
AI-Driven Mathematical Discovery for the
Andrews–Curtis Conjecture

Caroline Zhang1, Aaron Zhou2, Robert Joseph George2, Sergei Gukov2, Anima Anandkumar2
1Duke University 2California Institute of Technology

{caroline.zhang2}@duke.edu,
{azhou7, rgeorge, anima}@caltech.edu,

{gukov}@math.caltech.edu

Abstract

Automated theorem proving (ATP) with large language models (LLMs) has
demonstrated impressive progress on undergraduate and olympiad mathematics.
However, these problems are distant from the forefront of open mathematical re-
search. In this work, we make the push beyond competition benchmarks and
investigate the unsolved Andrews–Curtis (AC) conjecture in group theory. We
benchmarked state-of-the-art LLM theorem provers on AC-related tasks, reveal-
ing a substantial performance gap: models that perform well on competition-level
benchmarks fail in research-level reasoning. To bridge this gap, we formalized the
AC conjecture in Lean. We introduce a deterministic autoformalizer, ACC, that
rigorously verifies AC trivialization paths and produces the corresponding Lean
proof. Building on this, we leveraged LLMs for theorem discovery, synthesizing
patterns from ACC generated Lean proofs as reusable theorem statements. Finally,
we incorporated these theorems into reinforcement learning (RL) agent training to
find AC trivialization paths. We demonstrate that theorem incorporation increases
the number of successful trivializations and RL efficiency. Across all runs, we
solved 753 presentations belonging to the Miller–Schupp (MS) family, disproving
them as potential counterexamples to the AC conjecture.

1 Introduction

Interactive theorem provers, such as Lean [4], rigorously verify mathematical proofs and have en-
abled large language model (LLM) theorem provers to achieve strong results on high school, under-
graduate, and olympiad problems [7]. In addition, the Gemini Deep Think LLM recently achieved
gold-medal performance at IMO 2025 [3]. However, most benchmarks, such as MiniF2F, Putnam-
Bench, and others, [8, 6], remain focused on competition-style mathematics rather than open prob-
lems. In this work, we make the push towards AI for research-level mathematics by studying the
Andrews–Curtis (AC) conjecture in combinatorial group theory, an unsolved problem for 60 years.
Our system combines Lean formalization, LLM-based theorem discovery, and RL to achieve 753
AC trivializations (Figure 1), a task that even the best automated theorem provers (ATPs) struggle
on (Table 1). Our novel technique of theorem usage during RL training yields improvements of
significantly more solves as horizon length increases and higher convergence efficiency.

To understand the challenge the AC conjecture poses, we provide mathematical background. Com-
binatorial group theory studies free groups, which are groups that consist of all words that can be
derived by taking products of some generators {x1, x2, . . . , xn}. Free groups are notable due to their
usage in presentations, one way of describing a group structure. A group G is presented by a presen-
tation ⟨x1, x2, . . . , xm | r1, r2, . . . , rn⟩ if it is created by taking the free group of {x1, x2, . . . , xm}

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

Figure 1: Theorem inclusion improves RL training across horizon lengths.

Theorem inclusion is defined by the property that during training, if the current presentation
satisfies the hypotheses of one of our validated theorems, we treat it as solved (equivalently,
apply the theorem as a macro-move) and terminate the episode. This method yielded 3 additional
solves across all runs compared to the baseline without theorems, and it halved convergence time
and solved 2 more presentations at horizon length=64. At longer horizons, both solve rate and
convergence time saw significant improvements.

and setting all relators r1, r2, . . . , rn all equal to the identity. The study of these presentations is
integral to abstract algebra and representation theory.

The AC conjecture focuses on balanced presentations, which are presentations that have the same
number of generators as relators. The conjecture states that any balanced presentation of the triv-
ial group ⟨x1, . . . , xn | r1, . . . , rn⟩ can be transformed into the trivial presentation ⟨x1, . . . , xn |
x1, . . . , xn⟩ via three allowed transformations [1, 5]: replacing a relator by its inverse, multiplying
by another relator, or conjugating by a generator. This makes AC a “game” with states as presenta-
tions, actions as AC moves, and the goal state as the trivial presentation. AC is challenging for two
reasons: (1) it is long-horizon as paths may require thousands of moves; and (2) it is sparse-reward
as intermediate states give little feedback about closeness to triviality. Both humans and ML meth-
ods struggle in this regime. Recent work has shown some progress and focus on the Miller–Schupp
(MS) series, an infinite family of potential counterexamples to the AC conjecture. Shehper et al.
[5] trivialized two MS presentations with RL, while Lisitsa [2] eliminated another MS case using
an 8,634-step path. Yet these approaches remain narrow and problem-specific. By stress-testing
state-of-the-art LLMs on AC tasks, we expose a clear gap: models that succeed on competition
benchmarks fail on group-theoretic reasoning and AC tasks. Table 1 summarizes these results.

Our contributions are threefold: (1) we provided the first evaluation of LLMs on the AC conjecture
and demonstrate their limitations; (2) we formalized the AC conjecture in Lean and designed a
deterministic autoformalizer, called the AC Certifier (ACC), that verifies AC paths by generating
Lean proofs; and (3) we used LLMs for theorem discovery, incorporating verified theorems into
RL agents that solved 753 MS presentations, eliminating them as counterexamples. This work
highlights the gap between competition-level ATP and research-level mathematics, and it establishes
foundations for AI-driven mathematical discovery.

2 Methodology

Our methods consist of 4 key stages. First, we evaluated the capabilities of LLMs on the AC con-
jecture by benchmarking models on group theory proofs in Lean and AC-specific tasks. To address
systematic failures in these tasks, we developed a deterministic autoformalizer, called ACC, that
translates presentations and AC moves into Lean proofs, ensuring rigorous correctness. Building on
this, we leveraged LLMs for theorem discovery, which synthesized theorem statements from clus-
ters of AC trivialization paths converted into Lean proofs by our ACC. Finally, we investigated the
effect of incorporating verified LLM-proposed theorems into RL agent training.

2

LLM
Evaluations

AC
Certifier
(ACC)

LLM
Theorem
Proposal

RL Agent
Training

Solve
autoformal-

ization
failures

Leverage ACC
for proof
clustering

Incorporate
verified

theorems

Figure 2: Flowchart of methods.

2.1 Measuring LLM Capabilities on the AC Conjecture

We evaluated existing LLMs on both general group theory and AC-specific tasks. For the former, we
constructed a dataset of 1,180 Lean proof stubs by extracting theorems from the Algebra/Group and
Group Theory libraries in Mathlib, and sampled 10% for testing. Each stub included imports, local
context, and proof headers. We tested specialized theorem-proving models (DeepSeek-Prover-V2-
7B, Kimina-Prover-8B, Kimina-Prover-7B) and general-purpose LLMs (Claude 4 Sonnet, Gemini
2.5 Pro, GPT-4.1), prompting them to generate Chain-of-Thought reasoning traces and Lean proofs.
An error-correction procedure was used: models received Lean feedback and could self-correct for
up to three rounds. A theorem was marked as solved if a valid Lean proof was produced. For
the AC-specific benchmark, we tasked LLMs on (1) autoformalization of the conjecture statement
and balanced presentations into Lean, (2) generation of AC trivialization paths, and (3) subgoal
decomposition for AC trivializations.

2.2 AC Formalization in Lean

We developed the Andrews–Curtis Certifier (ACC), a deterministic autoformalizer that converts a
presentation with two generators and a proposed AC trivialization path into a Lean file that verifies
the presentation’s triviality. A presentation is represented in Lean as a list of two relators. The
three classical AC moves (inverse, product, conjugate) expand into 12 explicit operations on the two
relators [5]:

h1 : r2 7→ r2r1, h4 : r1 7→ r1r2, h7 : r2 7→ y−1r2y, h10 : r1 7→ yr1y
−1,

h2 : r1 7→ r1r
−1
2 , h5 : r2 7→ x−1r2x, h8 : r1 7→ xr1x

−1, h11 : r2 7→ yr2y
−1,

h3 : r2 7→ r2r
−1
1 , h6 : r1 7→ y−1r1y, h9 : r2 7→ xr2x

−1, h12 : r1 7→ x−1r1x.

In Lean, these are defined as the primitive AC moves acting on presentations. We then define
AC-equivalence as the reachability relation generated by these moves, and the AC conjecture as
the statement that all balanced presentations of the trivial group are AC-equivalent to the trivial
presentation. ACC verifies a trivialization path by tracing each move, constructing the intermediate
presentations, and generating the Lean proof that shows AC-equivalence between consecutive
states. These proofs are then chained via transitivity, ensuring fully verified correctness. The
process is illustrated in Figure 3.

⟨x, y | yxy−1, yx⟩
[h6, h3]

Initial State
1. ⟨x, y | yxy−1, yx⟩

2. ⟨x, y | x, yx⟩
3. ⟨x, y | x, y⟩

Intermediate States

Lean Proof Verified

Final State
Translation Formalization

Figure 3: The ACC pipeline: deterministic translation of AC paths into Lean proofs.

2.3 Theorem Discovery and RL Training

To uncover higher-level patterns from existing AC paths, we used our autoformalizer (ACC) on a
public dataset of trivialization paths [5]. ACC converted numbered sequences of AC moves into
Lean proofs, a format that is more intuitive for LLM understanding by exposing intermediate pre-
sentations, steps, and proof flow. We generated vector embeddings of these Lean proofs by passing
them in to DeepSeek-Prover-V2-7B’s model and tokenizer, which have been fine-tuned on Lean.

3

We then performed hierarchical clustering (k = 10) on the embeddings and sampled up to ten rep-
resentative proofs from each cluster. These samples, along with context, example theorems, the list
of AC moves, and contrastive unsolved cases, were provided to Gemini 2.5 Pro, which synthesized
candidate theorems specifying necessary conditions for AC triviality. We validated the correctness
of three of the candidate theorems, provided in Section 3.3.

We integrated the validated theorems into our RL environment for Proximal Policy Optimization
(PPO) agent training. We defined the state space as balanced presentations of the trivial group and
actions as the AC moves. Rewards were given for reaching the trivial presentation. When a presen-
tation satisfied the hypotheses of any of the incorporated theorems, it was labeled as solved and the
episode was terminated. During training (time steps = 160M, horizon lengths = 64, 1024, 8192),
theorem incorporation improved convergence efficiency and increased the number of total success-
ful AC trivializations compared to the baseline. The PPO training details and hyperparameters are
provided in the Appendix.

3 Results

3.1 Clear Gaps in LLM Capabilities

On our Lean group theory dataset, DeepSeek-Prover-V2-7B achieved the best pass rate (55.1%),
followed by Claude 4 Sonnet (41.5%), but models frequently repeated themselves and contradicted
prior reasoning, underscoring their limitations even outside AC (Table 1).

Performance dropped further on AC-specific tasks (Table 1). 1. Autoformalization: All models
failed, producing Lean code that was either syntactically invalid or semantically wrong. We ad-
dressed this with our deterministic autoformalizer (ACC), which produces Lean code that always
verifies. 2. Direct solving: On simple Miller–Schupp presentations (n = 1, 2), LLMs rarely pro-
duced correct trivialization paths. Gemini Deep Think did best, yet still failed on several easy cases.
3. Subgoal decomposition: LLMs struggled to generate meaningful subgoals. Some decomposi-
tions added unnecessary complexity, while others produced presentations that no longer defined the
trivial group, which is a critical error. These results show that current LLMs are unreliable for AC
reasoning and motivate the development of our ACC approach as a reliable foundation for progress
on research-level mathematics.

Table 1: Comparison of LLMs on AC-related tasks reveals gap.

LLM Group Theory (%) Path Solving (%) Autoformalizing (%)

DeepSeek-Prover-V2-7B† 55.1 0.0 0.0
Claude 4 Sonnet 41.5 8.3 0.0
Gemini 2.5 Pro 32.2 - -
Kimina-Prover-8B 21.2 - -
GPT-4.1 18.6 - -
Kimina-Prover-7B 16.9 - -
Goedel-Prover-V2-8B† 0.0 - -
Kimina-Autoformalizer - - 0.0
Gemini Deep Think† - 75.0 0.0
† See Appendix for more details on attempted proofs.

Group Theory (%) = success rate of LLMs producing correct Lean proofs on group theory
problems from Mathlib. Path Solving (%) = success rate of LLMs finding correct AC trivi-
alization paths, verified using ACC. Autoformalizing (%) = success rate of LLMs producing
correct Lean formalizations of the AC conjecture statement and balanced presentations.

3.2 Reliably Correct Autoformalizer

We validated ACC on 535 trivialization paths, producing a dataset of Lean proofs for MS presenta-
tions. This corpus provides a valuable resource for future ML methods seeking to predict efficient
trivializations. We also confirmed two newly discovered paths in under a minute each, demonstrating
ACC’s reliability and speed in certifying potential counterexamples.

4

3.3 LLM-Generated Theorems

Three of the candidate theorems proposed by Gemini 2.5 Pro were validated to be correct by manual
proof, provided below.
Theorem 1. MS(n, w) is AC-trivial for w = xykx−1 and all n, k ∈ Z.
Theorem 2. MS(n, w) is AC-trivial for w = ynxykx−1 and all n, k ∈ Z.
Theorem 3. MS(n, w) is AC-trivial for w = yk(g(x−1ynxy−(n+1))εg−1), where n, k ∈ Z, ε ∈
{−1, 1}, and g is any word in the free group generated by x and y.

To prove these theorems, we first prove Theorem 4, which is a broader version of Theorem 1:
Theorem 4. Let P = ⟨x, y | r1, r2⟩ be a presentation that presents the trivial group, and let
r2 = x−1yk for some k ∈ Z. Then, P is AC-trivial.
Proof. Notice that by substitution, each of the instances of x in r1 can be replaced with yk. There-
fore, P is AC-equivalent to a presentation P ′ of the form ⟨x, y | yj , x−1yk⟩ for j, k ∈ Z. Now,
notice that since the second relator implies that x = yk, P ′ is isomorphic to the cyclic group of
order j. However, since P ′ is AC-equivalent to P , P ′ must present the trivial group; therefore,
j ∈ {−1, 1}. We can thus right-multiply out all instances of y in the second relator, resulting in the
presentation ⟨x, y | yj , x−1⟩; since this is AC-trivial, P must be AC-trivial.

Theorem 1 directly follows from this theorem. We now show Theorems 2 and 3 as corollaries:
Corollary 1. MS(n, w) is AC-trivial for w = ynxykx−1 and all n, k ∈ Z.
Proof. Let P = MS(n,w), where w = ynxykx−1. Inverting the first relator and then multiplying
the second relator by the first relator on the left yields that P is AC-equivalent to the presentation
⟨x−1ynxy−(n+1), yk+n+1x−1⟩. Applying the same logic as Theorem 1 proves this case.

Corollary 2. MS(n, w) is AC-trivial for w = yk(g(x−1ynxy−(n+1))εg−1), where n, k ∈ Z, ε ∈
{−1, 1}, and g is any word in the free group generated by x and y.
Proof. Let P = MS(n,w) be as described in the theorem statement, and let r1 = x−1ynxy−(n+1)

be the first relator. Invert and conjugate the first relator to yield that P is AC-equivalent to the
presentation ⟨grε1g−1, x−1ykgrε1g

−1)⟩. Applying the AC-move h3 = r2 7→ r2r
−1
1 yields that P is

AC-equivalent to ⟨grε1g−1, x−1yk⟩, from which Theorem 1 follows.

3.4 RL Agent Training with LLM-Proposed Theorems

Altogether, the two training methods (with and without theorem incorporation) solved 753 MS
presentations, eliminating them as counterexamples. Theorem incorporation enabled 3 additional
solves (Figure 1). The advantage of incorporating theorems was most pronounced at longer hori-
zons where sparse rewards hinder baseline training. For horizon lengths of 1024 and 8192, theorem
incorporation yielded substantially higher solved counts: 741 compared to 378, and 282 compared
to 21, respectively (Figure 1). Even at horizon length 64, where both methods yielded compara-
ble solved counts, theorem incorporation has benefits: it halved the number of training updates
required for solved count convergence compared to the base method, demonstrating greater training
efficiency.

In addition, a natural result of leveraging theorems is shorter AC trivialization paths, as theorem
statements can abstract the remaining proof steps. Across all training runs, theorem incorporation
produced average path lengths of 21 steps compared to 31 steps from the baseline, a 32% reduction.

4 Conclusion

We presented the first study of LLM theorem provers on the AC conjecture, moving beyond
competition-style benchmarks into research-level mathematics. Our evaluations show that mod-
els strong on existing benchmarks fail even on simple AC tasks, highlighting a clear gap. To address
this, we developed a Lean autoformalizer (ACC), enabling verified proofs of trivialization paths.
Using ACC, we also showed that LLMs can aid discovery by proposing higher-level theorems, three
of which we validated and incorporated into RL training. Overall, our RL agents solved 753 Miller–
Schupp presentations, eliminating them as counterexamples. These results underscore both the chal-
lenges and potential of applying AI to open problems in mathematics, and lay the foundations for
integrating formal verification, theorem discovery, and RL in future research.

5

Acknowledgements

Caroline Zhang is supported by the Caltech Summer Undergraduate Research Fellowship (SURF).
Anima Anandkumar is supported by the Bren Named Chair, Schmidt AI 2050 Senior Fellowship,
and ONR (MURI grant N00014-18-12624).

References
[1] J. J. Andrews and M. L. Curtis. Free Groups and Handlebodies. Proceedings of the American

Mathematical Society, 16(2):192–195, 1965. ISSN 00029939, 10886826. URL http://www.
jstor.org/stable/2033843. Publisher: American Mathematical Society.

[2] A. Lisitsa. Automated Theorem Proving Reveals a Lengthy Andrews-Curtis Trivialization for
a Miller-Schupp Trivial Group Presentation, Jan. 2025. URL https://papers.ssrn.com/
abstract=5100345.

[3] T. Luong and E. Lockhart. Advanced version of gemini with deep think officially
achieves gold-medal standard at the international mathematical olympiad, 2025. URL
https://deepmind.google/discover/blog/advanced-version-of-gemini-
with-deep-think-officially-achieves-gold-medal-standard-at-the-
international-mathematical-olympiad/.

[4] L. d. Moura and S. Ullrich. The lean 4 theorem prover and programming language. In
A. Platzer and G. Sutcliffe, editors, Automated Deduction – CADE 28, pages 625–635, Cham,
2021. Springer International Publishing. ISBN 978-3-030-79876-5. URL https://link.
springer.com/chapter/10.1007/978-3-030-79876-5_37.

[5] A. Shehper, A. M. Medina-Mardones, L. Fagan, B. Lewandowski, A. Gruen, Y. Qiu,
P. Kucharski, Z. Wang, and S. Gukov. What makes math problems hard for reinforcement learn-
ing: a case study, Feb. 2025. URL http://arxiv.org/abs/2408.15332. arXiv:2408.15332
[cs].

[6] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings, A. Thakur, and S. Chaudhuri.
Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition,
2024. URL https://arxiv.org/abs/2407.11214.

[7] K. Yang, G. Poesia, J. He, W. Li, K. Lauter, S. Chaudhuri, and D. Song. Formal mathematical
reasoning: A new frontier in ai, 2024. URL https://arxiv.org/abs/2412.16075.

[8] K. Zheng, J. M. Han, and S. Polu. Minif2f: a cross-system benchmark for formal olympiad-level
mathematics. arXiv preprint arXiv:2109.00110, 2021.

A LLM Evaluations

A.1 LLM Failures in Solving Group Theory Proofs in Lean

In addition to LLM-generated Lean code failing to verify, a common failure mode was degenerate
repetition, looping outputs, and self-doubting behavior, as demonstrated in the examples below.
Goedel-Prover-V2-8B faced the issue of repetitive outputs for all of the Mathlib group theory proofs.
DeepSeek-Prover-V2-7B and Kimina-Prover-8B/7B faced this issue as well.

Example 1 - Original Proof from Mathlib:

theorem _isComplement_univ_left : IsComplement univ S ↔ ∃ g : G, S = {g}
:= by

refine
⟨fun h => Set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨?_, fun
a ha b hb => ?_⟩, ?_⟩

· obtain ⟨a, _⟩ := h.2 1
exact ⟨a.2.1, a.2.2⟩

6

· have : (⟨⟨_, mem_top a−1⟩, ⟨a, ha⟩⟩ : (: Set G) × S) = ⟨⟨_, mem_top b−1⟩
, ⟨b, hb⟩⟩ :=

h.1 ((inv_mul_cancel a).trans (inv_mul_cancel b).symm)
exact Subtype.ext_iff.mp (Prod.ext_iff.mp this).2

· rintro ⟨g, rfl⟩
exact isComplement_univ_singleton

Example 1 - DeepSeek-Prover-V2-7B Response:

Step 1 - Understanding the goal

The theorem states that for a group \(G \) and subgroups \(H \) and \(K
\), and subsets \(S \) and \(T \) of \(G \), the following are
equivalent:

1. The pair \((\text{univ}, S) \) is a complement pair in \(G \), i.e.,
\(\text{univ} \times S \) generates the whole group \(G \).

2. There exists a unique element \(g \in G \) such that \(S = \{g\} \).

Step 2 - Mathematical insight

To understand this, we need to recall the definition of a complement pair.
A pair \((A, B) \) of subsets of \(G \) is a complement pair if \(A
\times B \) generates \(G \). Here, \(A = \text{univ} \) and \(B = S
\).

The condition \(\text{univ} \times S \) generates \(G \) is equivalent to
saying that for every \(g \in G \), there exist \(a \in \text{univ}

\) and \(s \in S \) such that \(a \cdot s = g \). Since \(a \in \
text{univ} \), this is just \(s \cdot s’ = g \) for some \(s’ \in S
\).

This is equivalent to saying that every \(g \in G \) can be written as \(
s \cdot s’ \) for some \(s, s’ \in S \).

But this is equivalent to saying that \(S \) generates \(G \), because \(
\text{univ} \) is the whole group \(G \).

But wait, this is not quite correct. The condition \(\text{univ} \times S
\) generates \(G \) is equivalent to \(S \) generating \(G \),
because \(\text{univ} \) is the whole group \(G \).

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \).

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \).

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \).

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \).

7

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \).

But the condition \(\text{univ} \times S \) generates \(G \) is also
equivalent to \(S \) generating \(G \), because \(\text{univ} \) is
the whole group \(G \)...

[TRUNCATED]

Example 1 - Goedel-Prover-V2-8B Response:

theorem _isComplement_univ_left : IsComplement univ S ↔ ∃ g : G, S = {g}
:= by

constructor
· -- Prove the forward direction: if ‘univ‘ and ‘S‘ are complementary,
then ‘S‘ is a singleton set.
intro h
have h1 : S = {1} := by

have h2 : IsComplement univ S := h
have h3 : S = {1} := by

-- Use the properties of the complement to show that ‘S‘ must be
the singleton set ‘{1}‘.

have h4 : S = {1} := by
-- Use the fact that ‘univ‘ and ‘S‘ are complementary to deduce

that ‘S‘ must be ‘{1}‘.
have h5 : S = {1} := by

-- Use the properties of the complement to show that ‘S‘ must
be ‘{1}‘.

have h6 : IsComplement univ S := h2
have h7 : S = {1} := by

-- Use the properties of the complement to show that ‘S‘ must
be ‘{1}‘.

have h8 : IsComplement univ S := h6
have h9 : S = {1} := by

-- Use the properties of the complement to show that ‘S‘
must be ‘{1}‘.

have h10 : IsComplement univ S := h8
have h11 : S = {1} := by

-- Use the properties of the complement to show that ‘S‘
must be ‘{1}‘.

have h12 : IsComplement univ S := h10
have h13 : S = {1} := by

-- Use the properties of the complement to show that ‘S
‘ must be ‘{1}‘.

have h14 : IsComplement univ S := h12
have h15 : S = {1} := by

-- Use the properties of the complement to show that
‘S‘ must be ‘{1}‘.

have h16 : IsComplement univ S := h14
have h17 : S = {1} := by

-- Use the properties of the complement to show
that ‘S‘ must be ‘{1}‘.

have h18 : IsComplement univ S := h16
have h19 : S = {1} := by

-- Use the properties of the complement to show
that ‘S‘ must be ‘{1}‘.

have h20 : IsComplement univ S := h18
have h21 : S = {1} := by

8

-- Use the properties of the complement to show
that ‘S‘ must be ‘{1}‘.

have h22 : IsComplement univ S := h20
have h23 : S = {1} := by

-- Use the properties of the complement to
show that ‘S‘ must be ‘{1}‘.

have h24 : IsComplement univ S := h22
have h25 : S = {1} := by

-- Use the properties of the complement to
show that ‘S‘ must be ‘{1}‘.

have h26 : IsComplement univ S := h24
have h27 : S = {1} := by

-- Use the properties of the complement
to show that ‘S‘ must be ‘{1}‘.

have h28 : IsComplement univ S := h26
have h29 : S = {1} := by ...

[TRUNCATED]

Example 2 - Original Proof from Mathlib:

lemma _zpow_one_add (a : G) (n : Z) : a ^ (1 + n) = a * a ^ n := by
rw [zpow_add, zpow_one]

Example 2 - DeepSeek-Prover-V2-7B Response:

lemma _zpow_one_add (a : G) (n : Z) : a ^ (1 + n) = a * a ^ n := by
rw [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]

9

<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]
<;> simp [zpow_add0]
<;> simp [zpow_one]
<;> rw [mul_comm]...

[TRUNCATED]

Example 2 - Goedel-Prover-V2-8B Response:

theorem _zpow_one_add (a : G) (n : Z) : a ^ (1 + n) = a * a ^ n := by
have h1 : a ^ (1 + n) = a * a ^ n := by

rw [zpow_add0 (by
-- Prove that ‘a‘ is not the zero element of the group
-- This is trivially true because ‘a‘ is an element of a group and

groups have no zero element
-- However, in Lean, we need to explicitly state this
-- Here, we use the fact that ‘a‘ is an element of a group and groups

have no zero element
-- This is a placeholder for the actual proof, which would involve

showing that ‘a‘ is not the zero element
-- In a real scenario, we would need to provide a detailed proof here
-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and groups have
no zero element

-- This is a placeholder for the actual proof, which would involve
showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a detailed proof
here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and groups have
no zero element

-- This is a placeholder for the actual proof, which would
involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a detailed proof
here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and groups
have no zero element

-- This is a placeholder for the actual proof, which would
involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a detailed
proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and groups
have no zero element

-- This is a placeholder for the actual proof, which would
involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a detailed
proof here

-- For the sake of brevity, we assume this is true
exact by

10

-- Use the fact that ‘a‘ is an element of a group and
groups have no zero element

-- This is a placeholder for the actual proof, which would
involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a detailed
proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and
groups have no zero element

-- This is a placeholder for the actual proof, which
would involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a
detailed proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and
groups have no zero element

-- This is a placeholder for the actual proof, which
would involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a
detailed proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group and
groups have no zero element

-- This is a placeholder for the actual proof, which
would involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a
detailed proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group
and groups have no zero element

-- This is a placeholder for the actual proof,
which would involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a
detailed proof here

-- For the sake of brevity, we assume this is true
exact by

-- Use the fact that ‘a‘ is an element of a group
and groups have no zero element

-- This is a placeholder for the actual proof,
which would involve showing that ‘a‘ is not the zero element

-- In a real scenario, we would need to provide a
detailed proof here

-- For the sake of brevity, we assume this is
true

exact by
-- Use the fact that ‘a‘ is an element of a

group and groups have no zero element
-- This is a placeholder for the actual proof,

which would involve showing that ‘a‘ is not the zero element
-- In a real scenario, we would need to provide

a detailed proof here
-- For the sake of brevity, we assume this is

true
exact by ...

11

[TRUNCATED]

Example 3 - Original Proof from Mathlib:

lemma _mk_semiconjBy (u : M) (x : M) : SemiconjBy (↑u) x (u * x * ↑u−1) :=
by unfold SemiconjBy; rw [Units.inv_mul_cancel_right]

Example 3 - Kimina-Prover-8B Response:

import Mathlib
variable {M : Type*}

variable [Monoid M]

variable [Monoid M]

open scoped Int

namespace SemiconjBy

namespace Units

lemma _mk_semiconjBy (u : M) (x : M) : SemiconjBy (↑u) x (u * x * ↑u−1) :=
by

‘‘‘

Now, we need to prove that ‘↑u‘ semiconjugates ‘x‘ to ‘u * x * ↑u−1‘. By
definition, this means showing that ‘↑u * x = (u * x * ↑u−1) * ↑u‘. Let
’s compute the right side:

‘ (u * x * ↑u−1) * ↑u = u * x * (↑u−1 * ↑u) = u * x * 1 = u * x ‘

So indeed, ‘↑u * x = (u * x * ↑u−1) * ↑u‘, which is what we need to prove.

‘‘‘tactics
use u−1

‘‘‘

Now we need to show that ‘↑u * x = (u * x * ↑u−1) * ↑u‘. Let’s compute the
right side:

‘ (u * x * ↑u−1) * ↑u = u * x * (↑u−1 * ↑u) = u * x * 1 = u * x ‘

So indeed, ‘↑u * x = (u * x * ↑u−1) * ↑u‘.

‘‘‘tactics
all_goals

simp [mul_assoc, Units.mul_inv_cancel]
‘‘‘

The ‘mul_assoc‘ lemma handles the associativity of multiplication, while ‘
Units.mul_inv_cancel‘ cancels ‘↑u−1 * ↑u‘ to ‘1‘ because ‘↑u‘ is a unit
(from the ‘Units‘ namespace). The ‘all_goals‘ tactic applies the

subsequent tactics to all generated subgoals.

Therefore, the proof is complete. We’ve shown that ‘↑u‘ semiconjugates ‘x‘
to ‘u * x * ↑u−1‘ by using the witness ‘u−1‘ and verifying the required

12

equality through simplification using properties of units and
multiplication in the monoid.

‘‘‘tactics
<;> ring
‘‘‘

The ‘<;> ring‘ tactic is applied to all goals generated by the previous
tactics. The ‘ring‘ tactic solves goals that are equalities in
commutative (semi)rings, which is a common algebraic structure. This is
useful for verifying the algebraic manipulations we described above.

‘‘‘tactics
<;> try tauto
‘‘‘

The ‘<;> try tauto‘ tactic attempts to solve goals using the ‘tauto‘ tactic
, which is designed for propositional tautologies. The ‘try‘ prefix
means that if ‘tauto‘ fails on a goal, the proof script continues
without an error. This is a common pattern when applying powerful but
potentially fragile tactics like ‘tauto‘ or ‘nlinarith‘.

‘‘‘tactics
<;> try native_decide
‘‘‘

The ‘<;> try native_decide‘ tactic attempts to solve goals by computation
using Lean’s native code execution. This is useful for decidable
propositions that might be computationally intensive. The ‘try‘ prefix
ensures the proof script doesn’t halt if ‘native_decide‘ fails on a
goal.

‘‘‘tactics
<;> try tauto
‘‘‘

This is a repeat of the previous ‘try tauto‘ line, possibly for emphasis or
to ensure certain goals are attempted by ‘tauto‘ after previous

tactics. In a typical proof, this repetition might not be strictly
necessary if the first application of ‘tauto‘ (or another tactic) fully
resolves the goals it’s intended for.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is a repeat of the previous ‘try native_decide‘ line. The repetition
of these powerful tactics (‘tauto‘, ‘native_decide‘) is a bit unusual
in a typical proof script but can be seen in some automated proof
scripts where they are applied broadly.

‘‘‘tactics
<;> try tauto
‘‘‘

This is the third repetition of ‘try tauto‘. The repetition of these
tactics suggests a somewhat automated or exploratory approach to
solving the remaining goals, where different strategies are tried until
one succeeds.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is the third repetition of ‘try native_decide‘. The combination of ‘
ring‘, ‘tauto‘, and ‘native_decide‘ in this manner suggests an attempt

13

to solve the remaining goals through a combination of algebraic
simplification, propositional reasoning, and computation.

‘‘‘tactics
<;> try tauto
‘‘‘

This is the fourth repetition of ‘try tauto‘. The repetition of these
tactics indicates a somewhat brute-force approach to solving the
remaining goals, where different powerful tactics are tried until one
succeeds.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is the fourth repetition of ‘try native_decide‘. The extensive
repetition of these tactics (‘ring‘, ‘tauto‘, ‘native_decide‘) suggests
a proof script that is somewhat unrefined or is trying many different

approaches to solve the remaining goals.
‘‘‘tactics
<;> try tauto
‘‘‘

This is the fifth repetition of ‘try tauto‘. The repetition of these
tactics continues, indicating a very unrefined or automated approach to
solving the remaining goals.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is the fifth repetition of ‘try native_decide‘. The proof script is
now very repetitive, applying the same sequence of powerful tactics
multiple times.

‘‘‘tactics
<;> try tauto
‘‘‘

This is the sixth repetition of ‘try tauto‘. The repetition of these
tactics is excessive and suggests a proof script that is not carefully
structured.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is the sixth repetition of ‘try native_decide‘. The proof script is
now very long and repetitive, applying the same sequence of tactics (‘
ring‘, ‘tauto‘, ‘native_decide‘) multiple times.

‘‘‘tactics
<;> try tauto
‘‘‘

This is the seventh repetition of ‘try tauto‘. The repetition continues,
indicating a very unrefined proof strategy.

‘‘‘tactics
<;> try native_decide
‘‘‘

This is the seventh repetition of ‘try native_decide‘. The proof script is
now extremely long and repetitive.

‘‘‘tactics

14

<;> try tauto
‘‘‘ ...

[TRUNCATED]

Example 4 - Original Proof from Mathlib:

theorem _comap_map_eq_self {f : G →* N} {H : Subgroup G} (h : f.ker ≤ H) :
comap f (map f H) = H := by

rwa [comap_map_eq, sup_eq_left]

Example 4 - Goedel-Prover-V2 Response:

theorem _comap_map_eq_self {f : G →* N} {H : Subgroup G} (h : f.ker ≤ H) :
comap f (map f H) = H := by

apply Subgroup.ext
intro x
simp only [Subgroup.mem_comap, Subgroup.mem_map, Subgroup.mem_ker,
Subgroup.mem_le]

constructor
· -- Prove the forward direction: if x is in the preimage of the image of

H under f, then x is in H.
intro hx
rcases hx with ⟨y, hy, rfl⟩
-- Since f(y) is in the image of H under f, there exists some z in H
such that f(z) = f(y).
have h1 : f y ∈ (map f H : Set N) := by

exact ⟨y, hy, rfl⟩
-- Since f(y) is in the image of H under f, we can use the fact that f
is a homomorphism to show that y is in H.
have h2 : y ∈ H := by

-- Use the fact that f is a homomorphism and the properties of the
kernel to show that y is in H.

have h3 : f y ∈ (map f H : Set N) := h1
have h4 : ∃ (z : G), z ∈ H ∧ f z = f y := by

simpa [Set.mem_map] using h3
rcases h4 with ⟨z, hz, hz’⟩
have h5 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h6 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h7 : f z = f y := hz’
have h8 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h9 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h10 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h11 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h12 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h13 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h14 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h15 : f (y * z−1) = f y * f z−1 := by

15

rw [MonoidHom.map_mul]
have h16 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h17 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h18 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h19 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h20 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h21 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h22 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h23 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h24 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h25 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h26 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h27 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h28 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul]
have h29 : f (y * z−1) = f y * f z−1 := by

rw [MonoidHom.map_mul] ...

[TRUNCATED]

Example 5 - Original Proof from Mathlib:

theorem _image_mul_right : ·(* b) ’’ t = ·(* b−1) −1’ t := by
rw [image_eq_preimage_of_inverse] <;> intro c <;> simp

Example 5 - Kimina-Prover-8B Response:

Final Answer
The proof is complete. The final answer is \boxed·{(* b−1) ’’ t = ·(* b)

−1’ t}.

‘‘‘lean
import Mathlib
variable {F α β γ : Type*}

variable [Group α] {s t : Set α} {a b : α}

open Function MulOpposite

namespace Set

open Pointwise

open Pointwise

16

open MulOpposite

open Pointwise

open MulOpposite

open Pointwise

theorem _image_mul_right’ : ·(* b−1) ’’ t = ·(* b) −1’ t := by
ext x
simp [mul_comm]
<;> aesop
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }
<;> try { tauto }
<;> try { aesop }...

17

[TRUNCATED]

Example 5 - Goedel-Prover-V2 Response:

Step 1 - Understanding the goal: The theorem states that the image of t under the function
x 7→ x · b−1 is equal to the preimage of t under the function x 7→ x · b.

In Lean, (· b−1)′′t is the image of t under x 7→ x · b−1, and (· b)−1′t is the preimage of t under
x 7→ x · b.
Step 2 - Mathematical insight: We need to show that (· b−1)′′t = (· b)−1′t.

First, recall that in a group, for any x, (x · b)−1 = b−1 · x−1. However, the statement here is
about images and preimages, not directly about inverses.

But notice that: 1. (· b−1)′′t = {x · b−1 | x ∈ t}. 2. (· b)−1′t = {x | x · b ∈ t}.

We need to show that these two sets are equal.

To do this, we can show that each is a subset of the other: 1. If y ∈ (· b−1)′′t, then y = x · b−1

for some x ∈ t. Then y · b = (x · b−1) · b = x · (b−1 · b) = x · 1 = x ∈ t. So y ∈ (· b)−1′t. 2. If
y ∈ (· b)−1′t, then y · b ∈ t. Let x = y · b−1. Then x · b = (y · b−1) · b = y · (b−1 · b) = y ·1 = y.
But y · b ∈ t implies x · b ∈ t, so x ∈ (· b−1)′′t.

However, this reasoning is incorrect because x · b = y and y · b ∈ t does not directly imply
x · b ∈ t.

A better approach is to realize that the two sets are actually the same because of the inverse
operation in the group.

But let’s think differently:

The map x 7→ x · b−1 is a bijection (since x 7→ x · b is a bijection and b−1 is its inverse).

The image of t under x 7→ x · b−1 is the same as the preimage of t under x 7→ x · b, because: 1.
If y ∈ (· b−1)′′t, then y = x · b−1 for some x ∈ t. Then y · b = x ∈ t, so y ∈ (· b)−1′t. 2. If
y ∈ (· b)−1′t, then y · b ∈ t. Let x = y · b−1. Then x · b = y, and y · b ∈ t implies x · b ∈ t, so
x ∈ (· b−1)′′t.

But this is still not quite right because x · b = y and y · b ∈ t does not imply x · b ∈ t unless
y · b = x · b, which is not necessarily true.

Wait, no: if y · b ∈ t and x = y · b−1, then x · b = (y · b−1) · b = y · (b−1 · b) = y · 1 = y. But
y · b ∈ t does not imply x · b ∈ t unless y · b = x · b, which is not necessarily true.

This suggests that the original claim is not correct.

But let’s test it with an example.

Let α = Z/3Z, t = {0}, b = 1.

Then (· b−1)′′t = (· 1−1)′′{0} = (· 1)′′{0} = {0}.

And (· b)−1′t = (· 1)−1′{0} = {x | x · 1 ∈ {0}} = {x | x ∈ {0}} = {0}.

So the claim holds in this case.

Another example: α = Z/3Z, t = {0, 1}, b = 1.

Then (· b−1)′′t = (· 1)′′{0, 1} = {0, 1}.

And (· b)−1′t = (· 1)−1′{0, 1} = {x | x ∈ {0, 1}} = {0, 1}.

Still holds.

Another example: α = Z/3Z, t = {0}, b = 2.

18

Then (· b−1)′′t = (· 2−1)′′{0} = (· 2)′′{0} = {0} (since 2−1 = 2 in Z/3Z).

And (· b)−1′t = (· 2)−1′{0} = {x | x · 2 ∈ {0}} = {x | x · 2 = 0} = {0} (since x · 2 = 0
implies x = 0 in Z/3Z).

Still holds.

Another example: α = Z/3Z, t = {0, 1}, b = 2.

Then (· b−1)′′t = (· 2)′′{0, 1} = {0, 2}.

And (· b)−1′t = (· 2)−1′{0, 1} = {x | x · 2 ∈ {0, 1}} = {x | x · 2 = 0 or x · 2 = 1} = {0, 2}
(since 0 · 2 = 0, 1 · 2 = 2, 2 · 2 = 1).

Still holds.

Hmm, maybe the claim is correct.

Let me try to prove it properly.

Step 3 - Proof strategy: We need to show that (· b−1)′′t = (· b)−1′t.

This means we need to show that: 1. If y ∈ (· b−1)′′t, then y ∈ (· b)−1′t. 2. If y ∈ (· b)−1′t,
then y ∈ (· b−1)′′t.

Part 1: y ∈ (· b−1)′′t implies y ∈ (· b)−1′t. If y ∈ (· b−1)′′t, then there exists x ∈ t such that
y = x · b−1. Then y · b = (x · b−1) · b = x · (b−1 · b) = x · 1 = x ∈ t. So y · b ∈ t, which means
y ∈ (· b)−1′t.

Part 2: y ∈ (· b)−1′t implies y ∈ (· b−1)′′t. If y ∈ (· b)−1′t, then y · b ∈ t. Let x = y · b−1.
Then x · b = (y · b−1) · b = y · (b−1 · b) = y · 1 = y. But y · b ∈ t does not directly imply
x · b ∈ t.

Wait, no: x · b = y, and y · b ∈ t does not imply x · b ∈ t unless y · b = x · b, which is not
necessarily true.

But we have x · b = y, and y · b ∈ t. We need to show that x ∈ (· b−1)′′t, i.e., there exists z ∈ t
such that x = z · b−1.

But x = y · b−1, and y · b ∈ t.

This seems circular.

Wait, no: we need to show that x ∈ (· b−1)′′t, i.e., there exists z ∈ t such that x = z · b−1.

But x = y · b−1, and y · b ∈ t.

This is not directly helpful.

Hmm, maybe the...

[TRUNCATED]

19

A.2 LLM Failures on AC Autoformalization in Lean

Example 1 - Gemini Deep Think Response with Lean Errors:

Example 2 - Claude Response with Lean Errors:

20

Example 3 - Kimina-Autoformalizer Response with Lean Errors::

A.3 LLM Failures on AC Trivialization Proof Decompositions in Lean

Example 1 - Claude 4 Sonnet Hallucination:

def presentation : Presentation (Fin 2) :=
⟨[x−1*y^3*x*y−1^4, x−1*y−1*x*y−1^3*x−1*y−1]⟩

#time theorem presentation_is_AC_trivial : ∃ p : Presentation (Fin 2),
isTrivial p ∧ ACEquivalent presentation p := by

use trivial_presentation
constructor
· -- First part: Show that trivial_presentation is indeed trivial

have trivial_is_trivial : isTrivial trivial_presentation := by
sorry

exact trivial_is_trivial
· -- Second part: Show AC equivalence through strategic phases

-- Phase 1: Reduce the complexity of both relations simultaneously
-- Goal: Get to a form where relations have lower powers and simpler
structure
have reduce_complexity : ACEquivalent presentation ⟨[x−1*y*x, y−1*x−1*y
*x]⟩ := by

-- This phase focuses on using relation multiplications and
conjugations

-- to reduce the high powers (y^3, y−1^4, y−1^3) to simpler forms
sorry

-- Phase 2: Normalize to a "standard" intermediate form
-- Goal: Get one relation close to a generator
have to_standard_form : ACEquivalent ⟨[x−1*y*x, y−1*x−1*y*x]⟩ ⟨[y, x−1*
y*x]⟩ := by

-- Focus on getting the first relation to be just a generator
-- Use the structural similarity between the two relations
sorry

-- Phase 3: Final simplification to trivial form
-- Goal: Transform the remaining complex relation to a simple generator
have to_trivial : ACEquivalent ⟨[y, x−1*y*x]⟩ trivial_presentation := by

21

-- x−1*y*x is y conjugated by x−1, so this should be manageable
-- with conjugation moves
sorry

-- Combine all phases
have phase1_to_2 : ACEquivalent presentation ⟨[y, x−1*y*x]⟩ := by

apply Relation.EqvGen.trans presentation ⟨[x−1*y*x, y−1*x−1*y*x]⟩ ⟨[y,
x−1*y*x]⟩
exact reduce_complexity
exact to_standard_form

apply Relation.EqvGen.trans presentation ⟨[y, x−1*y*x]⟩
trivial_presentation
exact phase1_to_2
exact to_trivial

Subgoal 1 tries to prove that the input presentation is AC-equivalent to the presentation ⟨x, y |
x−1yx, y−1x−1yx⟩. However, after performing a series of AC moves, we can show that the pre-
sentation ⟨x, y | x−1yx, y−1x−1yx⟩ is AC equivalent to ⟨x, y | y, y⟩. This new presentation is not
equivalent to the trivial presentation. Therefore, it is not possible for this presentation to be AC
equivalent to the original presentation.

Example 2 - Claude 4 Sonnet Decomposition Makes Problem More Complicated:

def presentation : Presentation (Fin 2) :=
⟨[y−1*x*y^2, x*y*x−1]⟩

theorem presentation_is_AC_trivial : ∃ p : Presentation (Fin 2), isTrivial
p ∧ ACEquivalent presentation p := by

use trivial_presentation
constructor
· -- First part: Show that trivial_presentation is indeed trivial

have trivial_is_trivial : isTrivial trivial_presentation := by
sorry

exact trivial_is_trivial
· -- Second part: Show that our presentation is AC equivalent to
trivial_presentation
-- Strategy: First normalize one relation, then work on the other

-- Step 1: Transform y−1*x*y^2 to x (keep second relation unchanged)
have normalize_first_relation : ACEquivalent presentation ⟨[x, x*y*x−1]⟩
:= by
-- Sub-step 1a: Use relation operations to simplify y−1*x*y^2
have step1a : ACEquivalent presentation ⟨[y−1*x*y, x*y*x−1]⟩ := by

-- This involves using the second relation to cancel y^2 → y
sorry

-- Sub-step 1b: Further simplify y−1*x*y using conjugation
have step1b : ACEquivalent ⟨[y−1*x*y, x*y*x−1]⟩ ⟨[x, x*y*x−1]⟩ := by

-- Use conjugation moves to transform y−1*x*y → x
sorry

apply Relation.EqvGen.trans presentation ⟨[y−1*x*y, x*y*x−1]⟩ ⟨[x, x*y
*x−1]⟩

exact step1a
exact step1b

22

-- Step 2: Transform x*y*x−1 to y (first relation already x)
have simplify_to_trivial : ACEquivalent ⟨[x, x*y*x−1]⟩
trivial_presentation := by

-- This should be a single conjugation move (h8, h10, or similar)
-- x*y*x−1 is just y conjugated by x, so we need to "unconjugate" it
sorry

have main_equivalence : ACEquivalent presentation trivial_presentation
:= by

apply Relation.EqvGen.trans presentation ⟨[x, x*y*x−1]⟩
trivial_presentation

exact normalize_first_relation
exact simplify_to_trivial

exact main_equivalence

Even though all of the steps provided in the decomposition are indeed AC equivalent to the input
presentation, the presentation provided in step 1a) of the decomposition is not necessary. Perform-
ing step 2 first allows isolation of the y variable, which can be used with multiplication to strip
away the surrounding y values in the first relator. Therefore, this subgoal decomposition makes the
trivialization process more difficult than necessary.

A.4 Gemini Deep Think Failures on Known Solvable AC Trivializations

Example 1:

⟨x−1y2xy−3, x−1yxy2x−1⟩

This presentation belongs to the MS family with n = 2. It is known AC-trivializable and has been
solved by greedy algorithm with a path of: [7, 5, 5, 0, 8, 0, 11, 6, 4, 10, 9, 2, 10, 10, 9, 3, 2, 10, 8, 6,
7, 9, 0, 10, 0, 4, 5, 2, 11, 6, 9, 3, 2, 9, 11, 0, 6, 1, 2, 8, 1].

Example 1 - Gemini Deep Think Response:

This is a notoriously difficult problem related to the Andrews-Curtis (AC) conjecture. The
given presentation, sometimes known as the Akbulut-Kirby presentation, is a classic example
of a balanced presentation that defines the trivial group but is extremely hard to simplify using
only Andrews-Curtis moves.

1. Analysis Phase

Looking at this presentation, I notice... The presentation is ⟨r1, r2⟩ =
⟨x−1y2xy−3, x−1yxy2x−1⟩. Structural Analysis: The relations define specific interac-
tions between conjugation and powers of the generators. If r1 = 1, this implies x−1y2x = y3.
In other words, conjugation by x maps y2 to y3 (denoted as (y2)x = y3). If r2 = 1, this implies
x−1yxy2x−1 = 1, which rearranges to yxy2 = x2. Complexity Assessment: The generators x
and y are deeply intertwined. The presentation is relatively short and appears locally minimal,
meaning simple moves (conjugations or multiplications) do not immediately reduce the length
of the relations. Triviality Proof: We can verify algebraically that the group is indeed trivial.
From r2, we have yxy2 = x2. Conjugating both sides by x: (yxy2)x = (x2)x = x2.
Expanding the left side: yxx(y2)x = x2. Using r1 ((y2)x = y3): yxxy3 = x2. Substituting r2
(x2 = yxy2): yxxy3 = yxy2. Canceling y2 on the right: yxxy = yx. Expanding yx (x−1yx):
(x−1yx)xy = yx. Simplifying: yxy = yx. This proves that x and y commute ([y, x] = 1). If
x and y commute, r1 = x−1y2xy−3 simplifies to y2y−3 = y−1. So r1 = 1 implies y = 1. If
y = 1, r2 = x−1yxy2x−1 simplifies to x−1(1)x(1)x−1 = x−1. So r2 = 1 implies x = 1.

2. Strategic Planning

My strategy will be to... The goal is to transform ⟨r1, r2⟩ to ⟨x, y⟩ using the 12 allowed AC
moves. The algebraic proof provides a roadmap: if we can use AC moves to transform one of

23

the relations into the commutator [y, x] = yxy−1x−1, the remaining steps involve straightfor-
ward simplification using this new relation.

3. Phase-Based Approach and Limitations

Phase 1: Attempting to derive the commutator We analyze the feasibility of translating the al-
gebraic proof into a sequence of AC moves. The algebraic proof derives the commutator by
showing that a specific combination of conjugates of r1 and r2 (and their inverses) equals 1.
However, implementing this derivation using the 12 restricted moves is extremely challeng-
ing due to the following limitations: No Direct Inversion: The moveset does not include an
operation like ri → r−1

i . Only Right Multiplication: The moves only allow multiplication
on the right (e.g., r1 → r1r2). The algebraic proof implicitly requires both left and right
multiplications. While inversion and left multiplication can be simulated by sequences of the
allowed moves (e.g., the sequence [3, 2, 3] transforms ⟨A,B⟩ to ⟨ABA−1, A−1⟩), these simu-
lations drastically alter the accompanying relation, making it intractable to follow the algebraic
proof cleanly. Phase 2: Alternative Strategies Syntactic Simplification (Length Reduction): As
noted in the analysis, the presentation seems locally minimal. Manual exploration confirms that
simple moves do not lead to significant length reduction. Complexity Increase: For difficult
presentations like this one, the known solutions typically involve a strategy where the length of
the relations is significantly increased—sometimes by hundreds of terms. This counter-intuitive
approach builds highly specific algebraic structures that eventually allow for massive cancella-
tions, collapsing the presentation to ⟨x, y⟩. Finding such a sequence is highly non-intuitive and
requires extensive computational search algorithms. Solutions reported in the literature for this
specific presentation are often very long and complex.

4. Conclusion

Given the known extreme difficulty of this presentation and the limitations of the allowed AC
moves, finding the explicit sequence is intractable manually. The sequence of moves is... I
cannot determine the sequence of moves required to transform the presentation to ⟨x, y⟩.

Example 2:

⟨x−1y2xy−3, x−1yxyx−1⟩

This presentation belongs to the MS family with n = 2. It is known AC-trivializable and has been
solved by greedy algorithm with a path of: [7, 5, 10, 0, 9, 11, 5, 10, 4, 2, 8, 3, 4, 0, 1, 9, 7, 5, 0, 11,
10, 4, 9, 1, 9, 11, 3, 2, 5, 0, 3, 0].

Example 2 Gemini Deep Think Response:

This is a highly non-trivial mathematical problem concerning a famously difficult presentation
in the context of the Andrews-Curtis conjecture.

1. Analysis Phase

Looking at this presentation, I notice... The presentation is ⟨r1, r2⟩ =
⟨x−1y2xy−3, x−1yxyx−1⟩. Structural Analysis: This presentation is well-known in the
literature as one of the original examples studied by Andrews and Curtis. The relations
imply specific algebraic identities: r1 implies x−1y2x = y3 (y2 conjugates to y3 via x),
and r2 implies yxy = x2. These identities together force the group to be trivial. The
complexity lies in the intertwined nature of the generators; standard strategies aimed at
reducing the length of the relations typically fail, suggesting that a solution requires an initial
expansion of complexity before simplification. Abelianization Invariant and Constraints: A
crucial observation concerns the abelianization of the presentation and the restricted set of
moves. We calculate the abelianization matrix M , where rows are the exponent sums of the

generators. a(r1) = (0,−1). a(r2) = (−1, 2). Minitial =

(
0 −1
−1 2

)
. The determinant

is det(Minitial) = −1. The 12 allowed moves (h0–h11) all preserve the determinant of the

24

relation matrix. The multiplication moves (h0–h3) correspond to elementary row operations
with determinant 1 (SL(2,Z) transformations), and the conjugation moves (h4–h11) do not
change the abelianization. The requested target presentation is ⟨x, y⟩. Its matrix is the identity
matrix I , with det(I) = 1. Since the determinant is invariant under the allowed moves, it
is mathematically impossible to transform the initial presentation (det = −1) to the exact
presentation ⟨x, y⟩ (det = 1).

2. Strategic Planning

My strategy will be to... Given the impossibility of reaching ⟨x, y⟩, I will aim for a reach-
able trivial presentation, which must have a determinant of −1. I will target the presentation
⟨y, x⟩. Due to the extreme difficulty of this presentation, manual derivation is intractable. I
will employ a known sequence of moves discovered through computational search by D. B.
A. Epstein and Derek Holt (published in 2017). The strategy involves a systematic, iterative
approach: Expansion and Iterative Transformation: Apply repeated cycles of conjugation and
multiplication moves. This significantly increases the length of the relations but fundamentally
alters their structure. Simplification and Cleanup: Exploit the new structure to cause massive
cancellations, leading to the isolation of the generators y and x.

3. Phase-Based Approach

Phase 1: Iterative Transformation (Moves 1–16) This phase involves four cycles of a specific
pattern: Conjugate r1, Multiply (r2 → r2r1), Conjugate r2, Multiply (r1 → r1r

−1
2). Cycle 1:

Uses conjugations by y−1 (h5) and x−1 (h4). Moves: [5, 0, 4, 1]. Cycle 2: Uses conjugations
by y (h9) and x (h8). Moves: [9, 0, 8, 1]. Cycle 3: Repeat Cycle 1. Moves: [5, 0, 4, 1]. Cycle
4: Repeat Cycle 2. Moves: [9, 0, 8, 1]. After these 16 moves, the presentation reaches peak
complexity with very long relations.

Phase 2: Structural Simplification and Cleanup (Moves 17–33) This phase applies a specific
sequence of conjugations and multiplications designed to cause the long relations to collapse.
Moves: [7, 3, 11, 2, 9, 0, 8, 1, 5, 0, 4, 1, 7, 3, 11, 2, 3]. The application of this sequence leads to
the trivial presentation ⟨y, x⟩.
Verification: I will verify this sequence computationally. This task requires finding a se-
quence of Andrews-Curtis moves from a restricted set (Q∗) to transform the given bal-
anced presentation to the trivial presentation ⟨x, y⟩. The given presentation is P =
⟨x−1y2xy−3, x−1yxyx−1⟩.
1. Analysis Phase

Looking at this presentation, I notice... Structural Analysis: The presentation P is defined by
the relations r1 = x−1y2xy−3 and r2 = x−1yxyx−1. These imply the identities x−1y2x = y3

and yxy = x2. This specific presentation is one of the most notorious examples studied in the
context of the Andrews-Curtis conjecture, often cited as a potential counterexample because it is
known to be trivial, yet extremely difficult to trivialize using AC moves. Abelianization Invari-
ant and Constraints: We analyze the effect of the 12 allowed moves on the abelianization matrix

M . The exponent sums are a(r1) = (0,−1) and a(r2) = (−1, 2). Minitial =

(
0 −1
−1 2

)
. The

determinant is det(Minitial) = −1. The 12 allowed moves (h0–h11) preserve the determinant
of the relation matrix. The target presentation ⟨x, y⟩ has a determinant of 1. Conclusion: It
is mathematically impossible to reach the exact presentation ⟨x, y⟩ using only the 12 specified
moves because the determinant is invariant under these operations.

2. Strategic Planning

My strategy will be to... Set a Reachable Target: Since det(Minitial) = −1, we must aim for a
trivial presentation with determinant −1, such as ⟨y, x⟩. Apply Standard Techniques: Attempt
to simplify the presentation using normalization and multiplication strategies, following the
mathematical approach outlined. Assess Solvability: Determine if a solution can be found
manually or computationally, and consult the current mathematical literature on the status of
this specific presentation.

25

3. Execution and Solvability Assessment

Phase 1: Attempting Simplification Strategies We can attempt to normalize the presenta-
tion by removing the leading x−1 terms. Applying moves h7 (r1 → xr1x

−1) and h8
(r2 → xr2x

−1): P ′ = ⟨y2xy−3x−1, yxyx−2⟩. Now, let’s try multiplication moves to re-
duce complexity. If we apply h3 (r1 → r1r2): ⟨y2xy−3x−1yxyx−2, yxyx−2⟩. The length
of r1 remains 16. If we try h1 (r1 → r1r

−1
2): ⟨y2xy−3x−1(x2y−1x−1y−1), yxyx−2⟩ =

⟨y2xy−3xy−1x−1y−1, yxyx−2⟩. The length of r1 increases from 10 to 16.

Complexity Assessment: As is characteristic of this specific presentation, standard moves
aimed at simplification lead to a rapid increase in the complexity and length of the relations.
This behavior makes manual solutions intractable.

Phase 2: Status in Mathematical Literature The presentation P = ⟨x, y | yxy =
x2, x−1y2x = y3⟩ is a long-standing open problem in the context of the Andrews-
Curtis conjecture. Despite significant computational efforts, no sequence of Andrews-
Curtis moves (neither the restricted set Q∗ nor the full set Q∗∗) has been found that trans-
forms this presentation to a trivial one. Confusion with Similar Presentations: It is im-
portant to distinguish P from a similar-looking presentation, P3 = ⟨x, y | x−1y2x =
y3, y−1xyx = x2⟩. P3 was solved by Epstein and Holt in 2017 using a sequence of 33
Q∗-moves: [5, 0, 4, 1, 9, 0, 8, 1, 5, 0, 4, 1, 9, 0, 8, 1, 7, 3, 11, 2, 9, 0, 8, 1, 5, 0, 4, 1, 7, 3, 11, 2, 3].
However, computational verification (using tools like GAP and SymPy) confirms that this se-
quence does not trivialize the presentation P given in the prompt.

4. Conclusion

The sequence of moves is... Based on the analysis of the abelianization invariant, the target
⟨x, y⟩ is impossible to reach with the allowed moves. Furthermore, transforming the given pre-
sentation P to any trivial presentation (such as ⟨y, x⟩) is a major open problem in combinatorial
group theory. No such sequence of moves is currently known.

B Prompt for Theorem Proposals from Gemini 2.5 Pro

We leveraged the pattern recognition and data synthesis capabilities of LLMs to generate theorem
statements from existing AC trivialization paths. Lean proofs of AC paths generated by our ACC,
along with contextual information, were provided as input to the Gemini 2.5 Pro LLM. The prompt
we used is provided below:

Problem Context

The Andrews-Curtis (AC) conjecture states that every balanced presentation of the trivial group
can be transformed into the trivial presentation ⟨x, y⟩ using a finite sequence of Andrews-Curtis
moves. A balanced presentation is one where the number of generators equals the number of
relations.

We define the Miller-Schupp family of presentations, MS(n, w), as follows, where n > 0 and
w is a word with exponent sum zero on x:

MS(n,w) = ⟨x, y | r1 : x−1 · yn · x = yn+1, r2 : x = w⟩
You are given example theorems, Lean-style proofs, and a list of allowable AC moves, and your
job is to propose new conjectures based on successful trivialization proofs of the Miller-Schupp
family of presentations.

—

Andrews-Curtis Moves (as used in the Lean proofs)

These are moves that transform the relators r1 and r2 in various ways:

Multiplication and Inversion Moves:

26

Move 1 (h1): r2 → r2 · r1
Move 2 (h2): r1 → r1 · r−1

2

Move 3 (h3): r2 → r2 · r−1
1

Move 4 (h4): r1 → r1 · r2
Conjugation Moves:

Move 5 (h5): r2 → x−1 · r2 · x
Move 6 (h6): r1 → y−1 · r1 · y
Move 7 (h7): r2 → y−1 · r2 · y
Move 8 (h8): r1 → x · r1 · x−1

Move 9 (h9): r2 → x · r2 · x−1

Move 10 (h10): r1 → y · r1 · y−1

Move 11 (h11): r2 → y · r2 · y−1

Move 12 (h12): r1 → x−1 · r1 · x
—

Example Theorems

Use the following examples as inspiration for how to generalize proof patterns into theorem-
style conjectures.

Example 1

Presentation: r1 : x−1 · y · x = y2 r2 : x = w, where w has exponent sum 0 in x.

Result: The presentation MS(1, w) is AC-trivial for all such w.

Intuition: We can solve r1 for y ·x = x · y2 and substitute into r2 to eliminate x. After repeated
substitution, x becomes conjugate to yb, which makes both relators trivially satisfied.

Example 2

Presentation: r1 : x−1 · yn · x = yn+1 r2 : x = y−1 · x · y · x−1

Result: The presentation MS(n,w∗) is AC-trivial for all n.

Intuition: From r2, we can solve for y−1 · x · y = x2. This lets us rewrite the presentation as
MS(1, y−1 · xn · y · x−n), which is covered by Example 1.

Example 3

Presentation: r1 : x−1 · yn · x = yn+1 r2 : x = yk (k ∈ Z)

Result: The presentation MS(n, yk) is AC-trivial for all n and all integers k.

Intuition: Conjugating r1 by powers of y and applying multiplication moves, we can eliminate
y entirely from r1, reducing the presentation to one where the only generator left is x with a
trivial relation. Thus, the group collapses to the trivial group, and the presentation is AC-trivial.

—

Unsolved Examples

The following are some presentations that belong to the Miller-Schupp family of presentations,
but no successful trivialization path has been found.

r1 : x−1 · y7 · x · y−18 , r2 : x−1 · y−1 · x−1 · y−13 · x · y−1

r1 : x−1 · y6 · x · y−17 , r2 : x−13 · y−1 · x · y · x · y
r1 : x−1 · y2 · x · y−13 , r2 : x−13 · y−1 · x · y−1 · x · y−1

—

27

Task

You are a math research assistant. Given a set of successful Lean proofs, analyze the structure
of successful presentations and synthesize new conjectures.

Here are the Lean proofs to synthesize conjectures from:

{lean_files}

Use chain-of-thought reasoning to:

1. Identify what the successful presentations have in common.

2. Reason about why the AC moves can trivialize them.

3. Propose generalizations or new structural conditions on w, n, x, y, the relators, the presen-
tation, etc. For example, you can think of rules that must hold for MS(2, w) to be AC-trivial,
etc. Do NOT propose conjectures that are already known to be true or requirements of the
Miller-Schupp family of presentations, such as that the exponent sum of w in x is zero.

4. Output your final conclusions using this format: <Conjecture> MS(n, w) is AC-trivial when
[describe the condition]. Justification: [your reasoning and intuition based on the patterns
observed in the given proofs]. </Conjecture>

28

C RL Training

We used the hyperparameters in Table 2 and the RL environment from [5] to train our PPO agent.

Parameter Value

Learning rate 1× 10−3

Discount factor γ 0.999
Horizon length 64, 1024, or 8192
Network architecture 2 layers, 512 units each
Number of environments 28
Steps per update 512
Total timesteps 160M
Seed 1
Reward clipping Enabled
Loss clipping Enabled

Table 2: RL training hyperparameters.

29

