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Abstract

The digitization of historical manuscripts presents sig-001
nificant challenges for Handwritten Text Recognition (HTR)002
models, particularly when dealing with small, author-003
specific collections that diverge from the training data dis-004
tributions. Handwritten Text Generation (HTG) techniques,005
which generate synthetic data tailored to specific handwrit-006
ing styles, offer a promising solution to address these chal-007
lenges. However, the effectiveness of various HTG models008
in enhancing HTR performance, especially in low-resource009
transcription settings, has not been thoroughly evaluated.010
In this work, we systematically compare three state-of-the-011
art styled HTG models (representing the generative adver-012
sarial, diffusion, and autoregressive paradigms for HTG) to013
assess their impact on HTR fine-tuning. We analyze how014
visual and linguistic characteristics of synthetic data influ-015
ence fine-tuning outcomes and provide quantitative guide-016
lines for selecting the most effective HTG model. The re-017
sults of our analysis provide insights into the current capa-018
bilities of HTG methods and highlight key areas for further019
improvement in their application to low-resource HTR.020

1. Introduction021

The process of digitizing documents is becoming essential022
across both cultural and industrial sectors for their effec-023
tive management, preservation, and enhancement. As a re-024
sult, Document Analysis (DA) methods, particularly those025
focused on handwritten text, have been attracting great at-026
tention from the research community. Modern Handwrit-027
ten Text Recognition (HTR) systems, which are typically028
trained on large publicly available datasets, perform well029
when applied to documents that resemble the data used030
for training. However, their performance significantly de-031
clines when tested on documents that differ substantially032
from the training data. A key challenge arises with histori-033
cal manuscripts held in archives. These are usually small034
but valuable collections that often feature limited pages035
written by specific, historically important authors. These036
manuscripts display unique stylistic and linguistic features037

that pose difficulties for current HTR systems. To address 038
this challenge, developing strategies that optimize HTR per- 039
formance for such materials is critical for their efficient dig- 040
itization. A common approach to tackle this issue involves 041
pretraining HTR models on large-scale datasets, either real 042
or synthetic, followed by fine-tuning them on a small set of 043
real data from the target domain. 044

Some research work has already been devoted to explor- 045
ing the use of synthetic datasets for pretraining HTR sys- 046
tems [1, 24, 30, 33, 55]. The effectiveness of these strate- 047
gies largely depends on the extent to which the synthetic 048
data mirrors real-world data [8, 41]. In response, Handwrit- 049
ten Text Generation (HTG) techniques, particularly styled 050
HTG, have emerged as promising tools [3, 38, 40, 43, 52]. 051
These models allow for the generation of training data tai- 052
lored to specific domains by synthesizing images of text in 053
a desired handwriting style by using just a few sample im- 054
ages as a reference. Styled HTG models typically include 055
an encoder to extract the style features from the examples 056
and a generator that combines these features with a desired 057
text representation to produce text images with control over 058
both style and content. 059

Recent years have witnessed the development of various 060
HTG paradigms, and great improvements in HTG perfor- 061
mance in terms of reference style fidelity, making them po- 062
tentially very useful for generating tailored training data for 063
HTR models. Nonetheless, a systematic evaluation of such 064
usefulness in low-resource HTR scenarios is still missing in 065
the literature. In light of this, in this paper, we explore a 066
pretraining plus fine-tuning strategy based on automatically 067
generated, author-specific synthetic datasets for comparing 068
three state-of-the-art styled HTG networks, each one being 069
the best of its category: a generative adversarial model [52], 070
a diffusion model [38], and an autoregressive model [43]. 071
Via extensive evaluation, we assess the effectiveness of 072
these HTG approaches when generating pretraining data for 073
HTR scenarios spanning multiple languages, various au- 074
thors, and different historical periods. The results of our 075
analysis give insights into the current capabilities of HTG 076
models and suggest key areas for future research to improve 077
their applicability in low-resource HTR scenarios. 078
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2. Related Work079

HTR is a well-established area of research due to its wide080
range of applications in both industrial and cultural sec-081
tors. Despite its progress, HTR remains a complex and082
challenging problem. The task can be tackled at differ-083
ent levels of granularity, ranging from individual charac-084
ters, often used for idiomatic languages [11], to entire085
words [2, 51], lines [44, 48], paragraphs, and full pages [5,086
7, 12, 36, 58]. Line-level recognition is particularly com-087
mon for non-idiomatic languages, where it can be applied088
as a standalone method or integrated into a broader page-089
level system [7, 36, 59]. The majority of modern HTR sys-090
tems employ learning-based approaches, relying on Multi-091
Dimensional Long Short-Term Memory networks (MD-092
LSTMs) [6, 39, 44, 48, 54] for feature extraction. These093
methods typically use the Connectionist Temporal Classi-094
fication (CTC) decoding strategy to produce text transcrip-095
tions [5, 25]. Recently, alternative models based on fully096
convolutional networks [15, 59] and Transformer encoder-097
decoder architectures [30, 33, 56] have also been proposed098
for HTR tasks [53]. To improve transcription quality, ex-099
plicit language models or lexicons can be employed. How-100
ever, the effectiveness of these models depends on the con-101
sistency and regularity of the transcribed language, espe-102
cially regarding the presence of rare words, proper nouns,103
or errors. This makes language models less reliable, partic-104
ularly when working with historical manuscripts where the105
language can be highly variable or archaic. In this work, we106
focus on line-level HTR and on historical data, thus, we do107
not rely on any lexicon or explicit language model.108

A significant challenge in HTR is the scarcity of train-109
ing data, particularly for single-author documents or ancient110
manuscripts with unique characteristics. One solution to ad-111
dress this limitation is data augmentation, which can involve112
general image manipulations such as color changes and ge-113
ometric transformations [44, 54, 57] or more targeted mod-114
ifications specifically designed to reflect the characteristics115
of the target data [10]. Another widely adopted method116
is pretraining the HTR model on large, diverse datasets117
followed by fine-tuning on a smaller set of target-specific118
data [24, 27, 50]. This approach has been demonstrated to119
outperform basic data augmentation when applied to his-120
torical manuscripts [1]. The pretraining data can consist121
of real handwritten text (e.g., publicly available benchmark122
datasets) or synthetic data, often generated by rendering text123
in calligraphic fonts [8, 30, 47]. For single-author scenar-124
ios, [41] highlights the importance of considering both the125
overall appearance (such as the type of paper, writing instru-126
ment, and average character width) and the language (in-127
cluding the time period and the topic) when selecting real128
datasets or generating synthetic ones for pretraining. Ad-129
ditionally, they demonstrate that an HTR model trained on130
text images with a wide range of handwriting styles tends131

to be more adaptable and robust compared to one trained 132
on a single handwriting style. However, when synthetic 133
data closely mimic the actual handwriting in the real data, 134
achieving satisfactory performance becomes feasible. 135

Recent research has explored using HTG models to gen- 136
erate synthetic data for training HTR models, aiming to 137
enhance their performance on real-world datasets [29, 37, 138
41, 49]. HTG entails generating realistic handwritten text 139
images. In its styled variant, which is the primary focus 140
of this work, the goal is to produce writer-specific hand- 141
written text by using just a few example images to cap- 142
ture and replicate the writer unique style [3, 20, 28]. Three 143
main paradigms have been proposed to tackle this task. The 144
predominant technique is the use of generative-adversarial 145
models [3, 21, 22, 28, 32, 40, 52]. Some research has ex- 146
plored HTG using Diffusion Models [17, 34, 37, 60], which 147
led to impressive performance. Finally, a recent study in- 148
troduced an autoregressive approach to HTG [43]. In this 149
study, we consider HTG models representative of each of 150
these paradigms and evaluate them in the context of low- 151
resource HTR applications. 152

3. Method 153

In this work, we aim to evaluate the performance of state- 154
of-the-art HTG models when used to generate synthetic 155
pertaining datasets for HTR on small collections of doc- 156
uments with distinctive characteristics (e.g., unique hand- 157
writing styles, language variations, paper supports). More- 158
over, we investigate some strategies to maximize the benefit 159
of using such models. To these ends, we devise a pipeline 160
that entails pretraining the HTR model on a large synthetic 161
dataset, obtained from HTG models to imitate the style of a 162
real target dataset, followed by filtering strategies based ei- 163
ther on the readability or style fidelity of the generated sam- 164
ples. Finally, the pipeline entails fine-tuning on a limited 165
number of real samples from the target collection. To create 166
the synthetic datasets, we require exemplar style images, 167
which can be easily extracted from digitized manuscripts 168
within the target collection. Additionally, the textual con- 169
tent to be rendered in the desired handwriting style must 170
be specified. We consider the scenario where the author 171
and the language of the manuscript is known. In this case, 172
if there exist transcribed texts written by the author of in- 173
terest, we can use the HTG model to generate synthetic 174
samples of these texts. Otherwise, if only the manuscript’s 175
language is known (or if no existing texts by the same au- 176
thor are available), the HTG model can generate text in the 177
same language as the target collection. In both cases, the 178
HTG model outputs handwritten lines images of varying 179
lengths. Note that the quality of some of the generated lines 180
can be non-ideal, limiting their usefulness for HTR train- 181
ing. To limit this risk, a possible solution is to filter out 182
synthetic images that do not meet certain quality criteria. In 183
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Figure 1. Overview of our pipeline for synthetic data generation from collection-specific handwritten lines. The generation process renders
line images from a given text conditioned by a few style samples from the target dataset. Then, the synthetic dataset is filtered based on
readability or fidelity criteria and is used to pretrain the recognition model before possible fine-tuning on the real data.

this work, we consider two alternatives: the lines readibil-184
ity, expressed in terms of Character Error Rate (CER) of an185
off-the-shelf, language-agnostic HTR model, and their style186
fidelity w.r.t. the reference, expressed in terms of Handwrit-187
ing Distance (HWD) [42].188

In the following sections, we describe the HTR model189
used for transcription (dubbed DefCRNN [9]) and the190
HTG models considered to generate synthetic pretraining191
data. These are the generative-adversarial Transformer192
VATr++ [52], the diffusion model-based DiffPen [38], and193
the autoregressive generative Transformer Emuru [43]. Fi-194
nally, we give the details of the proposed HWD-based and195
CER-based filtering strategies. An overview of our com-196
plete pipeline is illustrated in Figure 1.197

3.1. HTR Approach198

The combination of convolutional and recurrent neural net-199
works has long been a standard approach for HTR, and it200
is widely used due to its effectiveness and efficiency. In201
this study, we employ a model based on one-dimensional202
LSTM networks, which offer comparable or even superior203
performance compared to MD-LSTMs [44]. Our model is204
based on a variant of the CRNN method [48], referred to205
as DefCRNN [9]. The convolutional part of the architec-206
ture consists of seven convolutional blocks. The first six207
blocks follow the VGG-11 structure, with modifications to208
the final two max-pooling layers to incorporate rectangular209
pooling, which helps preserve the aspect ratio of text line210
images. The seventh convolutional block utilizes a 2 × 2211
kernel. The variant we exploit contains Deformable Convo-212

lutions [16] as proposed in [8, 9, 14], which enhance model 213
performance by allowing for more flexible feature extrac- 214
tion. The output of the final convolutional layer is a feature 215
map of size 2 × W × 512, where W is determined by the 216
width of the input image. This feature map is then collapsed 217
along the channel dimension, resulting in a sequence of W 218
feature vectors, each with a size of 1024. These vectors are 219
passed to the recurrent module, which consists of two Bidi- 220
rectional LSTM layers with 512 hidden units each, with a 221
dropout layer (probability 0.5) in between. The output of 222
the recurrent module is a sequence of probability distribu- 223
tions over character classes for each feature vector. As is 224
typical in HTR, the model is trained using the CTC loss 225
function, which includes a special blank character. Notably, 226
we do not use any external language model to ensuring that 227
the model is adaptable across different languages. 228

3.2. HTG Approaches 229

Styled HTG models efficiently create large volumes of syn- 230
thetic text images in a specified handwriting style starting 231
from a few real images from the target dataset. An overview 232
of the considered HTG approaches, each representative of a 233
distinct paradigm, is reported below (we refer the interested 234
reader to the respective papers for more details). In this pa- 235
per, we use them off-the-shelf, and none of them has been 236
trained on the target datasets considered. 237

VATr++. VATr++ [52] employs a generator-discriminator 238
framework [23, 35], complemented by an auxiliary HTR 239
network for readability and a writer classification module 240
to ensure stylistic fidelity. The model has been designed to 241
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address the generation of rare or out-of-charset characters.242
This is achieved by encoding target text as a sequence of243
Visual Archetypes (VAs) [40], which allow the model to ex-244
ploit geometric similarities between glyphs, and by adopt-245
ing specific training and data preparation stratiges. The ar-246
chitecture is a hybrid Convolutional-Transformer encoder-247
decoder. The encoder uses a synthetically pre-trained CNN248
to process the reference style samples, while the Trans-249
former encoder aggregates them into a style vector using250
self-attention. The Transformer decoder aligns this repre-251
sentation with a sequence of VAs representing the desired252
text content through cross-attention, and a convolutional de-253
coder synthesizes the final handwritten image. VATr++ ac-254
cepts as input 15 word images, from which it extract the255
style, and generates word or text line images.256

DiffPen. DiffPen [38] is a latent diffusion model that syn-257
thesizes images conditioned on a text prompt and style fea-258
tures in a few-shot setting. Similar to standard conditional259
latent diffusion models [45], the method utilizes a U-Net-260
based architecture [46] as the backbone denoising network261
and a pre-trained Variational Autoencoder (VAE) [31] to262
encode and decode images from pixel to latent space and263
vice-versa. Two auxiliary pre-trained encoders are used for264
the text and style conditions. To create the content embed-265
ding, an off-the-shelf pre-trained text encoder [13] that op-266
erates on character sequences. As the style encoder, the267
work proposes a CNN feature extractor that combines clas-268
sification and metric learning to construct a continuous em-269
bedding space that supports diverse output and enables fine-270
grained control (e.g., style interpolation and mixing). To271
create the style condition, DiffPen extracts features from 5272
style examples of the same writer, and generates word im-273
ages with the desired content. Although DiffPen is designed274
for word-level generation, the authors have proposed patch-275
ing together subparts of text or words to obtain longer text276
or complete lines, which we also adopt in our work.277

Emuru. Emuru [43] is a continuous-token autoregressive278
model for handwritten text generation, capable of producing279
text images of any length while preserving style fidelity and280
readability. It enhances generalization to novel styles and281
minimizes background artifacts. The architecture consists282
of a VAE [31] and an autoregressive Transformer Encoder-283
Decoder. The VAE maps style reference images into a con-284
tinuous latent space, encoding only the writing style while285
removing background noise. The Transformer takes as in-286
put the style embeddings, the text present in the reference287
image, and the desired text, iteratively generating an image288
that preserves the target style. Both components of Emuru289
are trained on a large synthetic dataset. This ensures that290
the VAE learns to reconstruct text without background arti-291
facts while providing a style representation that generalizes292
well to new handwriting styles and typefaces. The model293
generates text images in an autoregressive loop, where each294

iteration outputs visual embeddings that are then decoded 295
by the VAE into a final styled image. This iterative process 296
allows the model to determine its own stopping point, elimi- 297
nating constraints on maximum text length. Emuru takes as 298
input a text line image with its associated text content and 299
is designed to generate entire text lines. 300

3.3. Filtering Approaches 301

We argue that not all the generated samples are equally use- 302
ful and of high quality for HTR pretraining. To explore this 303
aspect, we propose to analyze them based on two different 304
criteria (i.e., readability and style fidelity) and discard those 305
that do not meet a predefined quality threshold. In the fol- 306
lowing, we describe our considered filtering strategies. 307

Readability. To evaluate how the readability of the gen- 308
erated samples affects the training of the HTR model, we 309
measure the CER for each synthetic image by using a 310
pretrained TrOCR network [33] and then filter out those 311
for which the CER is above a certain threshold. We de- 312
fine four filtering thresholds (i.e., CER<0.15, CER<0.30, 313
CER<0.45, and CER<0.60), which progressively include 314
samples based on transcription quality. Images that satisfy 315
stricter thresholds are considered more readable, as they ex- 316
hibit fewer transcription errors. Conversely, images that ex- 317
ceed higher CER values are discarded during the filtering 318
process and will not be used to pretrain the DefCRNN. 319

Fidelity. To assess the stylistic fidelity of the generated 320
samples, we quantify how closely each synthetic image 321
matches the handwriting style of authentic manuscripts. We 322
compute the HWD [42] between each generated image and 323
a representative style embedding extracted from the real 324
samples. This embedding is obtained by averaging the fea- 325
tures of genuine handwriting samples, serving as a refer- 326
ence for style similarity. Since each generation model pro- 327
duces a distinct distribution of HWD values, we define fil- 328
tering thresholds using the 25th, 50th, and 75th percentiles 329
of its respective HWD distribution. Samples with HWD 330
below a given percentile are considered more stylistically 331
faithful, while those above the higher percentiles are pro- 332
gressively filtered out. This percentile-based approach en- 333
sures that style fidelity is evaluated fairly according to each 334
model’s intrinsic variability in generated handwriting. 335

4. Experiments 336

In this section, we present our experimental study. First, 337
we provide additional information regarding how we train 338
the DefCRNN HTR model. Next, we describe the small, 339
single-author target datasets and we detail how the synthetic 340
datasets for pretraining were constructed. Finally, we ex- 341
plain the evaluation protocol and discuss our results. 342
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4.1. HTR Training Details343

For training the DefCRNN model, all input images are344
rescaled to a height of 64 pixels while maintaining their345
original aspect ratio, followed by intensity normalization346
to the range [−1, 1]. During pretraining, we apply a se-347
ries of augmentations to enhance robustness. Brightness348
is adjusted using a randomly sampled factor from [0.5, 5],349
contrast from [0.1, 10], saturation from [0, 5], and hue from350
[−0.1, 0.1]. Additionally, Gaussian blur with a kernel size351
of 5 is applied, with a standard deviation randomly chosen352
from [0.1, 2]. To introduce geometric variability, we ran-353
domly apply one of the following transformations: a slight354
rotation between −1° and 1°, an affine transformation with355
rotation in the same range and shear between −50° and 30°,356
or a random tomography. Pretraining is conducted with a357
batch size of 16, which is reduced to 8 for fine-tuning and358
training from scratch. The model is optimized using Adam359
with β1 = 0.9 and β2 = 0.999, and a learning rate of 10−4360
across all experiments. A scheduler reduces the learning361
rate by 10% if the CER on the validation set plateaus. Early362
stopping is applied with a patience of 20 epochs, using CER363
as the criterion. When fine-tuning, optimal CER values are364
typically reached within the first few epochs.365

4.2. Datasets366

For our analysis, we consider three low-resources, line-level367
datasets as target collections. All of them are obtained368
from historical, single-author manuscripts. When generat-369
ing synthetic data for pretraining, we consider the charac-370
teristics of each target dataset separately. The details of the371
datasets used in this work are given below.372

Leopardi. The Leopardi dataset [8] comprises a collec-373
tion of early 19th-century Italian manuscripts authored by374
Giacomo Leopardi, a prominent Romantic-era philologist,375
writer, and poet. It consists of 1303 training lines, 596 vali-376
dation lines, and 587 test lines. All samples are RGB scans377
of ink-written texts on historical paper.378

Washington. The George Washington dataset [19] in-379
cludes 20 handwritten English letters from 1755, authored380
by George Washington, the first U.S. President, and a col-381
laborator. It is structured into 526 training lines, 65 valida-382
tion lines, and 65 test lines. The dataset consists of bina-383
rized images of these historical documents.384

Saint Gall. The Saint Gall dataset [18] originates from a385
late 9th-century Latin manuscript written by a single scribe.386
It spans 60 pages and is divided into 468 training lines, 235387
validation lines, and 707 test lines. All images are binarized388
scans of the original manuscript pages.389

Synthetic Data. Following [41], we employ HTG models390
to generate synthetic samples tailored to each target dataset.391
This process involves conditioning the generation on a sub-392
set of the original dataset’s samples. Specifically, VATr++393

and DiffPen use crops from 15 and 5 randomly selected line 394
images, respectively, while Emuru operates with a single 395
line reference. The textual content for the synthetic data 396
is chosen to align with each dataset: excerpts from Gia- 397
como Leopardi’s prose for the Leopardi dataset, passages 398
from George Washington’s diaries for Washington, and a 399
medieval Latin Bible for Saint Gall. This selection ensures 400
linguistic consistency between the synthetic and real data. 401

4.3. Evaluation Protocol 402

To analyze the impact of pretraining and fine-tuning in sce- 403
narios where only a small portion of the target dataset is 404
annotated, we fine-tune models on progressively smaller 405
subsets of the training data. Specifically, we consider frac- 406
tions of 100%, 50%, 25%, 10%, 5%, 2.5%, and 1.25% of 407
the available training lines. For comparison, we also train 408
models from scratch using the same subsets. Moreover, we 409
assess direct transfer by applying pretrained models to the 410
target datasets without fine-tuning. 411

To compare the considered HTG models, we first con- 412
sider their generation performance, expressed in terms of 413
multiple commonly applied scores. Specifically, these are: 414
Fréchet Inception Distance (FID) [26], Kernel Inception 415
Distance (KID) [4], HWD [42], the binarized version of 416
FID and KID (dubbed BFID and BKID, respectively), ob- 417
tained by computing the scores on binarized images, and 418
the Absolute Difference in the CER (∆CER) of the off-the- 419
shelf TrOCR-Base [33] model on the reference and gener- 420
ated images. Moreover, since the main goal of this work is 421
to compare HTG approaches in terms of their effectiveness 422
in providing synthetic data for HTR, we consider the recog- 423
nition performance of the considered DefCRNN trained on 424
such data. We report the performance in terms of CER, 425
which is standard for text recognition. 426

4.4. Results 427

Generation Performance. First, we evaluate the consid- 428
ered HTG models in terms of their generation capabilities. 429
Recall that none of them have been trained on the target 430
datasets, making this a zero-shot evaluation of their abil- 431
ity to produce handwriting samples that align with the tar- 432
get styles. The quantitative performance comparison is re- 433
ported in Table 1. From the FID, KID, and HWD scores, 434
it is evident that Emuru consistently outperforms the other 435
models across nearly all metrics, leveraging its zero-shot 436
capabilities to generate more style-faithful samples. This 437
observation is confirmed by the qualitative examples in Fig- 438
ure 2. Additionally, the scatter plots in Figure 3, which 439
report the distribution of the generated datasets in terms 440
of TrOCR CER and HWD relative to the respected target 441
dataset, show that the images generated by Emuru exhibit 442
the lowest readability according to the TrOCR model. How- 443
ever, from the ∆CER values in Table 1, we can argue that 444
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Figure 2. Qualitative comparison of the considered HTG models when generating samples from the considered target datasets. Note that
none of the considered models has been trained on the target datasets.

Dataset Model HWD↓ FID↓ BFID↓ KID↓ BKID↓ ∆CER ↓

Leopardi
Emuru 2.05 208.4 57.7 0.246 0.051 0.4
DiffPen 3.15 244.9 127.4 0.257 0.110 1.6
VATr++ 3.02 217.7 90.8 0.230 0.084 21.8

Washington
Emuru 1.63 108.3 24.6 0.104 0.016 9.7
DiffPen 2.56 171.6 91.9 0.163 0.085 9.8
VATr++ 3.24 217.1 105.4 0.228 0.092 20.4

Saint Gall
Emuru 1.53 243.0 32.2 0.320 0.014 7.0
DiffPen 3.44 250.0 40.9 0.310 0.024 11.1
VATr++ 3.82 251.6 73.0 0.306 0.060 10.2

Table 1. Generation scores computed on the three target datasets
generated with the considered HTG models.

this reduced readability is a consequence of Emuru’s ability445
to faithfully replicate the target handwriting style.446

Direct Transfer Recognition Performance. The recogni-447
tion performance achievable by the DefCRNN model when448
pretrained on the generated data and then directly applied449
to the real, target datasets are reported in Tables 2 to 4 (in450
the first column relative to the CER) and depicted in Fig-451
ure 4. As can be observed, Emuru’s generated samples452
allow for achieving the best performance in this zero-shot453
HTR scenario, consistently outperforming the other mod-454
els. A possible explanation for this advantage can be found455
in the scatter plots in Figure 3, where the generated sam-456
ples from Emuru exhibit greater variability, forming more457
dispersed clusters. This diversity may contribute to the458
model’s robustness when directly applied to unseen hand-459
writing styles. Furthermore, it is worth noting that the hand-460
writing in the Washington and Saint Gall datasets is quite461
regular (see Figure 2). Since Emuru is trained on a large462

corpus of synthetic typewritten and calligraphic fonts, it can 463
effectively approximate the structured styles characteristic 464
of these datasets. This alignment is reflected in the CER 465
scores achieved in the direct transfer setting: 18.1 for Saint 466
Gall and 15.3 for Washington. 467

Fine-tuning Recognition Performance. From the results 468
in Tables 2 to 4 and Fig. 4, it can also be observed the effect 469
of fine-tuning DefCRNN on a varying number of real data 470
from the target dataset after being pretrained on the sam- 471
ples synthesized by the considered HTG models. It can be 472
observed that Emuru is the most effective in providing pre- 473
training data for the HTR model when only a very limited 474
amount of real data is available for fine-tuning. In partic- 475
ular, when fewer than 130 real images are used (e.g., 10% 476
of Leopardi, which corresponds to 130 images, or 25% of 477
Saint Gall, which includes 125 images), the style similarity 478
between the pretraining and target dataset plays a crucial 479
role. In other words, the closer the synthetic samples are to 480
the target handwriting style, the greater the benefit for HTR 481
performance in low-data regimes. However, as the num- 482
ber of real training samples increases beyond this threshold, 483
the influence of style similarity of the pretraining dataset 484
diminishes and its diversity becomes the dominant factor 485
in improving HTR performance. This explains why, when 486
more than 130 real images are available, DefCRNN pre- 487
trained on the more stylistically varied DiffPen-generated 488
datasets has better performance than when pretrained on 489
Emuru-generated data. In other words, when more fine- 490
tuning data are available DiffPen’s style variability provides 491
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Figure 3. Distribution of 1000 random samples from each syn-
thetic dataset generated by the HTG models, in terms of CER and
HWD w.r.t. the real samples. The horizontal lines indicate the CER
thresholds used for filtering. We omit the separators for HWD-
based filtering for clarity, since they depend on the percentiles.

a stronger generalization capability to the HTR model.492

Effect of Filtering. Finally, we consider the effect of fil-493
tering with the two proposed CER-based and HWD-based494
strategies (as observed from Tables 2 to 4). Notably, no495
clear trend emerges between HTR performance and filter-496
ing based on handwriting style similarity (HWD). This sug-497
gests that strictly enforcing style consistency between the498
synthetic and real datasets does not necessarily lead to bet-499
ter recognition performance. Conversely, filtering based500
on CER appears to have a more direct impact. The best-501
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Figure 4. CER scores obtained by DefCRNN when fine-tuned with
different portions of the three target datasets, after having been
pretrained on all the synthetic data generated with the considered
HTG models. We report the CER obtained when training only on
real data for comparison.

performing configurations are typically those where the fil- 502
tering threshold is set to CER0.30 or when no filtering is ap- 503
plied at all. This suggests that the amount of training sam- 504
ples is a more important factor than their quality. A weak 505
filter removes the worst examples while keeping enough va- 506
riety in the data, while a strict filter may remove too many 507
samples and hurt performance. Moreover, a too-strict CER- 508
based filtering could remove too many samples, preventing 509
the HTR model from converging (as in the case of pretrain- 510
ing on DiffPen-generated data for Leopardi with a filter with 511
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CER

Data Filter #samples 0% 1.25% 2.5% 5% 10% 25% 50% 75% 100%

Real - 1.3K - - - - - 13.0 7.8 5.4 4.2

Emuru HWD25% 21.5K 62.7 48.6 47.4 26.9 20.4 12.9 8.4 8.0 4.1
Emuru HWD50% 43.0K 49.0 34.9 29.7 23.8 15.2 10.0 7.7 5.5 4.6
Emuru HWD75% 64.5K 49.3 45.5 52.0 53.5 30.9 19.7 10.9 11.5 6.2
Emuru CER0.15 7.4K 67.7 34.3 28.9 24.6 19.6 16.1 7.9 6.3 5.2
Emuru CER0.30 23.3K 62.4 21.7 22.9 16.5 14.3 10.6 7.7 5.9 4.0
Emuru CER0.45 39.8K 65.5 24.9 23.9 21.3 14.7 11.5 7.8 6.0 5.5
Emuru CER0.60 53.3K 66.2 29.6 29.9 18.8 15.2 11.5 7.9 6.2 5.1
Emuru - 87.8K 66.7 51.7 58.0 51.4 35.6 34.0 11.8 12.1 6.8

DiffPen HWD25% 22.0K 80.5 54.4 42.2 30.1 23.5 15.8 10.0 4.5 3.9
DiffPen HWD50% 43.9K 76.0 41.9 31.5 22.1 17.3 10.7 7.5 5.2 4.5
DiffPen HWD75% 65.9K 83.4 56.9 49.8 33.8 24.8 14.9 9.8 8.3 6.3
DiffPen CER0.15 0.2K - - - - 98.9 12.4 7.4 5.6 4.5
DiffPen CER0.30 3.5K - 44.4 36.7 27.4 24.7 15.7 8.4 5.4 4.5
DiffPen CER0.45 19.7K 74.8 46.7 42.0 25.8 23.2 14.4 9.0 4.7 4.0
DiffPen CER0.60 51.8K 80.2 53.3 43.0 26.7 22.9 14.4 9.0 7.3 5.6
DiffPen - 87.8K - 36.7 28.4 21.8 15.7 10.1 7.2 4.7 4.6

VATr++ HWD25% 22.0K 96.9 59.4 49.0 30.7 24.1 15.9 10.2 5.1 4.6
VATr++ HWD50% 43.9K 94.7 63.6 59.6 33.8 24.9 16.1 9.5 9.6 4.3
VATr++ HWD75% 65.9K 89.2 65.0 69.0 38.3 27.3 18.4 11.9 11.2 4.2
VATr++ CER0.15 9.9K 94.6 49.2 40.1 31.2 25.8 16.9 6.8 5.0 4.4
VATr++ CER0.30 43.8K 94.3 64.5 57.7 40.4 26.7 17.0 11.5 10.3 4.1
VATr++ CER0.45 74.2K 92.0 66.3 62.9 37.8 28.0 19.0 11.6 11.2 4.4
VATr++ CER0.60 85.4K 95.7 67.0 60.9 37.4 30.2 17.6 11.2 11.6 6.5
VATr++ - 87.8K 95.9 66.4 61.0 37.9 29.3 18.5 11.3 11.5 6.6

Table 2. CER scores (multiplied by 100) obtained by pretraining
the DefCRNN on the generated data and then fine-tuned on differ-
ent portions of the Leopardi dataset. Bold indicates the best overall
score for each fine-tuning setting, underline the best score within
each setting (HTG model and filtering strategy).

CER

Data Filter #samples 0% 1.25% 2.5% 5% 10% 25% 50% 75% 100%

Real - 0.5K - - - - - - - 7.1 5.0

Emuru HWD25% 17.3K 37.1 12.2 10.9 9.4 6.7 6.7 6.9 6.3 6.0
Emuru HWD50% 34.6K 29.0 13.7 11.6 10.8 7.5 6.8 7.0 6.9 6.6
Emuru HWD75% 51.9K 26.6 29.0 28.4 11.0 7.2 7.5 6.7 5.8 5.5
Emuru CER0.15 5.7K 20.0 11.9 10.0 9.0 7.6 6.9 6.5 6.4 6.2
Emuru CER0.30 22.8K 21.6 12.6 11.5 9.6 7.8 6.9 6.3 6.1 5.9
Emuru CER0.45 37.6K 21.5 13.2 10.9 9.7 7.5 6.6 6.6 5.9 5.7
Emuru CER0.60 46.3K 18.1 26.2 25.4 10.1 7.2 7.2 6.7 6.4 6.4
Emuru - 70.5K 23.0 10.3 8.8 8.1 6.8 6.4 5.7 5.7 5.4

DiffPen HWD25% 17.6K 59.1 27.8 21.2 16.4 9.6 7.4 7.5 6.0 6.4
DiffPen HWD50% 35.2K 62.4 27.7 21.2 15.6 10.0 9.0 7.8 6.2 5.8
DiffPen HWD75% 52.9K 64.5 35.6 27.0 20.0 8.0 7.7 7.9 6.4 6.5
DiffPen CER0.15 4.9K 54.7 56.2 56.2 21.6 8.6 8.5 10.5 8.9 5.3
DiffPen CER0.30 25.3K 59.2 31.4 24.2 17.4 8.0 7.7 7.7 7.0 6.3
DiffPen CER0.45 49.3K 65.3 32.8 24.0 18.7 9.7 8.4 8.4 7.8 8.0
DiffPen CER0.60 63.5K 64.2 37.9 29.5 21.1 8.2 9.9 8.2 7.2 6.9
DiffPen - 70.5K 69.4 18.6 15.8 12.6 8.9 7.4 5.5 5.1 4.8

VATr++ HWD25% 17.6K 87.7 36.8 26.0 19.8 9.4 9.1 7.6 7.0 6.0
VATr++ HWD50% 35.2K 94.2 37.6 26.2 20.0 10.3 9.5 9.3 8.1 9.1
VATr++ HWD75% 52.9K 88.7 56.6 43.1 29.6 9.6 10.4 9.3 8.2 7.6
VATr++ CER0.15 1.9K - - - - - 9.9 9.5 7.4 8.0
VATr++ CER0.30 18.0K 93.4 31.8 22.5 19.2 9.7 8.2 9.0 7.3 6.0
VATr++ CER0.45 47.7K 92.1 64.6 60.8 45.0 9.4 9.3 8.8 7.5 6.6
VATr++ CER0.60 65.6K 91.9 71.2 75.2 50.4 9.4 9.2 9.6 9.0 8.3
VATr++ - 70.5K 87.9 66.9 60.1 62.5 11.1 9.0 11.2 10.1 10.0

Table 3. CER scores (multiplied by 100) obtained by pretraining
the DefCRNN on the generated data and then fine-tuned on dif-
ferent portions of the Saint Gall dataset. Bold indicates the best
overall score for each fine-tuning setting, underline the best score
within each setting (HTG model and filtering strategy).

CER0.15). For these reasons, not filtering can yield better512
results, as it maximizes variability in the pretraining data,513
improving the HTR model’s generalizability.514

CER

Data Filter #samples 0% 1.25% 2.5% 5% 10% 25% 50% 75% 100%

Real - 0.5K - - - - - - 6.5 5.1 3.6

Emuru HWD25% 5.7K 18.7 17.6 15.3 13.7 10.8 7.5 5.7 5.5 5.1
Emuru HWD50% 11.4K 18.8 16.7 14.4 13.5 10.1 6.8 6.2 5.5 5.5
Emuru HWD75% 17.1K 15.9 13.5 13.5 13.3 8.7 5.8 9.2 8.3 7.0
Emuru CER0.15 16.7K 15.8 13.4 12.5 12.2 10.3 6.2 5.1 5.6 4.3
Emuru CER0.30 20.4K 15.3 15.2 11.9 10.3 9.5 6.3 4.4 4.2 3.5
Emuru CER0.45 21.5K 16.6 13.9 13.4 11.1 9.8 6.7 6.1 5.2 4.7
Emuru CER0.60 21.9K 17.1 14.5 13.2 12.1 9.7 5.0 6.3 5.7 4.1
Emuru - 23.1K 16.1 12.9 12.4 11.2 9.9 6.6 5.0 4.8 4.0

DiffPen HWD25% 5.8K - 32.7 24.4 18.8 51.1 12.9 7.1 6.2 4.2
DiffPen HWD50% 11.6K 72.9 31.8 23.3 20.5 13.9 8.3 7.5 6.2 3.9
DiffPen HWD75% 17.3K 72.6 29.6 24.7 19.9 11.6 7.2 8.1 6.3 5.1
DiffPen CER0.15 13.8K 68.7 28.1 21.7 18.3 13.4 9.8 6.9 5.0 4.8
DiffPen CER0.30 20.3K 68.3 30.5 23.8 19.5 14.4 9.0 6.7 6.1 5.2
DiffPen CER0.45 22.4K 78.0 29.1 23.4 19.3 13.8 7.2 7.4 6.4 4.7
DiffPen CER0.60 22.9K 72.2 32.0 25.4 20.7 12.4 7.0 8.9 6.8 6.3
DiffPen - 23.1K 67.0 37.8 41.9 17.1 13.7 8.2 5.1 4.6 4.1

VATr++ HWD25% 5.8K - 41.9 31.3 23.2 51.8 9.9 8.4 6.2 3.9
VATr++ HWD50% 11.6K 86.8 46.1 29.7 22.5 16.0 9.0 6.5 5.3 4.1
VATr++ HWD75% 17.3K 81.7 45.4 35.9 27.2 14.8 10.2 8.4 6.3 5.4
VATr++ CER0.15 22.0K 78.3 64.3 24.7 20.3 16.4 9.0 6.2 5.7 3.9
VATr++ CER0.30 23.0K 83.0 62.4 28.2 17.8 13.7 10.3 6.3 5.0 5.0
VATr++ CER0.45 23.1K 81.0 45.4 34.5 27.4 14.7 9.1 8.2 6.4 6.3
VATr++ CER0.60 23.1K 81.9 44.5 34.5 28.9 14.7 10.4 8.2 6.2 5.4
VATr++ - 23.1K 84.8 47.6 39.2 28.8 15.9 9.2 8.1 7.2 5.5

Table 4. CER scores (multiplied by 100) obtained by pretraining
the DefCRNN on the generated data and then fine-tuned on dif-
ferent portions of the Washington dataset. Bold indicates the best
overall score for each fine-tuning setting, underline the best score
within each setting (HTG model and filtering strategy).

5. Conclusion 515

We have explored low-resource HTR on historical 516
manuscripts and we have proposed a pipeline leveraging 517
synthetic data generated by state-of-the-art HTG models for 518
pretraining an HTR model, which is then fine-tuned on a 519
few real samples. Our findings give the following insights: 520
• Style Fidelity. Among the evaluated HTG models, 521

Emuru consistently generates the most style-faithful 522
handwriting samples, leading to superior zero-shot HTR 523
performance, indicating the importance of style fidelity in 524
zero-shot scenarios. 525

• Style Variability. When only a small number of real im- 526
ages (fewer than 130) are available for fine-tuning, pre- 527
training on data that closely matches the target handwrit- 528
ing style leads to better recognition results. However, 529
if more real samples are available, diversity in the pre- 530
training set becomes more important than style similar- 531
ity. In these cases, training on the more varied DiffPen- 532
generated datasets leads to better generalization and im- 533
proved HTR performance. This shows the effect of style 534
diversity depending on the amount of fine-tuning data. 535

• Filtering. There is no clear benefit from filtering based on 536
HWD. In contrast, filtering based on CER with a too strict 537
threshold can lead to removing too many useful training 538
samples or even hinder the HTR model convergence. 539

By shedding light on the existing HTG capabilities, this 540
study aims to help the design of novel HTG models for 541
boosting HTR in low-resources scenarios. 542
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