the communication overhead. In this work, we study algorithms employing a popu-
lar class of contractive compressors in order to reduce communication overhead.
However, the naive implementation often leads to unstable convergence or even
exponential divergence due to the compression bias. Error Compensation (EC) is
an extremely popular mechanism to mitigate the aforementioned issues during the
training of models enhanced by contractive compression operators. Compared to
the effectiveness of EC in the data homogeneous regime, the understanding of the
practicality and theoretical foundations of EC in the data heterogeneous regime is
limited. Existing convergence analyses typically rely on strong assumptions such
as bounded gradients, bounded data heterogeneity, or large batch accesses, which
are often infeasible in modern Machine Learning Applications. We resolve the
majority of current issues by proposing EControl, a novel mechanism that can
regulate error compensation by controlling the strength of the feedback signal. We
prove fast convergence for EControl in standard strongly convex, general convex,
and nonconvex settings without any additional assumptions on the problem or data
heterogeneity. We conduct extensive numerical evaluations to illustrate the efficacy
of our method and support our theoretical findings.

1 INTRODUCTION

The size of modern neural networks has increased dramatically. Consequently, the data required for
efficient training is huge as well, and accumulating all available data into a single machine is often
infeasible. Because of these considerations, the training of large language models (Shoeybi et al.,
2019), generative models (Ramesh et al., 2021; 2022), and others (Wang et al., 2020) is performed
in a distributed fashion with decentralized data. Another quickly developing instance of distributed
training is Federated Learning (FL) (Konečný et al., 2016; Kairouz et al., 2019) where the goal is to
train a single model directly on the devices keeping their local data private.

The communication bottleneck is a main factor that limits the scalability of distributed deep learning
training (Seide et al., 2014; Strom, 2015). Methods that use lossy compression have been proposed as
a remedy, with great success (Seide et al., 2014; Alistarh et al., 2017). It has been observed that error
compensation (EC) mechanisms are crucial to obtain high compression ratios (Seide et al., 2014;
Stich et al., 2018), and variants of these techniques (Vogels et al., 2019) are already integrated in
standard deep learning frameworks such as PyTorch (Paszke et al., 2019) and been successfully used
in the training of transformer models (Ramesh et al., 2021).

These methods were primarily developed for data center training scenarios where training data is
shuffled between nodes. This data uniformity was also a limiting assumption in early analyses for
distributed EC (Cordonnier, 2018; Stich & Karimireddy, 2020). To make compression suitable for
training beyond data centers, such as federated learning, it is essential to take data heterogeneity
(also termed client drift or bias) (Karimireddy et al., 2020; Mishchenko et al., 2019) into account.
Mishchenko et al. (2019) designed a method for this scenario, but it can only support the restrictive
class of unbiased compressors. It turned out, that handling arbitrary compressors is a challenge. A

∗Equal contribution.

1

Published as a conference paper at ICLR 2024

line of work developed the EF21 algorithm (Richtárik et al., 2021) that can successfully handle
the bias/drift, but cannot obtain a linear speedup in parallel training, i.e. the training time does not
decrease when more devices are used for training.

One of the main difficulties in developing a method that simultaneously combats client drift and
maintains linear acceleration has been the complicated interaction between the mechanisms of bias
and error correction. In this work, we propose EControl, a novel mechanism that can regulate error
compensation by controlling the strength of the feedback signal. This allows us to overcome both
challenges simultaneously. Our main contributions can be summarized as:

New Method. We propose a novel method EControl that provably converges (i) with arbitrary
contractive compressors, (ii) under arbitrary data distribution (heterogeneity), (iii) and obtains linear
parallel speedup.

A Practical Algorithm. EControl does not need to resort to impractical theoretical tricks, such as
large batch sizes or repeated communication rounds, but instead is a lightweight extension that can
be easily added to existing EC implementations.

Fast Convergence. We demonstrate the convergence guarantees in all standard regimes: strongly
convex, general convex, and nonconvex functions. In all the cases complexities are asymptotically
tight with stochastic gradients. In the nonconvex case, the rate in the noiseless setting matches the
known lower bound (He et al., 2023). In the strongly convex and general convex settings, we achieve
the standard linear and sublinear convergence respectively, with tight dependency on the compression
parameter in the noiseless setting. To the best of our knowledge, our work is the first demonstrating
that in strongly convex and general convex regimes without additional assumptions on the problem.

Empirical Study. We conduct extensive empirical evaluations that support our theoretical findings
and show the efficacy of the new method.

2 COMMUNICATION BOTTLENECK AND ERROR COMPENSATION

In our work, we analyze algorithms combined with compressed communication. In particular, we
consider methods utilizing practically helpful contractive compression operators.

Definition 1. We say that a (possibly randomized) mapping C : Rd → Rd is a contractive compression
operator if for some constant 0 < δ ≤ 1 it holds

E
[
∥C(x)− x∥2

]
≤ (1− δ) ∥x∥2 ∀x ∈ Rd. (1)

The classic example satisfying (1) is Top-K (Stich et al., 2018), which preserves the K largest (in
absolute value) entries of the input, and zeros out the remaining entries. The class of contractive
compressors also includes sparsification (Alistarh et al., 2018; Stich et al., 2018) and quantization
operators (Wen et al., 2017; Alistarh et al., 2017; Bernstein et al., 2018; Horváth et al., 2019), and
many others (Zheng et al., 2019; Beznosikov et al., 2020; Vogels et al., 2019; Safaryan et al., 2022;
Islamov et al., 2023). In this section, we review related works on error compensation, with a focus on
the works that also consider contractive compressors.

2.1 SELECTED RELATED WORKS ON ERROR COMPENSATION

The EC mechanism Seide et al. (2014) was first analyzed for the single worker case in Stich
et al. (2018); Karimireddy et al. (2019). Extensions to the distributed setting were first conducted
under the assumption of homogeneous (IID) data, a constraint imposed either implicitly by assuming
bounded gradients Cordonnier (2018); Alistarh et al. (2018) or explicitly without the bounded gradient
assumption Stich & Karimireddy (2020). Choco-SGD was designed for communication compression
over arbitrary networks and analyzed under similar IID assumptions Koloskova et al. (2019; 2020a).
The analyses of distributed EC where further developed in Lian et al. (2017); Beznosikov et al.
(2020); Stich (2020).

The DIANA algorithm by Mishchenko et al. (2019) was proposed as a solution for the heterogeneous
data case, and introduced a mechanism that was able to account for the drift/bias on nodes with
different data, but only when unbiased compressors were used. However, their result inspired many

2

Published as a conference paper at ICLR 2024

follow-up works that combined contractive compressors with their bias correction mechanism (which
requires an additional unbiased compressor that doubles the communication cost of the algorithm per
iteration), such as Gorbunov et al. (2020); Stich (2020); Qian et al. (2021b).

Recently, Richtárik et al. (2021) introduced EF21 that fully supports contractive compressors and
presented strong analysis in the full gradient (i.e. noiseless) regime. Nevertheless, the main problem
of EF21 is weak convergence guarantees in the stochastic regime, i.e. when clients have access
to stochastic gradient estimators only. The analysis of EF21 and its modifications require large
batches and do not have linear speedup with n. Moreover, they demonstrate poor dependency on the
compression parameter δ. Zhao et al. (2022) improves the dependency on the compression parameter
δ in a nonconvex setting but still requires large batches. Recently, Fatkhullin et al. (2023) resolved
those issues by introducing a momentum-based variant of EF21. They demonstrate asymptotically
optimal complexity for nonconvex losses.

A line of work studied accelerated methods with communication compression (Li et al., 2020; Li &
Richtárik, 2021; Qian et al., 2021a; 2023; He et al., 2023), each with different additional requirements
on the problem, the compressor class, or stochasticity and batch size of the gradient oracle. These
methods show accelerated rates matching lower bounds in some regimes but are typically impractical
due to those requirements and many parameter tuning.

2.2 EXISTING PROBLEMS WITH ERROR COMPENSATION

Below we list the main problems of existing theoretical results and highlight a historical overview of
the main existing theoretical results in Table 1.

Additional Communication. Gorbunov et al. (2020); Stich (2020) modify the original EC mech-
anism following the DIANA method. However, their approach requires an additional unbiased
compressor. Such an idea allows for building a better sequence of compressed gradient estimators but
with a doubled per-iteration communication cost.

Strong Assumptions. Many earlier theoretical results for EC require strong assumptions, such
as either the bounded gradient assumption (Koloskova et al., 2019; 2020a) or globally bounded
dissimilarity assumption (Lian et al., 2017; Huang et al., 2022; He et al., 2023; Li & Li, 2023)1.
Besides, Makarenko et al. (2023) analyses EF21-based algorithm under bounded iterates assumption.

Large Batches. Fatkhullin et al. (2023) gives an example where EF21 fails to converge with
small batch size. NEOLITHIC (Huang et al., 2022; He et al., 2023) matches lower bounds with
large batch requirements combined with multi-stage execution for hyperparameter tuning. These
requirements make these methods less suitable for DL training, where small batches are known to
improve generalization performance and convergence (LeCun et al., 2012; Wilson & Martinez, 2003;
Keskar et al., 2017).

Suboptimal Convergence Rates. Current theoretical analysis of distributed algorithms combined
with contractive compressors do not match known lower bounds in the nonconvex regime (Huang
et al., 2022; He et al., 2023). Zhao et al. (2022); Fatkhullin et al. (2021) do not achieve a speedup in
n in the asymptotic regime while in contrast Koloskova et al. (2020a) has suboptimal rates in the low
noise regime (e.g. full gradient computations). We are aware of only the works by Fatkhullin et al.
(2023) and He et al. (2023), but the latter requires large batches at each iteration.

Missing a Practical Method for the Convex Regime. He et al. (2023) analyzed the accelerated
NEOLITHIC in general convex and strongly convex regimes with large batch requirements. In fact,
this method is mostly of a theoretical nature as the choice of the optimal parameters relies on the
gradient variance at the solution, and it was shown to be slow in practice (Fatkhullin et al., 2023). To
the best of our knowledge, there is no distributed algorithm utilizing only a contractive compression
operator and provably converging in general convex and strongly convex regimes under standard
assumptions.

In our work, we propose a novel method, which we call EControl, and push the theoretical analysis
of algorithms combined with contractive compression operators further in several directions.

1This assumption heavily restricts the class of functions and typically does not hold in Federated Learning.

3

Published as a conference paper at ICLR 2024

Table 1: Theoretical comparison of error compensated algorithms using only contractive compressors for
distributed optimization in a heterogeneous setting. We omit the comparison in the general convex regime since
most of the works focus on strongly convex and general nonconvex settings. nCVX = supports nonconvex
functions; sCVX = supports strongly convex functions. We present the convergence E

[
∥∇f(xout)∥2

]
≤ ε in

the nonconvex and E [f(xout)− f⋆] in the strongly convex regimes for specifically chosen xout. Here F0 :=
f(x0)− f⋆.

Algorithm nCVX sCVX

EC
Seide et al. (2014)

LF0σ
2

nε2 + LF0(σ+ζ/
√
δ)√

δε3/2
+ LF0

δε
(a) σ2

µnε +
√
L(σ+ζ/

√
δ)

µ
√
δε

+ L
µδ

(a)

Choco-SGD
Koloskova et al. (2020a)

LmaxF0σ
2

nε2 + LmaxF0G
δε3/2

+ LmaxF0

δε

(b) σ2

µnε +
√
LmaxG
µδε1/2

+ G2/3

µ1/3δε1/3

(b)

EF21-SGD
(Fatkhullin et al., 2021)

L̃F0σ
2

δ3ε2 + L̃F0

δε
(c) L̃σ2

µ2δ3ε + L̃
µδ

(c)

EF21-SGD2M
(Fatkhullin et al., 2023)

LF0σ
2

nε2 + LF0σ
2/3

δ2/3ε4/3
+ L̃F0+σ

√
LF0

δε
(d) ✗

EControl
This work

LF0σ
2

nε2 + LF0σ
δ2ε3/2

+ L̃F0

δε
σ2

µnε +
√
Lσ

µδ2ε1/2
+ L̃

µδ

Lower Bounds
(He et al., 2023)

LF0σ
2

nε2 + LF0

δε
(e) σ2

µnε + 1
δ

√
L
µ

(f)

(a) The analysis assumes a gradient dissimilarity bound of local gradients 1
n

∑n
i=1 ∥∇fi(x)∥2 ≤ ζ2 + ∥∇f(x)∥2 (Stich, 2020).

(b) The analysis is done under the second moment bound of the stochastic gradients E
[
∥gi(x)∥2

]
≤ G2. We emphasize that strongly

convex functions do not satisfy this assumption.
(c) This result requires the assumption that each batch size is at least σ2

δ2ε
in nonconvex regime and σ2

µδ2ε
in the strongly convex regime.

(d) The last term becomes L̃F0
δε if the initial batch size is at least σ2

LF0
.

(e) The analysis is done under gradient disimilarity assumption 1
n

∑n
i=1 ∥∇fi(x) − ∇f(x)∥2 ≤ ζ2. Moreover, the result requires

large mini-batches and performing 1/δ communication rounds per iteration.

(f) The result requires large mini-batches and performing 1/δ communication rounds per iteration. Moreover, the optimal parameters are

chosen with an assumption that 1
n

∑n
i=1 ∥∇fi(x

⋆)∥2 = b2 is known.

3 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the distributed optimization problem

f⋆ := min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (2)

where x represents the parameters of a model we aim to train, and the objective function f : Rd →
R is decomposed into n terms fi : Rd → R, i ∈ [n] := {1, . . . , n}. Each individual function
fi(x) := Eξi∼Di [fi(x, ξi)] is a loss associated with a local dataset Di available to client i. We let
x⋆ := argminx∈Rd f(x).

We analyze the centralized setting where the clients are connected with each other through a server.
Typically, the server receives the messages from the clients and transfers back the aggregated
information. In contrast to many prior works, we study arbitrarily heterogeneous setting and do not
make any assumptions on the heterogeneity level, i.e. local data distributions might be far away from
each other. We now list the main assumptions on the optimization problem (2).

First, we introduce assumptions on f and fi that we use to derive convergence guarantees.
Assumption 1. We assume that the average function f has L-Lipschitz gradient, and each individual
function fi has Li-Lipschitz gradient, i.e. for all x,y ∈ Rd, and i ∈ [n] it holds

∥∇f(y)−∇f(x)∥ ≤ L ∥y − x∥ , ∥∇fi(y)−∇fi(x)∥ ≤ Li ∥y − x∥ . (3)

We define a constant L̃ :=
√

1
n

∑n
i=1 L

2
i .2 We note that most works derive convergence guarantees

with maximum smoothness constant Lmax := maxi∈[n] Li which can be much larger than L̃. Next,
in some cases we assume µ-strong convexity of f .

2Note that the following chain of inequalities always hold: L ≤ L̃ ≤ Lmax := maxi∈[n] Li.

4

Published as a conference paper at ICLR 2024

Algorithm 1 EC-Ideal

1: Input: x0, eit=0d,h
i
⋆ := ∇fi(x

⋆), γ, Cδ
2: h⋆ = 1

n

∑n
i=1 h

i
⋆

3: for t = 0, 1, 2, . . . do
4: client side:
5: compute gi

t = gi(xt)
6: compute ∆i

t = Cδ(eit + gi
t − hi

⋆)
7: update eit+1 = eit + gi

t − hi
⋆ −∆i

t

8: send to server ∆i
t

9: server side:
10: update xt+1 := xt − γh⋆ − γ

n

∑n
i=1 ∆

i
t

Algorithm 2 EControl

1: Input: x0, e
i
0=0d, hi

0=gi
0, γ, η, and Cδ

2: h0 = 1
n

∑n
i=1 h

i
0

3: for t = 0, 1, 2, . . . do
4: client side:
5: compute gi

t = gi(xt)
6: compute ∆i

t = Cδ(ηeit + gi
t − hi

t)
7: update eit+1 = eit + gi

t − hi
t −∆i

t

8: and hi
t+1 = hi

t +∆i
t

9: send to server ∆i
t

10: server side:
11: update xt+1 := xt − γht − γ

n

∑n
i=1 ∆

i
t

12: and ht+1 = ht +
1
n

∑n
i=1 ∆

i
t

Assumption 2. We assume that the average function f is µ-strongly convex, i.e. for all x,y ∈ Rd it
holds

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2
∥x− y∥2 . (4)

We say that f is convex if it satisfies (4) with µ = 0.

We highlight that we need the strong convexity (convexity resp.) only of the average function f while
individual functions fi do not have to satisfy it, and they can be even nonconvex. On top of that, in
our analysis we apply the strong convexity (convexity resp.) around x⋆ only, thus, it is sufficient
to assume that (4) holds for any y and x ≡ x⋆. In this case, we say that a function is µ-strongly
quasi-convex (quasi-convex resp.) around x⋆; see (Stich & Karimireddy, 2020).

Finally, we make an assumption on the noise of local gradient estimators used by the clients.
Assumption 3. We assume that we have access to a gradient oracle gi(x) : Rd → Rd for each local
function fi such that for all x ∈ Rd and i ∈ [n] it holds

E
[
gi(x)

]
= ∇fi(x), E

[
∥gi(x)−∇fi(x)∥2

]
≤ σ2. (5)

Note that mini-batches are also allowed, effectively dividing this variance quantity by the local
batch size. However, we do not need to impose any restrictions on the (minimal) batch size and, for
simplicity, always assume a batch size of one.

4 EC-Ideal AS A STARTING POINT

To motivate some of the key ingredients of our main method, we start with a simple idea developed
in an ideal setting, which shed some light on the nuances of the interactions between bias and
error correction. Assume for a moment that we have access to hi

⋆ := ∇fi(x
⋆). We can utilize this

additional information to modify the original EC mechanism so that we only compress the difference
between the current stochastic gradient gi

t and the hi
⋆. See Algorithm 1 and the highlight below:

EC-Ideal update:
∆i

t = Cδ(eit + gi
t − hi

⋆)

eit+1 = eit + gi
t − hi

⋆ −∆i
t.

(6)

It turns out that this simple trick leads to a dramatic theoretical improvement. Now we do not have to
restrict the heterogeneity of the problem in contrast to the analysis of original EC (Stich, 2020). The
next theorem presents the convergence of EC-Ideal.
Theorem 1 (Convergence of EC-Ideal). Let f : Rd → R be µ-strongly quasi-convex around x⋆,
and each fi be L-smooth and convex. Then there exists a stepsize γ ≤ δ

8
√
6L

such that after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µ
√
δε1/2

+
L

µδ

)

5

Published as a conference paper at ICLR 2024

iterations of Algorithm 1 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from
{x0, . . . ,xT } with probabilities proportional to (1− µγ/2)−(t+1).

We defer the proof to Appendix E. Note that the output criteria (selecting a random iterate) is standard
in the literature and for convex functions could also be replaced by a weighted average over all iterates
that can be efficiently tracked over time (see e.g. Rakhlin et al., 2011). EC-Ideal achieves very
desirable properties. First, it provably works for any contractive compression. Second, it achieves
optimal asymptotic complexity and the standard linear convergence when σ2 → 0. All of these results
are derived without enforcing data heterogeneity bounds. However, there are several drawbacks as
well. First, EC-Ideal requires knowledge of {hi

⋆}i∈[n] which is unrealistic in most applications. In
Appendix D we show that the algorithm, in fact, needs only approximations of {hi

⋆}i∈[n] as input.
Nonetheless, there is still an issue that EC-Ideal’s convergence is only guaranteed under the convexity
condition, which stems from the fact that we always need to control the distance between ∇fi(xt)
and ∇fi(x

⋆). To overcome this issue, we need to build estimators of the current gradient, instead of
the gradient at the optimum, parallel to maintaining the error term.

5 EControl IS A SOLUTION TO ALL ISSUES

Inspired by the properties of EC-Ideal, we aim to build a mechanism that will progressively learn the
local gradient approximations (see also Remark 15 in Appendix B). Stich (2020); Gorbunov et al.
(2020) created a learning process based on an additional compressor from a more restricted class of
unbiased compression operators. To make their method work for any contractive compressor, we
can replace the additional unbiased compressor with a more general contractive one, but this leads to
worse complexity in the low noise regime and more restriction on the stepsize. We refer the reader to
Appendix F for more detailed discussion. In this work, we propose a novel method, called EControl,
that overcomes all of aforementioned issues by

• building the error term and the gradient estimator with a single compressed message,
enabling error compensation for the gradient estimator;

• introducing a new parameter η to precisely control the error compensation and balance error
compensation carried from the gradient estimator.

We summarize EControl in Algorithm 2 and highlight the key ingredients as follows:

EControl update:
∆i

t = Cδ(ηeit + gi
t − hi

t)

eit+1 = eit + gi
t − hi

t −∆i
t

hi
t+1 = hi

t +∆i
t

(7)

Fusing the error and the gradient estimator updates improves the algorithm’s dependency on σ2 and
δ, but also enables the gradient estimator to carry some level of the error information. This brings
forth the challenge of balancing the strength of the feedback signal, and we introduce the η parameter
to obtain finer control over the error compensation mechanism. This new parameter brings additional
flexibility and allows us to stabilize the convergence of EControl. The effect of such a parameter
in the context of the original EC mechanism without gradient estimator might be of independent
interest. We observe in practice that Algorithm 2 with η = 1 is unstable and sensitive to the choice of
initialization, which we illustrate in Appendix C.2 with a toy example. This highlights the importance
of the finer control over EC that η enables. We refer the interested readers to Appendix C.1 for a
more detailed discussion on the importance of η from a theoretical perspective. In Appendix C.3 we
also discuss the connection between EControl and EF21 when η → 0. A similar idea of weighting
error terms appeared in Abdi & Fekri (2020); Li et al. (2023). However, their algorithm is based on
the original EC.

6 THEORETICAL ANALYSIS OF EControl

We move on to theoretical analysis of EControl. Below we summarize the convergence properties of
Algorithm 2 in all standard cases. We start with the convergence results in the strongly quasi-convex
regime.

6

Published as a conference paper at ICLR 2024

Theorem 2 (Convergence of EControl for strongly quasi-convex objective). Let f be µ-strongly
quasi-convex around x⋆ and L-smooth. Let each fi be Li-smooth. Then for η = cδ (where c is an
absolute constant we specify in the proof), there exists a γ ≤ O(δ/L̃)3. such that after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µδ2ε1/2
+

L̃

µδ

)
iterations of Algorithm 2 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from xt ∈
{x0, . . . ,xT } with probabilities proportional to (1− γµ

2)−(t+1).

The asymptotic complexity of EControl in this regime with stochastic gradient matches the lower
bound Ω(σ2

µnε) up to a log term, as opposed to previous works (Fatkhullin et al., 2021; Zhao et al.,
2022). As we can see, the first term linearly improves with n, similar to the convergence behavior of
distributed SGD. Moreover, EControl achieves standard linear convergence and a desired inverse
linear dependency on the compression parameter δ in the noiseless setting. Next, we switch to a
general convex setting.

Theorem 3 (Convergence of EControl for quasi-convex objective). Let f be quasi-convex around
x⋆ and L-smooth. Let each fi be Li-smooth. Then for η = cδ there exists a γ ≤ O(δ/L̃) such that
after at most

T = O

(
R0σ

2

nε2
+

√
LR0σ

δ2ε3/2
+

L̃R0

δε

)
iterations of Algorithm 2 it holds E [f(xout)− f⋆] ≤ ε, where R0 := ∥x0 − x⋆∥2 and xout is chosen
uniformly at random from xt ∈ {x0, . . . ,xT }.

Similar to the previous case, the first term enjoys a linear speedup by the number of nodes. We
achieve a standard sublinear convergence and a desired inverse linear dependency on δ in the noiseless
regime.

Theorem 4 (Convergence of EControl for nonconvex objective). Let f be L-smooth, and each fi be
Li-smooth. Then for η = cδ there exists a γ ≤ O(δ/L̃) such that after at most

T = O

(
LF0σ

2

nε2
+

LF0σ

δ2ε3/2
+

L̃F0

δε

)

iterations of Algorithm 2 it holds E
[
∥∇f(xout)∥2

]
≤ ε, where F0 := f(x0)− f⋆ and xout is chosen

uniformly at random from xt ∈ {x0, . . . ,xT }.

The complexity of EControl in both asymptotic and noiseless regimes matches known lower bounds
(He et al., 2023) for nonconvex functions that are derived under much stronger assumptions. We
achieve these results without any theoretical restrictions, such as large batch sizes or repeated commu-
nication rounds, making it easy to deploy in practice as an extension to existing EC implementations.

7 EXPERIMENTS

In this section, we complement our theoretical analysis of EControl with experimental results.
We corroborate our theoretical findings with experimental evaluations and illustrate the practical
efficiency and effectiveness of EControl in real-world scenarios.

7.1 SYNTHETIC LEAST SQUARES PROBLEM

First, we consider the least squares problem designed by Koloskova et al. (2020b). For each client i,
fi(x) :=

1
2 ∥Aix− bi∥2, where A2

i := i2

n · Id and each bi is sampled from N (0, ζ2

i2 Id) for some
parameter ζ. The parameter ζ controls the gradient dissimilarity of the problem. It’s easy to see that

3Note that the stepsize can depend on ε. Here we use the notation γ ≤ O(δ/L̃) to denote that the stepsize
must satisfy γ ≤ Cδ

L̃
, for an absolute constant C specified in the proof.

7

Published as a conference paper at ICLR 2024

102 104 106
Bits

10−6
10−4
10−2
100

kx
t
¡
x

⋆
k=
d

³=50

EControl
Compressed-SGD
EC

Figure 1: The comparison of Compressed-SGD,
EC, and EControl. n = 5, d = 300, ζ = 50 and
σ = 10. We apply Top-K compressor with K/d =
0.1. Stepsizes were tuned for each setting. X-axis
represents the number of bits sent. Compressed-
SGD (without error compensation) does not converge
and EControl slightly outperforms the classic EC.

0 5000 10000
Iterations

100

102

kx
t
¡
x

⋆
k2

2 Clients
4 Clients
8 Clients
16 Clients

Figure 2: The behavior of EControl with different
numbers of clients where d = 200, ζ = 100, σ = 50.
We apply Top-K compressor with K/d = 0.1. The
stepsize is fixed γ = δ

100
= 0.001 for the purpose of

illustration. EControl exhibits a clear linear speedup
by n, the number of clients, which verifies the linear
parallel speedup property of EControl.

102 104 106
Bits

10−6

10−4

10−2

100

kx
t
¡
x

⋆
k2

³=0

EControl
SGD
EC

102 104 106
Bits

10−6
10−4
10−2
100

kx
t
¡
x

⋆
k2

³=50

EControl
SGD
EC

102 104 106
Bits

10−6

10−3

100

kx
t
¡
x

⋆
k2

³=100

EControl
SGD
EC

Figure 3: Comparison of mini-batch SGD, EC, and EControl for vairous problem parameters where n = 5, d =
300 and σ = 10. We apply the Top-K compressor with K/d = 0.1. Stepsizes were tuned for each setting. X-axis
represents the number of bits sent. EControl is not affected by the data heterogeneity parameter and is superior
over SGD in terms of the number of bits sent (roughly by a factor of d/K = 10, as expected from theory).

when ζ = 0,∇fi(x
⋆) = 0,∀i. We add Gaussian noise to the gradients to control the stochastic level

σ2 of the gradient. In Figure 1 one can see that simply aggregating the compressed local gradient
without error compensation (termed Compressed-SGD (Khirirat et al., 2018; Alistarh et al., 2018))
does not lead to convergence, while EControl and EC do. This result shows the need to use EC to
make the method convergent. Further, we use this simple synthetic problem to demonstrate some of
the key features of EControl:

Increasing the number of clients. In Figure 2 we investigate the effect of the number of clients on
the complexity of EControl. Crucially, the theory predicts that EControl achieves a linear speedup
in terms of the number of clients when using a stochastic gradient. In our experiment, we fix a small
stepsize and investigate the error that EControl converges to. We see that as the number of clients
doubles, the error that EControl oscillates around is roughly divided by half. This confirms our
theoretical prediction of the linear speedup.

Independence from gradient dissimilarity. In Figure 3 we see that EControl is not affected by the
gradient dissimilarity parameter ζ and its complexity stays stable across the three figures. On the
other hand, the original EC suffers from the increasing ζ, taking longer to converge as ζ increases.
Moreover, as Theorem 2 predicts, the O(σ2

µnε) term is dominant, and the performance of EControl
(in terms of the number of bits sent) is superior over that of SGD with batch size n. The stepsizes γ
are fine-tuned over {5× 10−5, 10−4, 5× 10−4, 10−3, 10−2, 10−1}, and for EControl we fine-tune η
over {10−3, 5× 10−3, 10−2, 5× 10−2, 10−1}. As ζ increases, the performance of EControl is not
affected, while the performance of EC deteriorates.

7.2 LOGISTIC REGRESSION PROBLEM

Next, we consider the Logistic Regression problem for multi-class classification trained on MNIST
dataset (Deng, 2012) and implemented in Pytorch (Paszke et al., 2019). First, we split 50% of the
dataset between 10 clients according to the labels (the data point with i-th labels belongs to client
i + 1). The rest of the data is distributed randomly between clients. Then, for each client, we
divide the local data into train (90%) and test (10%) sets. Such partition allows to make the problem

8

Published as a conference paper at ICLR 2024

0 8 16 24 32 40
Epochs

10

8

6

4

3

Tr
ai

n
Lo

ss
, £
10
¡
1

EF21
EF21-SGDM
EControl

0 8 16 24 32 40
Epochs

86

88

90

92

Te
st

 A
cc

ur
ac

y

EF21
EF21-SGDM
EControl

Figure 4: The comparison of EF21, EF21-SGDM, and EControl with fine-tuned parameters for Logistic
Regression problem on MNIST dataset.

0 20 40 60
Epochs

103

101

10¡1

10¡3

Tr
ai

n
Lo

ss

EF21
EF21-SGDM
EControl

0 20 40 60
Epochs

20

40

60

80

Te
st

 A
cc

ur
ac

y

EF21
EF21-SGDM
EControl

(a) Resnet18

0 20 40 60
Epochs

103

101

10¡1

10¡3

Tr
ai

n
Lo

ss

EF21
EF21-SGDM
EControl

0 20 40 60
Epochs

20

40

60

80

Te
st

 A
cc

ur
ac

y

EF21
EF21-SGDM
EControl

(b) VGG13

Figure 5: The comparison of EF21, EF21-SGDM, and EControl with fine-tuned parameters for training Deep
Learning models on Cifar-10 dataset.

more heterogeneous. We compare the performance of EControl, EF21-SGDM, and EF21. For all
methods, we use Top-K compression operator with K = d

10 . We fine-tune the stepsizes of the methods
over {1, 10−1, 10−2, 10−3}. Moreover, we fine-tune η parameter for EControl over {0.2, 0.1, 0.05},
and for EF21-SGDM we set η = 0.1 according to (Fatkhullin et al., 2023). We choose the stepsizes
that achieve the best performances on the train set such that the test loss does not diverge. The results
are presented in Figure 4. Note that the communication cost of the methods per iteration is the same,
therefore, the number of epochs is proportional to the number of communicated bits.

We observe that EControl has the fastest convergence in terms of training loss. The same behavior is
demonstrated with respect to test accuracy. Nevertheless, the test accuracy difference for all methods
is within 1 percent.

7.3 TRAINING OF DEEP LEARNING MODELS

Finally, we consider the training of Deep Learning models: Resnet18 (He et al., 2016) and VGG13
(Simonyan & Zisserman, 2015). The implementation is done in Pytorch (Paszke et al., 2019). We
run experiments on Cifar-10 (Krizhevsky et al., 2014) dataset. The dataset split across the clients is
the same as for the Logistic Regression problem—half is distributed randomly, and another half is
portioned according to the labels. For the compression, we utilize Top-K compressor with K

d = 0.1.
We fine-tune the stepsizes over the set {1, 0.1, 0.01} for EControl, EF21-SGDM, and EF21 and
select the best stepsize on test set. For EControl and EF21-SGDM we set η = 0.1.

According to the results in Figure 5a, all methods achieve similar test accuracy, but EF21 has more
unstable convergence with many ups and downs. EControl achieves a better stationary point as the
training loss is smaller than for the other two methods. Similar results are demonstrated for VGG13
model; see Figure 5b. The training with EControl allows to reach a stationary point with a smaller
training loss. Moreover, EControl outperforms other methods from a test accuracy point of view: it
gives slightly better test accuracy than EF21 and considerably higher accuracy than EF21-SGDM.

8 DISCUSSION

In this work, we propose a novel algorithm EControl that provably converges efficiently in all standard
settings: strongly convex, general convex, and nonconvex, with general contractive compression and
without any additional assumption on the problem structure, hence resolving the open theoretical
problem therein. We conduct extensive experimental evaluations of our method and show its efficacy
in practice. Our method incurs little overhead compared to existing implementations of EC, and we
believe it is an effective and lightweight approach to making EC suitable for distributed training of
large machine learning models, especially when also using the standard momentum mechanism for
reducing the variance of the stochastic gradients in deep learning training. However, the theoretical
analysis of this extension is outside the scope of this paper, and we will leave it for future work.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

YG/SS acknowledge partial funding from a Google Scholar Research Award.

REPRODUCIBILITY STATEMENT

We provide source code as part of the supplementary material which allows to reproduce Deep
Learning and synthetic least squares experiments. Additionally, for our theoretical results, we offer
clear explanations of any assumptions in the main paper and complete proof of all statements in the
appendix.

REFERENCES

Afshin Abdi and Faramarz Fekri. Quantized compressive sampling of stochastic gradients for efficient
communication in distributed deep learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3105–3112, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Proceedings of Advances in Neural
Information Processing Systems, pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Proceedings of Advances in Neural
Information Processing Systems, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal on Machine Learning Research, 2020.

Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent with
memory. Technical report, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 2012.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. Ef21 with bells
& whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:
2110.03294, 2021.

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error
feedback! arXiv preprint arXiv: 2305.15155, 2023.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated sgd. In Proceedings of Advances in Neural Information Processing Systems,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Yutong He, Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and accelerated
algorithms in distributed stochastic optimization with communication compression. arXiv preprint
arXiv: 2305.07612, 2023.

Samuel Horváth, Chen-Yu Ho, L’udovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv: 1905.10988,
2019.

10

Published as a conference paper at ICLR 2024

Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal
algorithms in distributed learning with communication compression. In Proceedings of Advances
in Neural Information Processing Systems, 2022.

Rustem Islamov, Xun Qian, Slavomír Hanzely, Mher Safaryan, and Peter Richtárik. Distributed
newton-type methods with communication compression and bernoulli aggregation. Transactions
on Machine Learning Research, 2023.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih
Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu,
Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in
federated learning. arXiv preprint arXiv: 1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated
learning. In Proceedings of International Conference on Machine Learning (ICML), 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
Proceedings of International Conference on Learning Representations, 2017.

Sarit Khirirat, Hamid Feyzmahdavian, and Mikael Johansson. Distributed learning with compressed
gradients. arXiv preprint arXiv: 1806.06573, 2018.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

Anastasia Koloskova, Tao Lin, Sebastian Stich, and Martin Jaggi. Decentralized deep learning with
arbitrary communication compression. In Proceedings of International Conference on Learning
Representations, 2020a.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified the-
ory of decentralized sgd with changing topology and local updates. In Proceedings of International
Conference on Machine Learning, pp. 5381–5393. PMLR, 2020b.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In Proceedings of
NIPS Private Multi-Party Machine Learning Workshop, 2016.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 dataset. 2014.

Yann LeCun, Leon Bottou, Genevieve Orr, and Klaus-Robert Muller. Efficient backprop. Neural
Networks: Tricks of the Trade, Springer-Verlag, 2012.

Bingcong Li, Shuai Zheng, Parameswaran Raman, Anshumali Shrivastava, and Georgios B. Giannakis.
Contractive error feedback for gradient compression. arXiv preprint arXiv: 2312.08538, 2023.

Xiaoyun Li and Ping Li. Analysis of error feedback in federated non-convex optimization with biased
compression: Fast convergence and partial participation. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

11

Published as a conference paper at ICLR 2024

Zhize Li and Peter Richtárik. Canita: Faster rates for distributed convex optimization with communi-
cation compression, 2021.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal proba-
bilistic gradient estimator for nonconvex optimization. In Proceedings of the 38th International
Conference on Machine Learning (ICML 2021), 2021.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Proceedings of Advances in Neural Information Processing Systems (NIPS),
2017.

Maksim Makarenko, Elnur Gasanov, Rustem Islamov, Abdurakhmon Sadiev, and Peter Richtárik.
Adaptive compression for communication-efficient distributed training. Transactions on Machine
Learning Research, 2023.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of Advances in Neural Information Processing Systems 32, 2019.

Xun Qian, Hanze Dong, Peter Richtárik, and Tong Zhang. Error compensated loopless svrg, quartz,
and sdca for distributed optimization. arXiv preprint arXiv:2109.10049, 2021a.

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be accelerated.
In Proceedings of Advances in Neural Information Processing Systems, 2021b.

Xun Qian, Hanze Dong, Tong Zhang, and Peter Richtárik. Catalyst acceleration of error compen-
sated methods leads to better communication complexity. In Proceedings of 25th International
Conference on Artificial Intelligence and Statistics, 2023.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647, 2011.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. 2022.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
practically faster error feedback. In Proceedings of Advances in Neural Information Processing
Systems, 2021.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtarik. FedNL: Making Newton-type
methods applicable to federated learning. In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Proceedings of 15th annual
conference of the international speech communication association, 2014.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick Le Gresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

12

Published as a conference paper at ICLR 2024

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of International Conference on Learning Representations, 2015.

Sebastian U. Stich. On communication compression for distributed optimization on heterogeneous
data. arXiv preprint arXiv: 2009.02388, 2020.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
with delayed gradients and compressed updates. Journal of Machine Learning Research, 2020.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Proceedings of Advances in Neural Information Processing Systems, 2018.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In
Proceedings of Interspeech 2015, 2015.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems
32, 2019.

Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. A survey on large-scale machine
learning. IEEE Transactions on Knowledge and Data Engineering, 2020.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Randall Wilson and Tony Martinez. The general inefficiency of batch training for gradient descent
learning. Neural Networks, 2003.

Haoyu Zhao, Boyu Li, Zhize Li, Peter Richtárik, and Yuejie Chi. BEER: Fast $o(1/t)$ rate for
decentralized nonconvex optimization with communication compression. In Proceedings of
Advances in Neural Information Processing Systems, 2022.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise
momentum sgd with error-feedback. Advances in Neural Information Processing Systems, 32,
2019.

13

Published as a conference paper at ICLR 2024

A USEFUL LEMMAS AND DEFINITIONS

In this section, we state the important notations and useful lemmas that we use in our convergence
analysis. We use the following notation throughout the proofs

Ft := E [f(xt)]− f⋆, and Et :=
1

n

n∑
i=1

E
[∥∥eit∥∥2] (8)

For shortness, in all our proofs we use the notation

gi
t := gi(xt), gt :=

1

n

n∑
i=1

gi
t, et :=

1

n

n∑
i=1

eit, and ht :=
1

n

n∑
i=1

hi
t. (9)

Besides, we additionally introduce the sequence of virtual iterates which are defined as follows

x̃0 := x0, x̃t+1 := x̃t −
γ

n

n∑
i=1

gi
t. (10)

Performing simple derivations we get the link between real and virtual iterates of Algorithm 2

xt − x̃t =
γ

n

n∑
i=1

eit. (11)

In addition to the notations introduced inEquation (8), we define
Xt := E

[
∥x̃t − x⋆∥2

]
. (12)

Finally, we introduce another quantity that bounds the size of the compressed message:

Ht :=
1

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t

∥∥2] (13)

The following lemmas were taken from other works (as indicated) and we omit their proof.
Lemma 1 (Lemma 8 from Stich & Karimireddy (2020)). Assume f is L-smooth and µ-strongly
quasi-convex. Let the sequences {xt}, {eit}i∈[n] be generated by Algorithm 2. If γ ≤ 1

4L , then

Xt+1 ≤
(
1− γµ

2

)
Xt −

γ

2
Ft +

γ2

n
σ2 + 3Lγ3Et. (14)

The descent lemma in F̃t is taken from (Stich & Karimireddy, 2020)
Lemma 2 (Lemma 9 from Stich & Karimireddy (2020)). Assuming that f is L-smooth, and xt and
et are generated by Algorithm 2, then

F̃t+1 ≤ F̃t −
γ

4
E
[
∥∇f(xt)∥2

]
+

γ3L2

2
Et +

γ2Lσ2

2n
(15)

For the sake of completeness, we list two summation lemmas from (Stich, 2020) without proofs. The
first lemma is used in order to derive convergence guarantees in the strongly convex case.
Lemma 3 (Lemma 25 from Stich (2020)). Let {rt}t≥0 and {st}t≥0 be sequences of positive numbers
satisfying

rt+1 ≤ (1−min{γA, F})rt −Bγst + Cγ2 +Dγ3, (16)
for some positive constants A,B > 0, C,D ≥ 0, and for constant stepsize 0 < γ ≤ 1

E , for E ≥ 0,

and for parameter 0 < F ≤ 1. Then there exists a constant stepsize γ ≤ 1
E such that

B

WT

T∑
t=0

wtst +min

{
A,

F

γ

}
rT+1 ≤ r0

(
E +

A

F

)
exp

(
−min

{
A

E
,F

}
(T + 1)

)
+

2C ln τ

A(T + 1)
+

D ln2 τ

A2(T + 1)2

for wt := (1−min{γA, F})−(t+1), WT :=
∑T

t=0 wt, and

τ := max

{
exp(1),min

{
A2r0(T + 1)2

C
,
A3r0(T + 1)3

D

}}
.

14

Published as a conference paper at ICLR 2024

Remark 4 (Remark 26 from Stich (2020)). Lemma 3 established a bound of the order

Õ
(
r0

(
E +

A

F

)
exp

(
−min

{
A

E
,F

}
(T + 1)

)
+

C

AT
+

D

A2T 2

)

that decreases with T . To ensure that this expression is smaller than ε,

T = Õ

(
C

Aε
+

√
D

A
√
ε
+

1

F
log

1

ε
+

E

A
log

1

ε

)
= Õ

(
C

Aε
+

√
D

A
√
ε
+

1

F
+

E

A

)

steps are sufficient.

The second lemma shows the convergence rate in the nonconvex or convex settings.

Lemma 5 (Lemma 27 from Stich (2020)). Let {rt}t≥0 and {st}t≥0 be sequences of positive numbers
satisfying

rt+1 ≤ rt −Bγst + Cγ2 +Dγ3, (17)

for some positive constants A,B > 0, C,D ≥ 0, and for constant stepsize 0 < γ ≤ 1
E , for E ≥ 0,

and for parameter 0 < F ≤ 1. Then there exists a constant stepsize γ ≤ 1
E such that

B

T + 1

T∑
t=0

st ≤
Er0
T + 1

+ 2D1/3

(
r0

T + 1

)2/3

+ 2

(
Cr0
T + 1

)1/2

. (18)

Remark 6 (Remark 28 from Stich (2020)). To ensure that the right-hand side of (18) is smaller than
ε > 0,

T = O

(
Cr0
ε2

+

√
Dr0
ε3/2

+
Er0
ε

)
.

steps are sufficient.

B MISSING PROOFS FOR EControl

In this section we prove Theorem 2, Theorem 3 and Theorem 4.

B.1 STRONGLY CONVEX SETTING

We start with the strongly convex case setting. First, we bound the distance between two consecutive
iterates.

Lemma 7. Let f be L-smooth, then:

E
[
∥xt+1 − xt∥2

]
≤ γ2

(
2(1− δ)Ht + 4η2Et + 4LFt +

2σ2

n

)
. (19)

15

Published as a conference paper at ICLR 2024

Proof.

1

γ2
E
[
∥xt+1 − xt∥2

]
= E

[
∥ht +∆t∥2

]
= E

[
∥∆t − ηet − gt + ht + ηet + gt∥2

]
(i)

≤ 2E
[
∥∆t − ηet − gt + ht∥2

]
+ 2E

[
∥ηet + gt∥2

]
(ii)

≤ 2E
[
∥∆t − ηet − gt + ht∥2

]
+ 2E

[
∥ηet +∇f(xt)∥2

]
+

2σ2

n
(iii)

≤ 2

n

n∑
i=1

E
[∥∥∆i

t − ηeit − gi
t + hi

t

∥∥2]+ 4η2

n

n∑
i=1

E
[∥∥eit∥∥2]

+ 4E
[
∥∇f(xt)∥2

]
+

2σ2

n
(iv)

≤ 2(1− δ)

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t

∥∥2]+ 4η2

n

n∑
i=1

E
[∥∥eit∥∥2]

+ 4LE [f(xt)− f⋆] +
2σ2

n
.

where in (i)− (iii) we use Young’s inequality; in (ii) we use Assumption 5, and in (iv) we use the
definition of the compressor, L-smoothness and convexity.

The next lemma gives the descent of Et.

Lemma 8. For any α > 0 we have:

Et+1 ≤ (1 + α)(1− η)2Et + (1 + α−1)(1− δ)Ht (20)

Proof.

Et+1 =
1

n

n∑
i=1

E
[∥∥eit + gi

t − hi
t −∆i

t

∥∥2]
(i)

≤ (1 + α−1)
1

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t −∆i

t

∥∥2]+ (1 + α)(1− η)2Et

(ii)

≤ (1 + α−1)(1− δ)
1

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t

∥∥2]+ (1 + α)(1− η)2Et

= (1 + α−1)(1− δ)Ht + (1 + α)(1− η)2Et.

where in (i) we use Young’s inequality, and in (ii) we use the definition of the compressor.

Now we give the descent of Ht.

Lemma 9. Let f be L-smooth and each fi be Li-smooth. Let η = δ
4k for some k ≥ 1 and γ ≤ δ

32
√
2L̃

.
Then we have:

Ht+1 ≤
(
1− δ

32

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et +

128L̃2Lγ2

δ
Ft

+
64

δ

(
1 +

L̃2γ2

n

)
σ2. (21)

16

Published as a conference paper at ICLR 2024

Proof. We unroll the definition of Ht+1

Ht+1 =
1

n

n∑
i=1

E
[∥∥ηeit+1 + gi

t+1 − hi
t+1

∥∥2]
=

1

n

n∑
i=1

E
[∥∥ηeit + ηgi

t − ηhi
t − η∆i

t − hi
t −∆i

t + gi
t+1

∥∥2]
(i)

≤ (1 + β1)
1

n

n∑
i=1

E
[∥∥ηeit + (1 + η)gi

t − (1 + η)hi
t − (1 + η)∆i

t

∥∥2]
+ (1 + β−1

1)
1

n

n∑
i=1

E
[∥∥gi

t+1 − gi
t

∥∥2]
(ii)

≤ (1 + β1)
1

n

n∑
i=1

E
[∥∥ηeit + (1 + η)gi

t − (1 + η)hi
t − (1 + η)∆i

t

∥∥2]
+ 2(1 + β−1

1)
1

n

n∑
i=1

E
[
∥∇fi(xt+1)−∇fi(xt)∥2

]
+ 4(1 + β−1

1)σ2

(iii)

≤ (1 + β1)
1

n

n∑
i=1

E
[∥∥ηeit + (1 + η)gi

t − (1 + η)hi
t − (1 + η)∆i

t

∥∥2]
+ 2(1 + β−1

1)L̃2E
[
∥xt+1 − xt∥2

]
+ 4(1 + β−1

1)σ2, (22)

where in (i) we use Young’s inequality, in (ii) we use assumption 5, and in (iii) we use smoothness
of fi. Now we consider the first term in the above:

1

n

n∑
i=1

E
[∥∥ηeit + (1 + η)gi

t − (1 + η)hi
t − (1 + η)∆i

t

∥∥2]
(i)

≤ (1 + β2)(1 + η)2
1

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t −∆i

t

∥∥2]+ (1 + β−1
2)η4Et

(ii)

≤ (1 + β2)(1 + η)2(1− δ)Ht + (1 + β−1
2)η4Et,

where in (i) we use Young’s inequality, and in (ii) we use the definition of the compressor. Putting it
back in (22), we have:

Ht+1 ≤ (1 + β1)(1 + β2)(1 + η)2(1− δ)Ht + (1 + β1)(1 + β−1
2)η4Et

+ 2(1 + β−1
1)L̃2E

[
∥xt+1 − xt∥2

]
+ 4(1 + β−1

1)σ2

By Lemma 7, we can substitute E
[
∥xt+1 − xt∥2

]
and get:

Ht+1 ≤ (1 + β1)(1 + β2)(1 + η)2(1− δ)Ht + (1 + β1)(1 + β−1
2)η4Et

+ 2(1 + β−1
1)L̃2γ2

(
2(1− δ)Ht + 4η2Et + 4LFt +

2σ2

n

)
+ 4(1 + β−1

1)σ2

=
[
(1 + β1)(1 + β2)(1 + η)2(1− δ) + 4(1 + β−1

1)L̃2γ2
]
Ht

+
[
(1 + β1)(1 + β−1

2)η4 + 8(1 + β−1
1)L̃2γ2η2

]
Et

+ 8(1 + β−1
1)L̃2Lγ2Ft +

[
4(1 + β−1

1) +
4(1 + β−1

1)L̃2γ2

n

]
σ2.

Since η = δ
4k for some k ≥ 1, we must have:

(1 + η)2(1− δ) ≤ 1− δ

4
.

17

Published as a conference paper at ICLR 2024

Let us choose β1 := δ
16−2δ and β2 := δ

8−2δ , so we get:

Ht+1 ≤

(
1− δ

16
+

64L̃2γ2

δ

)
Ht +

(
8η4

δ
+

128L̃2γ2η2

δ

)
Et

+
128L̃2Lγ2

δ
Ft +

64

δ

(
1 +

L̃2γ2

n

)
σ2

=

(
1− δ

16
+

64L̃2γ2

δ

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et

+
128L̃2Lγ2

δ
Ft +

64

δ

(
1 +

L̃2γ2

n

)
σ2.

If γ ≤ δ

32
√
2L̃

, then:

Ht+1 ≤
(
1− δ

32

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et

+
128L̃2Lγ2

δ
Ft +

64

δ

(
1 +

L̃2γ2

n

)
σ2

Finally, we consider the Lyapunov function Ψ := Xt + aHt + bEt where constants a and b are set as
follows: b := 48kLγ3

δ , a := 512kb
δ2 , where k will be set later.

Lemma 10. Let f be L-smooth and µ-strongly quasi-convex around x⋆, and each fi be Li-smooth.
Let η = δ

400 , and γ ≤ δ

3200
√
2L̃

, then we have

Ψt+1 ≤
(
1−min

{
γµ

2
,

δ

8850

})
Ψt −

γ

4
Ft + γ2σ

2

n
+ γ3 10

11Lσ2

δ4
. (23)

Proof. With η = δ
k(4−2δ) we set α = δ

8k−2δ in Lemma 8, and get

Et+1 ≤
(
1− δ

8k

)
Et +

8k

δ
Ht

We can put the link between the real and virtual iterates (11) and the descent lemma 1 for Xt together
and get

Ψt+1 ≤
(
1− γµ

2

)
Xt −

γ

2
Ft +

γ2

n
σ2 + 3Lγ3Et

+ a

[(
1− δ

32

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et +

128L̃2Lγ2

δ
Ft

+
64

δ

(
1 +

L̃2γ2

n

)
σ2

]
+ b

[(
1− δ

8k

)
Et +

8k

δ
Ht

]
.

Rearranging the terms we continue as follows

Ψt+1 ≤
(
1− γµ

2

)
Xt +

(
1− δ

32
+

8kb

δa

)
aHt

+

(
1− δ

8k
+

3Lγ3

b
+

a

b

(
8δ3

k444
+

128L̃2γ2δ

k242

))
bEt

− γ

2
Ft +

128L̃2Lγ2a

δ
Ft + γ2σ

2

n
+

64a

δ

(
1 +

L̃2γ2

n

)
σ2.

18

Published as a conference paper at ICLR 2024

Now we set γ ≤ δ

32
√
2kL̃

, and then we get:

Ψt+1 ≤
(
1− γµ

2

)
Xt +

(
1− δ

32
+

8kb

δa

)
aHt +

(
1− δ

8k
+

3Lγ3

b
+

δ3a

16k4b

)
bEt

− γ

2
Ft +

128L̃2Lγ2a

δ
Ft + γ2σ

2

n
+

64a

δ

(
1 +

L̃2γ2

n

)
σ2.

Let b = 48kLγ3

δ and a = 512kb
δ2 , then for the coefficient next to Ht have

1− δ

32
+

8kb

δa
≤ 1− δ

64
.

For the coefficient next to Et term we have

1− δ

8k
+

3Lγ3

b
+

δ3a

16k4b
≤ 1− δ

16k
+

32δ

k3
.

For the coefficient next to Ft term we have

−γ

2
+

128L̃2Lγ2a

δ
≤ −γ

2
+

3γ

4k2
.

Finally, for the coefficient next to σ2 term we have

64a

δ

(
1 +

L̃2γ2

n

)
≤ γ3 10

7k2L

δ4
.

Therefore, combining all together and setting k = 100, we get:

Ψt+1 ≤
(
1− γµ

2

)
Xt +

(
1− δ

64

)
aHt +

(
1− δ

8850

)
bEt

− γ

4
Ft + γ2σ

2

n
+ γ3 10

11Lσ2

δ4

≤
(
1−min

{
γµ

2
,

δ

8850

})
Ψt −

γ

4
Ft + γ2σ

2

n
+ γ3 10

11Lσ2

δ4
.

Now we give the precise statement of Theorem 2
Theorem 5. Let f be µ-strongly quasi-convex around x⋆ and L-smooth. Let each fi be Li-smooth.
Then for η = δ

400 , there exists a γ ≤ δ

3200
√
2L̃

such that after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µδ2ε1/2
+

L̃

µδ

)
iterations of Algorithm 2 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from xt ∈
{x0, . . . ,xT } with probabilities proportional to (1− γµ

2)−(t+1).

Proof. The claim of theorem 5 follows from Lemma 10; Lemma 3 and remark 4 from (Stich, 2020).
Note that by the initialization, we have Ψ0 = ∥x0 − x⋆∥2. Also note that by the choice of parameters
γµ
2 ≤ δ

8850 .

B.2 CONVEX SETTING

We switch to the convex regime. The considered setting differs from the previous one by setting
µ = 0. Then the claim of Lemma 10 changes as follows.
Lemma 11. Let f be L-smooth and quasi convex, and each fi be Li-smooth. Let η = δ

400 , and
γ ≤ δ

3200
√
2L̃

, then we have

Ψt+1 ≤ Ψt −
γ

4
Ft + γ2σ

2

n
+ γ3 10

11Lσ2

δ4
, (24)

19

Published as a conference paper at ICLR 2024

Proof. The proof immediately follows from lemma 10 by plugging in µ = 0.

Now we give the precise statement of Theorem 3
Theorem 6. Let f be quasi-convex around x⋆ and L-smooth. Let each fi be Li-smooth. Then for
η = δ

400 , there exists a γ ≤ δ

3200
√
2L̃

such that after at most

T = O

(
R0σ

2

nε2
+

√
LR0σ

δ2ε3/2
+

L̃R0

δε

)
iterations of Algorithm 2 it holds E [f(xout)− f⋆] ≤ ε, where R0 := ∥x0 − x⋆∥2 and xout is chosen
uniformly at random from xt ∈ {x0, . . . ,xT }.

Proof. The claim of theorem 6 follows from lemma 11; lemma 5 and remark 6 from (Stich &
Karimireddy, 2020). Note that by the initialization Ψ0 = R0.

B.3 NONCONVEX SETTING

Now we give the small modification of lemma 7 that is used in the nonconvex setting.
Lemma 12. Let f be L-smooth, then:

E [∥xt+1 − xt∥] ≤ γ2

(
2(1− δ)Ht + 4η2Et + 4E

[
∥∇f(xt)∥2

]
+

2σ2

n

)
. (25)

Proof.

1

γ2
E
[
∥xt+1 − xt∥2

]
= E

[
∥ht +∆t∥2

]
= E

[
∥∆t − ηet − gt + ht + ηet + gt∥2

]
(i)

≤ 2E
[
∥∆t − ηet − gt + ht∥2

]
+ 2E

[
∥ηet + gt∥2

]
(ii)

≤ 2E
[
∥∆t − ηet − gt + ht∥2

]
+ 2E

[
∥ηet +∇f(xt)∥2

]
+

2σ2

n
(iii)

≤ 2

n

n∑
i=1

E
[∥∥∆i

t − ηeit − gi
t + hi

t

∥∥2]+ 4η2

n

n∑
i=1

E
[∥∥eit∥∥2]

+ 4E
[
∥∇f(xt)∥2

]
+

2σ2

n
(iv)

≤ 2(1− δ)

n

n∑
i=1

E
[∥∥ηeit + gi

t − hi
t

∥∥2]+ 4η2

n

n∑
i=1

E
[∥∥eit∥∥2]

+ 4E
[
∥∇f(xt)∥2

]
+

2σ2

n
.

where in (i)− (iii) we use Young’s inequality; in (ii) we use Assumption 5, and in (iv) we use the
definition of the compressor.

Next, we give a simple modification of lemma 9 in nonconvex setting as well.
Lemma 13. Let f be L-smooth, and each fi be Li-smooth. Let η = δ

4k for some k ≥ 1 and
γ ≤ δ

32
√
2L̃

. Then we have

Ht+1 ≤
(
1− δ

32

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et +

128L̃2γ2

δ
E
[
∥∇f(xt)∥2

]
+

64

δ

(
1 +

L̃2γ2

n

)
σ2. (26)

20

Published as a conference paper at ICLR 2024

Proof. The proof is almost exactly the same to the proof of lemma 9 where the bound of
E
[
∥xt+1 − xt∥2

]
by lemma 7 is replaced by lemma 12.

Now we consider the Lyapunov function Ψt := F̃t + aHt + bEt where constants a and b are set as
follows: b := 8L2γ3

δ , a := 512kb
δ2 , where k will be set later.

Lemma 14. Let f be L-smooth, and each fi be Li-smooth. Let η = δ
400 and γ ≤ δ

3200
√
2L̃

. Then we
have:

Ψt+1 ≤ Ψt −
γ

8
E
[
∥∇f(xt)∥2

]
+ γ2Lσ

2

2n
+ γ3 10

10L2σ2

δ4
. (27)

Proof. Note that lemma 8 still holds in the smooth nonconvex case. Therefore, with η = δ
4k , if

in (20) we set α = δ
8k−2δ , then:

Et+1 ≤
(
1− δ

8k

)
Et +

8k

δ
Ht.

Now we put all inequalities together:

Ψt+1 ≤ F̃t −
γ

4
E
[
∥∇f(xt)∥2

]
+

γ3L2

2
Et +

γ2L

2n
σ2

+ a

[(
1− δ

32

)
Ht +

(
8δ3

k444
+

128L̃2γ2δ

k242

)
Et +

128L̃2γ2

δ
E
[
∥∇f(xt)∥2

]
+

64

δ

(
1 +

2L̃2γ2

n

)
σ2

]

+ b

[(
1− δ

8k

)
Et +

8k

δ
Ht

]
= F̃t +

(
1− δ

32
+

8kb

δa

)
aHt

+

(
1− δ

8k
+

L2γ3

2b
+

a

b

(
8δ3

k444
+

128L̃2γ2δ

k242

))
bEt

− γ

4
E
[
∥∇f(xt)∥2

]
+

128L̃2γ2a

δ
E
[
∥∇f(xt)∥2

]
+ γ2Lσ

2

2n
+

64a

δ

(
1 +

L̃2γ2

n

)
σ2.

Similar as before, we now set γ ≤ δ

32
√
2kL̃

and get:

Ψt+1 ≤ F̃t +

(
1− δ

32
+

8kb

δa

)
aHt +

(
1− δ

8k
+

L2γ3

2b
+

δ3a

16k4b

)
bEt

− γ

4
E
[
∥∇f(xt)∥2

]
+

128L̃2γ2a

δ
E
[
∥∇f(xt)∥2

]
+ γ2 L

2n
σ2 +

64a

δ

(
1 +

L̃2γ2

n

)
σ2.

Let b = 8kL2γ3

δ and a = 512kb
δ2 , then for the coefficient next to Ht term, we have

1− δ

32
+

8kb

δa
≤ 1− δ

64
;

for the coefficient next to Et term, we have

1− δ

8k
+

L2γ3

2b
+

δ3a

16k4b
≤ 1− δ

16k
+

δ3a

16k4b
≤ 1− δ

16k
+

32δ

k3
;

21

Published as a conference paper at ICLR 2024

for the coefficient next to E
[
∥∇f(xt)∥2

]
term, we have

−γ

4
+

128L̃2γ2a

δ
≤ −γ

4
+

γ

8k2
;

for the coefficient next to σ2 term, we have

64a

δ

(
1 +

L̃2γ2

n

)
≤ γ3 10

6k2L2

δ4
.

Therefore, if we set k = 100, we get:

Ψt+1 ≤ F̃t +

(
1− δ

64

)
aHt +

(
1− δ

8850

)
bEt

− γ

8
E
[
∥∇f(xt)∥2

]
+ γ2Lσ

2

2n
+ γ3 10

10L2σ2

δ4

≤ Ψt −
γ

8
E
[
∥∇f(xt)∥2

]
+ γ2Lσ

2

2n
+ γ3 10

10L2σ2

δ4
.

Now we give the precise statement of Theorem 4
Theorem 7. Let f be L-smooth, and each fi be Li-smooth. Then for η = δ

400 , there exists a
γ ≤ δ

3200
√
2L̃

such that after at most

T = O

(
LF0σ

2

nε2
+

LF0σ

δ2ε3/2
+

L̃F0

δε

)

iterations of Algorithm 2 it holds E
[
∥∇f(xout)∥2

]
≤ ε, where F0 := f(x0)− f⋆ and xout is chosen

uniformly at random from xt ∈ {x0, . . . ,xT }.

Proof. The claim of theorem 7 follows from lemma 14; lemma 5 and remark 6 from (Stich, 2020).
Note that by our choice of initialization, Ψ0 = F0.

Remark 15. Notice that we do not explicitly bound the distance between hi
t and the full local

gradient ∇fi(xt) like in the proof of EF21 (see also Appendix G). Instead, we only control the size
of the error term and the compressed message. Interestingly, this way we also indirectly control the
distance between hi

t and the local stochastic gradient:

1

n

n∑
i=1

E
[∥∥git − hi

t

∥∥2] ≤ 2
1

n

n∑
i=1

E
[∥∥ηeit + git − hi

t

∥∥2]+ 2
1

n

n∑
i=1

η2E
[∥∥eit∥∥2]

= 2Ht + 2η2Et

With the choice η ∼ δ, Ht + η2Et is proportional to the aHt + bEt term involved in the Lyapunov
function we use in the analysis. Taking into account the convergence guarantees for the Lyapunov
function, the above derivations show that the distance between hi

t and gi
t indeed is controled and

does not blow up.

C IMPORTANCE OF η CHOICE

C.1 THE ROLE OF η FROM A THEORY PERSPECTIVE

Here we review the role of η in the lemmas, and shine some light on why the choice η ∼ δ is
important. For simplicity, we only consider the strongly convex case.

• The descent of Et is achieved through η. In particular, in Lemma 8, Et is scaled by
(1 + α)(1− η)2. For η ∼ δ and appropriate choice of α, we get a descent on Et at the scale
(1− Ω(δ)), which is proportional to the descent of Ht in Lemma 9.

22

Published as a conference paper at ICLR 2024

(a) ei0 = 0,hi
0 = ∇fi(x0) (b) ei0 = 0,hi

0 = 0

0 1 2 3 4 5
Iterations, £104

101

100

10¡1

10¡2

kx
t
¡
x

⋆
k2

°= ° ⋆ ; ´=1

°= ° ⋆ ; ´= ±

0 1 2 3 4 5
Iterations, £104

1015

1010

105

100

10¡5

kx
t
¡
x

⋆
k2

°= ° ⋆ ; ´=1

°=
° ⋆

10
; ´=1

°=
° ⋆

100
; ´=1

°= ° ⋆ ; ´= ±

Figure 6: The convergence of EControl with η = 1 and η = 0.5 for two different initializations. EControl with
η = δ converges regardless of the initialization while EControl with η = 1 is sensitive to the initialization. Here
γ⋆ = δ

3200
√
2L

, i.e. theoretical value of the stepsize.

• Perhaps more importantly, η controls the contribution of Et, and balances the scale between
Et and Ht. Crucially, an Et term is introduced into the descent of Ht in Lemma 9 via the
upper bound on E

[
∥xt − xt+1∥2

]
(Lemma 7). With the η term, the contribution of Et from

E
[
∥xt − xt+1∥2

]
is of the order O(γ

2η2
/δ). This turned out to be extremely important in

Lemma 10, where b ∼ δ2a (recall that a is the coefficient of Ht and b is the coefficient of
Et in the Lyapunov function Ψ). Taking a closer look at Lemma 10, we see that setting
η ∼ δ scales the Et term from the descent of Ht by aγ2η2

bδ ∼ γ2

δ . This allows us to pick
γ ∼ δ resulting in a δ scale in front of the Et term from the descent of Ht.

C.2 UNSTABLE BEHAVIOR WHEN η = 1

Let us first consider a simple problem with n = 2, d = 3 where f1 and f2 are defined as follows

f1(x) = (1, 1, 5)⊤x+
1

2
∥x∥2, f2(x) = (1, 5, 1)⊤x+

1

2
∥x∥2.

Obviously, this problem is strongly convex. We show that η parameter plays an essential role in
stabilizing the convergence of EControl. We show that if η = 1, then with the specific choice of
initialization EControl may diverge while with η = δ it converges.

In the first set of experiments we consider ei0 = 0,hi
0 = 0, while in the second one we initialize as

ei0 = 0,hi
0 = ∇fi(x0). For simplicity, we use full gradients in both cases in order not to be affected

by the noise. We apply Top-1 compression operator in all the cases, i.e. δ = 1
3 . For EControl with

η = δ we set γ according to Theorem 2.

We demonstrate the convergence in both cases for EControl with η = 1 and η = δ. The results
are presented in Figure 6. We observe that in both cases EControl with η = δ converges linearly
to the solution as it is predicted by our theory. In contrast, EControl with η = 1 converges only
if hi

0 = ∇fi(x0) and diverges if hi
0 = 0 regardless of the choice of γ. Very small values of the

stepsize postpone the gradient norm blow up. This example illustrates that η ∼ δ makes the algorithm
converge more stable, i.e. it is necessary for efficient performance.

C.3 COMPARISON WITH EF21 AND DIMINISHING η

Note that in Algorithm 2, when η → 0, the algorithm recovers EF21. However, the crucial difference
between EControl and EF21 is precisely the fact that each update is injected the scaled error term,
which is the key ingredient for achieving the linear speedup in the number of clients. In this section we
use the synthetic least squares problem in Section 7.1 to demonstrate that, as η → 0, the performance
of EControl degrades in the stochastic regime and its performance converges to that of EF21. The
results are summarized in Figure 7.

23

Published as a conference paper at ICLR 2024

0 5000 10000
Iterations

10−1

101

kx
t
¡
x

⋆
k2

´=0:0001

´=0:01

´=0:05

EF21

Figure 7: The convergence of ECOntrol with changing η and EF21. d = 200, ζ = 100, σ = 50 and number of
client is 16. We apply Top-K compressor with K/d = 0.1. The stepsize is fixed γ = 0.001 for the purpose of
illustration. EControl the performance degrades as η → 0.

Algorithm 3 EC-Approximate: EC with Approximate Bias Correction

1: Input: x0,γ, eit=0d, Cδ , and {hi}i∈[n] such that 1
n

∑n
i=1 E

[∥∥hi −∇fi(x
⋆)
∥∥2] ≤ α

2: h = 1
n

∑n
i=1 h

i

3: for t = 0, 1, 2, . . . do
4: gi

t = gi
t ▽ client side

5: ∆̂i
t = Cδ(eit + gi

t − hi)
6: eit+1 = eit + gi

t − hi − ∆̂i
t

7: send to server: ∆̂i
t

8: xt+1 := xt − γh− γ
n

∑n
i=1 ∆̂

i
t ▽ server side

D EC-Approximate: APPROXIMATE BIAS CORRECTION

In Section 4 we described the ideal version of EC when we have access to hi
⋆ = ∇fi(x

⋆). However, in
practice, it is not known most of the time. Therefore, we propose to use a good enough approximation
instead to make the method implementable. This idea leads to EC-Approximate summarised in
Algorithm 3. There, instead of hi

⋆ we use its estimator hi which should estimate the true value hi
⋆

well enough. In more details, we run EC with hi satisfying

1

n

n∑
i=1

E
[∥∥hi −∇fi(x

⋆)
∥∥2] ≤ α,

in other words, the average distance between hi and ∇fi(x
⋆) is at most α. A trivial choice of h

is the zero vectors, for which Algorithm 3 recovers the D-EC-SGD (Stich, 2020) algorithm with
bounded gradient (at optimum) assumption. However, the smaller α is (i.e., the better approximation
we have), the better convergence is. Thus, it is beneficial to obtain hi after a preprocessing. For
example, a nontrivial choice would be some hi such that 1

n

∑n
i=1 E

[∥∥hi −∇fi(x
⋆)
∥∥2] ≤ O(σ

2L
δ2µ).

Such {hi}i∈[n] can be obtained by running EF21 for Õ(L
δµ) rounds, which is constant and does not

depend on the accuracy ε. We show that it is indeed possible in Appendix G for completeness.

D.1 CONVERGENCE ANALYSIS

In this section we prove the convergence of Algorithm 3. The next lemma bounds the descent of Et.
Lemma 16. Let fi be L-smooth and convex. Let {hi}i∈[n] be such that
1
n

∑n
i=1 E

[∥∥hi −∇fi(x
⋆)
∥∥2] ≤ α, then the iterates of EC-Approximate satisfy

Et+1 ≤
(
1− δ

2

)
Et +

8L

δ
Ft +

4α

δ
+ σ2. (28)

24

Published as a conference paper at ICLR 2024

Proof.

Et+1 =
1

n

n∑
i=1

E
[∥∥eit + gi

t − hi − Cδ(e
i
t + gi

t − hi)
∥∥2]

≤ (1− δ)

n

n∑
i=1

E
[∥∥eit + gi

t − hi
∥∥2]

=
(1− δ)

n

n∑
i=1

E
[∥∥eit +∇fi(xt)− hi

∥∥2]+ σ2

≤ (1− δ)(1 + β)

n

n∑
i=1

E
[∥∥eit∥∥2]

+
(1− δ)(1 + β−1)

n

n∑
i=1

E
[∥∥∇fi(xt)− hi

∥∥2]+ σ2.

where in the last inequality we used Young’s inequality. Setting β = δ
2(1−δ) , we have:

Et+1 ≤
(
1− δ

2

)
Et +

4

δ

1

n

n∑
i=1

E
[
∥∇fi(xt)−∇fi(x

⋆)∥2
]

+
4

δ

1

n

n∑
i=1

E
[∥∥∇fi(x

⋆)− hi
∥∥2]+ σ2

≤
(
1− δ

2

)
Et +

8L

δ
Ft +

4α

δ
+ σ2.

where for the first inequality we used Young’s inequality again, and for the second inequality we used
the smoothness and convexity of fi, and our assumption on hi.

Now consider the Lyapunov function Ψt = Xt + aEt for a := 12Lγ3

δ . We obtain the following
descent lemma in Ψt.

Lemma 17. Let f be µ-strongly quasi-convex around x⋆, and each fi be L-smooth and convex. Let
{hi}i∈[n] be such that 1

n

∑n
i=1 E

[∥∥hi −∇fi(x
⋆)
∥∥2] ≤ α, and the stepsize be γ ≤ δ

8
√
6L

. Then the
iterates of EC-Approximate satisfy

Ψt+1 ≤ (1− c)Ψt −
γ

4
Ft + γ2σ

2

n
+ γ3

(
48Lα

δ2
+

12Lσ2

δ

)
(29)

where a := 12Lγ3

δ and c := γµ
2

Proof. Putting Lemma 1 and Lemma 16 together, we have:

Ψt+1 ≤
(
1− γµ

2

)
Xt −

γ

2
Ft + γ2σ

2

n
+ 3Lγ3Et

+ a

((
1− δ

2

)
Et +

8L

δ
Ft +

4α

δ
+ σ2

)
=
(
1− γµ

2

)
Xt +

(
1− δ

2
+

3Lγ3

a

)
aEt

+ γ2σ
2

n
+ a

(
4α

δ
+ σ2

)
−
(
γ

2
− 8La

δ

)
Ft.

Plugging in the choice of a, we have for the Et term:

1− δ

2
+

3Lγ3

a
= 1− δ

4
,

25

Published as a conference paper at ICLR 2024

and for Ft term:
γ

2
− 8La

δ
=

γ

2
− γ

96L2γ2

δ2
≥ γ

2
.

Combining the above together we derive the statement of the lemma.

Theorem 8 (EC-Approximate: EC with approximate bias correction). Let f : Rd → R
be µ-strongly quasi-convex, and each fi be L-smooth and convex. Let {hi}i∈[n] be such that
1
n

∑n
i=1 E

[∥∥hi −∇fi(x
⋆)
∥∥2] ≤ α. Let stepsize be γ ≤ δ

8
√
6L

. Then after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µ
√
δ
√
ε
+

√
Lα

µδ
√
ε
+

L

µδ

)

iterations of Algorithm 3 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from
{x0, . . . ,xT } with probabilities proportional to (1− µγ/2)−(t+1).

Proof. We need to apply the results of Lemma 17, Lemma 3, and Remark 4 noticing that γµ
2 ≤ δ

2
always due to the choice of the stepsize.

According to the statement of Theorem 8, the inaccuracy in the approximation affects the higher
order terms only. We clearly see that EC-Approximate achieves optimal sample complexity. This
result suggests that preprocessing in the beginning of the training for a constant number of iterations
may lead to better convergence guarantees in comparison with original EC.

In Appendix G we show that in a constant number of rounds of preprocessing using EF21, one
can obtain a good {hi}i∈[n] with error of the order O(σ2) for D-EC-SGD with approximate bias
correction. We summarize it in the following corollary.

Corollary 18. Let f : Rd → R be µ-strongly quasi-convex, and each fi be L-smooth and convex.
Let run EF21 as a preprocessing for O

(
L
δµ log LF0δ

σ2µ

)
rounds. Let the stepsize be γ ≤ δ

8
√
6L

. Then
after at most

T = Õ
(

σ2

µnε
+

Lσ

µ3/2δ2
√
ε
+

L

µδ

)
iterations of Algorithm 3 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from
{x0, . . . ,xT }, chosen with probabilities proportional to (1− µγ/2)−(t+1).

Proof. We only need to apply the results of Lemma 25 and Lemma 26 in Theorem 8.

E CONVERGENCE OF EC-Ideal

In this section we derive the convergence of EC-Ideal. The result directly follows from Theorem 8
with α = 0.

Theorem 1 (Convergence of EC-Ideal). Let f : Rd → R be µ-strongly quasi-convex around x⋆,
and each fi be L-smooth and convex. Then there exists a stepsize γ ≤ δ

8
√
6L

such that after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µ
√
δε1/2

+
L

µδ

)

iterations of Algorithm 1 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from
{x0, . . . ,xT } with probabilities proportional to (1− µγ/2)−(t+1).

Proof. We need to apply the results of Theorem 8 with α = 0.

26

Published as a conference paper at ICLR 2024

Algorithm 4 D-EC-SGD with Bias Correction and Double Contractive Compression

1: Input: x0, e
i
0=0d, hi

0=gi
0,h0 = 1

n

∑n
i=1 h

i
0, Cδ1 , Cδ2 , and γ

2: for t = 0, 1, 2, . . . do
3: compute gi

t = gi
t ▽ client side

4: compute ∆i
t = Cδ1(eit + gi

t − hi
t) and ∆̂i

t = Cδ2(gi
t − hi

t)
5: update eit+1 = eit + gi

t − hi
t −∆i

t and hi
t+1 = hi

t + ∆̂i
t

6: send to server ∆i
t and ∆̂i

t
7: update xt+1 := xt − γht − γ

n

∑n
i=1 ∆

i
t ▽ server side

8: update ht+1 = ht +
1
n

∑n
i=1 ∆

i
t

F D-EC-SGD WITH BIAS CORRECTION AND DOUBLE CONTRACITVE
COMPRESSION

In this section we follow algorithm D-EC-SGD with bias correction (Stich, 2020). In this algorithm,
the learning mechanism for hi

t to approximate hi
⋆ is built using additional compressor from more

restricted class of unbiased compression operators. We show that unbiased compressor can be
replaced by more general contractive one; see Algorithm 4 for more detailed description.

F.1 NOTATION

For D-EC-SGD with bias correction and double contractive compression we consider the following
notation

Xt = E
[
∥x̃t − x⋆∥2

]
, Et =

1

n

n∑
i=1

E
[
∥eit∥2

]
, and Ht =

1

n

n∑
i=1

E
[
∥∇f(xt)− hi

t∥2
]
.

(30)

F.2 CONVERGENCE ANALYSIS

Now we present the convergence rate for D-EC-SGD with bias correction and double contractive
compression.

First, we highlight that Lemma 1. Next, we present the descent lemma in Et.
Lemma 19. The iterates of D-EC-SGD with bias correction and double contractive compression
satisfy

Et+1 ≤ (1− δ/2)Et +
2(1− δ1)

δ1
Ht + (1− δ1)σ

2. (31)

Proof. We have

Et+1 =
1

n

n∑
i=1

E
[
∥eit+1∥2

]
=

1

n

n∑
i=1

E
[
∥eit + gi

t − hi
t − Cδ1(eit + gi

t − hi
t)∥2

]
≤ (1− δ1)

n

n∑
i=1

E
[
∥eit + gi

t − hi
t∥2
]

≤ (1− δ1)

n

n∑
i=1

E
[
∥eit +∇fi(xt)− hi

t∥2
]
+ (1− δ1)σ

2.

Using Young’s inequality we continue

Et+1 ≤ (1− δ1)(1 + α1)Et + (1− δ1)(1 + α−1
1)

1

n

n∑
i=1

E
[
∥∇fi(xt)− hi

t∥2
]

+ (1− δ1)σ
2.

27

Published as a conference paper at ICLR 2024

Now, if we choose α1 = δ1
2(1−δ1)

, we obtain the statement of the lemma.

Lemma 20. Let f be L-smooth, then the iterates of D-EC-SGD with bias correction and double
contractive compression satisfy

1

γ2
E
[
∥xt+1 − xt∥2

]
≤ 4σ2 + 4Ht + 8Et + 8LFt. (32)

Proof. We have

1

γ2
E
[
∥xt+1 − xt∥2

]
= E

[
∥ht ± et ± gt +

1

n

n∑
i=1

∆i
t∥2
]

≤ 2E

[
∥ht − et − gt +

1

n

n∑
i=1

Cδ1(eit + gi
t − hi

t)∥2
]
+ 2E

[
∥et + gt∥2

]
≤ 2

n

n∑
i=1

E
[
∥hi

t − eit − gi
t + Cδ1(eit + gi

t − hi
t)∥2

]
+ 2

σ2

n
+ 4Et

+ 4E
[
∥∇f(xt)∥2

]
≤ 2(1− δ1)

n

n∑
i=1

E
[
∥hi

t − eit − gi
t∥2
]
+ 2

σ2

n
+ 4Et + 8LFt

≤ 2(1− δ1)σ
2 + 4(1− δ1)Et + 4(1− δ1)Ht + 2

σ2

n
+ 4Et + 4LFt

≤ 4σ2 + 4Ht + 8Et + 8LFt.

In our next lemma we state the descent in Ht.

Lemma 21. Let f be L-smooth and each fi be Li-smooth, then the iterates of D-EC-SGD with bias
correction and double contractive compression satisfy

Ht+1 ≤ (1− δ2
4

+
16L̃2γ2

δ2
)Ht +

32L̃2γ2

δ2
Et +

16L̃2Lγ2

δ2
Ft +

(
16L̃2γ2

δ2
+

8

δ2

)
σ2

In particular, if γ ≤ δ2
8
√
2L̃

, then:

Ht+1 ≤ (1− δ2
8
)Ht +

32L̃2γ2

δ2
Et +

16L̃2Lγ2

δ2
Ft +

(
16L̃2γ2

δ2
+

8

δ2

)
σ2 (33)

28

Published as a conference paper at ICLR 2024

Proof. We have taking the expectation Et [·] w.r.t xt:

Et [Ht+1] =
1

n

n∑
i=1

Et

[∥∥∇fi(xt+1)− hi
t − Cδ2(gi

t − hi
t)
∥∥2 |
]

(i)

≤ 1

n

n∑
i=1

(1 + β)Et

[
∥∇fi(xt+1)−∇fi(xt)∥2

]
+

1

n

n∑
i=1

(1 + β−1)Et

[∥∥∇fi(xt)− hi
t − Cδ2(gi

t − hi
t)
∥∥2]

(ii)

≤ L̃2(1 + β)Et

[
∥xt+1 − xt∥2

]
+

1

n

n∑
i=1

(1 + β−1)Et

[∥∥gi
t + (∇fi(xt)− gi

t)− hi
t − Cδ2(gi

t − hi
t)
∥∥2]

(iii)

≤ L̃2(1 + β)Et

[
∥xt+1 − xt∥2

]
+

1

n

n∑
i=1

(1 + β−1)(1 + s1)Et

[
∥gi

t − hi
t − Cδ2(gi

t − hi
t)∥2

]
+

1

n

n∑
i=1

(1 + β−1)(1 + s−1
1)Et

[∥∥∇fi(xt)− gi
t

∥∥2]
(iv)

≤ L̃2(1 + β)E ∥xt+1 − xt∥2

+
1

n

n∑
i=1

(1 + β−1)(1 + s1)(1− δ2)Et

[
∥gi

t − hi
t∥2
]
+ (1 + β−1)(1 + s−1

1)σ2,

where in (i) we use Young’s inequality; in (ii) we L-smoothness; (iii) we use variance decomposition;
in (iv) we use the definition of Cδ2 and bounded variance assumption. Note that gi

t’s are independent
from ∇fi(xt)− hi

t, and Et

[
∇fi(xt)− gi

t

]
= 0, we have:

Et [Ht+1] ≤ L̃2(1 + β)Et

[
∥xt+1 − xt∥2

]
+

1

n

n∑
i=1

(1 + β−1)(1 + s1)(1− δ2)
∥∥∇fi(xt)− hi

t

∥∥2
+ (1 + β−1)(1 + s1)(1− δ2)σ

2 + (1 + β−1)(1 + s−1
1)σ2

We also can upper bound E ∥xt+1 − xt∥2 by Lemma 20 which leads to

Et [Ht+1] ≤ (1 + β−1)(1 + s1)(1− δ2)Ht

+ L̃2(1 + β)γ2
(
8Et + 4Ht + 4LFt + 4σ2

)
+
(
(1 + β−1)(1 + s−1

1) + (1 + β−1)(1 + s1)(1− δ2)
)
σ2

Now we need to properly set all constants β, s1, to derive the lemma statement. In particular, if we
choose β = 4−2δ2

δ2
and s1 = δ2

2(1−δ2)
, then

Ht+1 ≤ (1− δ2
4

+
16L̃2γ2

δ2
)Ht +

32L̃2γ2

δ2
Et +

16L̃2Lγ2

δ2
Ft +

(
16L̃2γ2

δ2
+

8

δ2

)
σ2

Next we consider the Lyapunov function Ψt := Xt + aHt + bEt.
Lemma 22. Let f be L-smooth and µ-strongly quasi-convex, and each fi be Li-smooth. If γ ≤
δ1δ2

64
√
2L̃

, then:

Ψt+1 ≤ (1− γµ

2
)Ψt −

γ

4
Ft + γ2σ

2

n
+ γ3 3100Lσ

2

δ21δ
2
2

(34)

where b := 12Lγ3

δ1
and a := 32b

δ1δ2
.

29

Published as a conference paper at ICLR 2024

Proof. By Lemma 1, Lemma 19, and Lemma 21, we have:
Ψt+1 = Xt+1 + aHt+1 + bEt+1

≤ (1− γµ

2
)Xt −

γ

2
Ft +

γ2

n
σ2 + 3Lγ3Et

+ a

(
(1− δ2

8
)Ht +

32L̃2γ2

δ2
Et +

16L̃2Lγ2

δ2
Ft +

(
16L̃2γ2

δ2
+

8

δ2

)
σ2

)

+ b

(
(1− δ1

2
)Et +

2(1− δ1)

δ1
Ht + (1− δ1)

σ2

B

)
= (1− γµ

2
)Xt +

(
1− δ2

8
+

2(1− δ1)b

δ1a

)
aHt

+

(
1− δ1

2
+

3Lγ3

b
+

32L̃2γ2a

δ2b

)
bEt

+

(
γ2

n
+ a(

16L̃2γ2

δ2
+

8

δ2
) + b(1− δ1)

)
σ2

+

(
−γ

2
+

16L̃2Lγ2a

δ2

)
Ft

If b := 12Lγ3

δ1
, a := 32b

δ1δ2
, and if γ ≤ δ1δ2

64
√
2L̃

, then for the coefficients next to Ht we have:

1− δ2
8

+
2(1− δ1)b

δ1a
≤ 1− δ2

16
;

for the coefficients next to Et we have:

1− δ1
2

+
3Lγ3

b
+

32L̃2γ2a

δ2b
≤ 1− δ1

8
;

for the coefficients next to σ2 we have:

a(
16L̃2γ2

δ2
+

8

δ2
) + b(1− δ1) ≤ γ3 3100L

δ21δ
2
2

;

for the coefficients next to Ft we have:

−γ

2
+

16L̃2Lγ2a

δ2
≤ −γ

4
.

Putting it together we have:

Ψt+1 ≤ (1− γµ

2
)Ψt −

γ

4
Ft + γ2σ

2

n
+ γ3 3100Lσ

2

δ21δ
2
2

where we note that γµ
2 ≤ δ1

8 and γµ
2 ≤ δ2

16 .

Theorem 9. Let f be µ-strongly quasi-convex around x⋆ and L-smooth. Let each fi be Li-smooth.
Let γ ≤ δ1δ2

64
√
2L̃

. Then after at most

T = Õ

(
σ2

µnε
+

√
Lσ

µδ1δ2ε1/2
+

L̃

µδ1δ2

)
iterations of Algorithm 4 it holds E [f(xout)− f⋆] ≤ ε, where xout is chosen randomly from xt ∈
{x0, . . . ,xT } with probabilities proportional to (1− γµ

2)−(t+1).

Proof. We need to apply the results of Lemma 3, Lemma 22 and Remark 4.

We observe that D-EF-SGD with double contracitve compression still achieves nearly optimal
asymptotic complexity with stochastic gradients, where a σ2 factor is hidden in the log terms.
However, in the non-asymptotic regime it has poor dependency on compression parameters δ1 and
δ2. In the simplest full gradient case, when δ1 = δ2 = δ and σ2 = 0, the linearly convergent term is
proportional to δ−2. In opposite, EF21 and EControl have only δ−1 dependency in this setting.

30

Published as a conference paper at ICLR 2024

G COMPLEXITY OF EF21-SGD

In this section we consider EF21 mechanism. Richtárik et al. (2021) demonstrate that EF21-GD,
i.e. EF21 with full local gradient computations converges linearly. In the stochastic setting, it has
been shown in (Fatkhullin et al., 2023) that EF21-SGD converges only with large batches. For
completeness, we present convergence guarantees of EF21 with arbitrary batch size. In particular, we
show that EF21 can converge to an error of O(σ

2L
δ2µ) in a log number of rounds. EF21 is summarized

in Algorithm 5.

Algorithm 5 EF21

1: Input: x0,h
i
0 = ∇fi(x0), γ, and ht =

1
n

∑n
i=1 h

i
t

2: for t = 0, 1, 2, . . . do
3: gi

t = gi
t ▽ client side

4: ∆i
t = Cδ(gi

t − hi)
5: hi

t+1 = hi
t +∆i

t

6: send to server: ∆i
t

7: xt+1 := xt − γht ▽ server side
8: ht+1 = ht +

1
n

∑n
i=1 ∆

i
t

Consider Ft = f(xt)− f⋆ and Ht =
1
n

∑n
i=1

∥∥∇fi(xt)− hi
t

∥∥2. The following lemmas are simple
modifications of the lemmas in (Li et al., 2021) and (Richtárik et al., 2021) in the presence of
stochasticity. Therefore, we state them without proofs.
Lemma 23 (Lemma 2 from Li et al. (2021)). Let f be µ-strongly convex and L-smooth. Then iterates
of EF21-SGD satisfy

Ft+1 ≤ (1− γµ)Ft −
(

1

2γ
− L

2

)
E
[
∥xt+1 − xt∥2

]
+ (2− δ)γσ2 + (1− δ)γHt. (35)

Lemma 24 (Lemma 7 from Richtárik et al. (2021)). Let f be µ-strongly convex and fi be L-smooth
for all i ∈ [n]. Then iterates of EF21-SGD satisfy

Et [Ht+1] ≤
(
1− δ

4

)
Ht +

2L2

δ
E
[
∥xt+1 − xt∥2

]
+

3σ2

δ
. (36)

Now consider Ψt := Ft + aHt, where a := 100γ
δ . Putting these two lemmas together, we have:

Lemma 25. Let f be µ-strongly convex and fi be L-smooth for all i ∈ [n]. Let γ ≤ δ
100L . Then

iterates of EF21-SGD satisfy

Et [Ψt+1] ≤ (1− c)Ψt −
40L

δ
Et

[
∥xt+1 − xt∥2

]
+ γ

(
2 +

300

δ2

)
σ2 (37)

where c := γµ.

Solving the recursion, one can show that

µΨT+1 ≤ e−γµ(T+1)

γ
Ψ0 +

(
2 +

300

δ2

)
σ2

In particular, this means that Ψ decreases to O(σ2

δ2µ) in O
(

L
δµ log F0δL

σ2µ

)
rounds. Therefore, EF21-

SGD can be used as warm up algorithm to find good approximation of hi
⋆. As we can see, the output

of EF21-SGD satisfies the restriction for Algorithm 3. In particular, we show that at any iteration of
EF21-SGD, we have 1

n

∑n
i=1 E

[∥∥hi
t −∇fi(x

⋆)
∥∥] ≤ 4LΨt if γ and a are chosen as in Lemma 25.

Lemma 26. If fi is L-smooth and convex, and ht and xt are generated by EF21 with γ = δ
100L ,

then
1

n

n∑
i=1

E
[∥∥hi

t −∇fi(x
⋆)
∥∥] ≤ 4LΨt

where Ψt = Ft + aHt and a = 1
γ .

31

Published as a conference paper at ICLR 2024

Proof.

1

n

n∑
i=1

E
[∥∥hi

t −∇fi(x
⋆)
∥∥2] ≤ 2

n

n∑
i=1

E
[∥∥hi

t −∇fi(xt)
∥∥2]+ 2

n

n∑
i=1

E
[
∥∇fi(xt)−∇fi(x

⋆)∥2
]

≤ 2

n

n∑
i=1

E
[∥∥hi

t −∇fi(xt)
∥∥2]

+
4L

n

n∑
i=1

(fi(xt)− fi(x
⋆)− ⟨∇fi(x

⋆),xt − x⋆⟩)

=
2

n

n∑
i=1

E
[∥∥hi

t −∇fi(xt)
∥∥2]+ 4L(f(xt)− f⋆)

= 2Ht + 4LFt

≤ 4LΨt

32

	Introduction
	Communication Bottleneck and Error Compensation
	Selected related works on Error Compensation
	Existing problems with Error Compensation

	Problem Formulation and Assumptions
	EC-Ideal as a Starting Point
	EControl is a Solution to All Issues
	Theoretical Analysis of EControl
	Experiments
	Synthetic Least Squares Problem
	Logistic Regression Problem
	Training of Deep Learning Models

	Discussion
	Useful lemmas and definitions
	Missing proofs for EControl
	Strongly Convex Setting
	Convex Setting
	Nonconvex Setting

	Importance of Choice
	The role of from a theory perspective
	Unstable behavior when =1
	Comparison with EF21 and diminishing

	EC-Approximate: Approximate Bias Correction
	Convergence Analysis

	Convergence of EC-Ideal
	D-EC-SGD with Bias Correction and Double Contracitve Compression
	Notation
	Convergence Analysis

	Complexity of EF21-SGD

