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Abstract

Drug repurposing offers a cost-effective strategy to accelerate drug development
by identifying new therapeutic uses for approved medications. However, it poses
significant challenges for complex diseases with poorly understood mechanisms
of action. Addressing these diseases requires the efficient integration of new data
while minimizing retraining time, prompting us to develop domain-specific graph
augmentation techniques that support semi-inductive reasoning. We discov-
ered that leveraging counterfactual relationships derived from disease-specific
topological structures significantly enhances model performance. Based on this
insight, we integrated counterfactual relationships as an augmentation method
and an initialization step in our knowledge graph (KG) link prediction training
process. We introduce KGïA, an inductive KG augmentation method that utilizes
counterfactual relationships based on disease-specific topologies. By aligning aug-
mentation with the intrinsic topological features of disease entities, KGïA enhances
the KG in a domain-specific manner, facilitating the discovery of a broader range
of novel drug candidates tailored to specific diseases. Our biomedical KG com-
prises 1,614,801 triples and 100,563 biomedical entities, including 30,006 diseases,
constructed from 6 biomedical datasets and enriched through Natural Language
Processing (NLP) relation extraction. Extensive experiments on this comprehensive
KG using 5 augmented architectures demonstrate that semi-inductive reasoning
significantly improves generalizability (up to a 24× increase in Mean Reciprocal
Rank (MRR)) and that augmented models outperform state-of-the-art KG-based
drug repurposing methods (up to a 32% improvement in MRR). Additionally, in
an Alzheimer’s Disease (AD) case study, our model identified up to 5 mechanism
categories compared to 2 in the baseline, highlighting its enhanced capability to
uncover diverse drug candidates.

∗Corresponding author.
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1 Introduction

Drug repurposing is the process of finding new applications for existing, approved drugs; It offers a
time and cost-efficient approach to drug development Ehrlinger & Wöß (2016); Zhu et al. (2020).
Knowledge graph (KG)-based approaches for drug repurposing leverage machine learning to identify
drug candidates that are safer and more effective. By integrating multiple databases, KGs can
identify semantic connections, which enhances the selection process for appropriate treatments by
incorporating multiple databases and literature Li et al. (2022); Bonner et al. (2022); Nicholson &
Greene (2020).

There are several KG-based drug repurposing models available, including KG-Predict Gao et al.
(2022), which infers new drug-disease interactions based on heterogeneous feature interactions
between entity and relation embeddings in a biomedical KG. However, as with other KG-based drug
repurposing methods, KG-Predict’s lack of inductive inference capabilities means it cannot reason
about unseen entities or relations, resulting in prolonged training times whenever new data points are
added to the KG. Current methods are categorized as either inductive or transductive, depending on
whether they identify underlying patterns to predict unseen samples (inductive) or build prediction
models for observed samples only (transductive) de la Fuente et al. (2023). Inductive reasoning offers
several advantages over transductive reasoning: It avoids data leakage issues common in transductive
feature generation de la Fuente et al. (2023), excels with large datasets and clear hypotheses by
discovering solutions and novel findings Shin (2019), and generalizes across different vocabularies
in Knowledge Graphs (KGs) Galkin et al. (2023). Existing work in biomedical link prediction and
drug discovery has predominantly used transductive reasoning, whereas inductive reasoning is less
common de la Fuente et al. (2023) due to the biomedical domain’s complex, heterogeneous, and often
incomplete data, which complicates its application McCoy et al. (2021). Additionally, many current
link prediction models perform well in transductive settings but struggle in more realistic inductive
settings where new nodes are introduced, making it difficult to properly evaluate and benchmark
inductive reasoning approaches Chatterjee et al. (2022). Our work sets itself apart from current
inductive reasoning models for drug-target interactions, such as NeoDTI Wan et al. (2019), MolTrans
Huang et al. (2021), HyperAttentionDTI Zhao et al. (2022a), and EEG-DTI Kirino et al. (2019), by
applying inductive reasoning to both nodes and relations, predicting drug-disease interactions, and
employing disease-specific graph augmentation.

Additionally, there are diseases whose mechanism of action is not well understood, or whose factors
are too numerous Chung et al. (2023). In complex diseases, such as Alzheimer’s Disease (AD),
cardiovascular diseases, psychiatric conditions, and stroke, a lack of understanding of therapeutic
pathways posed a challenge to the design of trials Krishnamurthy et al. (2022). Drug repurposing
for those diseases is harder than repurposing for diseases that are well known and well researched
Kulkarni et al. (2023). For such diseases, augmenting the graph in an informative way can improve
the quality of drug candidates predicted by our models Ozkan et al. (2023). There are efforts for
this augmentation task such as Graph Substructure Networks (GSNs) Bouritsas et al. (2022) which
pass additional structural descriptors to message-passing functions generated by counting subgraph
isomorphisms. The authors have observed that different datasets and problems require different
topological substructures, so the choice will likely depend on the problem, as we will illustrate in
the drug repurposing case. For example in social networks, lower-order cliques are common as they
depict groups of small tight-knit circles and show how people naturally form close relationships
Hanneman & Riddle (2005). Similarly, for drug repurposing, we know that the principle of looking
for patterns or motifs can reveal important information about the disease’s behavior.

We are motivated by the challenge of addressing diseases with poorly understood mechanisms of
action, as well as the need to efficiently incorporate new information about these diseases while
minimizing re-training time. Domain-specific graph augmentation can help unravel complex disease
mechanisms, while inductive reasoning allows us to integrate new data with reduced re-training effort.
We introduce KGïA, a KG-based drug repurposing model with both inductive and augmentative
capabilities. Regarding the first case, the key contribution of KGïA’s inductive approach is to identify
new or unforeseen drug repurposing opportunities without requiring additional training. Secondly,
we enhance the quality of predicted drug candidates by augmenting the biomedical KG—specifically
tailored to the topological properties of the disease we are repurposing drugs for. We introduce
equivariance preserving and counterfactual edges to the biomedical KG we have constructed using
various high-quality public biomedical datasets and literature.
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2 Methods

2.1 Problem Formulation

2.1.1 Knowledge Graph Definition

We define KGs as labeled, directed graphs with multiple, distinct edges between nodes Rossi et al.
(2021). Formally, a KG is represented as KG = (V,L, F ), where V is a set of vertices, each
symbolizing an entity. L is a collection of labels, each indicating a type of relation. F ⊆ V × L× V
is a set of directed edges that depict relationships as triples ⟨h, r, t⟩, with h as the head entity, r as the
relation label, and t as the tail entity.

2.1.2 Link Prediction in Graphs

The link prediction task in the context of KG reasoning answers queries ⟨h, r, ?⟩. The problem
involves estimating the likelihood of a specific link ⟨h, r, t⟩ being true but not observed in the current
graph structure. Given a query ⟨h, r, ?⟩, our goal is to rank all nodes v ∈ V in the inference graph,
denoted as KG = (V,L, F ), such that the probability P (t = v | h, r) of correctly identifying a true
tail entity t is maximized. For drug repurposing, the link prediction problem can be specialized
to predict new Drug

treats−−−→ Disease triples Doshi & Chepuri (2022). This involves estimating
the likelihood of a given drug being effective in treating a disease that it is not currently known or
approved to treat, based on the knowledge encoded in the KG Islam et al. (2023).

In the transductive link prediction setting, the model is trained and inferred on the same graph
Gtrain = Ginf. The model is expected to predict new links between entities that were already part of
the graph during the training phase but does not generalize to unseen entities or relations. Where
Gtrain = (Vtrain, Ltrain, Ftrain) and Ginf = (Vinf, Linf, Finf): Vtrain = Vinf, Ltrain = Linf, Ftrain ⊂ Finf.

In the semi-inductive setting, the model is trained on a graph where it may not have seen all the
entities (V ) and relations (L) during training, but it is expected to generalize to unseen entities
(Vinf\Vtrain) and relations (Linf\Ltrain) in the same graph during inference Vapnik (1999). This means
there’s a partial overlap between the training and inference graphs, particularly with some new entities
or relationships being introduced at inference time that were not present during training such that:
Vtrain ⊆ Vinf, Ltrain ⊆ Linf, Ftrain ⊆ Finf.

2.2 System Overview

Figure 1 presents an overview of this approach. In the first step, a disease entity of interest for drug
repurposing is selected from the biomedical KG. The topological properties of this disease node
are investigated in Section 3.3.1. An understanding of the appropriate manipulation for augmenting
the graph with counterfactual edges is developed. The second step involves deciding on the dataset
split, with options for either a transductive or semi-inductive setting. More details on splits are
presented in Section 2.5.2. In the third step, the training set is augmented based on the manipulation
chosen in the first step. For each drug-disease pair in the graph, the goal is to determine how the
topological structure influences the link (non-)existence for each node pair. This involves identifying
the most similar pair of nodes with a differing topological feature and enriching the graph with
COUNTERFACTUAL_POSITIVE and COUNTERFACTUAL_NEGATIVE links. This enrichment aims to
train models to recognize not only existing but also potentially non-effective treatments. Further
details on the augmentation method are provided in Section 2.4. In the fourth and final step, the
foundation model is fine-tuned using the augmented graph. This fine-tuned model is then used to
score and rank each drug in the graph for potential treatment of the selected disease node in the first
step. Lastly, the top-ranked drug candidates are assessed and interpreted using domain knowledge.
The code is available at: https://github.com/ceragoguztuzun/KGIA.

2.3 Foundation Model

Foundation models are versatile AI systems engineered to generate a broad spectrum of outputs. These
models can function independently or serve as the underlying framework for various other applications
Jones et al. (2023). In their inspiring work Galkin et al. (2023) employ double equivariance by
modeling it as the transferable invariance of relation interactions. In their view, representing relations
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Figure 1: (a) (i) Picking disease entity and identifying its topological properties, (ii) splitting graph
Galkin et al. (2022), (iii) generating counterfactual edges to augment KG, (iv) predicting drug
candidates, explaining the intrinsic ranking mechanism of the model, analyzing drug mechanisms
and evidence levels of drug candidates.

as a graph of relations is a double equivariant approach (see A.3 for further details). Consequently,
learning relational representations is independent of identitites, but dependent on the interaction of
relations and entities. We utilize ULTRA as our state-of-the-art foundation model to achieve inductive
reasoning, adapting its application in the downstream task of identifying new drug repurposing
opportunities. In A.1, we provide the relation embedding process in Algorithm 1, and the entity
embedding and link prediction process in Algorithm 2.

2.4 Graph Augmentation

We propose the following graph augmentation technique with two key strengths: (i) It incorporates
both counterfactual relationships and domain-specific graph structures. (ii) It maintains the model’s
invariant properties regarding double equivariance (Proof provided in A.3, Theorem 1).

2.4.1 Counterfactual Relationships

Zhao et al. (2022b) defined counterfactual links to augment graph structure of training data in their
innovative rule-based approach. These links represent hypothetical outcomes between a pair of nodes
that are not directly observable in the real-world data. The counterfactual links originate from the
pivotal question in causal inference: “Would the connection between the nodes persist if the observed
graph structure were altered?". The process relies on causal models structured around three elements:
the context, the manipulation, and the outcome Van der Laan & Petersen (2007); Johansson et al.
(2016).
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Inspired by this work, for each drug-disease node pair in our KG, we ask the question: “Would Drug
X treat Disease X if their selected topological graph structure became different from observation?”.
In our scenario of link prediction, we consider the data of a drug-disease node pair as the context,
the characteristics of the graph’s selected topological structure as the manipulation, and the presence
or absence of a TREAT link as the outcome.

For each drug-disease node pair (drx, dix) ∈ V × V in our KG G = (V,L, F ), we find the most
similar drug-disease node pair (dry, diy) in G measured by h(·) which measures the Euclidian
distance between a pair of nodes, with the opposite manipulation of the original node pair. The matrix
M denotes manipulations on node pairs, with Mi,j = 1 if the drug drx and disease dix share the
same manipulation state and Mi,j = 0 otherwise. We use their outcome value to define counterfactual
edges. These types of covariate matching are widely used to estimate manipulation effects Johansson
et al. (2016); Alaa & Van Der Schaar (2019).

We define two cases for the counterfactual link depending on the counterfactual answer, which
are named to be distinguished from observed edges. This augmented graph represents a broader
spectrum of possible interactions. COUNTERFACTUAL_POSITIVE links strengthen the hypothesis
that drx could potentially treat dix, even if they didn’t have the same topologic structure and
COUNTERFACTUAL_NEGATIVE links are used to train our model to recognize not only existing but
also potential non-effective treatments. The counterfactual edges are defined as the following:

∀(drx, dix) ∈ V × V,drx
COUNTERFACTUAL_POSITIVE−−−−−−−−−−−−−−−−−−→ dix if dry

TREAT−−−−→ diy,

drx
COUNTERFACTUAL_NEGATIVE−−−−−−−−−−−−−−−−−−→ dix if dry

TREAT−−−−→/ diy.

where
(dry, diy) = argmin

dry,diy∈V
h((drx, dix), (dry, diy))|Mdry,diy = 1−Mdrx,dix

We experiment with a range of topological properties as manipulations, creating a different augmented
training data for each manipulation. Our goal is to select manipulations that highlight properties
potentially similar to those of a specific disease node of interest. We experimented with the manipula-
tions: Katz Centrality, Common Neighbours, Louvain, K-Core, Propagation Newman (2018). Their
definitions are reproduced in the appendix (A.1).

2.5 Experiment Setting

To evaluate our model’s performance as a framework for KG reasoning in our experiments, we ask:

1. Does our model outperform a state-of-the-art drug repurposing model trained from scratch?
2. Does inductive generalization outperform transductive reasoning?
3. Does augmenting with a specific manipulation have any benefits?
4. (Ablation Study) Does introducing either counterfactual positive or negative edges provide

any benefit?

2.5.1 Dataset

We constructed a KG by extracting interactions among genes, drugs, diseases, phenotypes, side
effects, and symptoms from various high-quality public biomedical datasets (Figure 1b). We sourced
gene functions from the Mouse Genome Informatics (MGI) Eppig et al. (2017) and Human Phenotype
Ontology (HPO) databases Robinson & Mundlos (2010), and gene interactions from protein-protein
interaction (PPI) networks Safari-Alighiarloo et al. (2014). Drug-side effect associations were
obtained from the SIDER database Kuhn et al. (2016). Drug-gene associations were obtained from
the DrugBank database Wishart et al. (2008). Disease-phenotype associations and disease-gene
interactions were obtained from the HPO and DisGeNET databases Piñero et al. (2015), respectively.
Further, drug-disease, disease-risk, and disease-comorbidity knowledge were mined using natural
language processing (NLP) techniques from our previous work Xu & Wang (2013); Xu et al. (2013,
2014). The resulting KG comprises 100,563 entities across 4 types and 1,614,801 triplets across 10
edge types. Our KG is freely available at our GitHub repository.
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2.5.2 Setup

Data splitting is conducted in two frameworks: transductive and semi-inductive, both utilizing 70%
of the total data for training. For both settings, we used the same training set. The data split is
performed by randomly selecting triples from the graph. To address the high computational cost
of data augmentation, we implemented hold-out validation. This approach avoids augmenting each
fold in k-fold cross-validation individually while still ensuring robust evaluation through multiple
runs with varied initializations (see Figure 6 for details). In clinical research, model validation
often involves testing on external datasets, which aligns more closely with the hold-out method, as
suggested and employed by Eertink et al. (2022); Liu et al. (2024); Crowley.

The semi-inductive setting features a disjoint inference graph with potentially new entities and
relation types, combining validation and test data. This graph includes 212,266 unique triples not
present in training data. The validation set encompasses 10,535 unseen entities, while the test set
contains 17,926 unseen entities, with 7,591 entities unique to the test set. While our model can
infer new relation types, no unseen relation types are present in the validation or test sets for this
study. For the case study, we ensured that neither the training nor validation sets contained triples
containing Alzheimer’s Disease. Figure 5 details the number of augmentation relations for each
manipulation strategy. Due to an imbalance between the counts of COUNTERFACTUAL_POSITIVE
and COUNTERFACTUAL_NEGATIVE relations, we employed random downsampling on the majority
group’s triples to match with the numbers of the smaller group Noor et al. (2022).

2.5.3 Baseline

We use KG-Predict Gao et al. (2022) as our state-of-the-art KG-based drug repurposing computational
framework baseline. Through the use of stacked CompGCN Vashishth et al. (2019) layers and
InteractE Vashishth et al. (2020), entities and relations are embedded. As shown in their paper, they
surpass DeepWalk Perozzi et al. (2014), matrix factorization approaches, TransE Bordes et al. (2013),
DistMult Yang et al. (2014), ConvE Dettmers et al. (2018), RotatE Sun et al. (2019). In addition to
comparing generalizability, we compare the drugs repurposed by KG-Predict and our model in our
case study.

2.5.4 Evaluation Protocol

We employ Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hits@k as our evaluation metrics.
As part of zero-shot inference, we use the inference graph and the test set of triples. For fine-tuning,
we continue training the model on the training split, maintaining the checkpoint for the best MRR in
the validation set. Whenever we run zero-shot experiments, we run them once since the results are
deterministic, and we do not use augmentation as it only makes a difference in fine-tuned scenarios.
We report an average of five runs for each fine-tuning run, and convert the average of MR into an
integer by rounding up.

A case study of repurposing for Alzheimer’s Disease uses test split queries to perform link prediction
to find drug candidates that have a high probability of having a TREAT relation with the disease node
corresponding to Alzheimer’s Disease (7845 such queries). By using domain knowledge, we examine
drug candidates for each group to determine if the augmentation methods benefit disease-specific use
cases (Figure 4a, Table 4, Table5 ).

3 Results

3.1 Model Performance

Table 1 showcases the models’ performance across transductive and semi-inductive settings, focusing
on their proficiency in prioritizing ‘true’ triples without pinpointing specific diseases or drug repurpos-
ing tasks. In the transductive scenario, the vanilla ULTRA foundation model outperforms KG-Predict,
while augmented models demonstrate superior MRR and Hits@K metrics. Similarly, in the semi-
inductive setting, augmented models exhibit comparable MR values but greatly improved MRR and
Hits@K, highlighting our augmentation technique’s effectiveness in improving link prediction tasks’
generalizability and performance.
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Table 1: Evaluation metrics of models under Transductive and Semi-Inductive settings. We use KG-
Predict as our primary benchmark, and non-augmented ULTRA models (zero-shot and fine-tuned) as
secondary benchmarks.

Transductive Semi-Inductive

Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

KG-Predict 18049 0.0118 0.0080 0.0111 0.0152 - - - - -
ULTRA 0-shot 49748 0.0009 0.0002 0.0008 0.0018 55 0.2958 0.1964 0.3449 0.4656
ULTRA fine-tuned 3935 0.0178 0.0003 0.0185 0.0415 11 0.6351 0.4824 0.7404 0.9290

KGïA (Katz Augmented) 14448 0.0302 0.0002 0.0328 0.0849 13 0.7456 0.6251 0.8512 0.9376
KGïA (Common Neighbors Aug.) 27002 0.0035 0.0002 0.0042 0.0084 17 0.5856 0.4245 0.6964 0.8923
KGïA (Louvain Augmented) 20295 0.0209 0.0001 0.0169 0.0487 23 0.8060 0.7437 0.8527 0.9108
KGïA (K-Core Augmented) 10808 0.0227 0.0001 0.0197 0.0669 15 0.8380 0.7736 0.8939 0.9364
KGïA (Propagation Augmented) 4801 0.0338 0.0002 0.0271 0.0857 20 0.8167 0.7444 0.8781 0.9280

3.2 Impact of Positive and Negative Counterfactual Edges

In our ablation study, which aimed to analyze the impact of counterfactual positive and negative
edges, we present the results in Table 2. In the transductive setting, we observed that adding
only counterfactual positive or negative edges led to better performance than adding both together.
However, in the semi-inductive setting, the combination of both edge types yielded better results.
This suggests that in the transductive setting, the model may be more sensitive to the introduction
of additional information, and using either positive or negative counterfactual edges alone enhances
performance without adding unnecessary complexity. In contrast, the semi-inductive setting, which
lacks overlapping entities and relations, benefits more from the combined use of both edge types.

3.3 Case Study

We applied our method to repurpose drugs for Alzheimer’s Disease (AD), selecting AD for its signifi-
cant genetic diversity Chung et al. (2023), which serves as a test for our augmentation technique’s
ability to encapsulate the various potential causes of AD. Our study aimed to rank potential drug
candidates Drug

TREAT−−−−→ AD, focusing on analyzing the top 5 ranked drug candidates.

3.3.1 Preliminary analysis of topological properties

To begin the case study with step (i) in Figure 1, we analyze AD’s topological properties. We plot the
distributions of each manipulation choice, and we annotate the values of the entity corresponding to
AD in Figure 2 so that we can determine where AD falls within the distribution of the biomedical
KG. AD exhibits a Katz centrality score of 0.004, relatively high among the graph’s nodes. By
computing intra-community strength through the diagonal of the membership matrix M and inner-
community strength by summing each row minus the diagonal, it’s evident from Figure 2 that AD’s
intra-community strength greatly surpasses its inter-community strength. This suggests AD may act
as a bridge between communities. Further analysis reveals AD is part of the highest k-core of 144,
and has a propagation-based integration level of 19520, typical for nodes within the KG.

3.3.2 Evaluation

In Figure 3, we compare the MR and MRR metrics of various models, with KG-Predict serving as our
primary benchmark and non-augmented models (both zero-shot and fine-tuned) as secondary base-
lines. In the transductive setting, Katz centrality, Common Neighbors, and Propagation augmented
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Table 2: Ablation study on the effects of positive and negative counterfactual edge augmentations.
Positive augmentation only introduces COUNTERFACTUAL_POSITIVE edges, and negative augmenta-
tion only introduces COUNTERFACTUAL_NEGATIVE edges. The reported values are the averages of all
augmented models.

Augmentation MR MRR Hits@10

Transductive
Positive Augmentation 8286 0.0298 0.0805
Negative Augmentation 10724 0.0269 0.0744
Both 15471 0.0222 0.0589
Semi-Inductive

Positive Augmentation 20 0.6666 0.8883
Negative Augmentation 14 0.7397 0.9051
Both 18 0.7584 0.9210

models outperform others in MR metrics (Figure 3a). While KG-Predict outperforms non-augmented
ULTRA in terms of MRR, augmented models, such as Katz, Common Neighbors, and Propagation,
outperform (Figure 3b). As for the semi-inductive setting, all augmented models, excluding Propaga-
tion, demonstrate superior performance regarding MR (Figure 3a). As for MRR, Common Neighbors,
Louvain, K-Core, and Propagation also exhibit strong performance (Figure 3b). Synthesizing these
insights with Hit@K values (Table 3), the Propagation augmented model emerges as the top model
for the transductive setting, and the Common Neighbors augmented model for semi-inductive
setting.

The semi-inductive results for the AD case study differ significantly from the general case due to
the strict formatting of triples, such as Drug

TREAT−−−−→ AD (7845 such queries). This limited data
variety increases sparsity, unlike the general setting, where flexible formats (as described in Section
2.5.2) allow richer data interactions and better model performance. The case study’s narrower focus
inherently presents challenges.
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Figure 3: MR and MRR values for the case study in Transductive and Semi-Inductive settings.

3.3.3 Analysis of Drug Candidates

In Figure 4b,c, we assess the models’ internal consistency by assessing the ranks and scores given to
each drug candidate. The curvature differences reflect how the model’s certainty in its predictions
changes across the ranking spectrum in each setting, and this is influenced by how the models were
trained and how they generalize from seen to unseen data. In the transductive setting (Figure 4b)
where the model has access to all entities and relations during training, we observe a concave curve. In
the semi-inductive setting (Figure 4c), the model is based on a partial view of the network, leading to a
steeper decline in confidence as the ranks increase. When we look at both the Propagation augmented
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Table 3: Hits@k values for the case study in Transductive and Semi-Inductive settings.

Transductive Semi-Inductive

Model Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

KG-Predict 0 0 0 - - -
ULTRA 0-shot 0.00459 0.00459 0.00739 0.07559 0.07610 0.08107
ULTRA fine-tuned 0.00140 0.00166 0.00166 0.00025 0.03403 0.10121

KGïA (Katz Augmented) 0.03697 0.19401 0.31217 0.01651 0.01740 0.04442
KGïA (Common Neighbors Aug.) 0.04283 0.18917 0.20637 0.04066 0.11447 0.14800
KGïA (Louvain Augmented) 0.00688 0.03238 0.04576 0.05010 0.05048 0.05354
KGïA (K-Core Augmented) 0.09433 0.10057 0.11421 0.05851 0.06068 0.06386
KGïA (Propagation Augmented) 0.23429 0.23811 0.24551 0.06661 0.05163 0.07075

model and the Common Neighbors augmented model, the density plot shows a peak skewed to the
left, suggesting a tendency to assign higher ranks to triples. Yet, the scatters corresponding to ranked
triples convey that many predictions are tied to negative logit scores, highlighting a lack of confidence
in those outcomes. On the other hand, the Non-Augmented models maintain a moderate level of
confidence throughout their rankings.

We listed the drug candidates for each model in Figure 4a, as well as each drug’s evidence level
and mechanism category. Figure 4a is a high-level summary of the details presented in Table 4
(transductive setting) and Table 5 (semi-inductive setting). An in-depth discussion of drug candidates
is presented in Section A.4.

4 Discussion and Conclusion

Addressing diseases with complex, poorly understood mechanisms requires efficiently integrating
new data while minimizing re-training time. Domain-specific graph augmentation helps unravel these
mechanisms, and inductive reasoning allows for easy updates with minimal re-training. To address
these challenges, our model KGïA introduces an innovative method for enhancing knowledge graphs
(KGs) that supports semi-inductive reasoning. Table 1 shows that inductive reasoning significantly
improves MRR metrics compared to transductive models, demonstrating superior generalization. This
improvement is largely due to the KG’s heterogeneous connectivity, where semi-inductive models
excel in capturing and generalizing across diverse structural contexts.

We leveraged counterfactual relationships derived from disease-specific topological structures. Table
1 reveals that this approach has tripled the MRR and increased Hits@K. The results demonstrate that
domain-specific augmentation leverages domain knowledge effectively within the model, yielding a
broader array of novel drug candidates tailored to specific diseases. For Alzheimer’s Disease (AD),
augmented models predict drugs with 5 distinct mechanisms of action, compared to just 2 with
non-augmented models (Figure 4a). This increased diversity could aid in better understanding disease
mechanisms and support more personalized prescription options.

We observed that the effectiveness of a manipulation strategy depends on the position of the disease
entity within the distribution of manipulation metric values of all entities in the graph. Specifically,
when the disease entity of interest does not reside at the extremes of this distribution, the chosen
manipulation strategy enhances the graph more informatively. In our case study focusing on AD,
we found that the Propagation and Common Neighbours methods—both centrally positioned within
their respective distributions (see Figure 2)—were the most effective models for transductive and
semi-inductive reasoning, respectively (Figure 3). Central entities contribute to more robust outcomes
due to their superior connectivity. In contrast, entities with topological structure values at the extremes
of the distribution reduce the consistency of our augmentation. Even for diseases with limited existing
knowledge, such as AD, identifying a topological structure within the KG that reflects the overall
structure and selecting it for manipulation leads to more effective graph augmentation.

Limitations of our work include scalability issues, as identifying counterfactual edges between all
drug-disease pairs increases training time when applied to large KGs. Additionally, our evaluation
of drug candidates relies on specific metrics that may not fully reflect their practicality. Future
work will validate our model across diverse diseases and manipulation strategies. This study lays a
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solid foundation for using more complex graph structures to develop domain-specific augmentation
methods that align with the observable topological structures of the entities of interest.
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A Appendix

A.1 Manipulation Definitions

We experimented with the following manipulations Newman (2018), where A is the adjacency matrix
for graph G:
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• Katz Centrality: M = ((I − βA)−1 − I ≥ θ), θ is a threshold value and β =

min
(

1
λmax

, 0.003
)

• Common Neighbours: M = ((A+ A2 + A3 > 0)× (A+ A2 + A3 > 0)T ≥ k), k is a
threshold value.

• Louvain: M = (LLT ), L is the membership matrix derived from applying Louvain to A.
• K-Core: M = (KKT ), K is the membership matrix derived from the k-core labels of the

nodes in A.
• Propagation: M = (PPT ), P is the membership matrix derived from the propagation

clustering community labels of the nodes in A.

A.2 Embedding Process

The relation embedding process is shown in Algorithm 1, and the entity embedding and link prediction
process is shown in Algorithm 2. The foundation model captures interactions by creating a graph
of relations Gr = (R,Rfund, Er) to map out how different types of relations interact. In Gr, all
r ∈ R are unique relation types in the original graph G, and two nodes are linked if the corresponding
types of relations in G share a common entity. Rfund = {tail-to-tail edges, head-to-head edges,
head-to-tail edges, tail-to-head edges} which are the four types of links in Gr that describe the basic
topological structure of a directed graph.

Specifically, in our graph of relations, Gr, each node represents a unique relation type from the
original graph, G. Two nodes in Gr are connected if their corresponding relation types in G share a
common node. Depending on the directionality of these connections in G, the connections in Gr are
classified as either tail-to-tail, head-to-head, head-to-tail, or tail-to-head.

Embeddings are obtained using conditional representations Zhu et al. (2021), which are demonstrably
more expressive and practical than unconditional GNN encoders Huang et al. (2024); Gao et al.
(2023). By doing so, node representations are conditioned on query relations.

In Algorithm 1 and 2, AGG is a summation aggregation function and MSG is a multiplication
messaging function.

Algorithm 1 Relation Graph Embedding

1: Input: Original graph G, Query (h, q, ?), Dimension d
2: Output: d-dimensional node representations Nq of Gr

3: function COMPUTEREPR(q,Gr, d)
4: for each node u in Gr do
5: Nq[u]← (u == q)?1d : 0d

6: return Nq

7: function MESSAGEPASSING(Gr, Nq)
8: t← 0
9: repeat

10: for each node v in Gr do
11: hv[t + 1] ← UPDATE(hv[t],AGG({MSG(hw[t], r) | w ∈ neighbors(v), r ∈

Rfund}))
12: t← t+ 1
13: until convergence
14: return hv[t]

15: Gr ← ConstructGr(G)
16: Nq ← ComputeRepr(q,Gr, d)
17: Nq ← MessagePassing(Gr, Nq)

14



Algorithm 2 Entity Embedding and Link Prediction

1: Input: Graph G, Query (h, q, ?), Conditional relation representations Rq , Dimension d
2: Output: Logits p(h, q, v) for each node v in G

3: function INITGRAPH(G, h, q,Rq, d)
4: h0 ← Vector(|G|, d, 0) ▷ Zero vector for each node
5: h0[h]← Rq[q] ▷ Set query vector for head node
6: return h0

7: function MESSAGEPASSING(G, h0, Rq, d)
8: t← 0
9: Rt ← TransRelations(Rq) ▷ Apply 2-layer MLP

10: repeat
11: for each node v in G do
12: hv[t+ 1]← UPDATE(hv[t],AGG({MSG(hw[t], Rt[r]) | w ∈ neighbors(v)}))
13: t← t+ 1
14: until convergence
15: return hv[t]

16: h0 ← InitGraph(G, h, q,Rq, d)
17: hv ← MessagePassing(G, h0, Rq, d)
18: logits← ComputeLogits(hv)

A.3 Preserving Equivariance

A.3.1 Invariance and Equivariance

In inductive inference, neural networks are trained to discern and generalize invariant features within
a graph to accommodate novel data. Xu et al. (2018); Morris et al. (2019) has revealed a notable
parallel between the Weisfeiler-Lehman (WL) test and the operations of graph message passing
neural networks, which facilitate convolution-like functionalities on graphs. A standard GNN updates
the hidden state h

(k)
v of a node v at layer k as: h(k)

v = ϕ
(
h
(k−1)
v , f

({
h
(k−1)
u : u ∈ N(v)

}))
Kipf

& Welling (2016), where ϕ denotes a transformation operation, f denotes an aggregation operation,
N(v) denote the neighboring nodes from previous layer k − 1. Whereas, a 1-WL test iteration
represents the label l(k)v of node v as: l(k)v = g

(
l
(k−1)
v , sort

{
l
(k−1)
u : u ∈ N(v)

})
Xu et al. (2018),

where g is an injective function. Xu et al. (2018) show by induction that (Theorem 3 in their paper)
there always exists an injective function φ that h(k)

v = φ
(
l
(k)
v

)
, which show that WL’s 1-dimensional

form 1-WL is analogous to GNN’s neighbor aggregation. Showing the existence of the injective
function φ is stating that for any given unique label l(k)v , there is a unique embedding h

(k)
v in the

GNN. It implies that these embeddings are independent of node IDs, similar to the WL test’s ability
to create unique labels for nodes based on their structure, rather than arbitrary properties like node
IDs. Hence, these studies have underscored the benefits for inductive graph tasks from assuming
node IDs are arbitrary, suggesting that models should maintain consistency despite permutations of
node IDs. This concept, known as permutation equivariance, implies that the network does not rely
on node IDs for embedding but rather employs the graph’s structural topology for representation
Srinivasan & Ribeiro (2019).

Extending this to multi-relational graphs such as KGs, the notion of learnable invariances extends
to the joint permutations of node IDs and relation IDs, a concept referred to as double permutation
equivariance or double equivariance defined by Gao et al. (2023). If you consider a graph that
is processed by an RGCN (Relational Graph Convolutional Network) Schlichtkrull et al. (2018),
the goal is for the RGCN to learn representations of nodes and relations from their structure rather
than their labels or order. Given we have a permutation operation π, which shuffles the order of
nodes and the types of relations between them. Permutation invariance in multi-relational graphs like
RGCNs can be captured by demonstrating that the aggregation function f we defined previously is
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permutation-invariant concerning the representations of neighboring nodes of v through relation type
r as (Nr(v)), then permutation invariance is established which can be defined as the aggregation
function fr:

fr({h(k−1)
u , wr : u ∈ Nr(v)}) = fr({h(k−1)

π(u) , wr : π(u) ∈ π(Nr(v))}) (1)

Theorem 1. Graphs with counterfactual edge augmentation preserve double equivariance.

fr({h(k−1)
u , wr : u ∈ Nr

cf (v)}) = fr({h(k−1)
π(u) , wr : π(u) ∈ π(Nr

cf (v))}) (2)

Proof. Let G = (V,L, F ) be the original KG, and G′ = (V,L ∪ Lcf , F ∪ Fcf ) represent the graph
augmented with counterfactual edges. Nr

cf is the neighborhood of node v in G′. The aggregation
function for relation r at layer k is denoted as fr, which aggregates features from the neighborhood
Nr

cf (v) of a node v through relation r. Initially defined in Equation 1, the relation-based aggregation
function fr is permutation-invariant.

Since the addition of counterfactual edges Lcf , Fcf to the graph G to form G′ simply extends
the neighborhood Nr

cf (v) without altering the inherent permutation-invariant property of fr, the
aggregation function will process Nr

cf (v) and π(Nr
cf (v)) identically. Therefore, fr preserves double

equivariance in the presence of counterfactual edges, as the permutation of node IDs does not affect
the outcome of the aggregation function.

A.4 Analysis of Drug Candidates

In the transductive setting, treatments for neurological and psychiatric disorders are prioritized,
leading to a range of drugs with varying evidence levels for repurposing in AD. The transductive
setting however, is not optimal for identifying more novel repurposing strategies. The non-augmented
model presents the same drug candidates as the baseline model KG-Predict, except in a different
order. In contrast, our augmented model recommends additional candidates that show weak evidence
of potential repurposing for AD, differing from both the KG-Predict baseline and the non-augmented
model. In the semi-inductive setting, as the model was not trained on the complete set of entities
and relations, the drug candidates are considerably more diverse than in the transductive setting.
We find that the top two drug candidates (Aducanumab, Ipidacrine) are identical for both the non-
augmented and augmented models, exhibiting strong evidence in the mechanisms of hormonal
immunomodulatory agents and treatments for neurological and psychiatric disorders (Table 5). The
augmented model has identified a greater number of drugs with no existing references, indicating
these require further investigation.
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(a) Top 5 Drug Candidates proposed across models
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(b) Transductive Setting
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(c) Semi-inductive Setting

Figure 4: (a) A high-level summary of the evidences and drug mechanisms provided in Table 4
and Table 5. Best models for the augmented setting are Propagation augmented model for the
transductive setting, and Common Neighbors augmented model for the semi-inductive setting. (b)
and (c) Rankings and scores as predicted by models, assessing internal consistency within models
based on the case study. The best augmented models and non-augmented baselines are shown. Each
scatter indicates a drug candidate ranked by the model, with logit scores.
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Table 4: Evidence and mechanism of the top 3 drug candidates for Alzheimer’s Disease, predicted by
Transductive Model. The full version of this table and the tables for other models’ drug candidates
are presented in https://github.com/ceragoguztuzun/KGIA.

Drug Candidates Evidence for AD Drug Mechanism

KG-Predict
Levocarnitine No clinical trial for levocar-

nitine itself, but clinical trial
NCT02955706 for its derivative
Acetyl-L-carnitine ( L-carnitine is
a synonym for levocarnitine)

Prevent and treat a lack of carnitine in
patients with kidney disease on dialysis.
A carrier of long chain fatty acids to mi-
tochondria for energy.

Epicriptine No reference, but with indication
in Alzheimer’s disease on Drug
Central website and its analog di-
hydroergocristine is proved to de-
lay progression of Alzheimer’s dis-
ease Lei et al. (2015)

Nootropic to treat signs and symptoms
of an idiopathic decline in mental capac-
ity. Mainly due to the agonistic activity
on dopamine receptor

Tacrine First drug approved for
Alzheimer’s disease

Treat AD. A powerful acetyl-
cholinesterase inhibitor (AChE)

Non-augmented
Levocarnitine No clinical trial for levocar-

nitine itself, but clinical trial
NCT02955706 for its derivative
Acetyl-L-carnitine ( L-carnitine is
a synonym for levocarnitine)

Prevent and treat a lack of carnitine in
patients with kidney disease on dialysis.
A carrier of long chain fatty acids to mi-
tochondria for energy.

Donepezil NCT02787746(completed),
NCT04661280(recruiting)

Treat AD. Inhibiting the acetyl-
cholinesterase enzyme

Tacrine First drug approved for
Alzheimer’s disease

Treat AD. A powerful acetyl-
cholinesterase inhibitor (AChE)

KGïA (Propagation Aug)
naltrexone Serby et al. (1986); Hyman et al.

(1985) (but show no significant im-
provement)

Treat alcohol dependence and block the
effects of exogenously administered opi-
oids. It is a pure opiate antagonist and
has little or no agonist activity.

Lasofoxifene Selective estrogen receptor modu-
lators as brain therapeutic agents
(further study is needed)

An estrogenic and antiestrogenic drug
used in both vitro and in vivo to treat
osteoporosis and vaginal atrophy.

Olanzapine NCT00015548(completed, olanza-
pine is used in combination with
other two drugs)

The drug is used to treat schizophrenia,
bipolar disorder, and agitation associ-
ated with these disorders. It inhibits mul-
tiple neuronal receptors, including D1,
D2, D3, and D4.
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Figure 5: The number of counterfactual edges that were found in the knowledge graph, for each
choice of manipulation.
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Table 5: Evidence and mechanism of the top 3 drug candidates for Alzheimer’s Disease, predicted by
Semi-Inductive Model. The full version of this table and the tables for other models’ drug candidates
are presented in https://github.com/ceragoguztuzun/KGIA

.
Drug Candidates Evidence for AD Drug Mechanism

Non-augmented
Aducanumab NCT04241068 (ac-

tive, not recruiting),
NCT02477800(terminated
with results)

Treat AD. It is a human immunoglob-
ulin gamma 1 (IgG1) monoclonal an-
tibody which selectively targets and
binds aggregated soluble oligomers
and insoluble fibril conformations of
Aβ plaques.

Ipidacrine Also named Neiromidin
or Neuromidin(translated
from Russian) Damulin et al.
(2011).

Treat memory disorders of differ-
ent origins. A reversible acetyl-
cholinesterase inhibitor

Dexamethasone Alisky (2008) (It is a case re-
port and hypothesis, needs fur-
ther validation)

Inflammatory disorders such as
asthma, endocrine disorders, and
rheumatoid arthritis are treated with
glucocorticoids that inhibit pro-
inflammatory signals and promote
anti-inflammatory ones.

KGïA (Common Neighbors Aug)
Ipidacrine Also named Neiromidin

or Neuromidin(translated
from Russian) Damulin et al.
(2011).

Treat memory disorders of differ-
ent originsa. A reversible acetyl-
cholinesterase inhibitor

Aducanumab NCT04241068 (ac-
tive, not recruiting),
NCT02477800(terminated
with results)

Treat AD. It is a human IgG1 mon-
oclonal antibody which selectively
targets and binds aggregated soluble
oligomers and insoluble fibril confor-
mations of Aβ plaques.

Nanaomycin D No reference An enantiomer of the antibiotic kala-
fungin, is a natural product found in
Streptomyces and Streptomyces rosa.

Training set

Validation set Test set
1. Split data into 
train / validation / 
test sets 

2. Hyperparameter 
tuning on validation 
set

3. Train model n 
times. Test on 
hold-out test set.

Train 5 times with 
different random seeds 

and initializations.

Test on 
hold-out test set.

Report mean 
to report final 
performance.

Figure 6: Overview of our evaluation process: (i) The dataset was divided into a training set and a
fixed test set. (ii) Hyperparameter tuning was conducted using the validation set. (iii) Each model was
trained five times with different random seeds and initializations, while evaluation was consistently
carried out on the same fixed test set. Performance metrics were collected from each of the five runs,
and the average of these metrics was reported as the final performance result.
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