
FEATURE SELECTION WITH NEURAL ESTIMATION OF
MUTUAL INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We describe a novel approach to supervised feature selection based on neural esti-
mation of mutual information between features and targets. Our feature selection
filter evaluates subsets of features as an ensemble, instead of considering one fea-
ture at a time as most feature selection filters do. This allows us to capture sophis-
ticated relationships between features and targets, and to take such sophisticated
relationships into account when selecting relevant features. We give examples of
such relationships, and we demonstrate that in this way we are capable of per-
forming an exact selection, whereas other existing methods fail to do so.

1 INTRODUCTION

We describe a novel approach to supervised feature selection based on neural estimation of mu-
tual information between features and targets. We call our method MINERVA, Mutual Information
Neural Estimation Regularized Vetting Algorithm.

Feature selection methods are distinguished in two classes: wrappers, and filters. On the one hand,
wrappers assume knowledge of the learning model and use the learning process as a subroutine.
They are usually computationally expensive, and they are model-dependent. On the other hand,
filters utilize a score of dependence between features and target, and they select a subset of features
based on this score. Filters do not require knowledge of the learning procedure, and hence they are
model-independent.

MINERVA belongs to the class of filters, and utilizes the mutual information as score.

Estimating the mutual information between random variables is challenging. The classical estimator
is the Kraskov-Stögbauer-Grassberger (KSG) estimator introduced in Kraskov et al. (2004), and
proved to be a consistent estimator in Gao et al. (2018). Recently, a modern, consistent estimator
called Mutual Information Neural Estimator (MINE) was proposed in Belghazi et al. (2018), and
applications have flourished. Our feature selection procedure MINERVA utilises MINE to compute
the mutual information score. Our score evaluates subsets of features as an ensemble, instead of
considering one feature at a time as most feature selection filters do. This allows us to capture
sophisticated relationships between features and targets, and to take such sophisticated relationships
into account when selecting relevant features. We give examples of such relationships, and we
demonstrate that MINERVA is capable of performing an exact selection, whereas other existing
methods fail to do so.

The paper is organised as follows. Section 2 recalls the fundmentals of MINE, the Mutual Informa-
tion Neural Estimator. Section 3 explains our method of featurte selection and describe our neural
network architecture. Section 4 presents our numerical experiments with MINERVA. Finally, Sec-
tion A collects the proofs of the lemmata and propositions of the article.

2 NEURAL ESTIMATION OF MUTUAL INFORMATION

In this section, we recall the neural estimation of mutual information following Belghazi et al.
(2018).

1

Let X ⊂ Rd and Y ⊂ Re represent sample spaces. Let X and Y be random variables taking values
in X and Y respectively. Let PXY denote the joint distribution of X and Y ; and let PX⊗PY denote
the product of the marginal laws of X and Y .

The mutual information I(X;Y) of X and Y is defined as the Kullback-Leibler divergence between
PXY and PX ⊗ PY .

Using the Donsker-Varadhan representation of the Kullback-Leibler divergence (see Donsker &
Varadhan (1983)), we can write

I(X;Y) = sup
f

EPXY
[f(X,Y)]− log (EPX⊗PY

[exp(f(X,Y))]) , (1)

where EPXY
denotes expectation with respect to PXY , EPX⊗PY

denotes expectation with respect
to PX ⊗ PY , and the supremum is taken over all measurable functions f : X × Y → R such that
the two expectations are finite.

Given samples
(x1, y1), . . . , (xn, yn), (2)

from the joint distribution of X and Y , we can use the representation in equation (1) to estimate
the mutual information of the two random variables. Indeed, we can represent the functions f in
equation (1) via a neural network fθ parametrised by θ ∈ Θ, and then run gradient ascend in the
parameter space Θ to maximise the emprirical objective functional of equation (1), where the first
expectation is replaced by

1

n

n∑
i=1

f(xi, yi),

and the second expectation is replaced by

1

n

n∑
i=1

exp
(
f(xi, yσ(i))

)
,

where σ is a permutation used to shuffle the Y -samples and hence turn the samples of equation (2)
into samples from PX ⊗ PY .

The described approach to estimate the mutual information I(X;Y) is at the core of MINE, and we
will rely on this method to construct a feature selection filter.

3 FEATURE SELECTION METHOD

In this section, we describe our method of feature selection.

Let X ⊂ Rd and Y ⊂ Re represent sample spaces. Let X and Y be random variables taking values
in X and Y respectively. We interpret Y as the target of a prediction / classification task, and we
interpret X as a vector of features to use in this prediction / classification task.

Given n samples
(x1, y1), . . . , (xn, yn),

from the joint distribution PX,Y , a permutation σ ∈ Sn, a real valued function f : X ×Y → R, and
a d-dimensional vector p ∈ Rd, we write

µ (f, p) =
1

n

n∑
i=1

f(p⊙ xi, yi),

ν (f, p) =
1

n

n∑
i=1

exp
(
f(p⊙ xσ(i), yi)

)
,

(3)

where p ⊙ xi is the Hadamard product of p and xi. We use µ (f, p) to approximate EPXY
[f(p ⊙

X,Y)], and we use ν (f, p) to approximate EPX⊗PY
[exp (f(p⊙X,Y))],

Let fθ, θ ∈ Θ be a famility of measurable functions

fθ : X × Y → R

2

parametrised by the parameter θ ∈ Θ of a neural network. Let p ∈ Rd be a d-dimensional vector.
We define

v(θ, p) = −µ (fθ, p) + log (ν (fθ, p)) (4)

and, recalling Section 2, we consider v(·, p) as an approximation of the negative of the mutual
information of p⊙X and Y . Moreover, for non-negative real coefficients c1, c2, a we define

ℓ(θ, p, c1, c2, a) = v(θ, p) + c1

∥∥∥∥ p

∥p∥2

∥∥∥∥
1

+ c2 (∥p∥2 − a)
2
, (5)

where ∥·∥1 denotes L1-norm and ∥·∥2 denotes L2-norm.

The function ℓ is the loss function. It consists of three terms. The first term v(θ, p) is the discretisa-
tion of the functional that appears in the Donsker-Varadhan representation of the Kullback-Leibler
divergence. It approximates the negative mutual information between the target and the p-weighted
features.

The second term
∥∥∥ p
∥p∥2

∥∥∥
1

is a regularisation term on the weights p ∈ Rd. It induces sparsity by
pushing to zero the weights of non-relevant features.

Finally, the third term (∥p∥2 − a)
2 controls the euclidean norm of the weights p ∈ Rd by penalising

the square of the difference between said norm and the target norm a. This is meant to prevent the
weights of relevant features from diverging.

Our feature selection method consists in finding a minimiser θ̂ of

θ 7−→ v(θ,1),

where 1 = (1, . . . , 1) ∈ Rd, and then using this θ̂ as the initialisation of the gradient descent for the
minimisation of

θ, p 7−→ ℓ
(
θ, p, c1, c2,

√
d
)
.

We stop this gradient descent when the estimated mutual information between the weighted features
and the targets becomes smaller than the mutual information that corresponds to the minimiser θ̂.
After the gradient descent has stopped, we select the features that correspond to non-null weights,
i.e. to non-null entries of p. More precisely, our method is described in Algorithm 1.

The architecture of the neural network used in the parametrisation of the test functions fθ is repre-
sented in Figure 1.

We implement our MINE-based feature selection in the pypi-package minerva.

Algorithm 1 Mutual Information Neural Estimation Regularized Vetting Algorithm
Require: random variables X ∈ X , Y ∈ Y , hyperparameters r > 0, c1 ≥ 0, c2 ≥ 0.

1: θ ← initialise network parameters
2: repeat
3: Draw n samples (x1, y1), . . . , (xn, yn) from the joint distribution PXY

4: Sample shuffling permutation σ from Sn

5: Update θ ← θ − r∇θv(θ,1)
6: until convergence
7: Initialise φ← θ, p← 1.
8: repeat
9: Draw n samples (x1, y1), . . . , (xn, yn) from the joint distribution PXY

10: Sample shuffling permutation σ from Sn

11: Update φ← φ− r∇φℓ(φ, p, c1, c2,
√
d)

12: Update p← p− r∇pℓ(φ, p, c1, c2,
√
d)

13: until convergence
14: return {i : |pi| > 0}

3

https://pypi.org/

Figure 1: Neural network architecture

4 EXPERIMENTS

In this section, we present the results of our numerical experiments. Our experiments are based on
synthetic data.

With synthetic data, out of the d-features to select from, we know the subset t ⊂ {1, . . . , d} that the
target depends on, and thus we can evaluate feature selection methods by reconciling their selection
with t. More precisely, let s be a subset of {1, . . . , d}. We say that the selection of the features s is
exact if s = t, and it is non-exact otherwise. If the selection is non-exact, either t ̸⊂ s or s ⊋ t. In the
former case, we say that the non-exact selection is of type I; in the latter case, we say that the non-
exact selection is of type II. Non-exact selections of type I compromise the downstream prediction
task because they subtract information relevant for the prediction. Non-exact selections of type II
might not reduce the dimensionality of the problem, but they do not compromise downstream tasks.

4.1 OUR SYNTHETISED X -Y RELATIONSHIP

We study the phenomenon whereby a target Y depends on whether two independent discrete random
variables Xk0 and Xk1 are equal or not.

On the one hand, this sort of dependence is relevant in practice. Assume, for example, that you are
dealing with a data set recording international money transfers. This data set will have one column
Xk0

recording the currency of the country from which the transfer is sent, and another column Xk1

recording the currency of the country to which the transfer is sent. The distribution of your data will
depend on whether the transfer is multicurrency or not, namely on whether Xk0

= Xk1
.

On the other hand, this sort of dependence is not well captured by existing feature selection filters.
We demonstrate this in a first small example. Then, we assess the performance of our feature selec-
tion filter on a synthetic dataset that is meant to be representative of a common regression learning
tasks, and that embeds the dependence that existing feature selection filters cannot capture.

4

method selected expected evaluation
mutual info classif 1, . . . , 30 3, 8 non-exact type II
pyHSICLasso 1, . . . , 30 3, 8 non-exact type II
minerva 3, 8 3, 8 exact

Table 1: Experiment 1.A - Comparison of three different feature selection methods.

4.1.1 EXPERIMENT A

Let d be a positive integer, and let m > 2 be a positive integer larger than 2. For i = 1, . . . , d let
Xi be a random positive integer smaller that or equal to m. The random variables X1, . . . , Xd are
assumed independent and identically distributed. Fix two integers 1 ≤ k0 < k1 ≤ d and define

Y = 11 {Xk0
= Xk1

} =
{
1 if Xk0

= Xk1

0 otherwise.
(6)

We consider the task of predicting Y from the vector (X1, . . . , Xd), and we want to select from this
vector the features that are relevant for the prediction.

In this context, feature selection methods that rely on a metric h(Xi, Y) of dependence between
each feature Xi and the target Y are bound to fail. This is explained in Lemma 1: the pair-wise
assessment of (Xi, Y) cannot possibly produce an exact selection because Y is independent from
every Xi. It is only by considering the ensemble of features X1, . . . , Xd that we can produce an
exact selection.

We confirm that in our numerical experiments. We test our MINE-based feature selection method
against two benchmarks.

The first benchmark is sklearn.feature selection.mutual info classif.1 This method estimates the
mutual information I(Xi;Y) for all i = 1, . . . , d and it selects those features k such that I(Xk;Y) >
ϵ for a given threhsold ϵ ≥ 0. The estimation of I(Xi;Y) is based on the KSG estimator, introduced
in Kraskov et al. (2004).

The second benchmark is HSIC Lasso, see Yamada et al. (2014). This method selects features
i1, . . . , ik that correspond to non-null entries of the maximisers of

β 7→
d∑

i=1

βih(Xi, Y)− 1

2

d∑
i,j=1

βiβjh(Xi, Xj),

where h is the Hilbert-Schmidt independence criterion introduced in Gretton et al. (2005). We use
the implementation of HSIC Lasso given in pyHSICLasso.2

Table 1 summarises our findings. As expected, neither sklearn.feature selection.mutual info classif
nor pyHSICLasso were able to complete an exact selection. Their selections are non-exact of type II.
Notice moreover that if we force pyHSICLasso to select two features only, the selection is non-exact
of type I. Instead, MINERVA was able to complete an exact selection.
Lemma 1. Let m > 2 be a positive integer. Let X1, . . . , Xd be independent identically distributed
with P (X1 = n) = 1/m for n = 1, . . . ,m. Let k0 and k1 be two distinct positive integers smaller
than or equal to d, and let Y be as in equation (6). Then, for all i = 1, . . . , d

I(Xi;Y) = 0, (7)

namely Xi and Y are independent. Moreover,

I(Xk0 , Xk1 ;Y) =
m− 1

m
log

(
m

m− 1

)
+

1

m
logm, (8)

and I(Xk0
;Y |Xk1

) = I(Xk1
;Y |Xk0

) = I(Xk0
, Xk1

;Y).
1See https://scikit-learn.org/stable/modules/generated/sklearn.feature_

selection.mutual_info_classif.html
2See https://pypi.org/project/pyHSICLasso/

5

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://pypi.org/project/pyHSICLasso/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://pypi.org/project/pyHSICLasso/
https://pypi.org/project/pyHSICLasso/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://pypi.org/project/pyHSICLasso/

method selected expected evaluation
mutual info regression 14, 18, 19, 20, 23, 25, 28, 31, 34, 38 6, 8, 14, 18, 19, 20, 23, 24, 28, 31 non-exact type I
pyHSICLasso 4, 11, 14, 18, 19, 20, 23, 24, 28, 31 6, 8, 14, 18, 19, 20, 23, 24, 28, 31 non-exact type I
Boruta 14, 18, 19, 20, 23, 24, 28, 31 6, 8, 14, 18, 19, 20, 23, 24, 28, 31 non-exact type I
minerva 6, 8, 14, 18, 19, 20, 23, 24, 28, 31 6, 8, 14, 18, 19, 20, 23, 24, 28, 31 exact

Table 2: Experiment 1.B - Comparison of four different feature selection methods.

method number of features in-sample R2 out-of–sample R2
no selection (use all features) 40 0.8615 0.7990
mutual info regression 10 0.7647 0.6980
pyHSICLasso 10 0.7717 0.7004
Boruta 8 0.7669 0.7023
minerva 10 0.8799 0.8469

Table 3: Experiment 1.B - Accuracy of a gradient boosting model trained on the features selected
by various methods

4.1.2 EXPERIMENT B

Let d1, d2 be positive integers. Let X1, . . . , Xd1
be i.i.d random variables such that P (X1 = k) =

1/m for k = 1, . . . ,m, for some positive integer m > 1. Let Xd1+1, . . . , Xd1+d2
be i.i.d ran-

dom variables with uniform distribution on the unit interval. It is assumed that X1, . . . , Xd1
and

Xd1+1, . . . , Xd1+d2
are independent. Let k0, k1 be distinct positive integers smaller than or equal

to m. Let n < d2 and let d1 < j0 < · · · < jn ≤ d1 + d2 and d1 < i0 < · · · < in ≤ d1 + d2. We
define

Y =

{∑ℓ=n
ℓ=1 αℓ sin (2πXjℓ) if Xk0 = Xk1∑ℓ=n
ℓ=1 βℓ cos (2πXiℓ) otherwise.

(9)

In other words, Y is a non-linear function of some of continuous features if Xk0
= Xk1

, and Y is
some other non-linear function of some other conitnuous features if Xk0

̸= Xk1
.

We consider the task of predicting Y from the vector (X1, . . . , Xd1
, Xd1+1, . . . , Xd1+d2

), and we
want to select from this vector the features that are relevant for the prediction. This setup is a
combination of a straightforward feature selection setup where a target depends non-linearly on
a subset of features, and the sort of dependence utilised in Experiment A. Namely, we assume
that there are two continuous non-linear functions f1 and f2, and the target is a transformation
through f1 of some of the continuous features if two discrete variables happen to be equal, and it is
a transformation through f2 of some other continuous features if those two discrete variables are not
equal.

We test MINERVA against two benchmark filters, and one bechmark wrapper.

The first benchmark filter is sklearn.feature selection.mutual info regression.3 The second bench-
mark filter is HSIC Lasso as implemented in pyHSICLasso.4 The benchmark wrapper is Boruta, as
implmented in arfs.5

Table 2 summarises our findings. MINERVA is the only method capable of completing an exact
selection. Sklearn’s mutual information, HSIC Lasso, and Boruta perform a non-exact selection of
type I. This is reflected in the prediction of the target given the selected features: out-of-sample
accuracy of a gradient boosting model trained on MINERVA’s selection decisevely outperfoms the
accuracies of the same model trained on the features selected by the other methods. See Table 3.

3See https://scikit-learn.org/stable/modules/generated/sklearn.feature_
selection.mutual_info_regression.html

4See https://pypi.org/project/pyHSICLasso/
5See https://pypi.org/project/arfs/

6

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
https://pypi.org/project/pyHSICLasso/
https://pypi.org/project/arfs/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
https://pypi.org/project/pyHSICLasso/
https://pypi.org/project/arfs/

REFERENCES

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 531–540. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/belghazi18a.html.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
expectations for large time. iv. Communications on pure and applied mathematics, 36(2):183–
212, 1983.

Weihao Gao, Sewoong Oh, and Pramod Viswanath. Demystifying fixed k-nearest neighbor infor-
mation estimators. IEEE Transactions on Information Theory, 64(8):5629–5661, 2018.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In Algorithmic Learning Theory: 16th International Con-
ference, ALT 2005, Singapore, October 8-11, 2005. Proceedings 16, pp. 63–77. Springer, 2005.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Phys-
ical review E, 69(6):066138, 2004.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P Xing, and Masashi Sugiyama. High-
dimensional feature selection by feature-wise kernelized lasso. Neural computation, 26(1):185–
207, 2014.

A PROOFS

Proof of Lemma 1. For ease of notation, take k0 = 1, k1 = 2. We only need to prove equation (7)
for i = k0, k1. For integers i, y, let

a(y, i) = 11(y = i) =

{
1 if y = i

0 otherwise.

For x1 = 1, . . . ,m and y = 0, 1 we have

P (Y = y|X1 = x1) =

{
P (X2 ̸= x1) if y = 0

P (X2 = x1) if y = 1
=

m− 1

m
a(y, 0) +

1

m
a(y, 1)

Therefore,

P (Y = y) =
m∑

x1=1

P (X1 = x1, Y = y)

=

m∑
x1=1

P (Y = y|X1 = x1)P (X1 = x1)

=
1

m

m∑
x1=1

(
m− 1

m
a(y, 0) +

1

m
a(y, 1)

)
= P (Y = y|X1 = x1)

where on the last line x1 is any positive integer smaller than or equal to m. We conclude that

I(X1;Y) =

m∑
x1=1

1∑
y=0

P (X1 = x1, Y = y) log

(
P (X1 = x1, Y = y)

P (X1 = x1)P (Y = y)

)

=

m∑
x1=1

1∑
y=0

P (X1 = x1, Y = y) log

 P (X1 = x1, Y = y)

P (X1 = x1)P (Y = y|X1 = x1)︸ ︷︷ ︸
=1

= 0.

7

https://proceedings.mlr.press/v80/belghazi18a.html

The equality I(X2;Y) = 0 is proved in the same way.

Finally, we establish equation (8). For integers x1, x2, let b(x1, x2) = 1 if x1 = x2, and b(x1, x2) =
0 otherwise. Then, for positive integers x1, x2 ≤ m and y = 0, 1, we can write

P (Y = y|X1 = x1, X2 = x2) = a(y, 0)(1− b(x1, x2)) + a(y, 1)b(x1, x2),

and

P (X1 = x1, X2 = x2, Y = y) = P (Y = y|X1 = x1, X2 = x2)P (X1 = x1, X2 = x2)

=
1

m2

(
a(y, 0)(1− b(x1, x2)) + a(y, 1)b(x1, x2)

)
,

and

P (X1 = x1, X2 = x2)P (Y = y) =
1

m2

(
m− 1

m
a(y, 0) +

1

m
a(y, 1)

)
.

Let c(x1, x2, y) = a(y, 0)(1− b(x1, x2)) + a(y, 1)b(x1, x2). Plugging these in the definition of the
mutual information between (X1, X2) and Y , we conclude

I(X1, X2;Y) =
1

m2

m∑
x1,x2=1

1∑
y=0

(c(x1, x2, y)) log

(
c(x1, x2, y)

m−1
m a(y, 0) + 1

ma(y, 1)

)

=
1

m2

m∑
x1,x2=1

(
(1− b(x1, x2)) log

(
m(1− b(x1, x2))

m− 1

)
+ b(x1, x2) log (mb(x1, x2))

)

=
1

m2

m∑
x1=1

(
(m− 1) log

(
m

m− 1

)
+ log(m)

)
=

m− 1

m
log

(
m

m− 1

)
+

1

m
logm.

8

	Introduction
	Neural estimation of mutual information
	Feature selection method
	Experiments
	Our synthetised X-Y relationship
	Experiment A
	Experiment B

	Proofs

