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ABSTRACT

We study a strategic variant of the multi-armed bandit problem, which we coin
the strategic click-bandit. This model is motivated by applications in online rec-
ommendation where the choice of recommended items depends on both the click-
through rates and the post-click rewards. Like in classical bandits, rewards follow
a fixed unknown distribution. However, we assume that the click-rate of each arm
is chosen strategically by the arm (e.g., a host on Airbnb) in order to maximize
the number of times it gets clicked. The algorithm designer does not know the
post-click rewards nor the arms’ actions (i.e., strategically chosen click-rates) in
advance, and must learn both values over time. To solve this problem, we design
an incentive-aware learning algorithm, UCB-S, which achieves two goals simul-
taneously: (a) incentivizing desirable arm behavior under uncertainty; (b) mini-
mizing regret by learning unknown parameters. We approximately characterize
all Nash equilibria of the arms under UCB-S and show a Õ(

√
KT ) regret bound

uniformly in every equilibrium. We also show that incentive-unaware algorithms
generally fail to achieve low regret in the strategic click-bandit. Finally, we sup-
port our theoretical results by simulations of strategic arm behavior which confirm
the effectiveness and robustness of our proposed incentive design.

1 INTRODUCTION

Recommendation platforms act as intermediaries between vendors and users so as to recommend
items from the former to the latter. On Amazon, vendors sell physical items, while on Youtube the
recommended items are videos. The recommendation problem is how to select one or more items to
present to each user so that they are most likely to click on at least one of them.

However, vendor-chosen item descriptions are an essential aspect of the problem that is often ig-
nored. These invite vendors to exaggerate their true value in the descriptions in order to increase
their Click-Through-Rates (CTRs). As a consequence, even though online learning algorithms can
generally identify relevant items, the existence of unrepresentative or exaggerated item descriptions
remains a challenge (Yue et al., 2010; Hofmann et al., 2012). These include thumbnails or headlines
that do not truly reflect the underlying item (see Figure 1)—a well-known internet phenomenon
called the clickbait (Wang et al., 2021). While moderately increasing user click-rates through attrac-
tive descriptions is often encouraged since it helps to increase the overall user activity, clickbait can
be harmful to a platform as it leads to bad recommendation outcomes and damage to the platform’s
reputation which may exceed the value of any additional clicks. A key reason for such dishonest or
exaggerated item deceptions is the strategic behavior of vendors driven by their incentive to increase
their item’s exposure and click probability. Thus naturally, vendors are better off carefully choosing
descriptions so as to increase click-rates, which leads to phenomena such as clickbait.1

To address this issue, we take an approach that marries mechanism design without payments with on-
line learning, which are two celebrated research areas, however, mostly studied as separate streams.
Since clickbait is fundamentally driven by vendor incentives, we believe that the novel design of on-
line learning policies that can carefully align vendor incentives with the platform’s overall objective
may help to resolve this issue from its root.

∗Author is currently with Apple ML Research.
1This is possible because most platforms rely on vendors to provide descriptions about their items. For

instance, the images of restaurants on Yelp, rentals on Airbnb, hotels on Expedia, title and thumbnails of
Youtube videos, and descriptions of products on Amazon are all provided by the vendors.
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Figure 1: Examples of unrepresentative or clickbait headlines and thumbnails on Bing News,
Airbnb, Youtube, and Facebook Marketplace (identifying information partly redacted).

To incorporate vendor-chosen item descriptions in this setting, we propose and study a natural strate-
gic variant of the classical Multi-Armed Bandit (MAB) problem, which we call the strategic click-
bandit in order to emphasize the strategic role that clicks and CTRs play in our setup.2 Concretely,
in strategic click-bandits, each arm i is characterized by (a) a reward distribution with mean µi,
inherent to the arm; and (b) a click probability si ∈ [0, 1], chosen freely by the arm at the beginning.
Since the learner (i.e., the recommendation system) knows neither of these values in advance, it
must learn them through interaction. The learner’s objective is represented through a general utility
function u(si, µi) that depends on both click-rate and post-click rewards.

We highlight two fundamental differences between strategic click-bandits and standard MABs. First,
each arm in the strategic click-bandit is a self-interested agent whose objective is to maximize the
number of times it gets clicked. This captures the strategic behavior of many vendors in online
recommendations, especially those who are rewarded based on user clicks (e.g., Youtube (2023)).
Second, si is a freely chosen action by arm i, rather than a fixed parameter of arm i. We believe
these modeling adjustments more realistically capture vendor behaviors in real applications. They
also lead to intriguing mechanism design questions since the bandit algorithm not only needs to learn
the unknown parameters, but also has to carefully align incentives to avoid undesired arm behavior.
In summary, our contributions are:

1. We introduce the strategic click-bandit problem, which involves strategic arms manipulating
click-rates so as to maximize their own utility, and show that incentive-unaware algorithms
generally fail to achieve low regret in the strategic click-bandit (Section 3, Proposition 4.1).

2. We design an incentive-aware learning algorithm, UCB-S, that combines mechanism design
and online learning techniques and effectively incentivizes desirable arm strategies while min-
imizing regret by making credible and justified threats to arms under uncertainty (Section 5).

3. We characterize the set of Nash equilibria for the arms under the UCB-S mechanism and
show that every arm i’s strategy is Õ

(
max

{
∆i,

√
K/T

})
close to the desired strategy in

equilibrium (Theorem 5.2). We then show that UCB-S achieves Õ
(√

KT
)

strong strategic
regret (Theorem 5.3) and complement this with an almost matching lower bound of Ω

(√
KT

)
for weak strategic regret (Theorem 5.5).

4. We simulate strategic arm behavior through repeated interaction and gradient ascent and em-
pirically demonstrate the effectiveness of the proposed UCB-S mechanism (Section 6).

2 RELATED WORK

The MAB problem is a well-studied online learning framework, which can be used to model
decision-making under uncertainty (Lai et al., 1985; Auer, 2002). Since it inherently involves se-
quential actions and the exploration-exploitation trade-off, the MAB framework has been applied to
online recommendations (Li et al., 2010; Zong et al., 2016; Wang et al., 2017) as well as a myriad
of other domains (Bouneffouf et al., 2020). While there is much work studying strategic machine
learning (e.g., Hardt et al., 2016; Freeman et al., 2020; Zhang and Conitzer, 2021), we here wish
to highlight related work that connects online learning (and specifically the MAB formalism) to
mechanism design (Nisan and Ronen, 1999). Additional related work is discussed in Appendix H.

To the best of our knowledge, Braverman et al. (2019) are the first to study a strategic variant of
the MAB problem. In their model, when an arm is pulled, it receives a privately observed reward
ν and chooses to pass on a portion x of it to the principal, keeping ν − x for itself. The goal of

2We use the terms click-through-rate, click-rate, and click probability interchangeably.
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Model 1: The Strategic Click-Bandit Problem

1 Learner commits to algorithm M , which is shared with all arms
2 Arms choose strategies (s1, . . . , sK) ∈ [0, 1]K (unknown to M )
3 for t = 1, . . . , T do
4 Algorithm M selects arm it ∈ [K]
5 Arm it is clicked with probability sit , i.e., ct,it ∼ Bern(sit)
6 if it was clicked (ct,it = 1) then
7 Arm it receives utility 1 from the click
8 M observes post-click reward rt,it drawn from a distribution with mean µit

the principal is then to incentivize arms to share as much reward with the principal as possible.
In contrast to our work, the principal must not learn the underlying reward distribution or the arm
strategies, but instead design an auction among arms based on the shared rewards. Feng et al. (2020)
and Dong et al. (2022) study the robustness of bandit algorithms to strategic reward manipulations.
However, neither work attempts to align incentives by designing mechanisms, but instead assume
a limited manipulation budget. Shin et al. (2022) study MABs with strategic replication in which
agents can submit several arms with replicas to the platform. They design an algorithm, which sep-
arately explores the arms submitted by each agent and in doing so discourages agents from creating
additional arms and replicas. Another line of work studies auction-design in MAB formalisms, often
motivated by applications in ad auctions (Babaioff et al., 2009; Devanur and Kakade, 2009; Babaioff
et al., 2015). In these models, in every round the auctioneer selects one advertiser’s item, which is
subsequently clicked or not, and the goal of the auctioneer is to incentivize advertisers to truthfully
bid their value-per-click by constructing selection and payment rules.

To the best of our knowledge, our work is the first to study the situation where the arms’ strate-
gies (as well as other parameters) are initially unobserved, and must be learned from interaction
while simultaneously incentivizing arms under uncertainty without payments. As a result, while
other work is usually able to precisely incentivize certain arm strategies, our mechanism design and
characterization of the Nash equilibria are approximate.

3 THE STRATEGIC CLICK-BANDIT PROBLEM

We consider a natural strategic variant of the classical MAB, motivated by applications in online
recommendation. Unlike classical MABs, strategic click-bandits feature decentralized interactions
with the learner and multiple self-interested arms.

Let [K] := {1, . . . ,K} denote the set of arms, each being viewed as a strategic agent. The strategic
click-bandit proceeds in two phases. In the first phase, the learner commits to an online learning
policy M , upon which each arm i chooses a description, which results in a corresponding click-
rate si ∈ [0, 1]. The second phase proceeds in rounds. At each round t: (1) the algorithm M
pulls/recommends an arm it based on observed past data; (2) arm it is clicked with probability sit ;
(3) if it is clicked, arm it receives utility 1 (whereas all other arms i receive utility 0) and the learner
observes a post-click reward rt,it ∈ [0, 1] drawn from it’s reward distribution with mean µit ∈ [0, 1].
If it is not clicked, all arms receive 0 utility and the learner does not observe any post-click rewards.
The post-click mean µi is fixed for each arm i and captures the true value of the arm. From the
learner’s perspective, both si and µi of each arm are unknown but can be learned from online bandit
feedback, that is, whether the recommended arm is clicked and, if so, what its realized reward is. In
the following, we will also refer to the online learning policy M as a mechanism to emphasize its
dual role in learning and incentive design. We summarize the interaction in Model 1.

3.1 LEARNER’S UTILITY

The learner’s utility of selecting an arm i with CTR si and post-click value µi is denoted u(si, µi).
One example of this utility function is u(s, µ) = sµ. In this case, the learner monotonically prefers
large s and does not care about how much the click-rate s differs from the post-click value µ. How-
ever, we believe that the learner (e.g., a platform like Youtube or Airbnb) usually values consistency
between the click-rates and the post-click values of arms. This could be captured by a penalty term
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for how much si differs from µi; for instance, a natural choice is u(s, µ) = sµ−λ(s−µ)2 for some
weight λ > 0. Such non-monotonicity of the learner’s utility u(si, µi) in si versus arm i’s monotonic
preference of larger click-rates forms the fundamental tension in the strategic click-bandit model and
is also the reason that mechanism design is needed. We keep the above utility functions in mind as
running examples, but derive our results for a much more general class of functions satisfying the
following mild regularity assumptions:

(A1) u : [0, 1]× [0, 1]→ R is L-Lipschitz w.r.t. the ℓ1-norm.

(A2) u∗(µ) := maxs∈[0,1] u(s, µ) is monotonically increasing.

(A3) s∗(µ) := argmaxs∈[0,1] u(s, µ) is H-Lipschitz and is bounded away from zero.

Assumption (A1) bounds the loss of selecting a suboptimal arm. (A2) states that, in the (idealized)
situation when the arms choose click-rates so as to maximize the learner’s utility u, then arms with
larger post-click rewards µ are always preferred. (A3) then ensures that from the perspective of
the learner most desired strategy s∗(µ) does not change abruptly w.r.t. µ and the learner wishes
to incentivize non-zero click-rates. In what follows, the function s∗(µ) will play a central role
as it describes the arm strategy that maximizes the learner’s utility. For instance, in the case of
u(s, µ) = sµ− λ(s− µ)2 it is given by s∗(µ) = (1 + 1

2λ )µ. As such, the learner will typically try
to incentivize an arm with post-click reward µi to choose strategy s∗(µi).

3.2 ARMS’ UTILITY AND NASH EQUILIBRIA AMONG ARMS

The mean post-click reward µi of each arm i is fixed, whereas arm i can freely choose the CTR si.
In the strategic click-bandit, the objective of each arm i is to maximize the number of times it gets
clicked

∑T
t=1 1{it=i} ct,i, which captures the objectives of vendors on internet platforms for whom

user traffic typically proportionally converts to revenue.3 We now introduce the solution concept
for the game among arms defined by a mechanism M and post-click rewards µ1, . . . , µK , often
referred to as an equilibrium. Let s−i denote the K − 1 strategies of all arms except i. Each arm
i chooses si to maximize their expected number of clicks vi(M, si, s−i), which is a function of the
mechanism M , their own action si as well as all other arms’ actions s−i. Concretely,

vi(M, si, s−i) := EM

[
T∑

t=1

1{it=i} ct,i

]
(1)

where the expectation is taken over the mechanism’s decisions and the environment’s randomness.
We generally write s := (s1, . . . , sK) to summarize a strategy profile of the arms. Let Σ denote the
set of probability measures over [0, 1]. Given a mixed strategy profile σ = (σi, σ−i) ∈ ΣK , i.e., a
distribution over [0, 1]K , arm i’s utility is then defined as vi(M,σi, σ−i) := Es∼σ[vi(M, si, s−i)].

Definition 3.1 (Nash Equilibrium). We say that σ = (σ1, . . . , σK) ∈ ΣK is a Nash equilibrium
(NE) under mechanism M if vi(M,σi, σ−i) ≥ vi(M,σ′

i, σ−i) for all i ∈ [K] and strategies σ′
i ∈ Σ.

In other words, σ is in NE if no arm can increase its utility by unilaterally deviating to some other
strategy. If some NE σ ∈ ΣK has weight one on a pure strategy profile s ∈ [0, 1]K , this equilibrium
is said to be in pure-strategies. Let NE(M) := {σ ∈ ΣK : σ is a NE under M} denote the set of all
(possibly mixed) NE under mechanism M . Following conventions in standard economic analysis,
we assume that the arms will form a NE in NE(M) in response to an algorithm M .4

Remark 3.1 (Existence of Nash Equilibrium). In general, the arms’ utility functions vi(M, si, s−i)
may be discontinuous in the arms’ strategies due to their intricate dependence on the learning
algorithm M . It is well-known that in games with discontinuous utilities, a NE may not exist (Reny,
1999). However, for all subsequently considered algorithms we will prove the existence of a NE by
either explicitly describing the equilibrium or implicitly proving its existence.

3More generally, different arms i may have a different value-per-click νi that could as well depend on µi

so that vi(M, si, s−i) = EM [
∑

t 1{it=i} ct,i νi]. This can easily be accommodated for by our model and our
results readily extend to this case since each arm’s goal still boils down to maximizing the number of clicks.

4For instance, a sufficient condition for the arms to find a NE is their knowledge about how far away they
are from the best arm, i.e., their optimality gap in post-click rewards ∆i := maxj∈[K] µj − µi.
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3.3 STRATEGIC REGRET

The learner’s goal is to maximize
∑T

t=1 u(sit , µit) which naturally depends on the arm strategies
s1, . . . , sK . For given post-click values µ1, . . . , µK , the maximal utility u(s∗, µ∗) is then achieved
for µ∗ := maxi∈[K] µi and s∗ := s∗(µ∗), that is, u(s∗, µ∗) = maxi∈[K] maxs∈[0,1] u(s, µi). With
u(s∗, µ∗) as a benchmark, we can define the strategic regret of a mechanism M under a pure-strategy
equilibrium s ∈ NE(M) as

RT (M, s) := E

[
T∑

t=1

u(s∗, µ∗)− u(sit , µit)

]
. (2)

For some mixed-strategy equilibrium σ ∈ NE(M), we then accordingly define strategic regret as
RT (M,σ) := Es∼σ[RT (M, s)]. In general, there may exist several Nash equilibria for the arms
under a given mechanism M . We can then consider the strong strategic regret of M given by the
regret under the worst-case equilibrium:

R+
T (M) := max

σ∈NE(M)
RT (M,σ),

or the weak strategic regret given by the regret under the most favorable equilibrium:

R−
T (M) := min

σ∈NE(M)
RT (M,σ),

where R−
T (M) ≤ R+

T (M). The regret upper bound of our proposed algorithm, UCB-S, holds under
any equilibrium in NE(UCB-S), thereby bounding strong strategic regret (Theorem 5.3). On the
other hand, the proven lower bounds (Proposition 4.1 and Theorem 5.5) hold for weak strategic
regret and thus also apply to its strong counterpart.

4 LIMITATIONS OF INCENTIVE-UNAWARE ALGORITHMS

We start our analysis of the strategic click-bandit problem by showing that simply finding the arm
with the largest post-click reward, argmaxi µi, or largest utility, argmaxi u(si, µi), is insufficient to
achieve o(T ) weak strategic regret. In fact, we find that even with oracle knowledge of µ1, . . . , µK

and s1, . . . , sK , an algorithm may suffer linear weak strategic regret if it fails to account for the
arms’ strategic nature. For such incentive-unaware oracle algorithms, we show a Ω(T ) lower bound
for weak strategic regret on any non-trivial problem instance.

Recall that µ∗ := maxi∈[K] µi and s∗ := s∗(µ∗) and suppose that the arm i∗ = argmaxi∈[K] µi

with maximal post-click rewards is unique. Our negative results rely on the following problem-
dependent gaps in terms of utility:

β := u(s∗, µ∗)− u(1, µ∗) and η := u(s∗, µ∗)− max
i∈[K]\{i∗}

u∗(µi).

Here, β denotes the cost of the optimal arm i∗ deviating from the desired strategy s∗ = s∗(µ∗) by
playing si∗ = 1. The quantity η denotes the gap between the maximally achievable utility u(s∗, µ∗)
and the utility of the second best arm.

Proposition 4.1. Let µ-Oracle be the algorithm with oracle knowledge of µ1, . . . , µK that plays
it = argmaxi∈[K] µi in every round t, whereas (s, µ)-Oracle is the algorithm with oracle knowledge
of µ1, . . . , µK and s1, . . . , sK that always plays it = argmaxi∈[K]u(si, µi) with ties broken in favor
of the larger µ. We then have

(i) Under every equilibrium σ ∈ NE(µ-Oracle), the µ-Oracle suffers regret Ω
(
βT
)
, i.e.,

R−
T (µ-Oracle) = Ω

(
βT
)
.

(ii) Under every σ ∈ NE((s, µ)-Oracle), the (s, µ)-Oracle suffers regret Ω
(
min{β, η}T

)
, i.e.,

R−
T ((s, µ)-Oracle) = Ω

(
min{β, η}T

)
.
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Mechanism 1: UCB with Screening (UCB-S)

1 initialize: A0 = [K]

2 for t = 1, . . . , T do
3 if At−1 ̸= ∅ then
4 Select it ∈ argmaxi∈At−1

µt−1
i

5 else
6 Select it uniformly at random from [K]

7 Arm it is clicked with probability sit , i.e., ct,it ∼ Bern(sit)

8 if it was clicked (ct,it = 1) then
9 Observe post-click reward rt,it

10 if stit < minµ∈[µt
it
,µt

it
] s

∗(µ) or stit > maxµ∈[µt
it
,µt

it
] s

∗(µ) then

11 Ignore arm it in future rounds: At ← At−1 \ {it}

Proof Sketch. (i): We show that s = 1 is a strictly dominant strategy for arm i∗ under the µ-Oracle.
This implies that arm i∗ plays si∗ = 1 with probability one in every NE under the µ-Oracle. The
claimed lower bound then follows from bounding the instantaneous regret per round from below
by β. (ii): Let j∗ ∈ argmaxi ̸=i∗ µi. It can be seen that in any NE, arm i∗ will play the largest
s ∈ [0, 1] such that u(s, µi∗) ≥ u(sj∗ , µj∗). We then show that either si∗ = 1 or u(si∗ , µi∗) =
u(s∗(µj∗), µj∗). Once again this allows us to lower bound the regret per round by min{β, η}.

As a concrete example of the failure of the µ-Oracle and the (s, µ)-Oracle, let us consider the running
example of u(s, µ) = sµ − λ(s − µ)2. In this case, letting λ = 5 and µi∗ = 0.8 and µi ≤ 0.7 for
i ̸= i∗, we get β ≥ 0.1 and η ≥ 0.1 so that both oracles suffer Ω(T ) regret in every equilibrium.

5 NO-REGRET INCENTIVE-AWARE LEARNING: UCB-S

The results of Proposition 4.1 suggest that any incentive-unaware learning algorithm that is oblivious
to the strategic nature of the arms will generally fail to achieve low regret. In particular, “uncon-
ditional” selection of any arm will likely result in undesirable equilibria among arms. For these
reasons, we deploy a conceptually simple screening idea, which threatens arms with elimination
when deviating from the desired strategies.

Let denote nt(i) be the number of times up to (and including) round t that arm i was selected by
the learner, and let mt(i) denote the number of times post-click rewards were observed for arm i up
to (and including) round t. Let ŝti be the average observed click-rate and µ̂t

i the average observed
post-click reward for arm i. We then define the pessimistic and optimistic estimates of si and µi as

sti = ŝti −
√
2 log(T )/nt(i), sti = ŝti +

√
2 log(T )/nt(i),

µt
i = µ̂t

i −
√
2 log(T )/mt(i), µt

i = µ̂t
i +
√
2 log(T )/mt(i).

where sti = −∞ and sti = +∞ for nt(i) = 0 as well as µt
i
= −∞ and µt

i = +∞ for mt(i) = 0.

In every round, UCB-S (Mechanism 1) selects arms optimistically according to their post-click
rewards and subsequently observes if the arm is clicked, i.e., ct,it , and, if so, a post-click reward
rt,it . However, if an arm’s click-rate si is detected to be different from the learner’s desired arm
strategy s∗(µi), the arm is eliminated forever, expressed by the screening rule in line 10:

stit < min
µ∈[µt

it
,µt

it
]
s∗(µ) or stit > max

µ∈[µt
it
,µt

it
]
s∗(µ).

The only exception is when all arms have been eliminated. Then, UCB-S plays them all uniformly
for the remaining rounds. To ensure that the elimination of an arm is credible and justified with high
probability, we leverage confidence bounds on si and µi. More precisely, if an arm is truthful and
chooses si = s∗(µi), then with probability 1− 1/T 2 it will not be eliminated by the screening rule.
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As a prelude to the analysis of the UCB-S mechanism, we begin by showing that there always exists
a NE among the arms under UCB-S. As mentioned briefly in Section 3, the existence of a NE among
the arms is not guaranteed under an arbitrary mechanism due to the arms’ continuous strategy space
and possibly discontinuous utility function.
Lemma 5.1. For any post-click rewards µ1, . . . , µK , there always exists a (possibly mixed) Nash
equilibrium for the arms under the UCB-S mechanism.

5.1 CHARACTERIZING THE NASH EQUILIBRIA UNDER UCB-S

We now approximately characterize all NE for the arms under the UCB-S mechanism. In order
to prove a regret upper bound for UCB-S, it will be key to ensure that each arm i plays a strategy
si which is sufficiently close to the desired strategy s∗(µi) (i.e., the strategy that maximizes the
learner’s utility). This is particularly important for arms i∗ with maximal post-click rewards µi∗ =
maxi∈[K] µi. If such arms i∗ were to deviate substantially from s∗(µi∗), e.g., by a constant amount,
the learner would be forced to suffer constant regret even when selecting arms with maximal post-
click rewards, making it impossible to achieve sublinear regret.

In the following, we show that under the UCB-S mechanism every NE is such that the strategies of
arms with maximal post-click rewards deviate from the desired strategies by at most Õ(

√
K/T ).

We then also show that for suboptimal arms the difference between each arm i’s strategy si and the
desired strategy s∗(µi) is governed by their optimality gap in post-click rewards, given by ∆i :=
µ∗ − µi. Recall that H denotes the Lipschitz constant of s∗(µ).
Theorem 5.2. For all s ∈ supp(σ) with σ ∈ NE(UCB-S) and all i ∈ [K]:

si = s∗(µi) +O

(
H ·max

{
∆i,

√
K log(T )

T

})
.

In particular, for all arms i∗ ∈ [K] with ∆i∗ = 0, i.e., maximal post-click rewards:

si∗ = s∗(µi∗) +O

(
H

√
K log(T )

T

)
.

The derivation of Theorem 5.2 can be best understood by noting that the estimates of each arm’s
strategy roughly concentrate at a rate of 1/

√
t. Then, depending on how often an arm expects to be

selected by UCB-S, it can exploit our uncertainty about its strategy and safely increase its click-rates
to match our confidence. Generally, optimal arms expect at least T/K allocations while preventing
elimination, which can be seen to imply NE strategies that deviate by at most

√
K/T . On the

other hand, suboptimal arms can expect roughly log(T )/∆2
i allocations as long as they can prevent

elimination and all other arms act rationally, which results in the linear dependence on ∆i. Hence,
interestingly UCB-S’ selection policy directly impacts the truthfulness of the arms, as arms that are
selected more frequently are forced to choose strategies closer to s∗(µi). We thus observe a trade-off
between incentivizing all arms to be truthful and recommending only the best arms. The proof of
Theorem 5.2 (Appendix C) then relies on the above observation and careful and repeated application
of the best response property of the Nash equilibrium.

5.2 UPPER BOUND OF THE STRONG STRATEGIC REGRET OF UCB-S

With the approximate NE characterization from Theorem 5.2 at our disposal, we are ready to prove
a regret upper bound for UCB-S. We show that the strong strategic regret of the UCB-S mechanism
is upper bounded by Õ

(√
KT

)
, that is, for any σ ∈ NE(UCB-S) the regret guarantee holds.

Theorem 5.3. Let ∆i := µ∗ − µi and let L and H denote the Lipschitz constants of u(s, µ) and
s∗(µ), respectively. The strong strategic regret of UCB-S is bounded as

R+
T (UCB-S) = LH · O

(√
KT log(T ) +

∑
i:∆i>0

log(T )

∆i

)
. (3)

In other words, the above regret bound is achieved under any equilibrium σ ∈ NE(UCB-S).
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Proof Sketch. As suggested by the regret bound there are two sources of regret. Broadly speaking,
the first term on the right hand side of (3) corresponds to the regret UCB-S suffers due to arms with
maximal post-click rewards (i.e., ∆i = 0) deviating from the utility-maximizing strategy s∗(µ∗).
For such arms Theorem 5.2 bounded the deviation by a term of order

√
K/T , thereby leading to at

most order
√
KT regret. The second term in (3) corresponds to the regret suffered from playing arms

with suboptimal post-click rewards, i.e., ∆i > 0. Using a typical UCB argument, the Lipschitzness
of u(s, µ) and s∗(µ), and again Theorem 5.2 applied to |s∗(µ∗) − si| ≤ |s∗(µ∗) − s∗(µi)| +
O(H∆i) ≤ H∆i +O(H∆i) we obtain the claimed upper bound.

Similarly to classical MABs we can state a regret bound independent of the instance-dependent
quantities ∆i and translate Theorem 5.3 into a minimax-type guarantee.
Corollary 5.4. The strong strategic regret of UCB-S is bounded as

R+
T (UCB-S) = O

(
LH

√
KT log(T )

)
.

In other words, the above regret bound is achieved under any equilibrium σ ∈ NE(UCB-S).

Theorem 5.3 nicely shows that the additional cost of the incentive design and the strategic behavior
of the arms is of order

√
KT which primarily stems from arms with maximal post-click rewards

deviating by roughly
√
K/T from the desired strategy (see Theorem 5.2). The dishonesty of subop-

timal arms does not notably contribute to the regret and is contained in the log(T )/∆i expressions
as we can bound the number of times suboptimal arms are played sufficiently well. As a result, the
total cost of incentive design and strategic behavior matches the minimax learning complexity of
MABs so that we obtain an overall Õ(

√
KT ) strategic regret bound under every equilibrium.

5.3 LOWER BOUND FOR WEAK STRATEGIC REGRET

Complementing our regret analysis, we prove a lower bound on weak strategic regret in the strategic
click-bandit. By definition, weak strategic regret lower bounds its strong counterpart, i.e., R−

T (M) ≤
R+

T (M), so that the shown lower bound directly applies to strong strategic regret as well, which
implies that UCB-S is near-optimal.
Theorem 5.5. Let M be any mechanism with NE(M) ̸= ∅. There exists a utility function u satisfy-
ing (A1)-(A3) and post-click rewards µ1, . . . , µK such that for all Nash equilibria σ ∈ NE(M):

RT (M,σ) = Ω
(√

KT
)
.

In other words, R−
T (M) = Ω

(√
KT

)
.

Proof Sketch. Consider the utility function u(s, µ) = sµ. Intuitively, for any low regret mecha-
nism M the NE for the arms will be in (s1, . . . , sK) = (1, . . . , 1) as these strategies maximize the
learner’s utility u and are to the advantage of the arms. In this case, the learning problem reduces
to a classical MAB and we inherit the well-known minimax

√
KT lower bound. However, it is

not directly clear that there exists no better mechanism that would, e.g., incentivize arm strategies
(s1, . . . , si∗ , . . . , sK) = (0, . . . , 1, . . . , 0) under which i∗ = argmaxi µi becomes easier to distin-
guish from i ̸= i∗. For this reason, we argue via the arms’ utilities and lower bound the minimal
utility a suboptimal arm must receive in any NE. This directly implies a lower bound on the number
of times we must play any suboptimal arm in equilibrium, which yields the claimed result.

6 SIMULATING STRATEGIC ARM BEHAVIOR VIA REPEATED INTERACTION

Goal of the experiments is to analyze the effect of the proposed incentive-aware learning algorithm
UCB-S on strategically responding arms. Strategic arm behavior is here modeled through decen-
tralized gradient ascent and repeated interaction with the mechanism. Contrary to the assumption of
arms playing in NE, arms follow a simple gradient ascent strategy to adapt to the mechanism, which
serves as a realistic and natural model of strategic behavior. This requires no prior knowledge from
the point of view of the arms and all learning is performed through sequential interaction with the
mechanism. For this reason, the final strategies in our experiments may not necessarily be in NE.
Despite this, we want to see whether the mechanism is still able to incentivize arms to behave in the
desired manner which will also provide insight into the robustness of the proposed incentive design.
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(a) Optimal arm with
mean µ1 = 0.75.

(b) Suboptimal arm with
mean µ2 = 0.725.

(c) Suboptimal arm with
mean µ3 = 0.7.

(d) Suboptimal arm with
mean µ4 = 0.675.

Figure 2: The strategic behavior of K = 4 arms when each arm uses gradient ascent to maximize
their utility vi in response to the UCB-S mechanism. In red, the desired strategy s∗(µi) for each
arm i, respectively. As suggested by Theorem 5.2, the truthfulness, i.e., distance to s∗(µi), of a
suboptimal arm i is governed by the arm’s optimality gap ∆i. We see this confirmed as the distance
si − s∗(µi) increases as ∆i increases. In accordance with our theoretical results, the optimal arm 1
has the largest incentive to play close to the desired strategy (as it loses the most when eliminated).

Figure 3: Strategic arm
behavior when inter-
acting with incentive-
unaware standard UCB.

Figure 4: Strategic re-
gret of UCB-S and stan-
dard UCB as arms adapt
their strategies.

Experimental Setup. We consider the earlier
introduced utility function defined as u(s, µ) =
sµ− λ(s− µ)2 such that the desired (learner’s
utility-maximizing) strategy given µ is s∗(µ) =
(1 + 1

2λ )µ. We let λ = 5. To model the strate-
gic behavior of arms in response to UCB-S, we
let the strategic arms interact with the mecha-
nism over the course of 20 epochs (x-axis) and
model each arm’s strategic behavior via gradi-
ent ascent w.r.t. its utility vi. More precisely, af-
ter every epoch (i.e., interaction over T = 50k
rounds), each arm performs an approximated

gradient step with respect to its utility vi. We initialized the arm strategies to si = 1, however,
our experiments show that other initialization, such as si = 0 or si = 0.5, yield similar results. All
results are averaged over 10 complete runs and the standard deviation shown in shaded color.
Results. The conducted simulations show that under natural greedy behavior as modeled by gradi-
ent ascent, the incentive design of UCB-S is still effective and desirable arm strategies incentivized
(Figure 2). Most notably, the optimal arm (having the largest incentive to be truthful) converges to
a strategy close to the desired strategy s∗(µ1). The suboptimal arms do not converge to a strategy
close to the desired strategy and we observe that the distance to s∗(µi) depends on the optimality
gap ∆i, which mirrors our theoretical results (Theorem 5.2). In addition, Figure 4 shows that as
the arms interact with UCB-S and adapt their strategies, the regret of UCB-S improves substan-
tially. In contrast, incentive-unaware algorithms like UCB fail to incentivize desirable strategies (all
arm strategies remain close to 1, see Figure 3) and UCB accordingly suffers large regret (Figure 4)
throughout all epochs. The observation that UCB-S initially suffer larger regret than UCB can be
explained by the elimination rule causing UCB-S to select arms uniformly at random when arms are
notably untruthful. This threat of elimination, however, incentivizes the arms to adapt their strategies
in the next epoch and eventually leads to smaller regret for UCB-S.

7 DISCUSSION

We study the strategic click-bandit problem in which each arm is associated with a click-rate, chosen
strategically by the arms, and an immutable post-click reward. We show the necessity of incentive
design in this model and design an incentive-aware online learning algorithm that incentivizes de-
sirable arm strategies under uncertainty. As the learner has no prior knowledge of the arm strategies
and the post-click rewards, the mechanism design is approximate and leaves room for arms to ex-
ploit the learner’s uncertainty. This leads to an interesting regret bound which makes the intuition
precise that arms can exploit the learner’s uncertainty about their strategies. In our simulations we
then observe that our incentive design is robust and still effective under natural greedy arm behavior
and that the design of incentive-aware learning algorithms is necessary to achieve low regret under
strategic arm behavior. Some interesting open questions which we leave for future work include
whether the proposed incentive design remains effective under adaptive arm strategies and whether
we can construct a mechanism under which there exists a desirable NE in dominant strategies.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

Yang Liu and Chien-Ju Ho. Incentivizing high quality user contributions: New arm generation in
bandit learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 5(Jun):623–648, 2004.

Hamid Nazerzadeh, Renato Paes Leme, Afshin Rostamizadeh, and Umar Syed. Where to sell:
Simulating auctions from learning algorithms. In Proceedings of the 2016 ACM Conference on
Economics and Computation, pages 597–598, 2016.

Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the thirty-first
annual ACM symposium on Theory of computing, pages 129–140, 1999.

David C Parkes. Online mechanisms. 2007.

Alessandro Pavan, Ilya Segal, and Juuso Toikka. Dynamic mechanism design: A myersonian ap-
proach. Econometrica, 82(2):601–653, 2014.

Philip J Reny. On the existence of pure and mixed strategy nash equilibria in discontinuous games.
Econometrica, 67(5):1029–1056, 1999.

Suho Shin, Seungjoon Lee, and Jungseul Ok. Multi-armed bandit algorithm against strategic replica-
tion. In International Conference on Artificial Intelligence and Statistics, pages 403–431. PMLR,
2022.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Ma-
chine Learning, 12(1-2):1–286, 2019.

Huazheng Wang, Qingyun Wu, and Hongning Wang. Factorization bandits for interactive recom-
mendation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Clicks can be cheat-
ing: Counterfactual recommendation for mitigating clickbait issue. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1288–1297, 2021.

Youtube. How to earn money on YouTube, 2023.

11



Published as a conference paper at ICLR 2024

Yisong Yue, Rajan Patel, and Hein Roehrig. Beyond position bias: Examining result attractiveness
as a source of presentation bias in clickthrough data. In Proceedings of the 19th international
conference on World wide web, pages 1011–1018, 2010.

Hanrui Zhang and Vincent Conitzer. Incentive-aware pac learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 5797–5804, 2021.

Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cascading
bandits for large-scale recommendation problems. arXiv preprint arXiv:1603.05359, 2016.

12



Published as a conference paper at ICLR 2024

APPENDIX

The appendix is arranged as follows:

• Section A contains the proof of Proposition 4.1.

• Section B proves the existence of a Nash equilibrium under UCB-S (Lemma 5.1).

• Section C contains the proof of the Nash equilibrium characterization (Theorem 5.2).

• Section D contains the proof of the regret upper bound of UCB-S (Theorem 5.3).

• Section E contains the proof of Corollary 5.4.

• Section F contains the proof of the lower bound (Theorem 5.5).

• Section G contains basic technical lemmas that are used in the proofs.

• Section H discusses additional related work.

A PROOF OF PROPOSITION 4.1

Proof of Proposition 4.1. (i): Under any strategy profile s = (s1, . . . , sK), arm i ̸= i∗ has utility
vi(µ-Oracle, si, s−i) = 0, while arm i∗ has utility

vi∗(µ-Oracle, si∗ , s−i∗) = Tsi∗ .

Hence, the pure strategy s = 1 is a strictly dominant strategy for arm i∗, which implies that i∗ plays
si∗ = 1 with probability one in every Nash equilibrium. Now,

u(s∗, µi∗)− u(si∗ , µi∗) = u(s∗, µi∗)− u(1, µi∗) = β

and the µ-Oracle thus suffers regret β every round, which implies the claimed Ω(βT ) lower bound
in every equilibrium.

(ii): Let j∗ ∈ argmaxi̸=i∗ µi be the arm with second largest post-click value and define u∗
j∗ :=

u(s∗(µj∗), µj∗). Let s′ be the largest s ∈ [0, 1] such that u(s′, µi∗) ≥ u∗
j∗ . We distinguish between

two cases:

Case 1. Suppose that u(s′, µi∗) > u∗
j∗ . From the continuity of u it then follows that s′ = 1.

To see this, suppose the contrary is true. Then, for all s′′ > s′ with s′′ ∈ [0, 1] it must hold that
u(s′′, µi∗) < u∗

j∗ by definition of s′ as the largest s ∈ [0, 1] such that u(s, µi∗) ≥ uj∗ . However,
this contradicts the continuity of u(s, µ) in s, since we have just shown that u(s′′, µi∗) < u∗

j∗ <
u(s′, µi∗) for all s′′ > s′. We have thus shown by contradiction that s′ = 1.

Then, if arm i∗ chooses strategy si∗ = 1, arm i∗ is pulled every round by (s, µ)-Oracle for all
s−i∗ ∈ [0, 1]K−1 so that vi∗((s, µ)-Oracle, 1, s−i∗) = T . This immediately implies that si∗ = 1
is a strictly dominant strategy for i∗, since vi∗((s, µ)-Oracle, s, s−i∗) ≤ Ts < T for all s ∈ [0, 1).
Thus, arm i∗ plays si∗ = 1 in every Nash equilibrium of the arms. Analogous to the proof of (i),
this yields |u(s∗, µ∗)− u(si∗ , µi∗)| = β, which implies that the (s, µ)-Oracle suffers Ω(βT ) under
any Nash equilibrium of the arms.

Case 2. Suppose that u(s′, µi∗) = u∗
j∗ . In a first step, we show that arm i∗ plays s′ with

probability one in every Nash equilibrium. We begin by noting that if arm i∗ plays si∗ =
s′, then for any opponent strategies s−i∗ ∈ [0, 1]K−1 arm i∗ is played all T rounds so that
vi∗((s, µ)-Oracle, s′, s−i∗) = Ts′. Naturally, s′ thus strictly dominates any other strategy s′′ < s′,
since vi((s, µ)-Oracle, s′′, si∗) ≤ Ts′′.

Next, suppose that arm i∗ plays some strategy s′′ > s′ with probability one.5 Then, by definition
of s′, we have u(s′′, µi∗) < u∗

j∗ := u(s∗(µj∗), µj∗). As a result, arm j∗’s best response sj∗ to s′′

5For simplicity, we assume that arm i∗ plays the strategy with probability one. The case where i∗ plays
s′′ > s′ with some positive probability can be treated analogously.
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will be such that u(s′′, µi∗) < u(sj∗ , µj∗), thereby obtaining utility vj∗((s, µ)-Oracle, sj∗ , s−j∗) ≥
Ts∗(µj∗). As a result, if j∗ plays a best response, arm i∗ receives utility 0 when playing s′′, whereas
arm i∗ receives utility Ts′ when playing s′. Hence, any s′′ > s′ cannot be part of an equilibrium for
arm i∗ and we have shown that arm i∗ plays s′ with probability one in every equilibrium. Finally,
by definition of s′, we have

u(s∗, µ∗)− u(s′, µi∗) ≥ u(s∗, µ∗)− u(s∗(µj∗), µj∗) = u(s∗, µ∗)− u∗(µj∗) = η

which implies that (s, µ)-Oracle suffers Ω(ηT ) regret under any Nash equilibrium of the arms.
Hence, we obtain the claimed lower bound of Ω

(
min{β, η}T

)
.

Remark A.1. Interestingly, when the (s, µ)-Oracle from Proposition 4.1 (ii) does not break ties
in favor of the larger µ but instead uniformly at random, it can be shown that in all but a few
problem instances no Nash equilibrium for the arms exists. However, for any ε > 0 we can explicitly
construct an ε-Nash equilibrium for the arms under which the algorithm suffers Ω(min{β, η T )
strategic regret.

Before proving the statement of Remark A.1, we formally introduce the concept of an ε-Nash equi-
librium among the arms here.

Definition A.1 (ε-Nash Equilibrium). For ε > 0, we say that strategies σ = (σ1, . . . , σK) form an
ε-Nash equilibrium under M if vi(M,σi, σ−i) ≥ vi(M,σ′

i, σ−i)− ε for all i ∈ [K] and σ′
i ∈ Σ.

For Remark A.1, we will show that there exists an ε-Nash equilibrium in pure-strategies s ∈ [0, 1]K

such that the oracle algorithm that breaks ties uniformly suffers linear strategic regret.

Proof of Remark A.1. As in the proof of Proposition 4.1 (ii), let j∗ ∈ argmaxi ̸=i∗ µi be the arm
with second largest post-click value and define u∗

j∗ := u(s∗(µj∗), µj∗). Now, let s′ be the largest
s ∈ [0, 1] such that

u(s′, µi∗) ≥ u∗
j∗ and u(s′ − ε′, µi∗) > u∗

j∗ for all ε′ > 0.

Note that such s′ exists since u is continuous and u(s∗(µi∗), µi∗) > u∗
j∗ . We again distinguish

between two cases, similarly to the proof of Proposition 4.1.

Case 1. If u(s′, µi∗) > u∗
j∗ , it follows that s′ = 1. This means that s = (si∗ , s−i∗) with si∗ = 1

and arbitrary s−i∗ ∈ [0, 1]K−1 form a pure strategy Nash equilibrium for the arms. As in the proof
of (i), we then obtain

u(s∗, µ∗)− u(si∗ , µi∗) = β

which implies order Ω(βT ) regret under (si∗ , s−i∗).

Case 2. Now, suppose that u(s′, µi∗) = u∗
j∗ . Let si∗ = s′ − ε′ and si = s∗(µi) for all i ̸= i∗. We

see that (si∗ , s−i∗) is a (Tε′)-Nash equilibrium under the oracle algorithm. Hence, for any ε > 0,
the strategy profile sε′ := (s′ − ε′, s−i∗) is a ε-Nash equilibrium for all ε′ < ε

T . Using that u is
L-Lipschitz, we have

|u(s′ − ε′, µi∗)− u(sj∗ , µj∗)| = |u(s′ − ε′, µi∗)− u(s′, µi∗)| ≤ Lε′,

and it follows that

|u(s∗, µ∗)− u(s′ − ε′, µi∗)| ≥ |u(s∗, µ∗)− u(sj∗ , µj∗)| − Lε′ ≥ η − Lε′,

We can choose ε′ < ε
T sufficiently small so that Lε′ < 1/T . Hence, over T rounds the oracle

algorithm suffers Ω(ηT ) regret under the ε-Nash equilibrium given by sε′ . This yields the claimed
lower bound.
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B PROOF OF LEMMA 5.1

Proof of Lemma 5.1. We use Glicksberg’s theorem Glicksberg (1952), which guarantees the ex-
istence of a Nash equilibrium in continuous games with compact strategy space and continuous
utility functions vi. The strategy space [0, 1] is compact and we are left with proving the continu-
ity of vi(UCB-S, s) in s ∈ [0, 1]K . Since vi(UCB-S, s) = Es[nT (i)]si, the question is whether
Es[nT (i)] is continuous in s under UCB-S. The choice of s influences the actions of UCB-S when
through the screening rule in line 10, but also the UCB-type selection in line 4, since post-click
rewards are only observed when the arm is clicked.

Let Ht denote the history of the mechanism’s selections and observations up to round t, consisting
of tuples (it, ct,it , rt,it). Even though rt,it is sometimes not observed, we include it here and note
that it will not matter as the realizations of rt,it are independent of s. We let Ht up round t denote
the set of all possible histories.

While we are interested in Es[nT (i)], for technical reasons, it will be more convenient to prove the
continuity of Ps(Ht ∈ ·) as a function of s. We will do so by induction over t ∈ [T ]. Naturally,
Ps(H1 ∈ ·) is continuous in s, since Ps(c1,i1 = 1) = si1 and we break ties in line 4 independent
of s. For the proof by induction, let us now assume that Ps(Ht ∈ ·) is continuous in s. Then, for
t + 1 we find that again Ps(ct+1,it+1 = 1) = 1 − Ps(ct+1,it+1 = 0) = sit+1 is continuous in s.6
The interesting part is then whether Ps(it+1 = i) is continuous in s.

Lemma B.1. For any event A, if Ps(A | Ht) and Ps(Ht) are continuous in s for allHt ∈Ht, then
Ps(A) is also continuous in s.

Proof. This follows from the law of total probability.

We begin by analyzing the dependence of the screening rule in line 10 on s. First of all, note that for
all i ∈ At−1 \ {it}, we always have i ∈ At, i.e., no other arm than it will ever be eliminated at the
end of round t. Moreover, since Ps(ct,it = 1) = sit is continuous in s, it follows that Ps(s

t
it
> a)

and Ps(s
t
it
> a | Ht) are also continuous in s for all a ∈ R. Consequently, the probability that arm

it is eliminated in line 10 at the end of round t, i.e., Ps(it ̸∈ At), must be continuous in s.

Let us assume that At ̸= ∅, since Ps(it+1 = i) is always continuous in s if At = ∅. If i ̸∈ At, we
have Ps(it+1 = i) = 0. Note that for all i ̸= it, we have µt

i = µt−1
i . We will now first consider any

i ̸= it. If i ∈ At, we then have

Ps(it+1 = i | Ht)

= Ps

(
µt
i > max

j∈At\{i,it}
µt
j | it ̸∈ At,Ht

)
· Ps(it ̸∈ At | Ht)

+ Ps

(
µt
i > max

j∈At\{i}
µt
j | it ∈ At,Ht

)
· Ps(it ∈ At | Ht) (4)

= P
(
µt−1
i > max

j∈At\{i,it}
µt−1
j | it ̸∈ At,Ht

)
· Ps(it ̸∈ At | Ht)

+ P
(
µt−1
i > max

j∈At\{i,it}
µt−1
j | it+1 ̸= it,Ht

)
· Ps(it+1 ̸= it | it ∈ At,Ht) · Ps(it ∈ At | Ht).

The leading factors are independent of s and we have already shown that Ps(it ̸∈ At+1) is continu-
ous in s. We are thus left with proving the continuity of Ps(it+1 ̸= it | it ∈ At+1,Ht).

It holds that Ps(µ
t
it ∈ · | Ht) = sitP(µt

it ∈ · | ct,it = 1,Ht) + (1− sit)P(µt
it ∈ · | ct,it = 0,Ht),

where we used that Ps(µ
t
it ∈ · | ct,it ,Ht) = P(µt

it ∈ · | ct,it ,Ht) is independent of s (conditional
on the click-event ct,it ). Hence, as a sum and product of continuous functions Ps(µ

t
it ∈ · | Ht) is

continuous in s and we get that

Ps(it+1 = it | Ht) = Ps(µ
t
it > max

j ̸=it
µt−1
j | Ht)Ps(it ∈ At+1 | Ht)

6Note that rt+1,it+1 is independent of s.
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is continuous in s, where we used that µt
j = µt−1

j for all j ̸= it independent of s.7 Then, since
Ps(it+1 = it | it ̸∈ At) = 0, we have

Ps(it+1 = it | Ht) = Ps(it+1 = it | it ∈ At,Ht)Ps(it ∈ At | Ht),

which shows the continuity of Ps(it+1 = it | it ∈ At,Ht). Hence, in view of equation (4), we
obtain that Ps(it+1 = i | Ht) is continuous in s. Finally, Lemma B.1 tells us that, since Ps(Ht) is
assumed to be continuous, Ps(it+1 = i) is continuous as well. Hence, Ps(Ht+1) is continuous and
by induction we get that Ps(HT ) is continuous, which implies the continuity of Es[nT (i)] in s for
all i.

C PROOF OF THEOREM 5.2

Proof of Theorem 5.2. In the following let σ = (σ1, . . . , σK) ∈ NE(UCB-S) and s ∈ supp(σ).
We start of with some preliminaries. Recall that the arm i’s utility function given algorithm UCB-
S and strategies s = (si, s−i) can be expressed as

vi(UCB-S, si, s−i) = E(UCB-S,si,s−i)[nT (i)]si,

and vi(UCB-S, si, σ−i) = Es−i∼σ−i
[vi(UCB-S, si, s−i)] = E(si,σ−i)[nT (i)]si. For convenience,

we omit the argument UCB-S in the following, as every probability and expectation will be w.r.t.
UCB-S. The following variables will prove useful. Let τi be the first round that arm i is not in the
active set At anymore,

τi := min{t ∈ [T ] : i ̸∈ At},

and let τ be the first rounds in which At is empty,

τ := min{t ∈ [T ] : At = ∅}.

Here, we introduce the convention that τi = T if i ∈ AT and τ = T if AT ̸= ∅.
To characterize the strategy profiles in the support of any Nash equilibrium under UCB-S, we are
going to rely on the best response property of the Nash equilibrium. More precisely, for any s ∈
supp(σ) with σ ∈ NE(UCB-S) arm i’s strategy, si, must be a best response to σ−i, i.e., for all
s′i ∈ [0, 1]:

vi(si, σ−i) ≥ vi(s
′
i, σ−i).

In a first step, we show that UCB-S incentivizes arms to choose strategies si at least as large as
the desired strategy s∗(µi). While this seems obvious at first since each arm i’s utility includes
a linear factor of si, we notice that in the click-bandit model arms can prevent the principal from
learning about their true post-click value µ by choosing low click-rates s. This could in theory be a
viable strategy for suboptimal arms, i.e., µi < µ∗, since it would delay the principal from detecting
that the arm is suboptimal. However, we quickly notice that delaying UCB-S from learning about
µ1, . . . , µK is to each arm’s disadvantage as any delay simply delays the round in which it receives
utility. Moreover, while an arm may delay the learning of µi, UCB-S still improves its estimate of
si and the threat of elimination becomes more imminent.

Lemma C.1. For all s ∈ supp(σ) with σ ∈ NE(UCB-S) and all i ∈ [K]:

si ≥ s∗(µi).

Proof. Let σ ∈ NE(UCB-S). We begin by making some fundamental observations about UCB-S
in the click-bandit model. Let t < T . If ct,it = 0 and it ∈ At, then it+1 = it.8 To see this, note that

7Note that µt−1
i is Ht-measurable for all i.

8W.l.o.g. we assume that there are no ties (ignoring the rounds where no post-click rewards have yet been
observed). In fact, when there is a possibility of a tie, it can be seen that the arms have an even larger incentive
to choose si ≥ s∗(µi), since they are not guaranteed to be pulled again in the ensuing round when not clicked.
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the estimates of µ1, . . . , µK and their confidence bounds do not change from t to t+ 1 if ct,it = 0,
since no post-click reward was observed for any of the arms. Hence, given that it ∈ At, we have

it+1 = argmax
i∈At

µt
i = argmax

i∈At−1

µt−1
i = it.

Thus, given that it is not eliminated in the mean time, UCB-S plays arm it until arm it is clicked,
i.e., until the arm receives utility 1, or we’ve reached round T . Hence, whenever ct,it = 0, it simply
delays the UCB selection rule by one round as the estimates and confidences of µ1, . . . , µK do not
change. At the same time, arm i with i = it still only receives utility 1 for this sequence of selections
by UCB-S, since the UCB selection rule “progresses” once ct,it = 1.

More formally, we can define the phases of the UCB selection rule recursively by ηk := min{t >
ηk−1 : ct,it = 1} with η0 := 0 and ηk = ∞ if round T is exceeded without a click. We define the
number of such rounds as N := max{k : ηk <∞} and remark that N ≤ T always.

We first note that conditional on Aηk−1
the identity of iηk

is independent of si (and σ−i), but only de-
pends on µ1, . . . , µK and their realization at rounds η1, . . . , ηk−1, i.e., P(si,σ−i)(iηk

= i | Aηk−1
) =

P(iηk
= i | Aηk−1

). Moreover, we also see that P(si,σ−i)(Aηk
= · | i ∈ Aηk

) is independent of si.9
Then, since

P(si,σ−i)(iηk
= i | i ∈ Aηk−1

)

=
∑
A

P(si,σ−i)(iηk
= i | Aηk−1

= A ∪ {i})P(Aηk−1
= A | i ∈ Aηk−1

),

this implies that P(si,σ−i)(iηk
= i | i ∈ Aηk−1

) is independent of si. Using the shown independence,
let us then write

P(si,σ−i)(iηk
= i) = P(iηk

= i | i ∈ Aηk−1
)P(si,σ−i)(i ∈ Aηk−1

)

+ P(si,σ−i)(iηk
= i | i ̸∈ Aηk−1

)P(si,σ−i)(i ̸∈ Aηk−1
).

(5)

Now, it holds that P(iηk
= i | i ∈ Aηk−1

) ≥ P(si,σ−i)(iηk
= i | i ̸∈ Aηk−1

) always. Naturally, for
si < s∗(µi) we have P(si,σ−i)(i ∈ Aηk−1

) ≤ P(s∗(µi),σ−i)(i ∈ Aηk−1
) so that from equation (5) it

follows that

P(si,σ−i)(iηk
= i) ≤ P(s∗(µi),σ−i)(iηk

= i). (6)

We also see that as si decreases the number of utility-yielding rounds decreases in expectation, i.e.,
for si < s∗(µi):

E(si,σ−i)[N ] < E(s∗(µi),σ−i)[N ] (7)

since ηk−ηk−1 ∼ Geom(siηk ). Finally, it follows from equations (6) and (7) and a technical lemma
about the comparison of expectation under two measures (Lemma G.1 in Appendix G) that

E(si,σ−i)[mT (i)] = E(si,σ−i)

[
N∑

k=1

1{iηk=i}

]

< E(s∗(µi),σ−i)

[
N∑

k=1

1{iηk=i}

]
= E(s∗(µi),σ−i)[mT (i)].

Since a post-click reward is observed with probability si every time an arm is pulled by the learner,
we have E(si,σ−i)[mt(i)] = E(si,σ−i)[nt(i)]si so that vi(si, σ−i) = E(si,σ−i)[mt(i)]. Now, from
the above we see that for any si < s∗(µi), the strategy s∗(µi) is a strictly better response to σ−i

than si, i.e., vi(s∗(µi), σ−i) > vi(si, σ−i). This shows that si ≥ s∗(µi) for any si ∈ supp(σi) with
σ ∈ NE(UCB-S).

9However, note that the value of At for general t is not independent of si conditional on i ∈ At, since, e.g.,
for small si other arms will be played fewer times before round t, thereby reducing the probability of them
being eliminated by round t.
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We continue the proof of Theorem 5.2 by decomposing the number of times each arm is selected by
UCB-S. Given (si, σ−i) we can split E(si,σ−i)[nT (i)] into the time steps before τi and after τ , since
arm i is never played in the rounds between τi and τ . Recall that UCB-S plays arms uniformly at
random after round τ so that

E(si,σ−i)[nT (i)] = E(si,σ−i)

[
τi∑
t=1

1{it=i} +

T∑
t=τ+1

1{it=i}

]

= E(si,σ−i)[nτi(i)] + E(si,σ−i)

[T − τ

K

]
. (8)

The proof of Theorem 5.2 proceeds by upper and lower bounding the quantities in (8), which will
eventually lead to an approximate characterization of the best response si. More precisely, we
establish the following bounds for σ ∈ NE(UCB-S) and si ∈ supp(σi):

Lemma C.2: E(si,σ−i)[nτi(i)] ≤ O
(

H2 log(T )
si(si−s∗(µi))2

)
.

Lemma C.4: T − E(si,σ−i)[τ ] ≤ O(1).

Lemma C.5: E(si,σ−i)[nT (i)] = Ω
(
min{ log(T )

si∆2
i
, s∗(µi)

T
K }
)

.

C.1 BOUNDS ON nT (i), nτi(i), τi, AND τ UNDER UCB-S

We begin by bounding the number of allocations arm i receives before elimination. As one expects,
UCB-S is able to detect that si ̸= s∗(µi) with high probability after at most O(1/(si − s∗(µi))

2)
selections.

Lemma C.2. Let σ ∈ NE(UCB-S) and si ∈ supp(σi) with si ̸= s∗(µi). Then, the number of
times that i is being selected before elimination, nτi)(i), satisfies the following. For some constant
c1 > 0, it holds that

P(si,σ−i)

(
nτi(i) ≤ c1

H2 log(T )

si(si − s∗(µi))2

)
≥ 1− 3

T 2
,

and as an immediate consequence for some c2 > 0:

E(si,σ−i)[nτi(i)] ≤ c2
H2 log(T )

si(si − s∗(µi))2
.

Proof. For simplicity, we consider w.l.o.g. the one-sided elimination rule checking whether the arm
i’s strategy si exceeds the desired strategy s∗(µi):

sti > max
µ∈[µt

i
,µt

i]
s∗(µ). (9)

Let αt(i) =
√

2 log(T )
nt(i)

and βt(i) =
√

2 log(T )
mt(i)

. Recall that s∗(µ) is H-Lipschitz. Then,

max
µ∈[µt

i
,µt

i]
s∗(µ) ≤ s∗(µ̂t

i) +Hβt(i).

As a consequence, we see that a sufficient condition for the elimination rule (9) to trigger is given
by

ŝti − αt(i) > s∗(µ̂t
i) +Hβt(i), (10)

where by definition sti = ŝti − αt(i). The following statements are always w.r.t. (si, σ−i), i.e., w.r.t.
the probability measure P(si,σ−i). From Hoeffding’s inequality, we know that with probability at
least 1− 1/T 2:

|ŝti − si| ≤ αt(i).
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Similarly, using the Lipschitzness of s∗(µ), Hoeffding’s inequality implies that with probability at
least 1− 1/T 2:

|s∗(µ̂t
i)− s∗(µi)| ≤ H |µ̂t

i − µi| ≤ Hβt(i).

It then follows that with probability at least 1− 2/T 2

ŝti − s∗(µ̂t
i) ≥

(
si − s∗(µi)

)
−
(
αt(i) + βt(i)

)
≥
(
si − s∗(µi)

)
− (H + 1)βt(i),

where we used that αt(i) =
√

2 log(T )
nt(i)

≤
√

2 log(T )
mt(i)

= βt(i), since nt(i) > mt(i) by definition.

Therefore, the sufficient condition in equation (10) is satisfied with probability 1− 2/T 2 for

si − s∗(µi) > 2(H + 1)βt(i) = 2(H + 1)

√
2 log(T )

mt(i)
.

In other words, arm i has been eliminated by round t with probability at least 1− 2/T 2 if

mt(i) >
16H2 log(T )

(si − s∗(µi))2
. (11)

Lastly, we translate this to a statement about nt(i). Recall that conditional on nt(i), we have
E[mt(i) | nt(i)] = nt(i)si, since arm i is clicked with probability si. From Hoeffding’s inequality,
we then again have with probability 1− 1/T 2

|mt(i)− nt(i)si| ≤
√
2nt(i) log(T )

and thus mt(i) ≥ nt(i)si −
√

2nt(i) log(T ). Then, in view of equation (11), if

nt(i) > c1
H2 log(T )

si(si − s∗(µi))2

for some sufficiently large c2 > 0, then with probability at least 1− 3/T 2 arm i has been eliminated
before round t. Since τi denotes the round in which i is eliminated from At, this means that with
probability 1− 3/T 2:

nτi(i) ≤ c1
H2 log(T )

si(si − s∗(µi))2
.

Since by definition τi ≤ T , this implies that for some c2 > 0:

E(si,σ−i)[nτi(i)] ≤ c2
H2 log(T )

si(si − s∗(µi))2
.

We briefly recall a standard result often used in the context of MABs, which states that any prob-
ably correct decision rule needs Ω( 1

ε2 ) samples to distinguish between two hypotheses for which
the Bernoulli means lie ε apart. We only give a short outline of the proof and refer to the many
expositions of such bounds for more detail (see, e.g., Theorem 1 in (Mannor and Tsitsiklis, 2004),
Section 2 in (Slivkins et al., 2019), Section 14 in (Lattimore and Szepesvári, 2020)).

Lemma C.3. In order for us to reuse our current notation, suppose that K = 1. In this case, nτ1(1)
simply denotes the number of samples from arm 1 before it gets eliminated, i.e., UCB-S asserts that
s1 ̸= s∗(µ1). For s1 ̸= s∗(µ1), it holds that

Es1 [nτ1(1)] ≥ Ω

(
log(T )

(s1 − s∗(µ1))2

)
.

Proof. W.l.o.g. we can assume that rt,1 = µ1 for all t so that we are only concerned with the
estimation of the Bernoulli mean s1 (this clearly only reduces the number of samples the elimination
rule would need). Note that the elimination rule is correct with probability 1−1/T 2 by construction
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of the confidence sets around s1, i.e., only eliminates arm 1 if it in fact deviated from s∗(µ1). We
can then consider the hypotheses

H0 : s1 = s∗(µ1) and H1 : s1 = s∗(µ1) + ε.

Then, since the elimination rule is correct with probability 1−1/T 2, the standard hypothesis testing
argument (see, e.g., Theorem 1 in (Mannor and Tsitsiklis, 2004)) yields for some constant c > 0

that Es1 [nτ1(1)] ≥
c log(T )

ε2 = c log(T )
(s1−s∗(µ1))2

.

The next lemma states that E(si,σ−i)[τ ] is close to T . The intuition of this is quickly explained. If the
set At becomes empty, UCB-S plays arms uniformly at random. However, if one arm would happen
to remain in At this arm would always be played (as it has no competition). To do so, an arm simply
has to ensure that it does not get eliminated too early. Now, in view of Lemma C.3, an arm can be
sampled order x more times without getting eliminated for moving its strategy order

√
x closer to

s∗(µi). Writing the arms’ utility as vi(si, σ−i) = E(si,σ−i)[nT (i)]si = E(si,σ−i)[nT (i)]
(
s∗(µi) +

(si − s∗(µi))
)

we see that a quadratic increase in E(si,σ−i)[nT (i)] will dominate a linear decrease
in si − s∗(µi).

Lemma C.4. Let σ ∈ NE(UCB-S) and si ∈ supp(σi). Then,

E(si,σ−i)[τ ] ≥ T −O(1).

Proof. Let s∗(µi) ≤ s′i < si. Due to delays for smaller click-rates (see proof of Lemma C.1) and
the fact that under s′i the probability of arm i being eliminated at any given round is smaller than
under si, it holds for all j ̸= i that

E(s′i,σ−i)[nτj (j)] ≤ E(si,σ−i)[nτj (j)].

By definition of τ , we have E(si,σ−i)[τ ] =
∑

j∈[K] E(si,σ−i)[nτj (j)] so that the above implies∑
j ̸=i

E(s′i,σ−i)[nτj (j)] ≤ E(si,σ−i)[nτj (j)] = E(si,σ−i)[τ ]− E(si,σ−i)[nτi(i)].

In other words, under any strategy s∗(µi) ≤ s′i < si, all arms j ̸= i will be eliminated after a total of
E(si,σ−i)[τ ]− E(si,σ−i)[nτi(i)] rounds so that there are at least E(si,σ−i)[nτi(i)] + T − E(si,σ−i)[τ ]
many “uncontested” rounds.

For convenience, let N(si, σ−i) = T − E(si,σ−i)[τ ], i.e., the expected number of rounds that At is
empty and arms are being selected uniformly at random. Now, in view of Lemma C.3, there exists
s′i with

s′i − s∗(µi) ≥ Ω

(√
log(T )

E(si,σ−i)[nτi(i)] +N(si, σ−i)

)

such that E(s′i,σ−i)[nτi(i)] ≥ E(si,σ−i)[nτi(i)] +N(si, σ−i).

The proof proceeds by contradiction. To this end, suppose the contrary is true, namely, that
N(si, σ−i) is not constant, but in fact increasing in T , i.e., N(si, σ−i) = w(1). We then show
that vi(s′i, σ−i) > vi(si, σ−i), which is a contradiction to si being a best response to σ−i. From
Lemma C.2 we know that

si − s∗(µi) ≤ O

(√
log(T )

s∗(µi)E(si,σ−i)[nτi(i)]

)
,
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where we used that si ≥ s∗(µi) by Lemma C.1. Using that E(s′i,σ−i)[nT (i)] ≥ E(s′i,σ−i)[nτi(i)],
we then obtain

vi(s
′
i, σ−i) = E(s′i,σ−i)[nT (i)]s

′
i

≥ E(s′i,σ−i)[nτi(i)]
(
s∗(µi) + (s′i − s∗(µi))

)
≥
(
E(si,σ−i)[nτi(i)] +N(si, σ−i)

)(
s∗(µi) + Ω

(√
log(T )

E(si,σ−i)[nτi(i)] +N(si, σ−i)

))

≥
(
E(si,σ−i)[nτi(i)] +N(si, σ−i)

)
s∗(µi) + Ω

(√
log(T )

(
E(si,σ−i)[nτi(i)] +N(si, σ−i)

))
> E(si,σ−i)[nτi(i)]s

∗(µi) +
2N(si, σ−i)

K
s∗(µi) +O

(√
log(T )E(si,σ−i)[nτi(i)]

)
≥
(
E(si,σ−i)[nτi(i)] +

N(si, σ−i)

K

)(
si + (si − s∗(µi)

)
≥ E(si,σ−i)[nT (i)]si

= vi(si, σ−i).

Hence, s′i is a better response to σ−i than si, which is a contradiction to si ∈ supp(σi).

The next lemma lower bounds E(si,σ−i)[nT (i)] for which we distinguish between optimal and sub-
optimal arms in terms of post-click rewards µ.

Lemma C.5. Let σ ∈ NE(UCB-S).

(i) For all i∗ ∈ [K] with ∆i∗ = 0 and si∗ ∈ supp(σi∗):

E(si∗ ,σ−i∗ )[nT (i
∗)] ≥ s∗(µi∗) Ω

(
T

K

)
.

(ii) For all i ∈ [K] with ∆i > 0 and si ∈ supp(σi):

E(si,σ−i)[nT (i)] ≥ Ω

(
min

{
log(T )

si∆2
i

, s∗(µi)
T

K

})
.

Proof. (i): Let σ ∈ NE(UCB-S) and let i∗ ∈ [K] such that ∆i∗ = 0. Recall that when playing
strategy s∗(µi∗) arm i∗ is eliminated with low probability so that

P(s∗(µi∗ ),σ−i∗ )(i
∗ ∈ AT ) ≥ 1− 1/T 2.

Now, given that i∗ is not going to be eliminated, the UCB-type selection rule of UCB-S se-
lects any arm i∗ with maximal post-click reward µi∗ = µ∗ at least Ω(T/K) times so that
E(s∗(µi∗ ),σ−i∗ )[nT (i

∗)] ≥ Ω(T/K). Then, since si∗ has to be a best response to σ−i∗ , we obtain

E(si∗ ,σ−i∗ )[nT (i
∗)] ≥ si∗E(si∗ ,σ−i∗ )[nT (i

∗)] = vi∗(si∗ , σ−i∗)

≥ vi∗(s
∗(µi∗), σ−i∗) ≥ s∗(µi∗)E(s∗(µi∗ ),σ−i∗ )[nT (i

∗)] ≥ s∗(µi∗)Ω

(
T

K

)
.

(ii): Once again, we use the desired strategy s∗(µi) to infer properties of si. Let us be reminded that
under s∗(µi) arm i is eliminated with low probability, i.e.,

P(s∗(µi),σ−i)(i ∈ AT ) ≥ 1− 1/T 2

so that when studying (s∗(µi), σ−i) the potential elimination of arm i is negligible.
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We will argue about E(s∗(µi),σ−i)[nT (i)] via E(s∗(µi),σ−i)[mT (i)]. To isolate the rounds in which
arms are clicked, i.e., post click-rewards are observed, we will re-use the rounds η1, η2, . . . , which
determine the phases of the UCB selection rule (introduced in Lemma C.1). On the rounds
η1, η2, . . . , the UCB-selection rule of line 4 is analogous to standard UCB in a MAB. We can
then use well-known results from the instance-dependent lower bound analysis of the MAB prob-
lem. From Lemma 16.3 in (Lattimore and Szepesvári, 2020) it then follows that for some constant
c1 > 0:10

E(s∗(µi),σ−i)[mT (i)] ≥
1
2 log(T ) + log

(
c1∆i√

K

)
2∆2

i

.

We see that this lower bound is only meaningful for sufficiently large ∆i, as the numerator may
become negative for ∆i = O

(√
K/T

)
. For now let us assume that ∆i is sufficiently large. Recall

that E(s∗(µi),σ−i)[mT (i)] = E(s∗(µi),σ−i)[nT (i)]s
∗(µi) as arm i is clicked with probability s∗(µi).

Since si must be a best response to σ−i, it must then hold that

E(s∗(µi),σ−i)[nT (i)]si = vi(si, σ−i)

≥ vi(s
∗(µi), σ−i) = E(s∗(µi),σ−i)[mT (i)] ≥ c2

log(T )

∆2
i

for some c2 > 0. Solving for E(s∗(µi),σ−i)[nT (i)] then yields

E(s∗(µi),σ−i)[nT (i)] ≥ c2
log(T )

si∆2
i

.

Next, for ∆i ≤ O(
√
K/T ) it is well-known that the number of times UCB plays arm i is order at

least Ω(T/K). We then have Es∗(µi,σ−i)[nT (i)] = Ω
(
T
K

)
, so that

E(si,σ−i)[nT (i)] ≥ siE(si,σ−i)[nT (i)] = vi∗(si, σ−i)

≥ vi(s
∗(µi), σ−i) ≥ s∗(µi)E(s∗(µi),σ−i)[nT (i)] ≥ s∗(µi)Ω

(
T

K

)
.

C.2 CONNECTING THE BOUNDS

Finally, using the lower and upper bound on E(si,σ−i)[nT (i)], we obtain the following approximate
characterization of the strategies in the Nash equilibrium σ ∈ NE(UCB-S).

For i∗ ∈ [K] with ∆i∗ = 0, it follows from equation (8) and Lemma C.2, Lemma C.4, Lemma C.5
that

s∗(µi∗)Ω

(
T

K

)
≤ E(si∗ ,σ−i∗ )[nT (i

∗)] ≤ O
(

H2 log(T )

si∗(si∗ − s∗(µi∗))2

)
+O

(
1

K

)
.

Solving for si∗ − s∗(µi∗), we obtain

si∗
(
si∗ − s∗(µi∗)

)2 ≤ O(H2K log(T )

T s∗(µi∗)

)
,

Finally, using that s∗(µi∗) ≤ si∗ by Lemma C.1 yields the claimed bound (note that s∗(µ) is
bounded away from zero by assumption (A3))

si∗ − s∗(µi∗) ≤ O

(
H

√
K log(T )

T s∗(µi∗)2

)
.

10We here used that the standard minimax bandit regret of UCB in MABs is bounded as Õ(
√
KT ).
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For i ∈ [K] with ∆i > 0 suppose that log(T )
si∆2

i
≤ s∗(µi)

T
K . Then, we have

Ω

(
log(T )

si∆2
i

)
≤ E(si,σ−i)[nT (i

∗)] ≤ O
(

H2 log(T )

si(si − s∗(µi))2

)
+O

(
1

K

)
,

which after solving for si − s∗(µi) yields

si − s∗(µi) ≤ O (H∆i) .

For i ∈ [K] with log(T )
si∆2

i
> s∗(µi)

T
K , it follows, analogously to the case of ∆i = 0, from Lemma C.2,

Lemma C.4, and Lemma C.5 that

si − s∗(µi) ≤ O

(
H

√
K log(T )

T s∗(µi)2

)
.

D PROOF OF THEOREM 5.3

Proof of Theorem 5.3. Let σ ∈ NE(UCB-S) and let i∗ ∈ [K] be any arm with ∆i∗ = 0. We begin
with a standard regret decomposition into the number of times each arm is played and the rounds
before i∗ is eliminated. It holds that

RT (UCB-S,σ) = Es∼σ

[
T∑

t=1

u(s∗, µ∗)− u(sit , µit)

]

= Es∼σ

[
τi∗∑
t=1

u(s∗, µ∗)− u(sit , µit)

]
+ Es∼σ

[
T∑

t=τi∗+1

u(s∗, µ∗)− u(sit , µit)

]

≤ Es∼σ

∑
i∈[K]

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)+ (T − Eσ[τi∗ ]). (12)

From Lemma D.1 below we know that T − Eσ[τi∗ ] ≤
√
KT . We continue to split the arms into

two cases. To this end, let ∆′
i :=

√
K log(T )
T s∗(µi)2

and let ∆′
∗ =

√
K log(T )
T s∗(µ∗)2 . For i ∈ [K], we distinguish

between (a) ∆i ≤ ∆′
i and (b) ∆i > ∆′

i.

We begin with (a). Recall that s∗ := s∗(µ∗). For the proof we will need one last technicality,
namely, that ∆′

i ≤ 2∆′
∗. We here assume that s∗(µ∗) > 2H∆′

i.
11 Then, since |s∗(µ∗)− s∗(µi)| ≤

H∆i ≤ H∆′
i, we get

∆′
i =

1

s∗(µi)

√
K log(T )

T
≤ 1

s∗(µ∗)−H∆′
i

√
K log(T )

T
≤ 2

s∗(µ∗)

√
K log(T )

T
= 2∆′

∗.

11Otherwise there is nothing to prove since the regret bound of Theorem 5.3 is of order T .
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We can now apply Theorem 5.2 to obtain for any s ∈ supp(σ) that∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ L

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
|s∗(µ∗)− si|+ |µ∗ − µi|

)
≤ L

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]

(
|s∗(µ∗)− s∗(µi)|+O

(
H

√
K log(T )

T s∗(µi)2

)
+∆i

)

≤ L
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]

(
(H + 1)∆i +O

(
H

√
K log(T )

T s∗(µi)2

)
+∆i

)

≤ L(H + 2)
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]∆
′
i (13)

≤ 2L(H + 2)∆′
∗

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]

≤ LH · O

(
H

√
K log(T )

T s∗(µ∗)2

) ∑
i:∆i≤∆′

i

Es[nτi∗ (i)]

≤ LH

s∗(µ∗)
O
(√

KT log(T )
)
,

where we used that
∑

i:∆i≤∆′
i
Es[nτi∗ (i)] ≤ T in the last line.

For taking care of the sum over arms satisfying (b), define the “good event” E = {µt
i
≤ µi ≤ µt

i ∀i ∈
[K] ∀t ∈ [T ]}. We know that E occurs with probability at least 1 − 1/T 2 for any s ∈ [0, 1]K by
merit of Hoeffding’s inequality. Under E , we obtain from the standard UCB argument for all t ≤ τi∗
that

µit + 2

√
2 log(T )

mt(it)
≥ µt

it ≥ µt
i∗ ≥ µi∗ .

This implies that ∆i ≤ 2
√

2 log(T )
mτi∗ (i) . Hence, i ∈ [K] with ∆i > 0 we get that mτi∗ (i) ≤

c log(T )
∆2

i
.

Now, post-click rewards are observed for arm i with probability si every time i is played by UCB-S,
which tells us that Es[mτi∗ (i)] = Es[nτi∗ (i)]si. It follows from Theorem 5.2 that∑
i:∆i>∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤

∑
i:∆i>∆′

i

Es[nτi∗ (i)]
u(s∗, µ∗)− u(si, µi)

si

≤ L
∑

i:∆i>∆′
i

Es[nτi∗ (i)]
|s∗(µ∗)− si|+ |µ∗ − µi|

si

≤ L
∑

i:∆i>∆′
i

Es[nτi∗ (i)]
|s∗(µ∗)− s∗(µi)|+O(H∆i) + ∆i

si

≤ L
∑

i:∆i>∆′
i

c log(T )
H∆i +O(H∆i) + ∆i

si∆2
i

≤ LH
∑

i:∆i>∆′
i

O
(
log(T )

si∆i

)

≤ LH
∑

i:∆i>∆′
i

O
(

log(T )

s∗(µi)∆i

)
,

24



Published as a conference paper at ICLR 2024

where the last line used that si ≥ s∗(µi) for all si ∈ supp(σi) shown in Lemma C.1. This completes
the proof of Theorem 5.3.

Lemma D.1. Let i∗ ∈ [K] with ∆i∗ = 0. For all δ > 0:

Pσ

(
τi∗ > T −

√
KT

1− δ

)
> 1− δ.

Proof. Suppose the contrary is true, i.e., Pσ

(
τi∗ > T −

√
KT

1−δ

)
≤ δ. Since τi∗ ≤ T by definition,

this implies that

Eσ[τi∗ ] ≤ δ · T + (1− δ)
(
T −

√
KT

1− δ

)
= T −

√
KT. (14)

Now, let si∗ ∈ supp(σi∗) with E(si∗ ,σ−i∗ )[τi∗ ] ≤ T −
√
KT . Note that such si∗ must exist for (14)

to hold. We now show that there exists a strategy s′i∗ which is a better response to σ−i∗ than si∗ . To
this end, similarly to the proof of Lemma C.4, Lemma C.3 tells us that there exists s′i∗ ∈ [0, 1] with

s′i∗ − s∗(µi∗) = Ω

(√
log(T )

E(si,σ−i)[nτi(i)] +
√
KT

)
such that E(s′

i∗ ,σ−i∗ )[τi∗ ] = T −O(1). Moreover, recall from Lemma C.4 that T −E(si∗ ,σ−i∗ )[τ ] <

O(1). Then, using x+ y
K√

x+y
≥
√
x+ y − y√

x+y
, equation (8), and Lemma C.2, we obtain

vi∗(si∗ , σ−i∗) ≤ E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]si∗ +O(1/K)

≤ E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]
(
s∗(µi∗) + (si∗ − s∗(µi∗)

)
+O(1/K)

≤ E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]

(
s∗(µi∗) +O

(√
log(T )

E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]

))

≤ E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]s∗(µi∗) +O

(√
log(T )E(si∗ ,σ−i∗ )[nτi∗ (i

∗)]
)

≤ E(si∗ ,σ−i∗ )[nτi∗ (i
∗)]s∗(µi∗) +O

(√
log(T )(E(si∗ ,σ−i∗ )[nτi∗ (i

∗)] +
√
KT )

)

<

(
E(si∗ ,σ−i∗ )[nτi∗ (i

∗)] +

√
KT

K

)(
s∗(µi∗) + Ω

(√
log(T )

E(si,σ−i)[nτi(i)] +
√
KT

))

≤

(
E(si∗ ,σ−i∗ )[nτi∗ (i

∗)] +

√
KT

K

)(
s∗(µi∗) + (s′i∗ − s∗(µi∗))

)
≤ E(s′

i∗ ,σ−i∗ )[nT (i
∗)]s′i∗ = vi∗(s

′
i∗ , σi∗).

Hence, vi∗(si∗ , σ−i∗) < vi∗(s
′
i∗ , σ−i∗), a contradiction.

E PROOF OF COROLLARY 5.4

Proof of Corollary 5.4. The argument roughly follows the standard way to translate an instance-
dependent regret bound in multi-armed bandits to a minimax bound (see, e.g., (Lattimore and
Szepesvári, 2020)). However, the difference lies in that we split the arms not according to some
fixed gap ∆′, but according to the arm-specific gap

∆′
i :=

√
K log(T )

T s∗(µi)2
,
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which we already used in the proof of Theorem 5.3. This is necessary due to the guarantees of
Theorem 5.2 being gap-dependent.

We begin by recalling from equation (13) in the proof of Theorem 5.3 that∑
i:∆i≤∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ L(H + 2)

∑
i:∆i≤∆′

i

Es[nτi∗ (i)]∆
′
i (15)

≤
∑

i:∆i≤∆′
i

LH

s∗(µi)
O
(√

KT log(T )
)
,

where we coarsely upper bounded Es[nτi∗ (i)] ≤ T .

For all arms i with ∆i > ∆′
i, we also get similarly to the proof of Theorem 5.3:∑

i:∆i>∆′
i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ LH

∑
i:∆i>∆′

i

O
(

log(T )

s∗(µi)∆′
i

)

≤ LH
∑

i:∆i>∆′
i

O

(√
T log(T )

K

)
(16)

≤
∑

i:∆i>∆′
i

LH

s∗(µi)
O
(√

KT log(T )
)
,

where we used a very coarse upper bound in the last line by simply adding a factor of K/s∗(µi).
Note that the bound in the second last line is a much stronger bound than the one claimed in Corol-
lary 5.4. Combining these two bounds yields the first statement of the corollary.

Recall the definition of smin := mini∈[K] s
∗(µi) and note that√

K log(T )

T s2min

= max
i∈[K]

∆′
i. (17)

To get the more refined bound in Corollary 5.4, we can continue from equation (15) and bound the
right hand side via a maximum using (17) to get

L(H + 2)
∑

i:∆i≤∆′
i

Es[nτi∗ (i)]∆
′
i ≤

LH

smin
O
(√

KT log(T )
)
.

Lastly, note that in view of equation 16, we have∑
i:∆i>∆′

i

Es[nτi∗ (i)]
(
u(s∗, µ∗)− u(si, µi)

)
≤ LHO

(√
KT log(T )

)
≤ LH

smin
O
(√

KT log(T )
)
.

The corollary then follows from the regret decomposition in equation (12)

F PROOF OF THEOREM 5.5

Proof of Theorem 5.5. We work under the utility function u(s, µ) = sµ. In the strategic click-
bandit model there are two distributions associated with each arm, the click distribution Psi =
Bern(si) and the reward distribution Pµi

with mean µi. We here assume that arm i’s reward dis-
tribution is Bernoulli with mean µi ∈ [0, 1]. For convenience, w.l.o.g. we assume that the learner
observes both, the click-event and the post-click reward every round. This clearly makes the learning
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problem easier for the learner. To summarise the distributions of arm i we let Psi,µi
= Psi × Pµi

denote the product distribution.

We consider problem instances

µ =
(1
2
, . . . ,

1

2
,
1

2
+ ∆,

1

2
, . . . ,

1

2

)
with µi∗ = 1

2 +∆. For convenience, we assume that M is index-independent, i.e., if arm i and arm j
have identical distributions Psi,µi

= Psj ,µj
, then (nT (i), nT (j)) and (nT (j), nT (i)) have the same

distribution. If M is not index-independent, we can consider different indices i∗ for the maximal
element in µ. Let us choose ∆ = c

√
K/T for some constant c > 0 to be chosen sufficiently small

later.

Let us suppose that M is better than the claimed lower bound so that RT (M, s,µ) ≤ o(
√
KT ) for

some s ∈ NE(M,µ).12 By choice of ∆ in µ, it then directly follows that Es,µ[nT (i)] ≤ o
(
T
K

)
for all i ̸= i∗, otherwise RT (M, s,µ) ≥ Ω

(√
KT

)
. Since

∑
i∈[K] Es,µ[nT (i)] = T , this entails

Es,µ[nT (i
∗)] ≥ Ω

(
T
K

)
.

We now show that Es,µ[nT (i)] = o
(
T
K

)
cannot hold when s is a Nash equilibrium. To this end,

consider an alternative strategy s′i. Now, let s′i = sj with

j = argmax
k∈[K]

E(sk,s−i)[nT (k)].

Generally, we would expect j = i∗, however, j could be any other index in [K] (except for i as we
see now). Since

∑
k∈[K] Es̃[nT (k)] = T for any s̃, we get that E(s′i,s−i),µ[nT (j)] ≥ T

K . If i = j,
this would be a contradiction to the statement that E(si,s−i),µ[nT (i)] = o

(
T
K

)
.

If j ̸= i∗, we find that KL(Psj ,µj
, Ps′i,µi

) = 0, since i and j have identical click and reward
distribution. More generally, we obtain from the chain rule that

KL(Psj ,µj
, Ps′i,µi

) = KL(Psj , Ps′i
) + KL(Pµj

, Pµi
) = KL(Pµj

, Pµi
) ≤ 8∆2,

where we used that KL(Pµj
, Pµi

) ≤ KL(Pµi∗ , Pµi
) = KL

(
Bern( 12 ),Bern(

1
2 +∆)

)
≤ 8∆2 (see,

e.g., Theorem 2.4 in Slivkins et al. (2019)). Recall that ∆ = c
√
K/T . For sufficiently small

constant c > 0, Theorem 3 in (Garivier et al., 2019) then yields that either

E(s′i,s−i),µ[nT (i)] ≥
T

K
or E(s′i,s−i),µ

[
nT (i)

nT (j)

]
≥ 1

2
. (18)

Assuming nT (j) ≥ 1, using some algebra (Lemma G.2), the latter can be seen to imply that

E(s′i,s−i),µ[nT (i)] ≥
1

2
E(s′i,s−i),µ[nT (j)] ≥

T

2K
,

where the last inequality holds due to the choice of j. Hence, from equation 18 we obtain that

E(s′i,s−i),µ[nT (i)] ≥
T

2K
.

This leads to a contradiction, as s′i is a better response to s−i than si. We have thus shown that
RT (M, s,µ) = Ω

(√
KT

)
for any s ∈ NE(M,µ).

G TECHNICAL LEMMAS

Lemma G.1. Let P and P̃ be two probability measure (and let E and Ẽ denote the respective
expectations). Suppose that for integer-valued random variables N,X1, X2, . . . , it holds for all
k ∈ N and some i ∈ N:

E[N ] < Ẽ[N ] and 0 < P(Xk = i | N) ≤ P̃(Xk = i | N) a.s. (19)

12We consider pure strategy NE here, though, mixed strategies can be handled analogously.
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Then,

E

[
N∑

k=1

1{Xk=i}

]
< Ẽ

[
N∑

k=1

1{Xk=i}

]
. (20)

Proof. Note that if N and X1, X2, . . . were independent and X1, X2, . . . i.i.d. this would immedi-
ately follow from Wald’s lemma.

We prove the lemma via factorization. It holds that

E

[
N∑

k=1

1{Xk=i}

]
=

∞∑
n=1

E

[
n∑

k=1

1{Xk=i} | N = n

]
P(N = n)

=

∞∑
n=1

n∑
k=1

P(Xk = i | N = n)P(N = n)

≤
∞∑

n=1

n∑
k=1

P̃(Xk = i | N = n)P(N = n)

= E

[
N∑

k=1

P̃(Xk = i | N)

]

< Ẽ

[
N∑

k=1

P̃(Xk = i | N)

]
= Ẽ

[
N∑

k=1

1{Xk=i}

]
,

where in the last line we used that P̃(Xk = i | N) > 0 almost surely.

Lemma G.2. Let X and Y be two random variables (which are not necessarily independent) and
Y ≥ 1. Suppose that

E
[
X

Y

]
≥ 1

2
.

Then,

E[X] ≥ E[Y ]

2
.

Proof. Basic algebra yields that

E
[
2X

Y

]
− 1 = E

[
2X

Y

]
− E

[
Y

Y

]
= E

[
2X − Y

Y

]
≤ E [2X − Y ] .

Hence, if E
[
2X
Y

]
≥ 1, it follows that E[2X] ≥ E[Y ].

H MORE RELATED WORK

In other related work, Ghosh and Hummel (2013); Liu and Ho (2018); Hron et al. (2022); Hu et al.
(2023) study incentive design in online recommendation and are interested in incentivizing agents
to contribute high-quality content. They differ to our work primarily in that either the strategies
are directly observable, or no bandit learning together with incentive design is performed simul-
taneously. There is also a multitude of additional work on auction-based mechanism design with
unknown agent values and bandit feedback (Gatti et al., 2012; Nazerzadeh et al., 2016; Kandasamy
et al., 2023, e.g.). Similar to the previously discussed auction design in MABs (Babaioff et al., 2009;
Devanur and Kakade, 2009; Babaioff et al., 2015), Gao et al. (2021) study an auction-based combi-
natorial multi-armed bandit with payments, where each arm can misreport the cost for its selection.
Other related areas of research are dynamic mechanism design (Pavan et al., 2014; Bergemann and
Välimäki, 2019) as well as online mechanism design (Parkes, 2007).
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I FUTURE WORK

A natural extension to the studied setting would be to assume that CTRs are user-dependent or more
generally dependent on contextual information. Another direction would be to consider multi-slot
recommendations in which the learner selects a subset of arms every round and the selected arms
compete for the click (and our observations are therefore relative). In fact, the case where the learner
selects a set of arms and each arm i is clicked with probability si independently of the other arms can
be handled with exactly the same methods as presented in this paper. More generally, we believe that
the idea of introducing a screening rule based on confidences of each arm’s strategy can be extended
to various settings and many of our techniques reused.
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