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ABSTRACT

The rapid spread of multimodal misinformation on social media calls for more
effective and robust detection methods. Recent advances leveraging multimodal
large language models (MLLMs) have shown the potential in this challenge. How-
ever, it remains unclear exactly where the bottleneck of existing approaches lies
(evidence retrieval v.s. reasoning), hindering the further advances in this field.
On the dataset side, existing benchmarks either contain outdated events, leading
to evaluation bias due to discrepancies with contemporary social media scenarios
as MLLMs can simply memorize these events, or artificially synthetic, failing to
reflect real-world misinformation patterns. Additionally, it lacks comprehensive
analyses of MLLM-based model design strategies. To address these issues, we
introduce XFACTA, a contemporary, real-world dataset that is better suited for
evaluating MLLM-based detectors. We systematically evaluate various MLLM-
based misinformation detection strategies, assessing models across different archi-
tectures and scales, as well as benchmarking against existing detection methods.
Building on these analyses, we further enable a semi-automatic detection-in-the-
loop framework that continuously updates XFACTA with new content to maintain
its contemporary relevance. Our analysis provides valuable insights and practices
for advancing the field of multimodal misinformation detection.

1 INTRODUCTION

A lie can travel halfway around the world before the truth can get its boots on—a statement that
feels especially true in the age of social media. As platforms enable information to spread rapidly,
humans face increasing challenges in identifying fake news online. Modern fake news is often
multimodal, combining text with images that appear to support false or unrelated events, which
makes detection more challenging. The rise of deepfake technology further lowers the barrier to
creating such deceptive content. These developments highlight the need for more advanced and
robust methods to automatically detect multimodal misinformation.

The emergence of multimodal large language models (MLLMs), with strong reasoning capabilities
across both text and images, offers a promising direction for detecting multimodal misinformation.
Recent studies have begun to explore this potential. Some methods (Qi et al., 2024; Liu et al.,
2024a; Zeng et al., 2024; Shalabi et al., 2024) fine-tune a general-purpose MLLM on specific mis-
information datasets to create task-specific models. Other approaches (Khaliq et al., 2024; Xuan
et al., 2024; Liu et al., 2024b; Geng et al., 2024) adopt a zero-shot setting and rely on more power-
ful models such as GPT-4 or Gemini, which achieve better performance on existing misinformation
datasets. In general, the existing MLLM-based misinformation detectors mimic human verification
processes, which involves two main steps: evidence retrieval, where external information is retrieved
from Internet to serve as evidence, then reasoning, where the news post and the retrieved evidence
are systematically analyzed and combined to make final judgment.

Despite the promising results reported in these studies, it remains unclear exactly where the bottle-
neck of existing MLLM-based misinformation detection methods lies (evidence retrieval v.s. rea-
soning), hindering further advances in this field. From the dataset perspective, misinformation on
real-world social media often involves novel and timely events that are absent from MLLMs’ train-
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Big Lots files for bankruptcy, joining a list of troubled 
discount retailers as customers cut back spending on 
non-essential items

Protester Ieshia Evans is detained by law 
enforcement near the headquarters of the 
Baton Rouge Police Department in Baton Rouge, 
Louisiana, during a demonstration against the 
shooting death of Alton Sterling July 9, 2016

As of the latest available information

up to October 2023, there have been no 

credible reports or announcements indicating 

that Big Lots has filed for bankruptcy…… 

Without further evidence or confirmation

from reliable news sources, this
claim appears to be false.

The photograph of Ieshia Evans being 

detained by law enforcement became 

iconic and widely circulated in the media. 

The details in the caption match the 

historical context and visual evidence 
provided by the image.

XFACTA Non-real-time datasets

The news caption states that Big Lots has 

filed for bankruptcy, which is supported by 

the evidence provided. The evidence 

includes multiple reports confirming that Big 

Lots filed for Chapter 11 bankruptcy…... 

This aligns with the news caption, 

confirming its authenticity.

The textual evidence from

both image and caption searches 

corroborates the details of the event, 

including...... The image by Jonathan 

Bachman has been widely recognized and 

discussed in various reputable sources, 

confirming its authenticity and the 

accuracy of the news caption.

w/o evidence

w/ evidence

w/o evidence

w/ evidence

Figure 1: Left: An example from our dataset, where the MLLM (GPT-4o) must rely on evidence
to judge real or fake. Right: An example from non-real-time datasets, where evidence matters less.
Evaluating MLLM-based misinformation detectors on XFACTA introduces less evaluation bias.

ing data. Detecting these events requires models to actively retrieve evidence and reason thoroughly
based on them. In contrast, existing misinformation benchmarks (Vlachos & Riedel, 2014; Wang,
2017; Thorne et al., 2018; Hanselowski et al., 2019; Khanam et al., 2021) contain mostly outdated
data with events that may already exist in the training data of MLLMs, allowing models to rely
simply on memorization rather than evidence-based reasoning. It introduces a significant evaluation
bias as evidenced by an example shown in Fig. 1. In addition, some datasets (Luo et al., 2021;
Chakraborty et al., 2023; Liu et al., 2024b; Shao et al., 2023; Aneja et al., 2021) are synthetic, mean-
ing that misinformation samples are artificially constructed using AI models rather than collected
from real-world sources. This limits their ability to reflect the complexity and strategies used by real
misinformation creators. Regarding technical approaches, while existing studies typically focus
on proposing new models or methods and demonstrating their effectiveness on specific datasets, it
lacks systematic analyses and rigorous comparisons of different design choices for MLLM-based
detection. Consequently, it still remains difficult today to identify best practices or generalizable
insights for building reliable multimodal misinformation detectors.

In this paper, we address these limitations by curating a new misinformation dataset, named XFACTA
(collected from X (Twitter) and for Fact-checking). All data points are from after January 2024,
ensuring its contemporary relevance (e.g., more recent than the October 2023 cutoff of GPT-4o).
Moreover, they are sourced from rumor spreaders on social media, reflecting patterns observed in
the real world. Based on this dataset, we conduct a systematic exploration of how to build an
MLLM-based misinformation detector from the perspectives of evidence retrieval and reasoning,
respectively. Additionally, we evaluate various MLLMs of different architectures and scales, as well
as existing misinformation detection approaches. From these experiments and analyses, we provide
valuable insights on MLLM-based misinformation detection. Building on these insights, we apply
the resulting detector to flag new posts with preliminary assessments for human reviewers to verify
and add to XFACTA. This semi-automatic detection-in-the-loop cycle keeps the dataset up to date
and prevents it from becoming outdated over time. We believe the XFACTA dataset and our study
results will serve as a useful benchmark for future research in multimodal misinformation detection.

To conclude, our contributions are:

• We curate a contemporary, real-world dataset for multimodal misinformation detection and in-
tegrate a semi-automatic detection-in-the-loop process to keep it continuously up to date, which
will further advance MLLM-based detection research.

• With XFACTA, we provide a comprehensive and in-depth analysis of developing a good MLLM-
based misinformation detection model from two perspectives: evidence retrieval and reasoning,
offering valuable insights to the field.

• We conduct a comprehensive evaluation of various MLLM-based misinformation detection
strategies, assessing models across different architectures and scales, as well as benchmarking
against existing detection methods.

2 RELATED WORK

Datasets: Previous studies have introduced various unimodal text-based misinformation
datasets (Vlachos & Riedel, 2014; Wang, 2017; Thorne et al., 2018; Hanselowski et al., 2019;
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Table 1: Comparison of different misinformation datasets. Contemporary refers to data published
after January 1, 2024; Real-world means fake posts created by actual users, not artificially gener-
ated using AI models; and Evidence-based annotations mean there are annotations supported
by sufficient evidence to verify the data.

Dataset Multimodal Contemporary Real-world Evidence-based Real Num Fake Numannotations
FEVER (Thorne et al., 2018) ✗ ✗ ✗ ✓ 93,367 43,107
LIAR (Wang, 2017) ✗ ✗ ✓ ✓ 7,085 5,751
NewsCLIPpings (Luo et al., 2021) ✓ ✗ ✗ ✗ 816,922 816,922
Fakeddit (Nakamura et al., 2019) ✓ ✗ ✓ ✗ 527,049 628,501
Snopes+Reuters Zlatkova et al. (2019) ✓ ✗ ✓ ✓ 592 641
DGM4 (Shao et al., 2023) ✓ ✗ ✗ ✗ 77,426 152,574
FACTIFY 3M (Chakraborty et al., 2023) ✓ ✗ ✗ ✗ 406,000 316,000
MMFakeBench (Liu et al., 2024b) ✓ ✗ ✗ ✗ 3,300 7,700
COSMOS (Aneja et al., 2021) ✓ ✗ ✗ ✓ 1,700 1,700
Mocheg (Yao et al., 2023) ✓ ✗ ✓ ✓ 5,144 5,855
MediaEval (Boididou et al., 2016) ✓ ✗ ✓ ✓ 292 410
VERITE (Papadopoulos et al., 2023) ✓ ✗ ✓ ✓ 338 662
Post-4V (Geng et al., 2024) ✓ ✓ ✓ ✓ 81 105
XFACTA (Ours) ✓ ✓ ✓ ✓ 1,200 1,200

Khanam et al., 2021). The rise of social media has led to increasing attention on multimodal mis-
information detection, along with the release of various datasets (Nakamura et al., 2019; Zlatkova
et al., 2019; Yao et al., 2023; Boididou et al., 2016; Papadopoulos et al., 2023). However, real-world
misinformation datasets are typically either small in size or suffer from noisy annotations. There-
fore, some other works (Luo et al., 2021; Chakraborty et al., 2023; Liu et al., 2024b; Shao et al.,
2023; Aneja et al., 2021) leverage heuristic rules or AI models to synthesize datasets for misin-
formation detection. As a consequence of such synthesis, these datasets fail to capture real-world
misinformation creators’ complex patterns and strategies. In addition, all of the above datasets are
not contemporary and often overlap with the training data of MLLMs, which prevents a fair and
robust evaluation of MLLM-based misinformation detectors. Post-4V (Geng et al., 2024) addresses
this by collecting more recent examples, but its size is very limited, and data collection and process-
ing details are underdocumented, making it less suitable as a widely accepted baseline. In contrast,
our XFACTA dataset ensures both contemporary and real-world characteristics, while maintaining a
moderate scale that is sufficient to evaluate MLLMs in a zero-shot setting. In addition, our dataset
provides detailed journalist evidence for fake news, which can help validate the reasoning paths of
detection models. A multi-dimensional comparison across different datasets can be found in Table 1.

Models: Some traditional multimodal misinformation detectors Abdelnabi et al. (2022); Yuan et al.
(2023); Brahma et al. (2023a); Aneja et al. (2023); Mu et al. (2023); Zhang et al. (2023); Brahma
et al. (2023b); Yang et al. (2024) are trained and evaluated on specific datasets, such as the com-
monly used NewsCLIPpings dataset (Luo et al., 2021). With the emergence of open-source MLLMs,
several recent works (Qi et al., 2024; Liu et al., 2024a; Zeng et al., 2024; Shalabi et al., 2024) have
adopted a different approach by fine-tuning a pretrained MLLM on misinformation datasets, which
achieves better performance. However, these methods often carry biases specific to their training
data, which are not robust to new, more sophisticated misinformation emerging on social platforms.
Therefore, several studies have explored more powerful closed-source MLLMs and have achieved
better results. However, these models are either claimed evidence-free (Geng et al., 2024), or evalu-
ated on less updated or real-world datasets (Khaliq et al., 2024; Xuan et al., 2024; Liu et al., 2024b;
Jin et al., 2024), raising concerns about their effectiveness when deployed on evolving social media.

3 OUR XFACTA DATASET

Multimodal Misinformation Detection refers to assessing the authenticity of a news post that in-
cludes both supporting images and text. Formally, given a set of supporting images I = {I1, . . . , In}
and a text claim T , this task is to determine whether the post P = (I, T ) is real or fake.

The supporting images I can make the text claim T seem more believable, even if they are unrelated
or misleading, which makes detection much harder than in the unimodal setting. Therefore, most
methods incorporate retrieved evidence E = (Ei, Et) into their detection pipeline, where Ei and Et

are image-type and text-type evidence, respectively.
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Figure 2: Examples and distribution of misinformation types, topics, and posting dates in XFACTA.

3.1 DATA SOURCE & COLLECTION

Our dataset is sourced from X/Twitter. The real news posts are collected from authoritative news
organizations including CNN, Fox News, The Guardian, and BBC. The fake news posts are curated
from content flagged as false by BBC-certified journalists and X Community Notes.

We first collect fake news posts, as they are rarer and require careful identification, after which we
gather about five times more real posts to ensure a diverse selection. This allows us to sample a
subset of real posts that matches the fake posts in both quantity and distribution, reducing poten-
tial evaluation bias. We guarantee the distribution alignment in two aspects: (1) Topic-aligned
selection, where we label the topic for both real and fake posts. We then ensure that the number
of real and false posts per topic is the same, which helps reduce semantic differences by keeping
the content semantically aligned. A detailed description of the topic of posts will be provided in
Section 3.2. (2) Image similarity selection: the previous step focuses more on aligning the
text claims T , here we address the alignment of images I . We use SigLip (Zhai et al., 2023) to ex-
tract image features and apply the Optimal Transport algorithm (Genevay et al., 2016) to select real
posts whose image feature distribution most closely matches that of the fake posts. This alignment
helps minimize the bias caused by visual differences, ensuring the evaluation accurately reflects the
model’s true capability in detecting misinformation from both textual and visual perspectives.

In addition, to ensure the reliability of news post labels, beyond the post content P , each is provided
with its metadata, including post URL, author id, date, topic, etc. For fake posts, we also collect
flagging posts that give reasons and evidence for labeling as fake, while based on flagging posts,
we also annotate the misinformation types, with more details provided in Section 3.2. We manually
review each entry, and only those with clear evidence of misinformation are included in the dataset.

3.2 DATA STATISTICS & ANALYSIS

Our XFACTA dataset contains a total of 2400 data points, including 1200 real posts and 1200 fake
posts. For the convenience of model development, we randomly selected 120 real and 120 fake posts
as the Dev set, while the remaining 2160 posts was used as the Test set. As shown in the bottom
right corner of Fig. 2, all data are collected from January 2024 to April 2025, with a majority of data
collected after September 2024. This contemporary nature ensures the dataset reflects emerging
patterns and evolving characteristics of both real and fake news.

To better understand the dataset, we annotate each news post based on its topic and the types of
misinformation in fake news. For topic classification, each post P is categorized into one of the
following: politics, society, entertainment, science, history, nature, and sports, as shown in the
bottom left corner of Fig. 2. Notably, political and conflict-related misinformation dominates but is
also accompanied by other domains, which aligns closely with current global trends.
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For fake posts, as illustrated at the top of Fig. 2, we assign one or more labels from three predefined
misinformation types, based solely on explicit evidence provided in the collected flagging posts. We
do not assign labels based on inference or assumptions beyond the provided evidence. The three
error types are defined as follows:

• Deepfakes: The image is generated or digitally manipulated as identified by the flagging post.
• Image Out-of-Context (OOC): The image is authentic but, according to the flagging post,

originates from a different event than the one described in the accompanying text. This does not
indicate whether the text is true or false.

• Text Misleading: The textual content conveys a claim that has been explicitly identified as false
by the flagging post. This does not indicate whether the image is authentic or relevant.

By annotating each fake post with these finer-grained misinformation labels, we achieve a more nu-
anced understanding of the characteristics of multimodal misinformation, and enable a more detailed
analysis of a misinformation detector’s performance across different misinformation types.

4 HOW TO BUILD A GOOD MLLM-BASED MISINFORMATION DETECTOR?

In this section, we explore different design strategies for MLLM-based misinformation detection
on the XFACTA dataset. We mainly investigate two questions: (1) How different types of evidence
contribute to misinformation detection, and how we can better leverage them; (2) How different
LLM reasoning approaches affect the model’s prediction.

4.1 ANALYSIS OF EVIDENCE RETRIEVAL

4.1.1 EXPERIMENT SETUP

For a given post P to be verified, we assume the retrieved evidence can assist the detection model in
two main aspects: (1) verifying the authenticity of the event described in the post, and (2) verifying
whether the accompanying image is used in an out-of-context manner. Based on these assumptions,
we introduce eight evidence retrieval strategies designed to support these goals:

• 1 Unimodal Evidence: Using the post text T to retrieve textual evidence Et to support Aspect
(1). It mimics how humans verify news by searching for relevant information online.

• 2 - 3 Cross-modal Evidence: Using the post text T and image I separately to retrieve image-
type evidence Ei (strategy 2 ) and text-type evidence Et (stragety 3 ), following the cross-
modal retrieval approach in Abdelnabi et al. (2022) to support Aspect (2).

• 4 - 5 LLM Querying: Using an LLM to generate questions about uncertain or suspicious
details in the post, then forming search queries to retrieve image-type evidence Ei (strategy 4 )
and text-type evidence Et (strategy 5 ). This simulates how humans investigate unclear claims
by asking targeted questions.

• 6 - 8 DuckDuckGo Variants: To explore how different search engines influence retrieval re-
sults, we replace the search engine used strategies 6 and 7 with DuckDuckGo in strategies
1 and 2 , respectively, We also use DuckDuckGo’s “search news” for news evidence Enews

(strategy 8 ), investigating whether it can retrieve more authoritative evidence.

Additionally, we believe that post-processing can help clean the evidence to reduce its noise. Here,
we propose two methods for evidence post-processing inspired by Xuan et al. (2024):

• Domain Filter: Filtering out evidence from untrustworthy domains.1

• Evidence Extraction: Using an MLLM (GPT-4o in our paper) to select parts of the evidence
that are highly relevant to the news post and remove irrelevant parts.

To evaluate the impact of each evidence type, we first run the model without evidence, relying only
on an MLLM’s internal knowledge. Then, we add each of the eight evidence types separately and
compare the results against the no-evidence baseline and with each other. We use Chain-of-Thought

1Evidence from domains used in dataset curation is excluded by default to avoid leakage.
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Table 2: Comparison of MLLM Performance with varying ev-
idence retrieval approaches.
Evidence Type GPT-4o Gemini-2.0-flash Qwen-vl-7b

Acc. R. Acc. F. Acc. Acc. R. Acc. F. Acc. Acc. R. Acc. F. Acc.

no evidence 70.8 50.8 90.8 71.7 78.3 65 60.8 76.7 44.4
Google Search

1 T → Et 87.1 97.5 76.7 81.3 98.3 64.2 59.7 82.7 38.1
2 T → Ei 81.7 75.8 87.5 77.9 90.8 65 62.2 84.2 40.2
3 I → Et 77.9 70 85.8 78.8 83.3 74.1 55.7 71.7 39.3
4 Query → Ei 69.2 51.7 86.7 71.9 76.5 67.2 55.8 91.2 20
5 Query → Et 77.5 80 75 77.7 83.9 71.7 56.1 63.9 48.1

DuckDuckGo Search
6 T → Et 84.2 94.2 74.2 79.2 97.5 60.8 64 91 37
7 T → Ei 76.3 64.2 88.3 76.7 87.5 65.8 53 79 26.5
8 T → Enews 84.2 80 88.3 75.3 92.4 58.3 68.4 84.4 52.9

Table 3: Comparison of different
evidence post-processing methods
with GPT-4o.

Method Acc. R. Acc. F. Acc.
T → Et 87.1 97.5 76.5
Domain Filter 88.3 98.3 78.3
Evidence Extraction 87.5 95.8 79.2

T → Ei 81.7 75.8 87.5
Domain Filter 83.8 80.8 86.7
Evidence Extraction 82 77 87

I → Et 77.9 70 85.8
Domain Filter 79.6 72.5 86.7
Evidence Extraction 81.3 75 87.5

Look where and how the 
children of Gaza sleep.

No evidence:
The news caption claims that Israel has confirmed the killing of Hashem Safieddine, who is presumed to be the next leader of 

Hezbollah. This is a significant claim that would likely be covered by major news outlets. However, as of my last update, there 

have been no reports confirming such an event. Additionally, the image provided does not offer any evidence to support the 
claim. Without corroborating information from reliable sources, this report appears to be false.

𝑻 → 𝑬𝒕：
The news caption states that Israel confirmed the killing of Hashem Safieddine, presumed next leader of Hezbollah. The 

evidence provided supports this claim, indicating that Safieddine was killed in Israeli airstrikes in Beirut. Multiple sources 

confirm his death and his position as a potential successor to Hassan Nasrallah. The details in the evidence align with the 

news caption, confirming the event and the context around it.

No evidence:
The image shows children sleeping outdoors on mattresses and blankets. The setting appears to be a rooftop or an open 

area with a view of a town or village in the background. This type of scene is consistent with reports of children in conflict 

zones like Gaza, where families may sleep outside due to damaged homes or safety concerns. However, without specific 
identifiers or additional context, it's challenging to verify the exact location or circumstances solely based on the image.

𝑰 → 𝑬𝒕：
The news caption suggests that the image shows children in Gaza sleeping outdoors. However, the evidence retrieved from 

the image does not support this claim. The evidence points to unrelated content, such as childhood memories and social 

media posts, without any direct connection to Gaza or the specific situation described in the caption. This lack of corroborating 
evidence raises doubts about the authenticity of the news caption.

Israel confirms killing of Hashem 
Safieddine, presumed next leader of 
Hezbollah

Figure 3: Examples of how T → Et and I → Et correct the no-evidence detection error.

(CoT) (Wei et al., 2022) prompting to obtain interpretable reasoning outputs instead of simple binary
decisions. Experiments are conducted on the Dev set using three models with different scales: GPT-
4o (Yang et al., 2023), Gemini-2.0-Flash (Team et al., 2023), and Qwen-VL-7B (Wang et al., 2024),
to reduce model-specific bias. For post-processing, we test the performance with and without each
strategy on GPT-4o. We report three metrics: overall accuracy (Acc.), accuracy on real posts (R.
Acc.), and accuracy on fake posts (F. Acc.). The model also outputs a confidence score (0–100), and
we report average confidence (Avg. Conf.) in certain tables to reflect prediction certainty.

4.1.2 RESULTS AND ANALYSIS

Table 2 and 3 present the performance of different evidence retrieval and post-processing strategies,
respectively. Table 4 presents a more detailed comparison across misinformation types for fake
posts. We summarize several key observations as follows.

1. All types of evidence consistently improves accuracy over the no-evidence baseline. Without
evidence, models exhibit notable differences in their behavior: GPT is more conservative, whereas
Gemini and Qwen are more inclined to label posts as real. With evidence, their classifications
become more balanced, showing the importance of external evidence in misinformation detection.

2. T → Et (strategy 1 ) substantially boosts performance, especially for real posts. This is
expected—even for humans, real news is more likely to be supported by online evidence and thus
easier to verify. See left of Fig. 3 for example. However, accuracy for fake posts does not notably
improve, and even declines slightly for GPT-4o. We attribute this to OOC misinformation, where
T → Et provides no information about the image I , and the strong support for T in Et misleads the
model to flip its originally correct prediction of fake.

3. I → Et (strategy 3 ) is more effective than T → Ei (strategy 2 ) for out-of-context misin-
formation. Although T → Ei shows higher overall accuracy in Table 2, manual inspection reveals
that I → Et better detects out-of-context cases. This is because I → Et retrieves webpages directly
containing the query image and extracts highly relevant text, while T → Ei conducts a fuzzy search
based on the caption and often retrieves loosely related images. In addition, textual evidence is also
more informative in these cases, since image-based comparisons are often limited to coarse features
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Table 4: Comparison of each evidence retrieval strategies across misinformation types with GPT-4o.
Evidence Type Deepfakes Image OOC Text Misleading

Acc. Avg. Conf. Acc. Avg. Conf. Acc. Avg. Conf.

no evidence 89.7 87.4 93.8 77 91.1 82.6
Google Search

1 T → Et 79.3 87.8 77.1 84 80.4 87
2 T → Ei 93.1 85.9 85.4 81 87.5 83
3 I → Et 100 88.5 83.3 85.2 80.4 88.2
4 Query → Ei 89.7 88.8 79.2 82.9 89.3 85.4
5 Query → Et 86.2 91.2 60.4 88.7 82.1 89.6

DuckDuckGo Search
6 T → Et 79.3 90 64.6 85.5 82.1 86.1
7 T → Ei 89.7 85.9 83.3 79.6 91.1 80.9
8 T → Enews 93.1 84.8 81.3 80.6 92.9 80.8

Table 5: Comparison of MLLM Performance with various reasoning methods on the Dev set.
Reasoning Method GPT-4o Gemini-2.0-flash Qwen-vl-7b

Acc. R. Acc. F. Acc. Acc. R. Acc. F. Acc. Acc. R. Acc. F. Acc.

Chain of Thought 88.3 98.3 78.3 83.8 98.3 69.2 54.8 84.2 24.1
Prompt Ensembles 90 100 80 85.4 98.3 72.5 67.1 90 44
Self Consistency 88.3 97.5 79.2 86.7 98.3 75 61 64 58.2
Multi-step Reasoning 91.3 91.7 90.8 81.3 90 72.5 62.1 78.4 45.9

like general scenes or people. These superficial similarities are usually preserved in out-of-context
misinformation, making it hard to detect manipulation through image-type evidence. Point 5 further
analyzes strategy 3 on fake posts.

4. LLM-generated queries (strategies 4 and 5 ) are less effective than direct caption searches.
In most cases, an LLM is not able to generate highly targeted queries; most of them are simply
paraphrases of the original caption. Searching with such paraphrased versions is thus less accurate
than directly using the caption T itself to retrieve evidence. In certain cases of fake posts, if the
questions or doubts raised by the LLM fail to target the actual reason why the post is fake, the
retrieved evidence can even lead the model to confidently make an incorrect judgment, as further
analyzed in the next point.

5. Across different misinformation types, I → Et (strategy 3 ) provides consistently informa-
tive evidence especially for identifying fake posts. Unlike earlier analyses based on the overall
accuracy, analyzing fine-grained misinformation types for fake posts demands careful consideration
beyond accuracy alone. GPT-4o tends to conservatively classify ambiguous posts as fake even with-
out additional evidence, and this can inflate the accuracy of fake posts. Hence, average confidence
scores become essential because they indicate whether the retrieved evidence provides clear and
informative knowledge that truly helps the model’s judgment. As shown in Table 4, strategy 3
not only achieves high accuracy but also consistently maintains high confidence across Deepfakes
and Image OOC categories. Although Query → Et (strategy 5 ) shows slightly superior combined
performance in the Text Misleading category, it causes the model to make highly confident but in-
correct predictions in Image OOC cases, significantly reducing its overall utility. Therefore, I → Et

remains the optimal evidence retrieval strategy across various misinformation types.

6. DuckDuckGo provides lower-quality evidence than Google (strategis 6 - 8 ). Experiments
indicate that evidence retrieved using DuckDuckGo consistently yields lower performance compared
to Google Search. Additionally, T → Enews did not produce the expected improvements.

7. Domain Filter can mitigate evidence noise. As shown in Table 3, domain filter can improve
accuracy in general, suggesting that evidence from low-credibility websites is indeed noisy and
potentially misleading.

8. LLM-Based Evidence Extraction can mitigate evidence noise. We inspected the extraction
results and found that the LLM can successfully retain the key information needed to detect mis-
information and filter out some irrelevant evidence, which leads to improved detection accuracy as
shown in Table 3, especially for I → Et. However, it is important to note that evidence extraction
introduces a huge token overhead.
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Table 6: Comparison of detection perfor-
mance across different LLMs on the Test
set.

Model Scale Acc. R. Acc. F. Acc.

GPT GPT-4o-mini 83 84.6 81.3
GPT-4o 88.6 87.6 89.6

Gemini Gemini-2.0-lite 76.2 77.2 75.2
Gemini-2.0-flash 78.9 83.6 74.2

Qwen Qwen-vl-7b 65 80.9 48.5
Qweb-vl-72b 81 82.3 79.6

Table 7: Comparison of different misinformation
detection methods on the Test set. ∗: 284 samples
are excluded due to the ambiguous output.

Methods Training Set / LLM Acc. R. Acc. F. Acc.
SENs NewsCLIPpings 52.6 58.4 46.7
Mocheg Mocheg 51.7 57.6 45.5
HAMMER DGM4 57.2 78.2 36.1
Sniffer NewsCLIPpings 56.1 71 41.1
MMFakeBench∗ GPT-4o 68.2 61.5 75.6
LEMMA GPT-4o 77.3 63.9 90.8

Ours GPT-4o 88.8 87.2 90.4

At least three people are dead, including an infant, 
after a tornado outbreak in Oklahoma overnight. The 
threat of severe storms continues today. 

CoT Reasoning:
The news caption states that at least three people, including an infant, died in a tornado outbreak in Oklahoma. The textual evidence from both image and 

caption searches confirms that multiple tornadoes struck Oklahoma, resulting in at least four deaths, including an infant. The reports also mention severe 

weather conditions continuing, aligning with the news caption. The image shows a scene consistent with tornado aftermath, supporting the context of the 

news. Therefore, the news report is consistent with the available evidence.

Multi-Step Reasoning:
[Step 1: Caption Authenticity]

Predicted: True

Reasoning: ……

[Step 2: Image Misuse Check]

Predicted misuse: True

Reasoning: The news caption describes a tornado outbreak in Oklahoma resulting in fatalities, including an infant. The image shows people embracing 

amidst debris, which aligns with the aftermath of a tornado. However, the text evidence indicates that the image is from a tornado event in Nebraska and 

Iowa, not Oklahoma. Therefore, the image does not correspond to the specific event described in the news caption.

[Final Decision]

Predicted Label: False

Reasoning: The news caption is accurate regarding the tornado outbreak in Oklahoma, with confirmed fatalities, including an infant. However, the image is 

misused as it depicts a different tornado event in Nebraska and Iowa. This misuse could lead readers to associate the image with the Oklahoma event, 

potentially causing misunderstanding about the location and context of the damage shown. Therefore, the overall news report is considered inauthentic due 

to the misleading use of the image.

Figure 4: Multi-step reasoning can detect image “misuse” in the news post from CNN. We believe
this “overly strict” behavior is actually beneficial for reliable misinformation detection.

4.2 ANALYSIS OF REASONING

4.2.1 EXPERIMENT SETUP

We use T → Et (strategy 1 ) and I → Et (strategy 3 ) in the reasoning stage, as they can com-
plement each other well. We also apply domain filter to reduce evidence noise, but skip evidence
extraction to better assess the reasoning ability on noisy evidence pieces. We test four reasoning
strategies, including CoT (Wei et al., 2022), Prompt Ensembles (Geng et al., 2024), Self Consis-
tency (Wang et al., 2022), and Multi-step Reasoning. See the appendix for additional details.

4.2.2 RESULTS AND ANALYSIS

We summarize several key observations below according to the results reported in Table 5.

1. The stronger the MLLM, the less it is affected by different reasoning methods. Stronger
models like GPT-4o usually have good reasoning ability by default and have similar accuracy across
different reasoning techniques.

2. Different model architectures show different preferences for different reasoning methods.
Therefore, in practice, deploying an MLLM-based misinformation detector should involve testing
various reasoning methods, especially for smaller MLLMs, to achieve better performance.

3. For GPT-4o, multi-step reasoning has the overall best balanced accuracy. For the best
performing model GPT-4o, by manually inspecting the reasoning paths across various strategies,
we find that multi-step reasoning consistently provides the clearest and most structured reasoning.
Particularly, its accuracy in detecting fake posts is superior to other methods. However, its accuracy
on real posts is not that good. Interestingly, we found that some real posts from reputable news
sources may use images from unrelated events (which we do not consider as misinformation because
there is no intention to mislead). Multi-step reasoning can identify and flag these cases as fake
due to image mismatch. We believe this ”overly strict” behavior is actually beneficial for reliable
misinformation detection. An example can be found in Fig. 4.

5 FURTHER EVALUATIONS ON XFACTA

Comparison of Different MLLMs. We evaluate the performance of various MLLMs on our Test
set. Specifically, we analyze performance differences across closed-source models (GPT and Gem-
ini), as well as open-source models (Qwen), both across different model scales. We use the evidence
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types following Section 4.2 and use the multi-step reasoning strategy. Results are shown in Table 6.
For the same model architecture, larger models always achieve higher accuracy.

Comparison of Existing Multimodal Misinformation Detection Methods. We perform a hor-
izontal comparison with existing multimodal misinformation approaches using our Test set, in-
cluding models trained from scratch: SENs (Yuan et al., 2023), Mocheg (Yao et al., 2023), and
HAMMER (Shao et al., 2023); methods fine-tuning MLLMs: Sniffer (Qi et al., 2024), and zero-
shot methods using closed-source MLLMs: MMFakeBench (Liu et al., 2024b), LEMMA (Xuan
et al., 2024). Results in Table 7 show that specialist methods that trained on a specific dataset suf-
fer from severe generalization issues. In contrast, models that use GPT-4o demonstrate relatively
good performance. Based the systematic analysis of evidence retrieval and reasoning strategies, our
method outperforms these models, establishing SOTA accuracy on XFACTA.

Comparison of Similar Datasets. We examine the dependency on evidence across similar datasets.
To achieve this, we select a subset from (Papadopoulos et al., 2023), Snopes+Reuters Zlatkova et al.
(2019), and NewsCLIPpings (Luo et al., 2021) dataset, respectively. We use the evidence types
following Section 4.2 and apply CoT reasoning with GPT-4o. We report the results in Table 8 in
the Appendix. Notably, for our XFACTA dataset, GPT-4o does not work well without any evidence,
confirming the need for a contemporary, real-world benchmark.

Detector Effectiveness on More Recent and Out-of-Distribution Data. We evaluate whether the
misinformation detector trained on the original XFACTA dataset remains effective when applied to
more recent and out-of-distribution social media content. First, we choose Snopes as the testbed
since, compared to X, it is out-of-distribution. Moreover, the website provides real/fake annotations
which are provided by professional journalists, thus can serve as a reference for evaluating the
performance of the detector. We collect 1,200 fact-checked news items (600 real and 600 fake) from
Snopes between July 2024 and July 2025, which are more recent than original XFACT dataset. Our
resulting detector achieves an overall accuracy of 89.2% on this dataset (85.5% on true and 93.0%
on false), showing that the model works well on both newest and out-of-distribution data.

6 CLOSING THE LOOP: DETECTOR-ASSISTED DATASET EXPANSION

In this section, we demonstrate how our detector, which has been validated on the original XFACTA
dataset, can be effectively used to support dataset expansion. Previous experiments show that the
detector maintains stable performance on both more recent and out-of-distribution data, suggesting
that it generalizes well to continuously emerging, previously unseen content. Therefore, it can be
integrated into the dataset collection pipeline to assist human reviewers in verifying misinformation,
enabling a detection-in-the-loop framework that accelerates and scales up the data curation process.

To verify this idea, we conduct a case study as a proof of concept. This time, we do not rely on
journalist-flagged posts or posts from official news accounts for real/fake references. Instead, we
select several accounts that regularly post about trending or controversial topics and that have a
sizable follower base. We crawl and identify 500 posts between June 2025 and July 2025 from
these accounts. Among them, 265 posts are identified by our detector as fake and 235 as real. For
each prediction, the detector also generates an explanation to support its decision. The explanations
can assist human reviewers in verifying the predictions more efficiently and deciding whether to
incorporate the posts into XFACTA. An example can be found in Appendix. The additional dataset
has been released alongside the main XFACTA dataset as part of our public release.

7 CONCLUSION

In this paper, we introduced XFACTA, a contemporary, real-world dataset for multimodal misin-
formation detection. Using this dataset, we analyze how to build an effective MLLM-based misin-
formation detector from two perspectives: evidence retrieval and reasoning. Our experiments offer
practical insights into developing robust detection systems. Furthermore, we implement a semi-
automatic detection-in-the-loop cycle to continuously update XFACTA with newly flagged content.
We also benchmark SOTA MLLMs and existing detection methods in a more realistic setting using
our dataset. We believe that XFACTA and our findings will foster future research in multimodal
misinformation detection.
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ETHICS STATEMENT

Our research adheres to the guidelines set forth by the Twitter Developer Terms2. We ensure that our
data collection and use comply with these terms, including the appropriate use of the Twitter API.
While we plan to release our dataset for research purposes, we will do so in a manner that adheres
to all applicable rules and guidelines.

Our study focuses on detecting multimodal misinformation, a significant issue in the digital age.
By identifying and mitigating the spread of misinformation, our work contributes positively to the
integrity of information on the web. Since our dataset consists of internet fake news posts, some
posts may contain offensive content. However, the positive contributions of our research in reducing
misinformation far outweigh the potential negatives.
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US gives $20bn to Ukraine funded by 
seized Russian assets

GPT-4o (no evidence)：
The claim that the US has given $20 billion to Ukraine funded by seized Russian assets is not confirmed by any credible sources.

While there have been discussions about using seized Russian assets to support Ukraine, such a specific allocation and funding 

mechanism would likely be widely reported in major news outlets. The image provided does not offer any evidence to support the 

claim. Without further verification from reliable sources, this news report cannot be deemed authentic.

Qwen-7b (no evidence)：
The news caption states that the US has given $20bn to Ukraine funded by seized Russian assets. This is a significant amount 

of money and suggests that the US is taking a strong stance against Russia's invasion of Ukraine. The image also mentions that 

the US President, Joe Biden, is meeting with the Ukrainian President, Volodymyr Zelenskyy, which further suggests that the US

is supporting Ukraine in its fight against Russia.

Trump administration launches 
immigration enforcement 
operation in Chicago

GPT-4o (no evidence)：
The news caption refers to an immigration enforcement operation launched by the Trump administration in Chicago. The image 

shows individuals wearing jackets labeled "DEA" and "Police ICE," which aligns with agencies typically involved in such 

operations. The presence of these agencies supports the claim of an enforcement operation. However, without additional context 

or verification from reliable news sources, it's challenging to confirm the specific event's authenticity solely based on the image.

Gemini-2.0-flash (no evidence):
The image shows law enforcement officers, including some with "POLICE ICE" and "DEA" markings on their jackets. This 

suggests the image is related to immigration enforcement. The caption mentions the Trump administration, which is consistent 

with the time frame when such operations were common. Therefore, the news report is likely authentic.

Figure 5: Comparisons of different MLLMs’ performance without evidence. Different MLLMs
exhibit distinct prediction tendencies in the absence of supporting evidence.

No evidence:
The image shows a line of tanks moving through a field, which could be related to military activity. The caption "RAFAH 

SOON…" suggests an impending event or movement towards Rafah, a city near the Gaza Strip. However, without additional 

context or verification from reliable news sources, it's difficult to confirm the authenticity of this specific claim. The image alone 

does not provide enough evidence to verify the news caption.

𝑻 → 𝑬𝒕：
The news caption "RAFAH SOON…" suggests an imminent military action in Rafah. The evidence supports this claim, 

indicating troop movements and preparations for a potential operation in Rafah. Multiple sources confirm that Israeli forces are 

preparing for an incursion into Rafah, with reports of troop deployments and strategic planning. The evidence aligns with the 

news caption, indicating that the report is authentic.

No evidence:
The news about Victor Wembanyama having a blood clot and missing the rest of the NBA season is significant and would 

likely be widely reported. As of my last update in October 2023, there is no information confirming this specific event. 

Additionally, such a serious health issue would be covered by major sports news outlets, and there is no current corroboration 

from reliable sources. The image provided does not offer any additional evidence to support the claim.

𝑻 → 𝑬𝒕:
The news caption states that Victor Wembanyama is expected to miss the rest of the NBA season due to a blood clot in his 

right shoulder. The textual evidence retrieved supports this claim, with multiple sources confirming that Wembanyama will 

miss the remainder of the season due to deep vein thrombosis in his right shoulder. The consistency across these sources 

indicates that the news report is authentic.

RAFAH SOON…

San Antonio Spurs superstar Victor 
Wembanyama is expected to miss the 
rest of the NBA season with a blood 
clot in his right shoulder

上：说明ET会导致翻转之前弄evidence的正确判断（特别是假新闻）
下：说明ET会提供大量额外信息（特别是真新闻）

Figure 6: Effectiveness of T → Et strategy on real and fake posts. T → Et is good at finding
evidence for real posts. However, it may also leads the model to flip its originally correct prediction,
particularly for image OOC misinformations.

A MORE ANALYSIS OF EVIDENCE RETRIEVAL

MLLMs exhibit notable differences in their behavior without evidence. As shown in Fig. 5, GPT
shows a conservative tendency in multimodal misinformation detection. Whether the post is fake
(as shown in the upper figure) or real (as in the lower figure), GPT tends to classify it as fake when
no supporting evidence is available. In contrast, Gemini and Qwen exhibit the opposite behavior:
they are more likely to classify the news as real if no clear inconsistency is observed between the
image and the caption. This further highlights that relying solely on the model’s internal knowledge,
without external evidence, is unreliable for misinformation detection.

T → Et (strategy 1 ) substantially boosts performance, especially for real posts. Two additional
examples are shown in the bottom of Fig. 6 and the top of Fig. 7. We then discuss why the accuracy
for fake posts does not notably improve, and even declines slightly for GPT-4o. We attribute this
to image OOC misinformation, where T → Et provides no information about the image I , and the
strong support for T in Et misleads the model to flip its originally correct prediction of fake. As
illustrative examples, two cases are shown in Fig. 8 and at the top of Fig. 6. Without evidence, the
model gives a cautious and right answer, while with T → Et supporting the post claim T , it becomes
more confident but makes a wrong prediction. Therefore, evidence that directly targets image OOC
misinformation serves as an important complement to this evidence such as the example shown on
the right side of Fig. 3.

I → Et (strategy 3 ) is more effective than T → Ei (strategy 2 ) for out-of-context misinfor-
mation. Although T → Ei shows higher overall accuracy in Table 2, manual inspection reveals
that I → Et better detects out-of-context cases. This is because I → Et retrieves webpages di-
rectly containing the query image and extracts highly relevant text, while T → Ei conducts a fuzzy
search based on the caption and often retrieves loosely related images. Textual evidence is also more
informative in these cases, since image-based comparisons are often limited to coarse features like
general scenes or people. These surface-level similarities are usually preserved in out-of-context
misinformation, making it hard to detect manipulation through image evidence alone. As shown in
Fig. 8, I → Et correctly traces the image to a Facebook user and identifies it as out-of-context mis-
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Jimmy Carter nears the top of America's 
'Most Admired Man' list, according to 
Gallup

𝑻 → 𝑬𝒕：
The news caption states that Jimmy Carter is near the top of America‘s ’Most Admired Man‘ list according to Gallup. The 

evidence supports this claim, indicating that Carter has been on the list 29 times, placing him third in the number of top 10
finishes behind Billy Graham and Ronald Reagan. This aligns with the news caption, confirming its authenticity. 

𝑰 → 𝑬𝒕：
The news caption states that… However, the evidence provided focuses on Jimmy Carter's death at the age of 100 and his 

legacy, with no mention of the Gallup list or his ranking on it. The evidence does not support the claim made in the news caption, 
as it does not provide any information about the Gallup poll or Carter's position on the 'Most Admired Man' list.

𝑻 → 𝑬𝒊：
The news caption states that…. The news image shows Jimmy Carter, which aligns with the caption..…However, the evidence 

images do not directly confirm the specific claim about the Gallup list. While the images support the general context of Jimmy 
Carter being admired, they do not provide direct evidence of the Gallup poll result mentioned in the caption.

Figure 7: Effectiveness of different evidence types on real posts. T → Et can effectively retrieve
relevant evidence for real posts, but cross-modal evidence is less useful in this case.

CHILDREN OF GAZA

No evidence:
The image shows a child in a medical setting, which aligns with the caption "CHILDREN OF GAZA" suggesting a focus on children affected by conflict or 

medical issues in Gaza. However, without additional context or verification from reliable sources, it's challenging to confirm the authenticity of the specific 

situation depicted. The image alone does not provide enough information to verify the news report's authenticity.

𝑻 → 𝑬𝒕：
The news caption "CHILDREN OF GAZA" is supported by extensive evidence detailing the dire situation faced by children in Gaza. The evidence highlights 

the humanitarian crisis, including malnutrition, lack of medical care, and psychological trauma affecting children. Reports from credible sources such as the 

International Rescue Committee and UNICEF corroborate the severe impact of the conflict on children, including high mortality rates and widespread 

displacement. The image of a child in a medical setting aligns with the described conditions, further supporting the authenticity of the news caption.

𝑰 → 𝑬𝒕：
The news caption "CHILDREN OF GAZA" suggests that the image is related to children in Gaza. The image shows a child in a medical setting, which could 

be consistent with the context of children affected by conflict. However, the evidence retrieved does not provide any direct information linking the image to 

Gaza or confirming the context of the caption. The evidence primarily consists of unrelated Facebook posts. Therefore, there is insufficient evidence to 
confirm the authenticity of the news caption in relation to the image.

𝑻 → 𝑬𝒊：
The news caption "CHILDREN OF GAZA" suggests a focus on the impact of conflict on children in Gaza. The news image shows a child in a hospital 

setting, which aligns with the theme of children affected by conflict. The evidence images depict scenes of destruction, injured children, and children in 

distress, which are consistent with the situation in Gaza. The visual evidence supports the narrative of children suffering due to conflict, making the news 
report appear authentic.

Figure 8: Effectiveness of different evidence types on out-of-context misinformation posts.

information. In contrast, T → Ei provides only rough background comparison, failing to precisely
detect the misinformation.

DuckDuckGo provides lower-quality evidence than Google. We present one example here in
Fig. 10, where DuckDuckGo News Search (strategy 8 ) failed to retrieve any relevant evidence,
while Google Search (strategy 1 ) accurately returned the “direct match” news events that helped
the model make the correct inference.

Domain Filter can mitigate evidence noise. Domain filter can improve accuracy by filtering out
misleading evidence from low-credibility websites. Here we give an example. As shown in Fig. 9,
without the domain filter, there is relevant content in the evidence that supports the claim made in
the caption. Therefore, even though the news post caption itself mentions that this might be an
“unconfirmed rumor”, the model still classifies it as true based on the supporting evidence. How-
ever, the domain filter excludes this incorrect evidence, making it easy for the model to make the
correct judgment. This shows that incorrect evidence can still have a significant negative impact on
detection, even in cases where the correct classification should be straightforward.

LLM-Based Evidence Extraction can mitigate evidence noise. We present an example in Fig. 11.
The extracted evidence is more concise, making it easier for the model to perform reasoning.

B MORE ANALYSIS OF REASONING

Details of reasoning methods:

• Chain of Thought: Model outputs an additional rationale in addition to the binary label.
• Prompt Ensembles: Inspired by Geng et al. (2024), we use a variety of prompts to generate

multiple responses, then ask the model to aggregate the responses to get a more robust result.
• Self Consistency: Perform multiple rounds of inference and use majority vote to obtain the final

result.
• Multi-step Reasoning: The model may become confused when multiple sources of evidence

are provided. Therefore, we invoke the LLM separately for each type of evidence and then
summarize all intermediate reasoning processes to produce a final aggregated answer.
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The Turkish government has 
built a new camp near the 
town of Al-Bab in Syria's 
Aleppo province. There is no 
official information about 
the purpose of the camp or 
who will be staying there. 
Unconfirmed rumors suggest 
that Palestinians from Gaza 
may be housed there, but no 
official 

𝑰 → 𝑬𝒕:(w/o domain filter):
The news caption claims that the Turkish government has built a new camp near Al-Bab in Syria's Aleppo province, with 

unconfirmed rumors about Palestinians from Gaza possibly being housed there. The images provided show a camp with 

numerous tents, which aligns with the description of a new camp being constructed. The map image also supports the location 

near Al-Bab. The textual evidence retrieved from the image search mentions new camps being built in Aleppo's countryside and 

rumors about relocating people from Gaza, which aligns with the news caption. However, the rumors remain unconfirmed, and 

there is no official information provided. The consistency between the images, the map, and the textual evidence suggests that 

the news report is likely authentic, but the lack of official confirmation about the camp's purpose and inhabitants introduces some 
uncertainty.

𝑰 → 𝑬𝒕 (w/ domain filter):
The news caption claims that the Turkish government has built a new camp near Al-Bab in Syria's Aleppo province, with 

unconfirmed rumors suggesting it may house Palestinians from Gaza. The images provided show a large camp with rows of 

tents, which aligns with the description of a newly built camp. The map image also supports the location near Al-Bab. However, 

the textual evidence retrieved does not directly confirm the specific claim about the camp's purpose or the potential housing of

Palestinians from Gaza. The evidence mentions various geopolitical dynamics but lacks direct confirmation of the news caption's 

specific claims. Therefore, while the images support the existence of a camp, the lack of direct textual evidence confirming the 

purpose or occupants of the camp makes the news report's specific claims unverified.

Figure 9: Effectiveness of evidence domain filter.

𝑻 → 𝑬𝒕 (DuckDuckGo news search):
The news caption states that Dame Jacqueline Wilson has reacted to receiving a New Year's honour. The image shows a person 

who appears to be in a setting that could be related to an interview or personal reaction, which aligns with the caption. However, 

the evidence search did not return any results to confirm this specific event. Without additional corroborating evidence, the 

authenticity of the news caption cannot be fully verified.

𝑻 → 𝑬𝒕 (Google search):
The news caption states that Dame Jacqueline Wilson reacted to receiving a New Year's honour, saying "I shall treasure it." The 

evidence retrieved includes a direct match to this statement, confirming that she did indeed react in this manner. Additionally, the 

image shows a person who appears to be in a setting consistent with an interview or personal statement, which aligns with the
context of reacting to an honour. The evidence supports the authenticity of the news caption.

'I shall treasure it': Dame Jacqueline 
Wilson reacts to New Year's honour

Figure 10: Comparison between Google Search and DuckDuckGo News Search.

Comparison between CoT and multi-step reasoning. Figure 12 shows the different reasoning
paths between CoT reasoning and multi-step reasoning. In this example, multi-step reasoning accu-
rately identifies that the image originates from another event by analyzing I → Et, leading to the
correct classification as image OOC misinformation. However, the CoT reasoning fails to fully uti-
lize each piece of evidence, leading it to overlook the I → Et evidence and resulting in an incorrect
inference.

Comparison of reasoning performance across different model sizes. Figure 13 presents the
reasoning paths of GPT-4o and GPT-4o-mini. GPT-4o has stronger reasoning capabilities than GPT-
4o-mini, which allows it to more precisely recognize the phrase “initially entered a not-guilty plea”
in the evidence and therefore make the correct judgement.

C COMPARISON OF DIFFERENT MISINFORMATION DETECTION DATASETS

Results are shown in Table 8. GPT-4o achieves an accuracy of 0.8 or even 0.9 without using any ev-
idence on other datasets, indicating that it can perform misinformation detection effectively through
memorization alone. Moreover, we observe that the improvement brought by evidence is most
significant on our dataset. Therefore, our dataset is more suitable for evaluating retrieval-based mis-
information detectors and has less evaluation bias compared to real-world misinformation scenarios.

D EXAMPLE OF DETECTOR-ASSISTED DATASET EXPANSION

Fig. 14 shows an example of misinformation detection on the newest posts from X using our detector,
including the supporting explanations for each prediction to assist human reviewers in verifying the
results more efficiently.
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𝑰 → 𝑬𝒕(w/o evidence extraction):
The news caption states that security barriers were removed for repairs before an attack in New Orleans. The evidence provided 

discusses a truck attack in New Orleans, mentioning that the attacker acted alone and was inspired by ISIS. However, there is

no specific mention of security barriers being removed for repairs in the evidence. The image shows a street with road work signs, 

but this does not directly confirm the removal of security barriers for repairs. The lack of direct evidence supporting the specific 

claim about the removal of barriers makes the news caption questionable.

𝑰 → 𝑬𝒕(w/ evidence extraction):
The news caption states that security barriers were removed for repairs before an attack in New Orleans. The textual evidence 

supports the occurrence of an attack on New Year's Day 2025, where a lone attacker drove a truck into a crowd on Bourbon 

Street, resulting in multiple casualties. The evidence also mentions discussions about enhancing security measures, such as 

installing permanent barriers, which aligns with the news caption's implication of security concerns. The image shows a street 

with road work signs and barriers, consistent with the context of repairs and security measures. Therefore, the news caption is 

consistent with the textual evidence and the image.

Security barriers removed for repairs 
before New Orleans attack 

Figure 11: Effectiveness of evidence extraction.

Dataset Evidence Acc. R. Acc. F. Acc.

VERITR ✗ 80.1 78 82
✓ 91.9 88.5 95.2

Snopes+Reuters ✗ 91.9 93.5 90.3
✓ 96.7 94.6 99

Newsclipping ✗ 80.7 88.2 73.2
✓ 89.5 91.2 87.7

XFACTA(Ours) ✗ 70.5 51 90
✓ 89.5 98 81

Table 8: Comparison of GPT-4o’s performance on different datasets.

Yemeni Houthis attacked a tanker 

with Russian oil in the Red Sea

As a result, the British oil tanker 

Marlin Luanda caught fire. It was 

carrying oil of Russian origin.

CoT Reasoning:
The news caption claims that Yemeni Houthis attacked a tanker carrying Russian oil in the Red Sea, resulting in a fire on the British oil tanker Marlin Luanda. 

The textual evidence from both image and caption searches confirms that the Marlin Luanda was indeed attacked by Houthi forces, causing a fire. The 

vessel was carrying Russian-produced naphtha, aligning with the claim of Russian oil. The core event described in the caption is supported by multiple 

credible sources, confirming the attack and the involvement of the Marlin Luanda. 

Multi-Step Reasoning:
[Step 1: Caption Authenticity]

Predicted: True

Reasoning: The news caption claims that Yemeni Houthis attacked a tanker with Russian oil in the Red Sea, resulting in the British oil tanker Marlin Luanda 

catching fire. The text evidence supports the occurrence of an attack on the Marlin Luanda by Houthi rebels, confirming the involvement of a missile strike 

and the subsequent fire. The textual evidence aligns with the news caption, confirming the attack and the fire on the Marlin Luanda.

[Step 2: Image Misuse Check]

Predicted misuse: True

Reasoning: The news caption claims that Yemeni Houthis attacked a tanker with Russian oil in the Red Sea, resulting in the British oil tanker Marlin Luanda 

catching fire. The text evidence supports the occurrence of an attack on the Marlin Luanda by Houthi rebels, confirming the involvement of a missile strike 

and the subsequent fire. However, the images provided do not correspond to this event. They are from unrelated incidents in Japan in 2002 and 2018...... 

[Final Decision]

Predicted Label: False

Reasoning: The news caption is considered true based on the textual evidence, which supports the occurrence of an attack on the Marlin Luanda by Houthi 

rebels. However, the images are misused as they do not depict the event described in the caption. They are from unrelated incidents, which could lead to a 

misunderstanding of the event. Therefore, the overall news report is labeled as false due to the potential for the images to mislead readers about the 

specific incident.

Figure 12: Comparison between CoT reasoning and Multi-step reasoning.

Attack suspect Axel Rudakubana pleads not guilty to 

murdering three young children and 10 counts of 

attempted murder in Southport, UK 

GPT-4o:
[Step 1: Caption Authenticity]

Predicted: True

Reasoning: The news caption states that Axel Rudakubana pleaded not guilty to murdering three young children and 10 counts of attempted murder in 

Southport, UK. The text evidence confirms that Rudakubana initially entered a not-guilty plea before later changing it to guilty. This aligns with the news 

caption, which focuses on the initial plea of not guilty. The details of the case, including the charges and location, match the information provided in the 

text evidence.

[Step 2: Image Misuse Check]

Predicted misuse: False

Reasoning: The news caption discusses Axel Rudakubana pleading not guilty to charges related to a violent attack in Southport, UK. The image provided 

is a courtroom sketch, which is consistent with the context of a legal proceeding. The text evidence from the news images aligns with the news caption, 

confirming the details of the case and the charges against Rudakubana. The image is appropriate for the news context as it depicts a courtroom scene 

related to the legal proceedings mentioned in the caption.

[Final Decision]

Predicted Label: True

Reasoning: The news caption is verified as true, with a high confidence level of 95, as it accurately reflects the initial plea of not guilty by Axel 

Rudakubana in a case involving multiple charges. The image is a courtroom sketch, which is appropriate and relevant to the legal proceedings described 

in the caption. There is no misuse of the image, and it does not lead to any misunderstanding about the news event. Therefore, the overall news report is 

considered authentic. 

GPT-4o-mini:
[Step 1: Caption Authenticity]

Predicted: False

Reasoning: The news caption states that Axel Rudakubana pleaded not guilty to murdering three young children and 10 counts of attempted murder in 

Southport, UK. The text evidence confirms that Rudakubana was indeed charged with these crimes, but it also indicates that he later pleaded guilty to all 

charges. This discrepancy suggests that the news caption is not authentic, as it inaccurately reports his plea status at the time of the statement.

[Step 2: Image Misuse Check]

Predicted misuse: False

Reasoning: The news caption discusses the court appearance of Axel Rudakubana, who has pleaded not guilty to multiple serious charges, including the 

murder of three children. The accompanying image is a courtroom sketch of the suspect, which aligns with the context of the news caption. The text 

evidence confirms the details of the case, including the charges against Rudakubana and the nature of the incident. Therefore, the image is not being 

misused as it directly relates to the news story. 

[Final Decision]

Predicted Label: False

Reasoning:The news caption inaccurately states that Axel Rudakubana pleaded not guilty, while evidence suggests he later pleaded guilty to the charges. 

This discrepancy indicates that the caption is not authentic. However, the accompanying image, a courtroom sketch, is relevant and not misused, as it 

pertains directly to the case being reported. Therefore, while the image is appropriate, the caption's inaccuracy leads to an overall assessment of 

inauthenticity.

Figure 13: Comparison between GPT-4o and GPT-4o-mini.
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Figure 14: Example of misinformation detection on newest posts from X using the detector’s infer-
ence
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