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ABSTRACT

Continual unlearning in large language models (LLMs) requires forgetting targeted
domains while preserving utility elsewhere as requests arrive sequentially. Existing
approaches are largely heuristic and accumulate interference over time. We present
a principled optimization framework SCOPE (Spectral Orthogonality for Continual
unlearning with Provable guarantEes) that formalizes continual unlearning via
three explicit conditions: selective forgetting, utility preservation, and persistence,
and satisfies them by parameterizing updates in an orthonormal spectral basis
with disjoint coefficient supports. This construction enforces orthogonality by
design, yields capacity laws that bound interference as requests accumulate, and
admits an efficient FFT-based instantiation that needs no basis storage and scales
as O(d log d). The same parameterization provides an inference-time routing sig-
nal via spectral activations, enabling calibrated triggering of unlearning adapters.
Across discriminative, generative, and reasoning benchmarks-and without using
retained data from unaffected domains where our method delivers stronger unlearn-
ing—utility trade-offs and more stable scaling than competitive baselines, offering a
scalable framework with explicit guarantees for continual unlearning in LLMs.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing through their ability
to encode vast amounts of knowledge from diverse domains (Wang et al.| [2024). However, this
capability raises critical concerns about privacy, copyright, and safety (Pan et al.,[2020; [Liu et al.|
2024). Deployed LLMs frequently encounter scenarios where specific information must be removed
on demand. Examples include: (1) toxic or offensive content flagged by users, (2) copyrighted
passages targeted by legal requests, and (3) outdated or misleading facts as knowledge evolves. The
task of machine unlearning (Bourtoule et al.| 2021) addresses this challenge by enabling the selective
removal of unwanted data influences while preserving model utility on all remaining domains.

Most existing work considers unlearning as a single-shot operation, where the model is asked to
forget one domain or dataset. In practice, however, unlearning requests are not one-time events but
arrive sequentially over time. A realistic deployment must support multiple, evolving requests: after
forgetting a toxic subset, a model may later need to remove copyrighted material, and later still
discard outdated knowledge. This continual unlearning setting is more challenging than isolated
unlearning because each update must satisfy three conditions: selective forgetting (the current request
is forgotten), utility preservation (performance on other domains is maintained), and persistence
(previously forgotten domains remain forgotten after later updates). Meeting all three together is
nontrivial, as each operation shrinks the feasible parameter space.

Current LLM unlearning methods can be broadly categorized into two paradigms: parameter
optimization methods and in-context prompting methods. Parameter optimization modifies model
weights directly, typically by applying gradient ascent on unlearning data, optimizing with shuffled
or rejection labels, or restricting updates to selected parameter subsets (Chen & Yang| [2023} Eldan
& Russinovich, 2023 [Jia et al.| 2024; Zhang et al.| 2024). In-context prompting instead alters
model behavior by modifying prompts to elicit refusal responses (Thaker et al.| 2024} [Pawelczyk
et al.| 2024). While both strategies can achieve forgetting in isolated cases, they suffer from serious
limitations in the continual setting. Prompt-based methods generally preserve utility but do not truly
erase knowledge from the model parameters, making persistence unreliable. Parameter optimization
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can enforce forgetting more strongly but relies on heuristics such as surrogate losses or orthogonal
regularizers. These heuristics lack theoretical guarantees, and when applied sequentially, they cause
unpredictable interference between tasks and cumulative degradation of utility (Gu et al., 2024; Gupta
et al., 2024). Recent work (Gao et al.| [2025)) attempts to address these issues using orthogonality
constraints on LoRA adapters (Hu et al.,[2021), but this approach still suffers from two drawbacks: (i)
optimization may converge to local minima with substantial interference, and (ii) no explicit bounds
exist on how performance degrades as unlearning requests accumulate.

We address these limitations by introducing the first optimization-based framework with explicit
guarantees for continual unlearning in LLMs. We propose the principled optimization framework
SCOPE (Spectral Orthogonality for Continual unlearning with Provable guarantEes). Our approach
begins by formalizing the problem through three explicit conditions: selective forgetting, utility
preservation, and persistence. We then analyze the constrained optimization problem defined by
these conditions and show updates must be restricted to structured subspaces to satisfy reliably.
This analysis naturally motivates a spectral decomposition of parameter updates, where weight
updates are expressed in an orthonormal basis and assigned disjoint coefficient supports across tasks.
This construction enforces orthogonality by design, ensuring utility preservation and persistence
constraints are automatically satisfied, while also yielding capacity laws quantifying the number of
requests that can be handled without interference. Unlike heuristic orthogonalization strategies, our
method provides provable guarantees within capacity and controlled degradation beyond it. Although
the spectral framework is basis-agnostic, we instantiate it with Fast Fourier Transform (FFT) bases in
practice. This choice offers three advantages: (i) no explicit basis storage is required, (ii) updates
can be computed in O(d log d) time using efficient implementations such as torch. fft, and (iii)
Fourier bases empirically capture compact energy in transformer layers. Furthermore, the spectral
parameterization yields an inference-time signal: spectral activation norms correlate with domain
relevance, enabling the model to automatically route inputs to appropriate unlearning adapters. Thus,
our framework unifies optimization-time updates with inference-time routing, eliminating need for
auxiliary out-of-distribution detectors. In summary, our work makes the following contributions:

* We establish a principled optimization framework for continual unlearning, explicitly formalizing
the three fundamental conditions of forgetting, preservation, and persistence, and systematically
deriving update constraints that make them practically achievable.

* We propose a novel spectral decomposition method that enforces these conditions strictly by
construction, admits an efficient FFT-based instantiation, and provides explicit theoretical capacity
laws with provable interference bounds.

* We unify parameter optimization and inference-time routing within the same framework, enabling
scalable deployment without auxiliary detection modules.

Extensive experiments across discriminative, generative, and reasoning benchmarks show that our
approach consistently outperforms state-of-the-art baselines in unlearning—utility trade-offs, scales to
long sequences of requests, and avoids the cumulative degradation observed in existing methods.

2 RELATED WORK

Machine Unlearning for Large Language Models. Machine unlearning (Bourtoule et al., 2021)
addresses the “right to be forgotten” (GDPR) 2018; [Pardau, 2018)) by enabling the removal of specific
data influences from trained models. Early approaches relied on exact unlearning through retraining
from scratch, which is computationally prohibitive for large-scale LLMs (Wang et al.,[2024). This
motivated the development of approximate unlearning methods that aim to remove the effect of target
data with significantly reduced overhead. Current LLM unlearning techniques can be broadly divided
into two paradigms: parameter optimization methods and in-context learning methods. Parameter
optimization approaches (Chen & Yang} 2023} |[Eldan & Russinovich, 2023} Jia et al., [2024; |[Zhang
et al., 2024; [Meng et al.| [2022; |Li et al.| [2024)) directly modify model weights through strategies
such as gradient ascent on unlearning data (Golatkar et al.l 2020; [Yao et al., [2023), preference
optimization with shuffled or rejection labels (Eldan & Russinovich, 2023} Zhang et al., [2024),
or localizing parameters and updating only selected subsets (Yu et al.,[2023)). In-context learning
methods (Thaker et al.| 2024} |Pawelczyk et al.|[2024)), by contrast, modify prompts to elicit refusal
responses for undesired content without changing the underlying parameters. While parameter
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optimization methods typically achieve stronger forgetting performance than in-context methods, they
generally assume access to substantial retained datasets to preserve model utility. This assumption is
increasingly unrealistic for LLMs trained on massive, proprietary corpora (Liu et al.| 2024; |Sun et al.|
2024). Moreover, existing approaches largely treat unlearning as isolated, single-task operations and
neglect the continual nature of real-world unlearning requests.

Continual Learning and Catastrophic Forgetting. The continual unlearning challenge is closely
related to catastrophic forgetting in continual learning (Gu et al.| [2024} |Gupta et al.| [2024). However,
while continual learning seeks to preserve knowledge across tasks, continual unlearning requires
the opposite: selectively forgetting specific knowledge while maintaining everything else. This
difference makes continual unlearning even more challenging, as it combines the need for targeted
degradation with strong utility preservation. Recent studies have begun to examine sequential
unlearning scenarios (Gu et al.l 2024}, showing that naive reuse of single-task methods leads to
cumulative degradation of utility across unaffected domains. These works, however, remain primarily
empirical and lack theoretical grounding. They do not provide a principled framework for analyzing
or mitigating interference between sequential unlearning operations, leaving open the question of
how to design methods with provable guarantees in the continual setting. Most relevant to our
setting is the O3 framework (Gao et al.,[2025), which introduces orthogonal LoRA adapters together
with a glocal-aware OOD detector. O demonstrates strong empirical performance across multiple
benchmarks without requiring retained data, showing that explicit mechanisms for disentangling task
updates and routing can substantially mitigate cumulative degradation. Nevertheless, O3 relies on
heuristic orthogonalization and does not provide provable guarantees on interference or capacity,
leaving open the question of how to design constructive methods with explicit bounds.

Unlike continual learning, where stability and plasticity trade-offs have been formalized, continual
unlearning has not yet been framed in terms of explicit conditions that algorithms must satisfy. This
missing formulation is precisely what we establish in Section [2]

3 PROBLEM FORMULATION

We now establish the optimization foundation for continual unlearning in large language models
(LLMs). Our overarching goal is to precisely and systematically define the sequential unlearning
problem, introduce the three explicit conditions: selective forgetting, utility preservation, and persis-
tence — and clearly show how these conditions naturally lead to a principled constrained optimization
view. This theoretical analysis motivates the spectral solution framework developed in Section 4}

3.1 PROBLEM DEFINITION

Consider an LLM My with parameters @ € RY. Our formulation is entirely agnostic to the specific
model architecture and underlying pretraining objective.

Domain structure. We assume model knowledge decomposes into K domains indexed by ¢ €
{1, ..., K}, each associated with distribution P; over input—output (x, y). Define expected loss

Lz(e) = E(m,y)N'Pi [E(Mg(w), y)]’ €))

where / is the prediction loss. In practice, domain representations overlap, so forgetting is not a
simple masking operation but requires careful optimization.

Sequential requests. We consider a sequence of unlearning requests

R = {(.jlaplU)v RS (ijDZU")}a

where j; denotes the target domain at step ¢ and D{ is a dataset drawn from P;,. Let 6, be the
parameters after processing request ¢, with 8 the pretrained initialization. We assume no retained
data from non-target domains is available for optimization-only the forget sets {D{ } are provided.

Definition 3.1 (Continual unlearning). An algorithm maps 6y — {01, ...,07} such that the final
model Mg, satisfies:

1. Selective forgetting: performance on each requested domain degrades measurably;
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2. Utility preservation: performance on all non-requested domains remains within tolerance;

3. Persistence: previously forgotten domains remain degraded after subsequent updates.

3.2 OPTIMIZATION VIEW

Vectorization and gradients. Parameters are partitioned as {W ()} L1 updates as AO =
vec({AW ()1). Gradients decompose similarly: g;(8) = vec({GZ@)}), with GEZ) = Vo Li(0).
We use Frobenius inner products(g;(6), A8) = Zf=1<Gz(»é), AW pand (A, B)p = tr(AT B).
First-order approximation. For sufficiently small updates,

Li(0:) ~ Li(0:-1) + (9i(01-1), A6y), @)
with higher-order terms absorbed into tolerances defined below. This follows from standard smooth-
ness assumptions: if L; has L-Lipschitz gradients, the error is O(||A8,]|?).

Constrained optimization. Ideally, request { maximizes forgetting on domain j; while leaving
others unaffected:

max (95, (0t-1),A0;) sit. (gi(0:-1),A0;) =0, Vi € Py, (3)

where Py = {1,..., K} \ {j:} includes both retained and previously forgotten domains. As t grows,
the feasible subspace shrinks, which explains the difficulty of continual unlearning.

3.3 ExpLICIT CONDITIONS

The optimization constraints can be relaxed into measurable conditions.
Definition 3.2 (Selective forgetting). For target j;,
L;,(0;) > L;,(0i—1) +e, € >0.
Definition 3.3 (Utility preservation). Forall i ¢ {j1,...,j:},
|Li(0;) — Li(0:—1)| < 4.
Definition 3.4 (Persistence). For s < t,
L. (8:) > Lj,(6.) 1.

€; enforces meaningful forgetting for the current unlearning request, § bounds allowable drift on
preserved domains, and n prevents inadvertent relearning of previously forgotten domains. These
tolerances absorb higher-order errors and stochasticity.

Proposition 3.5 (Gradient constraint condition). Under first-order approximation, the three condi-
tions imply:

Forgetting: (g;,(61-1), A8:) > €, “)
Preservation: |(g;(0:—1), A0 <0, i & {j1,-.-,7t} 5)
Persistence: |(g;,(0,-1),A0,)| <n, s<t. (6)

As t increases, the number of constraints rapidly grows and naive optimization soon becomes
infeasible. This strongly motivates structured parameterizations that reliably satisfy orthogonality by
construction rather than by penalty. In Section[d] we introduce a principled spectral decomposition
where coefficient supports can be flexibly allocated across tasks, thereby enabling exact satisfaction
of the three conditions within capacity and quantifiable degradation beyond it.

4 SPECTRAL SOLUTION FRAMEWORK

We now develop a spectral decomposition approach that provides provable guarantees for continual
unlearning. The key idea is to parameterize updates in a basis where orthogonality is enforced by
construction, so that the preservation and persistence constraints from Section [2] are automatically
satisfied. This yields the first constructive framework that meets all three conditions of continual
unlearning, provides explicit capacity laws, and extends naturally to inference-time routing.
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4.1 SPECTRAL PARAMETERIZATION

Fake/Random Answers T

n
Pre-Trained LLM Topic 1 Topic 2. Topic 3 [

B B OB s & g
T B H B E
T

I o, 1 o 1 * 1
Request 1 ‘ ‘ Request 2 ‘ Request 3 } [ New Request

(a) Spectral solution framework (b) Spectral activation norm

Figure 1: Spectral solution framework: The natural Orthogonality between adapters (form by FFT)
for unlearning requested knowledge (Fig. [Ta)) and Spectral activation norm (SAN) is used to detect
whether the input contains the unlearning knowledge(Fig. @

For each layer ¢, let W) € R™¢*"t pe the weight matrix with update AW (). We introduce
orthonormal matrices Ug) € R™¢xFe and Ul(f ) € R ke and parameterize updates as

AWt(Z) _ UI(,Z) St(e)(Ug))T, Sy) c RFexke
Each St(z) is sparse, with support set Q,EZ) C [ke¢] % [ke]. Define sparsity py = |QE€)|/k§ and total
budget = ZeL:1 k7. Denote by Ps(f) the projector onto entries in Q).

Orthogonality by construction. Inner products between gradients and updates factor through the
spectral basis:

(@, aw e = (U & UY, S1)k
Thus, if supports are disjoint across tasks, their contributions are orthogonal and interference vanishes.
Theorem 4.1 (Automatic constraint satisfaction). If Q,Eg) N Qy) = 0 for all ¢ and for all preserved or
previously forgotten domains g, then (gq(0;—1), AB;) = 0. Hence preservation and persistence are
satisfied exactly, while forgetting is achieved whenever || P, 0 ((U(Z )TG(Z )|| r > 0 for some (.

FFT as a practical instantiation. The theory applies to any orthonormal basis {U g), Ul(f )}.
In practice, we use Fourier bases: (i) no need to store U, (ii) efficient O(nlogn) transforms via
torch.fft, and (iii) empirical energy compaction in transformer layers. FFT thus offers an
efficient and memory-free instantiation, though the guarantees are basis-agnostic.

Complexity and Practicality. For each layer ¢, computing (U, )TG“)U via FFT costs
O(mglogmg + nelognyg), plus O(|Q§ )|) sparse multlphcatlons. Total memory scales as
O, |Q§€)|). Compared to direct constrained optimization (cubic in d), this approach scales
as O(dlog d) and requires no explicit storage of U.

4.2 CAPACITY AND ALLOCATION

Each task consumes ), \Q | = >, pek} coefficients. Perfect isolation is possible until the global
budget K is exhausted.

Theorem 4.2 (Capacity bound). Let p = % oo pek?. Then the maximum number of perfectly
isolated tasks is 1
Tmax = \‘TJ .
D

For all T < T, ax, there exists a disjoint allocation with zero interference and forgetting margin

€ > CZH (17) U(é) TG(K U'(K))HF7

for a universal constant ¢ > 0.
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When T" > T},,,«, disjoint allocation is impossible and supports overlap. Assuming uniform random
allocation:

Theorem 4.3 (Controlled degradation beyond capacity). For T > Tyax,

2
piT pi(
El§] =0 GO p|AW O g | E - IIG NellAW O e |,
) ki

and

Ele] > Z( 2] | P (UL GURD) |

Thus interference grows only linearly with 7" and quadratically with sparsity p, much milder than the
uncontrolled blow-up of naive approaches.

4.3 PROVABLE GUARANTEES

Let e = || Py ((Ug))TG%) U g ))|| r be the target gradient energy captured.

Theorem 4.4 t(Provable continual unlearning). There exist constants cy,co > 0 such that:
o IfT < Tiax, then d =n = 0and ALj, > 1 Ze'yg.
o IfT > Tiax, then

E[AL;,] >CQZ( el )%?, E[4], (Zi)
4

Hence spectral decomposition yields exact satisfaction of the three conditions within capacity and
controlled degradation beyond it.

4.4 UNIFIED INFERENCE AND ROUTING

The same parameterization provides an inference-time routing signal. For input @, define the spectral
activation norm (SAN) for task ¢ as

SANi(z) = AW R (@)]l2,
optionally normalized by ||h(“~1) (2)||2, where h(~~1) is the last hidden representation. Since
AWt(L) is optimized against domain j;, inputs from j; yield disproportionately large SAN;.
Theorem 4.5 (Spectral separation). Under disjoint supports,
Eznp,, [SAN(z)] > Epnp,, [SAN(x)], s # ¢,

and similarly against background distributions P©.

At inference, each task learns a threshold 7;; inputs are routed to t* = arg max; SAN;(x) if above
T+, otherwise to the base model Mp,. Thus both optimization and inference are seamlessly unified
together within a single coherent spectral framework.

Comparison with orthogonal LoRA. Prior methods|Gao et al.|(2025) penalize overlap between
low-rank adapters, yielding approximate orthogonality without guarantees or capacity accounting.
Our approach is constructive: disjoint coefficient supports yield exact orthogonality, explicit capacity
laws, and unified routing, a strictly stronger foundation for continual unlearning.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Dataset. We employ two datasets: TOFU for evaluating unlearning on fictitious knowledge, and
CLINCI150 for intent classification. Fictitious Knowledge Generation. The TOFU benchmark Maini
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Table 1: Performance comparison between SCOPE and baselines on TOFU datasets under three
unlearning requests. S.U. and D.U. denote the accuracy rate of unlearning on synthetic and domain-
specific requests (lower is better). Accuracy of R.D. and R.A. denotes the performance on the retained
dataset (higher is better).

Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
Method
Selective Forgetting Utility Preservation Selective Forgetting Utility Preservation Selective Forgetting Utility Preservation
SuU.l D.U.J RD.1 RAT S.U.l D.U.} RD.1 RAT S.U.l D.U.} RD.T RAT

Base 85.0+0.0 90.0+0.0 85.8+0.0 89.04+0.0 87.3+0.0 89.3+£0.0 85.8+0.0 89.0+0.0 853£0.0 90.0+0.0 85.8+0.0 89.04+0.0
GradAsc  75.0+0.0 85.04+0.0 81.0+0.0 86.0£0.0 17.6£02 23.1£1.1 19.0£0.0 0.0+0.0 17.1£09 142+£25 19.0£0.0 0.04+0.0
GradDif  78.1+0.0 84.0+£1.7 81.9+1.6 86.7+0.6 62.5+£54 70.0£8.7 704437 657+7.2 633+£103 752445 19.0£0.0 0.0£0.0
EUL 84.1+0.2 86.3+0.6 86.1+02 86.7+1.5 90.0£33 91.0£38 858+0.5 88.0+2.0 88.1+£02 83.5£0.5 834+1.0 863%14
PO 12540.6 13.0+£1.3 78.4+02 827+0.6 594482 582483 852+12 83.74+2.8 584428 534420 81.6+0.8 832413
NPO 68.8+3.2 75.0+0.0 83.6+04 89.0+0.1 76.3+82 84.3+23 82.1+22 87.6+0.6 77.7£6.7 79.2+13 81.4+08 87.3+0.7
SOGD 25440.1 76.0+£1.7 83.0+£0.7 883402 22.0+£6.9 24.0+32 79.0£3.1 83.241.6 17.0£4.0 21.7+£6.4 803+2.0 87.6+0.8
SOPO 25.6+1.0 38.0+09 83.74+0.6 853%12 314473 37.5+26 85.1+05 873+0.7 34.0+£35 403+£05 822408 86.2+04
o3 12.540.5 144405 85.140.1 89.0+0.0 15.8+03 20.3+0.8 85.0+0.0 89.0+0.0 155405 19.74£0.7 849402 88.84+0.2
LoKU 155£1.0 135403 82.1+04 884+0.3 14.840.2 199422 82.1£0.1 88.0+0.0 15.0£02 23.7+£0.7 79.9+02 87.24+0.2
SCOPE  11.94+0.6 14.8£12 853+03 89.0+£0.1 16.0+02 19.1+0.6 85340.5 89.0+0.0 16.5+0.3 19.1+0.7 84.9+02 89.040.3

et al.| (2024) contains GPT-4 generated questions about fictitious authors. It defines three forget-sets
(forget01/05/10) with 1%, 5%, and 10% of randomly chosen authors as continual unlearning requests,
plus 400 retained samples for evaluation. TOFU also includes Real-world Authors and World Facts
subsets to assess knowledge preservation. Intent Classification. The CLINC150 corpus mis| (2020)
spans 150 intent classes across five domains, with 200/40/60 samples for train/validation/test per
class. We select three privacy-related domains (work, travel, home) as unlearning requests. For utility
preservation, MRPC |Dolan & Brockett| (2005) and RTE Wang et al.| are used, focusing on paraphrase
detection and textual entailment.

Evaluation Metrics. To evaluate the unlearning effectiveness, we report accuracy on the unlearning
train set and test set, denoted as Sample-level Unlearning (S.U.) and Distribution-level Unlearning
(D.U.). To measure utility preservation, we comprehensively assess performance on the Retained
Distribution (R.D.) as well as several auxiliary benchmarks, including Real Authors (R.A.), World
Facts (W.F.), MRPC, and RTE. Finally, to evaluate the detection capability, we adopt the widely
used Area Under the ROC Curve (AUROC) on OOD detection tasks. Lower values of S.U. and D.U.
indicate stronger unlearning, while higher values of R.D., R.A., W.F., MRPC, RTE, and AUROC
consistently reflect better knowledge preservation and detection ability.

Implementation Details. Following TOFU Maini et al.| (2024) and SOPO Jia et al.| (2024), we
use LLaMA?2-7b Touvron et al.|(2023) as the target model. All experiments are repeated with three
random seeds. We adopt the size of the sparse coefficient matrix ||€2;|| = 70000 for one unlearning
request ¢, with FourierFT scale set to 300 and a batch size of 128 for the combined datasets.

Baseline. To better demonstrate the effectiveness of our proposed methods, we implement a series of
state-of-the-art language model unlearning approaches: GradAscGolatkar et al.[(2020), GradDif'Yao
et al.|(2023), EULChen & Yang|(2023), POEldan & Russinovich|(2023), NPOZhang et al.| (2024),
SOGD/ia et al.| (2024), SOPOJia et al.|(2024), and O7Gao et al|(2025) LoKUCao & Yang| (2015)
We only conduct reasonable modifications to customize them in our continual unlearning settings.

5.2 RESULTS

TOFU dataset. Table I|presents the results on TOFU across three unlearning requests. Selective
Forgetting. Our method achieves low S.U. and D.U. in all settings, showing stronger forgetting of
fictitious knowledge. For instance, in Unlearning Request 1, it reduces S.U. and D.U. to 11.9 and
14.8, outperforming O? (12.5/14.4). Even under Unlearning Request 3, where GradAsc and GradDif
seem competitive on unlearning metrics, they collapse on utility (R.D. ~19.0, R.A. = 0.0), failing
to generalize beyond the forget set. Utility Preservation. Our method maintains high R.D. (x85)
and R.A. (=89) across requests, in contrast to baselines like PO that sacrifice retained knowledge.
This highlights our framework’s ability to balance effective unlearning with minimal interference on
real authors and world facts. Unlearning Persistence. Across multiple requests, once knowledge is
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Table 2: Performance comparison between SCOPE and baselines on CLINC150 intent classification
under three unlearning requests.

Metric Base GradDif EUL PO NPO SOGD SOPO 0? LoKU SCOPE

Unlearning Request 1

S.U.l 100.0+£0 0.1£0.2 0.1+0.2 263£15.1  99.9+0.1 0+0 249+156  103£8.1  99.5+0.1 9.2+1.2
D.U.J 99.9+0 0+0 0+0 26.7+14.0 99.0+0 0+0 263£150 143£03  99.04+0.0  10.340.3
RD.T 99.84+0 90.8+34  98.3+0.4 99.34+0.3 99.240.2 923409 99.6+0.1 98.94+0.1  983+02  99.3+04
MRPCt 88.0+0 39.9+34  87.2+0.1 84.1+0.2 87.3+£0.3 6.1£3.6 85.51+0.6 84.8+0.1  87.0£0.3  86.2%1.2
RTET 88.7+0 31.6+5.3 88.1+0 86.3+1.1 884404  17.9+6.4 87.1£1.1 87.5+0.6  87.1+03  83.1+0.4
Unlearning Request 2

S.U.J 100.0+0 0+0 0.14+0.2 59.6£3.0 99.940.1 0+0 62.3+1.4 50.5£0.8  99.940.1  49.1+1.1
D.U.} 99.940 0+0 0+0 59.84+3.0 99.31+0.3 0.140.1 60.3£1.9 55.6+£0.6 992402 522405
R.D.t 99.8+0 12.7+£3.6  87.6£3.3 99.4£0.2 99.24+03  93.14+2.0 99.6+£0.2 94.1£0.8  99.1£0.2  98.9+1.3
MRPC?t 88.0+0 9.0+3.8 80.3+£3.1 87.3£0.1 87.2+0.7 33432 87.1£0.2 87.0+£02  87.1+0.6  87.3+0.4
RTEt 88.7+0 0.8+0.8 82.9+3.1 88.0+0.2 88.9+0.6  19.5+9.0 87.7+1.1 89.3+0.2  88.8+0.5  88.940.2
Unlearning Request 3

S.U.l 99.940 0+0 0+0 56.245.4 99.940.1 0+0 58.84+155  40.6+£4.0 99.9+0.1  35.64+4.3
D.U.L 99.940 0+0 0+0 56.7+£4.8 99.240.2 0.1£0.1 59.7£14.8  424+£38  99.3+0.1  44345.1
R.D.t 99.8+0 75.5+4.8  92.3+52 99.0+£0.4 99.3£0.1  94.0£1.8 99.6+0.3 97.8+0.8 992402  99.740.1
MRPCt 88.0+0 1294+6.0  81.3+2.1 86.3+0.2 87.0+£0.4 2.940.6 86.6+1.2 86.6£1.0 872403  87.7+0.4
RTEt 88.7+0 1.7£2.1 76.31+4.0 87.0+0.4 88.9+02  23.7+99 86.0+1.4 89.0+0.2  88.7+£04  88.9+0.4

Table 3: SAN(OOD detection mechanism) performance comparision between SCOPE and other
baselines on TOFU (AUROC, %).

Fictitious Knowledge Generation

Task

TOFU-forgetO1 TOFU-forget05 TOFU-forget10
ID/OOD RD. RA. WEF RD. RA WEFE RD. RA WFE
MDF 90.5 96.6 97.6 80.3 92.7 98.3 91.3 97.8 98.8
Agg 94.4 98.0 98.0 81.9 94.0 985 85.0 97.5 99.0
SCOPE w/o SAN, 90.2 93.2 95.3 75.2 722 81.2 83.5 88.5 95.4
SCOPE 95.5 98.5 98.0 87.6 95.0  99.0 87.9 98.8 99.1

forgotten, it does not resurface. For example, our S.U. and D.U. remain stable, whereas methods like
SOPO fluctuate, indicating partial recovery of forgotten knowledge.

CLINIC 150 dataset Table 2| presents the results on CLINC150 when continually unlearning the
domains work, travel, and home. Selective Forgetting. Our method achieves the lowest S.U. and D.U.
in most cases, thereby clearly demonstrating strong removal of domain-specific intents. For instance,
in Unlearning Request 1, our approach reduces S.U. and D.U. to 9.2 and 10.3, while competing
methods either fail to unlearn (LoKU, NPO) or collapse (GradDif, SOGD). Utility Preservation. At
the same time, our method reliably preserves R.D. at 99.3 and maintains MRPC and RTE accuracies
at 86.2 and 88.1, comparable to or better than baselines. Under Unlearning Request 2 and Request 3,
our framework again achieves significantly lower unlearning errors (49.1/52.2 and 35.6/44.3) than
O3 (50.5/55.6 and 40.6/42.4), while sustaining high retained accuracy. Unlearning Persistence. As
the number of unlearning requests increases, our method consistently sustains degradation on the
forgotten domains without rebound. By contrast, some baselines exhibit “forget-relearn” oscillations,
where forgotten intents partially reappear after subsequent training. Our framework consistently
enforces long-term forgetting across sequential requests.

5.3 ABLATION STUDY

OOD detection mechanism. Table [3| presents the OOD detection results on the Ficti-
tious Knowledge Generation task. Our method consistently outperforms baselines MDF Xu
et al| (2021) and Agg |[Darrin et al| (2024) across all unlearning requests. On TOFU-
forgetOl, our detector achieves 95.5% AUROC on R.D., surpassing MDF (90.5%) and
Agg (94.4%). Our method demonstrates superior robustness as task complexity increases.
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Figure 2: Performance comparison on TOFU-forget10 under 10 continual unlearning requests.

S.U. Performance Comparison on TOFU-forget10 D.U. Performance Comparison on TOFU-forget10 R.D. Performance Comparison on TOFU-forget10
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Unlearning Requests Unlearning Requests Unlearning Requests

In challenging scenarios like Table 4: Comparison of training cost across SCOPE and baselines.
TOFU-forget02 and TOFU-

forget10, our approach sustains Method OOD Train Param. Model Train Param.
strong performance while base- -
lines degrade significantly. This gasehne wio Os gggﬁ 6’27§de
. . : 3
widening performance gap with SEGEE S6M 1IM

increasing unlearning requests
highlights our method’s reliable
generalization capability. We also maintain the highest scores on R.A. and W.F. metrics consistently.
These results provide empirical evidence that spectral update magnitude serves as a more principled
and effective indicator of task relevance compared to direct reliance on textual inputs.

Scale of unleqarning requests. Figure [2|divides these 20 fictional authors evenly into 10 groups
on TOFU-forget10, resulting in 10 unlearning requests. Each request adds information about
2 additional fictional authors based on the previous request. Selective Forgetting: Based on
the S.U. metric performance, our method demonstrates exceptional capability in selective for-
getting. The D.U. metric reflects the model’s ability to maintain its original functionality af-
ter forgetting specific information. Our method achieves optimal utility preservation across all
requests (14.2, 19.8, 22.1), significantly outperforming baseline methods. This indicates that
our method can precisely identify and forget target information (fictional author knowledge).

Table 5: Performance across scale of the sparse
coefficient matrix ||€2;]| = 70000 on TOFU under
unlearning request 1.

Utility Preservation. The R.D. metric proves
the accuracy of forgetting from another dimen-
sion. Although all methods show declining R.D.
scores as the complexity of unlearning tasks in-
creases, our method exhibits relatively smaller

£ *thod exh n S.U.l D.U.l RDt RA.1T
decline and maintains high performance levels.

20,000 185 17.6 804  86.5

Scale of sparse coefficient matrix. Table [3] 50,000 135 17.6 83.0 87.8

shows that as sparse coefficient matrix ||| 70,000 119 148 853 89.0

increases, both S.U. and D.U. consistently de- 100,000 10.7 122 86.6 90.1

crease, while R.D. and R.A. steadily improve.

For example, increasing ||€2;|| from 20,000 to 100,000 reduces S.U. from 18.5 to 10.7 and D.U.
from 17.6 to 12.2, while R.D. improves from 80.4 to 86.6 and R.A. rises from 86.5 to 90.1. This
demonstrates that larger ||€2;|| values not only enable more effective unlearning but also preserve
higher utility, validating the benefit of frequency-conditioned adapters.

Training Efficiency Analysis. Our method achieves exceptional parameter efficiency, requiring only
56M OOD parameters and 11.2M model parameters, which correspond to a 84.2% reduction and a
99.8% reduction, respectively, compared to the baseline that trains over 355M and 6.8B parameters.
While O3 reduces model parameters to 20M, it still requires 355M OOD parameters, making our
approach 96% more efficient overall (16.2M vs. 375M total parameters).

6 CONCLUSION

We introduced a principled framework for continual unlearning in large language models, deriving
explicit conditions for forgetting, preservation, and persistence, and showing that these can be
satisfied exactly through a spectral parameterization. This provides the first capacity-aware theoretical
guarantees for sequential unlearning, while also enabling a unified mechanism for inference-time
routing. Our experiments validate that these guarantees translate into practical gains in utility
preservation, persistence, and efficiency.
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A PROOFS

We now provide proofs for the main theorems in Sectiond] For clarity, we first state the assumptions
under which our analysis holds.

A.1 ASSUMPTIONS

* Smoothness. Each domain loss L;(8) is differentiable with L-Lipschitz continuous gradi-
ents. That is, for all 6, 6’,

19:(0) — gi(6")ll2 < L||6 — |
This ensures the validity of the first-order approximation in Section 3.2}

* Small-step updates. Each update A6, satisfies | A0 ||z < ||@:+—1]|2, so higher-order Taylor
terms can be absorbed into tolerances (e, d, 7).

 Spectral bases. For each layer ¢, the matrices U g) and Ul(f ) are orthonormal. Our results
hold for any orthonormal basis; FFT is used in practice for computational efficiency.

* Random allocation beyond capacity. When T > Ti,,.«, coefficient supports are assumed
to be assigned uniformly at random without replacement. This enables expectation-based
bounds on degradation.

These mild assumptions are standard in optimization theory and continual learning analysis, and they
align with prior work on orthogonal adapters and spectral parameterizations. We now proceed with
the step-by-step proofs.

A.2 PROOF OF THEOREM [4.1]

Proof. Step 1: Expand the inner product. For any preserved or previously forgotten domain g,
L

(94(0:-1), 28,) = 3 (G, AW )
(=1

By spectral parameterization, AW(Z) U, 2 S(e Uy 2 )T
Step 2: Basis factorization.
¢ ¢ ¢ ¢
(@0, aw ) = (U) @YUy, 5)r

Step 3: Disjoint support implies orthogonality. If Qﬁ“ N Q((f) = (), the inner product vanishes for
every /.

Step 4: Summation across layers. Thus (g,(6,_1), A8;) = 0, so preservation and persistence hold
exactly. Forgetting holds whenever the target gradient overlaps with QEZ). O
A.3 PROOF OF THEOREM [4.2]

Proof. Step 1: Count available coefficients. Each layer ¢ provides k:[ spectral coefficients, so the
budget is K = >, k7.

Step 2: Per-task allocation. Task t uses >_, pek7. Let p = & >, peki.

Step 3: Maximal disjoint allocation. The number of perfectly isolated tasks is
1
Tmax - \\iJ .
p

Step 4: Forgetting margin. With disjoint allocation,
e > CZ 1P ( (UG U lp.

12
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A.4 PROOF OF THEOREM [4.3]

Proof. Step 1: Overlap probability. When T > Ty,,.x, supports overlap with probability p,(T —
1)/k2.

Step 2: Preservation violation. Expected drift is

E[] = 0( IG“)IIFIIAW“)F> :
4

Step 3: Persistence violation. Similarly,
07 (
(Z TR IIG IIFIIAW“)IF> :

Step 4: Forgetting margin. Effective energy is reduced by overlaps:

14 4 14
A —
L

A.5 PROOF OF THEOREM [4.4]

Proof. Step 1: Within-capacity case. If 7' < T},,,, Theorem[.2]ensures disjoint allocation. Thus
d=n=0and AL;, > clsz

Step 2: Beyond-capacity case. If ' > T,,,., Theorem [4.3] gives

ALJf >C2Z( —M(T D)Wa

with E[¢], E[y] = (ze ul )
Step 3: Combine. Together, these establish Theorem O
A.6  PROOF OF PROPOSITION[3.3]
Proof. Step 1: First-order expansion. From the Taylor approximation, for any domain 1,
L;i(0:) = Li(0:-1) + (9i(01—1), Aby).
Step 2: Apply condition definitions.
* Selective forgetting: L;,(0,) > L;,(0,_1) + ¢, implies (g;, (0;—1), A6;) > €.

* Utlity preservation: |L;i(0;) — Li(6:—1)] < ¢ for & ¢ {ji,...,j:} implies
|<gi(0t71)7A0t>| < 4.

* Persistence: L;j (0;) > L; (0s) —nfor s < timplies |(g;, (6:—1), AB:)| < 1.

Step 3: Combine. Each of the three conditions translates directly to the stated inner product
inequalities, proving the proposition. O

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

After completing the initial draft, we used LLMs to polish and refine the writing. They edit our typos,
and improve consistency of style across the paper. All technical content and results remain fully
authored and verified by us; the LLMs served only as writing assistants.
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