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Abstract

Direct Alignment Algorithms (DAAs) such as Direct Preference Optimization
(DPO) have emerged as alternatives to the standard Reinforcement Learning from
Human Feedback (RLHF) for aligning large language models (LLMs) with human
values. However, these methods are more susceptible to over-optimization, in which
the model drifts away from the reference policy, leading to degraded performance as
training progresses. This paper proposes a novel importance-sampling approach to
mitigate the over-optimization problem of offline DAAs. This approach, called (IS-
DAAs), multiplies the DAA objective with an importance ratio that accounts for the
reference policy distribution. IS-DAAs additionally avoid the high variance issue as-
sociated with importance sampling by clipping the importance ratio to a maximum
value. Our extensive experiments demonstrate that IS-DAAs can effectively miti-
gate over-optimization, especially under low regularization strength, and achieve
better performance than other methods designed to address this problem. Our code
is available at https://github.com/mail-research/AIS-Sampling4DAAs.

1 Introduction
Preference learning has emerged as an important part of the fine-tuning process to align large
language models (LLMs) with human preferences. There are two predominant flavors of preference
learning for LLMs. The first approach is online reinforcement learning from human feedback (RLHF)
[Ouyang et al., 2022, Christiano et al., 2017]. RLHF typically involves a multi-stage procedure:
fine-tuning a reward model to capture human preference and fine-tuning the LM policy to maximize
the expected reward using online RL algorithms such as Proximal Policy Optimization [Schulman
et al., 2017]. While empirically exhibiting good performance, this multi-stage procedure is complex
and computationally intensive, requiring repeated queries of the reward model and sampling from
the current policy. A set of alternative methods called direct alignment algorithms (DAAs) [Rafailov
et al., 2024, Tang et al., 2024c] avoids fitting separate reward models and instead simply trains the
policy directly on the offline preference dataset. The most well-known examples are Direct Preference
Optimization (DPO) [Rafailov et al., 2023], and Identity Preference Optimization (IPO) [Tang et al.,
2024b]. Since DAAs typically do not sample new responses from the LLM’s policy during training,
they are characterized as offline preference learning.

These methods are often preferred when aligning LLMs thanks to their simple training pipeline.
However, recent studies find that DAAs are more susceptible to over-optimization—a phenomenon in
which performance degrades as training progresses—and underperform online methods [Rafailov
et al., 2024, Park et al., 2024a, Liu et al., 2024b, Tang et al., 2024a]. More specifically, Rafailov
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et al. [2024] and Tang et al. [2024a] use the KL divergence between the preference-trained policy
and reference SFT policy as a measure of budget and show that, as this budget increases, DAAs tend
to experience a greater decline in performance. Rafailov et al. [2024] explains over-optimization in
DAAs by the lack of training data coverage (i.e., using only offline samples); thus, optimizing their
loss function can push up the probability of responses that are out of the offline data distribution.
This is not the case in online alignment algorithms, since they can sample online data and explicitly
enforce reverse KL regularization to mitigate this behavior [Song et al., 2024].

In this work, we identify an important source of the performance gap between online alignment
algorithms and DAAs: during training, the trained policy gradually diverges from its initial distribution
used to collect preference data. Meanwhile, the regularization effect in DAAs provides only a local
approximation of KL regularization around this offline distribution, which is insufficient to prevent
this drift. One approach to mitigate this problem is to enforce an explicit KL divergence penalty to
encourage the model to stay close to the reference policy [Song et al., 2024, Fisch et al., 2024, Ding
et al., 2024] and train the policy in an online manner [Guo et al., 2024]. This regularization explicitly
prevents the LM policy from deviating from the initial distribution. However, these methods are
costly since they require repeated sampling from the current policy to estimate the KL divergence
and are sensitive to hyperparameters. Instead, this paper proposes a novel importance-sampling
approach, called Importance Sampling DAAs (IS-DAAs). Furthermore, the implementation of IS
incurs minimal computational overhead, making it highly scalable.

Our main contributions are: First, we investigate the over-optimization problem in offline alignment
methods and propose a novel importance sampling method to address this problem for DAAs. Then,
we fix the high-variance problem associated with importance sampling by clipping the importance
ratios. Finally, our extensive experimental results indicate that IS-DAAs outperform DAAs and
other regularized methods. More importantly, IS-DAAs are significantly better in mitigating over-
optimization and early convergence issues, compared to previous regularization approaches.

2 Preliminaries

We provide the formulation and background of RLHF and DAAs in sections 2.1 and 2.2, respectively.
The over-optimization phenomenon and regularization in DAAs are presented in section 2.3.

2.1 Reinforcement Learning from Human Feedback

To align an LM with human preferences, the RLHF pipeline consists of three stages:

Supervised Fine-Tuning (SFT): Given a pre-trained model and a dataset of prompts x and their
responses y, the LM is trained for instruction following using maximum likelihood estimation (MLE)
over next-tokens, resulting in the reference model πref(y|x).
Reward Modeling: In the second phase, the reference model πref is prompted with x to produce
a pair of responses (y1,y2) ∼ πref(·|x). These responses are then labeled by human experts; the
resulting pair is denoted as yw ≻ yl|x, expressing human preference for yw over yl. This collected
preference data is denoted as D = {x(i),yw(i),yl(i)}Ni=1. Typically, preference labels are assumed
to follow the Bradley-Terry model:

p(y1 ≻ y2|x) =
exp(r(x,y1))

exp(r(x,y1)) + exp(r(x,y2))
= σ

(
r(x,y1)− r(x,y2)

)
(1)

where r(x,y) is a reward model, mapping a pair of an input prompt and its response to a scalar
reward. We can then use D to train a parametrized reward model rϕ(x,y) to maximize the differences
between the rewards of yw and yl using MLE, as follows:

LR(rϕ) = −E(x,yw,yl)∼D[log σ
(
rϕ(x,y

w)− rϕ(x,y
l)
)
] (2)

RL Fine-tuning: The learned reward function is used to provide feedback in the RL phase, using an
on-policy algorithm, such as PPO, with the following objective:

max
πθ

Ex∼D,y∼πθ(·|x)

[
rϕ(x,y)− βKL(πθ||πref)

]
(3)

where πθ is the learning policy, and β is the hyper-parameter controlling the KL regularization w.r.t
the reference policy πref. This KL constraint prevents the model from deviating too far from the region
on which the reward model is well-trained, and mode-collapsing to only high-reward responses.

2



2.2 Direct Alignment Algorithms (DAAs)
Despite its superior performance in aligning the LMs with human preferences, the RLHF pipeline is
complex and computationally expensive. DAAs address these problems by directly optimizing the
policy πθ over the preference data, avoiding the reward function estimation and RL training phases.
Among these algorithms, DPO is the most popular approach; DPO derives the following closed-form
solution for π⋆ of Eqn. (3):

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
(4)

where Z(x) as the normalization function. According to the above equation, we can parameterize the
reward function by the log-likelihood ratio between πθ and πref:

rθ(x,y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x) (5)

This enables us to optimize the LM policy πθ directly on the preference data by plug the above
equation into Eq. (1) and minimizing the corresponding negative-loglikelihood:

LDAA(πθ, πref) = E(x,yw,yl)∼D

[
f
(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]
(6)

where f is a convex loss function. By choosing the loss function f , we can recover the standard
DPO objective [Rafailov et al., 2023] (f(x) = − log σ(x)), or the IPO objective [Azar et al., 2024]
(f(x) = (x− 1)2). Other objectives can be found in [Tang et al., 2024b]. In this paper, we will focus
on these two well-studied objectives.

2.3 Over-Optimization and the Performance Gap Between Online and Offline Alignments

In this study, we refer to online alignment methods as those that require sampling from the currently
trained policy during the training process. This includes the two-stage RLHF and online variants of
DPO or IPO [Guo et al., 2024, Schulman et al., 2017]. In contrast, offline methods do not require
on-policy sampling and are computationally more efficient.

Experiments from Tang et al. [2024a] demonstrate that both online and offline alignment algorithms
suffer from over-optimization, wherein an alignment algorithm consumes a large optimization budget
(such as how far the optimized policy πθ drifts away from the reference policy πref, measured by
KL divergence) without improving (and even reducing) its performance. However, offline methods
exhibit a larger degree of degradation compared to online methods. Importantly, they show that
offline data coverage and data quality cannot convincingly explain the performance difference.

In this study, we hypothesize that this performance gap is caused by inappropriate regularization
when using only off-policy data in offline DAAs, making these algorithms more susceptible to
over-optimization. In the standard RLHF (Eqn. (3)), the trade-off between the surrogate reward
scores and the negative KL divergence is explicitly formulated. In each optimization step, if the first
term outweighs the second term, the learning algorithm optimizes the LM toward the direction that
increases the surrogate reward scores at the cost of increasing the KL divergence budget. Consequently,
if the surrogate reward function is not a good approximation of the true reward function, this behavior
will result in an ineffective use of the KL-divergence budget, leading to over-optimization.

In DAAs, this tradeoff is implicit. To see this, we denote the log ratio difference in DAAs’ loss
function as ρθ := log πθ(y

w)
πref(yw) − log πθ(y

l)
πref(yl)

and consider the Taylor expansion around ρθ = 0, which
is the case when the finetuning starts with πθ = πref ,

E(x,yw,yl)∼D [f (βρθ)]︸ ︷︷ ︸
direct alignment loss

≈ f(0) + f ′(0)β · E(x,yw,yl)∼D [ρθ]︸ ︷︷ ︸
preference optimization

+
f ′′(0)β2

2
· E(x,yw,yl)∼D

[
ρ2θ
]

︸ ︷︷ ︸
weighted squared loss

, (7)

Tang et al. [2024c] show that if yw and yl are generated by πθ and a labeling function p, then the
expectation of the gradient of the weighted squared loss term recovers the update of the reverse KL
regularization, i.e.,

E(x,yw,yl)∼(D,πθ)

[
∇θ

1

2
ρ2θ

]
= C · Ex∼D [∇θKL (πθ(·|x), πref(·|x))] (8)
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Figure 1: The results of minimizing the weighted square loss term with on-policy data (left), off-
policy data (middle), and off-policy data with importance sampling weights (right). The reference
distribution is modeled by a mixture of two-dimensional Gaussians, and πθ is an unimodal Gaussian.

where C is a constant. This equality suggests that DAAs with online preference data can enforce
regularization by optimizing the weighted squared loss. However, in the offline setting, i.e., yw and
yl are generated by πref and as πθ moves away from πref, Eqn. (8) does not hold. Instead, we have

E(x,yw,yl)∼(D,πref)

[
∇θ

1

2
ρ2θ

]

=2E(x,y)∼(D,πref)

[
log

πθ(y|x)
πref(y|x)

∇ log πθ(y|x)
]
+

2DKL [πref(·|x)|πθ(·|x)]E(x,y)∼(D,πref) [∇ log πθ(y|x)] (9)

The detailed derivation can be found in Appendix B.2. In Equation (9), since the KL divergence is
always positive, going in the opposite direction of the second term will push down the probability of
both winning and losing responses from the training data. Moreover, the first term will only regularize
samples from πref. Consequently, optimizing the weighted squared loss using offline data increases
the weights of responses that are out of the reference policy distribution, and this effect is stronger
when πθ deviates from πref. The visualization of this effect is plotted in Figure 1. Since preference
labels for OOD responses are not available, increasing their probability is inappropriate.

3 Mitigating Over-optimization in DAAs with Importance Sampling

The regularization effect in DAAs is effective only when the policy πθ remains close to the reference
policy πref. Once πθ moves away from πref, the influence of the regularization diminishes (Section
2.3) and this can be detrimental to performance. To mitigate this problem, a simple approach is to
apply online sampling training to collect responses from the current policy πθ [Guo et al., 2024].

LOnline-DPO(πθ, πref) =

− Ex∼D,(yw,yl)∼πθ(·|x)

[
log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]
(10)

However, online training is considerably more complex than offline methods, as it involves training
an explicit reward model and sampling from the LM policy that is being trained, incurring significant
computational costs. [Rafailov et al., 2023]

3.1 Importance Sampling DAAs (IS-DAAs)

Motivated by the insight in Section 2.3, which reveals the inappropriate implicit KL regularization in
offline DAAs, we design a method to more effectively estimate this KL divergence without requiring
repeated online sampling from the πθ. Specifically, we leverage importance sampling to estimate the
expectation under the LM policy πθ distribution given samples from the offline data. This leads to
the following objective:

LIS-DPO(πθ, πref)

=− Ex∼D,yw,yl∼πref(·|x)

[
w(x,yw,yl) log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]
(11)
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where the importance weights w(x,yw,yl) = πθ(y
w|x)

πref(yw|x)
πθ(y

l|x)
πref(yl|x) . Here, the importance weight is

the ratio of sequence-level probability between πθ and πref, i.e., πθ(y|x)
πref(y|x) =

∏T
t=1

πθ(yt|x,y<t)
πref(yt|x,y<t)

. The
update is multiplied by this importance weight to adjust the action probabilities so that the expectation
according to the LM policy πθ can be calculated with samples from πref.

We next show that by multiplying with an importance ratio, the objective in Eqn. (11) is an unbiased
estimation of the objective in Eqn. (16) without requiring recursively sample from the learned policy.
Moreover, this also leads to the gradient of weighted squared loss, and the gradient of KL divergence
coincides under certain conditions. More formally, we have:

Theorem 1 Assuming Supp (πref) = Supp (πθ), then the objective in Eqn. (11) is an unbiased
estimation of Eqn. (16) and the gradient concerning πθ of the weighted squared loss equals to the
gradient of KL divergence,

Ex∼D,(ywyl)∼πref(·|x)

[
w(x,yw,yl)∇θ

1

2
ρ2θ

]
= Ex∼D [∇θKL (πθ(·|x), πref(·|x))] (12)

Theorem 1 implies that by incorporating the importance ratio, we can ensure that minimizing the
µ-squared regularization also minimizes the KL divergence. The proof is in Appendix B.1.

Mitigating Importance Sampling’s high variance using clipping. Directly computing the im-
portance weights during training can lead to extremely high variance Elvira and Martino [2021],
potentially resulting in gradient explosions due to extreme values. To mitigate this problem, we
propose to use Truncated importance weighting estimator [Elvira and Martino, 2021], as follows:

w(x,yw,yl) = max

(
πθ(y

w|x)
πref(yw|x)

πθ(y
l|x)

πref(yl|x) , ϵ
)

(13)

where ϵ serves as a regularization to trade-off between the bias and variance of the importance ratio.

3.2 An analysis of regularization effect in DAAs with Importance Sampling

This section provides a detailed example in which the weighted squared regularization term
only serves as a local approximation of the KL divergence when πθ is near πref and, by
incorporating an importance ratio, we can enforce a more effective regularization in DAAs.

0.2 0.4 0.6 0.8 1.0
β

0.2

0.4

0.6

0.8

1.0

cos (∇θKL,∇θµIS)

cos (∇θKL,∇θµ)

Figure 2: Cosine similar-
ity cos (∇θKL,∇θµ) and
cos (∇θKL,∇θµIS) as a func-
tion of β.

We consider a multi-arm bandit problem with 4-action space
A = {a0, a1, a2, a3}, the reference model πref as πref(a0) =
0.5, πref(a1) = πref(a2) = 0.1, and πref(a3) = 0.3 , and the
reward as r(a0) = 0.5, r(a1) = 1, r(aj) = 0,∀j ∈ {2, 3}.
We can obtain the optimal policy analytically as π∗(a) ∝
πref(a) exp (1/β × r(a)). We then learn a parametrized policy
πθ(a) to imitate the optimal policy π∗(a) by minimizing the
KL divergence. KL (πθ||π∗).

To demonstrate that incorporating importance sampling can en-
force KL regularization without the need for online sampling,
we compare the gradients in terms of their cosine similarities.
Specifically, we measure the cosine similarity between the
gradient of the KL divergence with respect to the parameters
of πθ (denoted as ∇θKL) and the gradient of the weighted
squared loss (denoted as ∇θµ). This is expressed as cos (∇θKL,∇θµ). Additionally, we compute
the cosine similarity between the KL gradient and the gradient of the weighted squared loss with
importance sampling (denoted as ∇θµIS), represented as cos (∇θKL,∇θµIS). This analysis helps us
understand how closely importance sampling aligns with the KL regularization as the learned policy
πθ moves away from πref. We experiment with β ∈ [0.05, 1.0] to control the deviation of πθ from
πref.

As shown in Fig. 2, under high regularization, both the gradient ∇θµIS (πθ, πref) and ∇θµ (πθ, πref) ex-
hibits high cosine similarity with ∇θKL (πθ||πref). However, the cosine similarity cos (∇θKL,∇θµ)
starts to decrease quickly when β becomes too small and can even be negative. On the other hand,
cos (∇θKL,∇µIS) shows consistently high similarity across all β, this shows that by incorporating
the importance ratio, we can enforce an effective regularization even when the learned policy deviate
significantly from πref.
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4 Experiments and Results
In this section, we empirically evaluate IS-DAAs ability to align language models with human
preferences and mitigate the reward over-optimization problem. First, in the TL;DR Summarization
task, we systematically study the trade-off between the policy performance and KL regularization
achieved by different alignment methods in a controlled environment where we assume to have
access to a golden reward model as the ground-truth preferences. Next, in the Instruction Following
benchmark, we evaluate IS-DAAs on three standard open-ended instruction following benchmarks.
Under both settings, IS-DAAs outperform existing alignment approaches and better mitigate the
over-optimization problem compared to existing approaches designed for this purpose.

Models: Throughout our experiments, we use Llama-3.2-3B [MetaAI, 2024a,b] as the pre-trained
base model. For both summarization and the instruction following, we first supervised fine-tuning
Llama-3.2-3B to serve as the initialization for subsequent preference training.

Baselines: In addition to IS-DAAs, we evaluate several existing baselines that address the over-
optimization problem in DAAs, including: DAAs+SFT objective [Liu et al., 2024a, Cen et al., 2025,
Fisch et al., 2025], which augments the DAAs with an additional SFT loss, we refer to this approach
as Regularized Preference Optimization (RPO), χ-PO [Huang et al., 2025], which combines χ2

with KL regularization to enforce stronger regularization. Additionally, We also consider DAAs
with length-regularization approach [Park et al., 2024a], to address the length exploitation issue – a
common pattern of reward over-optimization [Park et al., 2024a, Chen et al., 2024b].

4.1 TL;DR Summarization

Setup: For the summarization task, we consider the filtered version of Reddit TL;DR summarization
dataset [Stiennon et al., 2020]. Following the “controlled” environment setups of [Gao et al., 2022,
Tang et al., 2024a, Rafailov et al., 2023], we assume access to the golden (ground-truth) reward
model. This golden reward model is learned to encourage high-quality summaries of Reddit Posts.
The golden reward model will provide preference feedback to create a synthetic preference dataset
Dgolden = {xi,y

w
i ,y

l
i}Ni=1 for preference training.

The reference model is obtained through SFT on the dedicated SFT split. For preference training,
we consider 2 epochs of training with varying regularization strength β to investigate the reward
maximization and KL divergence trade-off under different approaches.

Evaluation: We evaluate the performance of the learned policy by the win rate against the chosen
summaries from Dgolden. The win-rate is determined by the golden reward model. Our main results
are shown in Fig. 3, which presents the win rate and KL trade-off across different configurations after
2 epochs of training. Our main findings are:

Previous approaches is insufficient to mitigate Reward Over-optimization. As shown in Fig. 3,
under low KL constraint strength (β = 0.01), apart from χ-po, prior alignment methods – even with
their proposed regularization techniques – still suffer from the over-optimization problem. These
methods fail to constrain the learned policy to stay close to πref, leading to decreasing performance of
the learned policy. Moreover, the results in Fig. 4 demonstrate the early convergence phenomenon
[Park et al., 2024a], where these methods reach their peak performance after training on only 30−40%
of the data, followed by performance degradation as the training progresses with increasing KL
divergence.

IS-DPO is significantly more KL efficient than other methods. Considering the square root KL
divergence as the resource to be spent, we can observe that IS-DPO “spent” KL more effectively
than the other methods. Under low regularization, IS-DPO effectively regularizes the policy to a
significantly low KL budget and avoid reward over-optimization. Under stronger KL regularization
(β = 0.1), IS-DPO spends a higher KL budget compared to the other approaches to achieve a better
performance (Fig. 4). Interestingly, the effect of the penalty in IS-DPO is akin to the early stopping
phenomenon (Fig. 3), where the training stops at a specific KL divergence

√
KL (πθ||πref) (≈ 5.5) to

avoid over-optimization without requiring any evaluation set. We discuss this result further in Section
4.3 of the Appendix.

IS-DPO exhibits better performance while effectively mitigating early convergence problem.
As shown in Fig. 4, across different regularization strengths, IS-DPO achieves the highest averaged
win rates. Furthermore, while other approaches suffer from an early convergence problem, IS-DPO
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continues to improve or stay flat at later epochs with a significantly lower KL budget. This shows
that IS-DPO is robust to the over-optimization problem.

2 4 6 8√
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Figure 3: Result on over-optimization of different methods in TL;DR and Anthropic datasets. Results
show the win rate over the reference summary as judged by the golden reward model as a function of
square root KL divergence, with the proposed fitted curve from gao2022scalinglawsrewardmodel.

Clipping ratio ϵ Ablation. We conduct ablation studies to better understand how the clipping ratio ϵ
influences policy performance and regularization in Fig. 5. As can be observed, a moderate value of
log ϵ = 1.0 yields the highest win rate (≈ 92%) and is associated with the highest KL divergence.
These results are consistent with the bias-variance trade-off of clipping ratio ϵ. Specifically, a higher
value of ϵ allows a larger model update and better reflects the on-policy objective. However, setting ϵ
too large can lead to only a small number of samples with excessively large weights that dominate
the learning signals of the other valuable samples [Park et al., 2024b].
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Figure 4: Results on optimization dynamics of different methods. The top row shows win rate over
2 epochs, while the bottom row shows the corresponding square root KL divergence. The shaded
area displays standard error over 3 seeds. Under low KL regularization strength, IS-DPO can achieve
better performance across different baselines and exhibit no over-optimization phenomenon while
maintaining a significantly lower KL budget.

4.2 Instruction Following
Setup: For the instruction following task, we consider the Anthropic Helpful and Harmless (HH)
dataset [Bai et al., 2022], UltraFeedback dataset [] for preference trainining. We consider 1 epoch of
training with β = 0.05 as standard configurations for offline alignments [Rafailov et al., 2024, Gao
et al., 2024, Guo et al., 2024].

Evaluation: We evaluate methods fine-tuned on the UltraFeedback on 2 widely-adopted benchmarks:
AlpacaEval 2.0 [Dubois et al., 2025] and MT-Bench [Zheng et al., 2023]. For Anthropic-HH, We
evaluate the performance using a reward model trained on a preference dataset and querying GPT-4
to serve as a proxy for human evaluation. We provide a detailed evaluation setup in Section D of
the Appendix. Similar to the summarization task, we compare the learned policy against the chosen
responses from the preference data and report the win rate of various methods using GPT-4 and the
trained reward model.
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Figure 5: The ablation results for the clipping ratio ϵ in Eq (13). Results show model win rate and KL
regularization effect over the summarization dataset across 3 random seeds. We observe that higher
clipping ratios allow for larger policy updates, resulting in both increased KL divergence between the
policy and reference model and improved win rate.

Results: Experimental results are shown in Tab. 1. For Anthropic-HH, IS-DPO demonstrates notable
improvements over the other baselines, in both evaluations using both the reward model and GPT-4.
Specifically, IS-DPO achieves approximately 3% improvement over the standard DPO, judged by
GPT-4 and the reward model. On AlpacaEval 2.0 and MT-Bench, our results show that IS-DPO
consistently outperforms state-of-the-art methods such as DPO and RPO, and demonstrate competitive
results and achieve competitive performance with χ-PO on AlpacaEval 2.0.

Method Anthropic-HH AlpacaEval 2.0 (%) MT-Bench
RM (%) GPT-4 WR (%) GPT-4 WR (%) GPT-4 Score

DPO 81.77 ± 0.5 71.1 ± 0.6 5.81 5.39
RPO 81.50 ± 0.4 66.5 ± 0.4 5.77 5.29
Length-DPO 83.85 ± 0.8 58.0 ± 1.0 3.71 5.24
χ-PO 81.25 ± 1.5 67.2 ± 1.4 6.85 5.09
IS-DPO (Ours) 84.60 ± 0.6 74.0 ± 0.9 6.33 5.44

Table 1: Average win rate and standard deviation from 3 different seeds against the chosen responses
on the different dialogue datasets. The best results are bolded.

4.3 Importance Sampling as Support Constraint
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Figure 6: Averaged importance ratio
πθ(y|x)/πref(y|x) during training.

This section analyzes why Importance Sampling can serve
as an implicit early stopping mechanism, effectively avoid-
ing over-optimization. Consider 2 discrete distributions P (X)
and Q(X) defined over a random variable X . We wish to es-
timate a function f(x) under P : Ex∼P [f(x)] and IS achieves
this estimation through Ex∼Q

[
P (x)
Q(x)f(x)

]
. Under the support

assumption supp (P ) ⊆ supp (Q), IS will be an unbiased es-
timation. However, when this assumption does not hold, IS
instead estimates

∑
supp(Q) P (x)f(x), which is biased.

In the case of IS-DAAs, where πθ is P and πref is Q, this
biased estimate can be a blessing in disguise. To elaborate,
minimizing the objective in Eqn. (11) is equivalent to mini-
mizing:

Ex∼D,yw,yl∼π̃θ(·|x)

[
log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]
(14)

where π̃ is defined as:

π̃θ(y|x) =
1 [πref(y|x) > 0]πθ(y|x)∑
y 1 [πref(y|x) > 0]πθ(y|x)

(15)

By adopting Importance sampling, IS-DAAs only provide updates to πθ when πθ’s samples are in
πref’s support regions. When the support assumption is violated, supp (πθ) ̸⊆ supp (πref), IS-DAAs
will not update πθ, thus avoiding the extrapolation issue.
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Empirically, we observe that, throughout the training process, the importance ratio πθ/πref decreases
as training progresses (Fig. 6). This means that several samples have low probability under πθ, or
πθ(y|x) ≈ 0). This leads to πθ’s updates with fewer and fewer samples, inducing an early stopping
effect. Without IS, further training on these samples with small importance ratios (πθ/πref) can lead
to performance degradation.

5 Related Works

5.1 Reinforcement Learning from Human Feedback

In recent years, RLHF has been a dominant framework for aligning LLMs with human preferences.
The RLHF pipeline begins with supervised fine-tuning (SFT) of the LLM using next-token prediction
objectives on a dataset of high-quality, instruction-following responses. This is followed by fine-
tuning the SFT’s LLM using reinforcement learning (RL) algorithms such as PPO [Schulman et al.,
2017] or REINFORCE [Williams, 2004], to maximize an “explicit reward” (based on the preference
data) with a KL regularization to the reference policy. Alternatively, DAAs, such as DPO [Rafailov
et al., 2023] and IPO [Azar et al., 2024], aim to simplify the RLHF pipeline by directly optimizing
the LLM on human preferences without an explicit reward model or RL.

5.2 Over-optimization in DAAs

Gao et al. [2022] refer to over-optimization as the situation where an algorithm consumes a large
optimization budget without improving (and even reducing) its performance. In this study, the KL
divergence KL (πθ||πref) is used as an optimization budget since it measures how far the optimized
policy πθ drifts away from the reference policy πref during training. Rafailov et al. [2024] study the
trade-off between the KL divergence and the policy performance under three DAA objectives: DPO,
IPO, and SLiC. They observe clear over-optimization after a certain point during training when an
additional increase in the KL budget leads to a decrease in the model performance. This pattern
persists across model sizes, with smaller models often exhibiting clearer signs of over-optimization.
Regularization methods, such as length regularization park2024disentangling, rafailov2024scaling,
can not mitigate this problem. Furthermore, Tang et al. [2024a] observes that both online and offline
variants of DAAs suffer from over-optimization, while the online DAAs achieve better budget and
performance trade-offs than the offline kinds.

5.3 Performance gap between online and offline alignment

We connect the over-optimization problem in offline alignment algorithms to the distribution shift
problem encountered in offline RL [Levine et al., 2020, Kumar et al., 2020]. Specifically, during
training, the policy πθ is optimized using data generated by the reference model πref. However,
during deployment, the policy must act based on its own generated distribution, which may differ
significantly from the training data. This discrepancy can lead to performance degradation, especially
when the LMs encounter states that differ significantly from those in the offline data [Chen et al.,
2024a]. While (DAAs) are designed for off-policy learning, they still suffer from this distribution
shift problem [Rafailov et al., 2024, Tang et al., 2024c]. Our work demonstrates that, under such
conditions, DAAs exhibit weak regularization and fail to regularize the learned policy when the LM
deviates far away from its original (reference) distribution. Inspired by this observation, we propose
IS-DAAs, which estimate an on-policy learning objective given only the offline preference data and
effectively mitigate the distribution shift problem in DAAs.

6 Discussion

We study reward over-optimization in Direct Alignment Algorithms (DAAs). We show that one of
the main sources of reward over-optimization in DAAs is the mismatch between offline distribution
and the LM policy. To reduce this distribution gap problem, we introduce IS-DAAs, a simple yet
effective method to estimate samples under the LM policy distribution given samples from the offline
distribution. The proposed method is also able to overcome the high variance issue of importance
ratio estimation. Our results showed that IS-DAAs outperform other regularization methods and
effectively resolve the over-optimization issues in DAAs.
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A Appendix.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we provided experiment descriptions in the main paper and appendix. Further-
more, we will release our GitHub implementation if the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will publish the code when the paper is accepted or through an anonymous
link if some reviewers ask for it.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided details for experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct experiments on diverse datasets and run same configurations with
different seeds to report error bars suitably and follow the protocol used by previous works
for fair comparisons.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these information in section C Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is to advance alignment algorithms that avoid over-optimization
and ensure the development of models that are safe for real-world deployment. We have
mentioned in section A Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We experiment with public models and public datasets. Our work does not
pose such risks as we are training these model for alignment.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited papers and resources used in our experiment. The
pretrained model comes from Llama-3.2-3B which are classified under the Community
License agreement: https://huggingface.co/meta-llama/Llama-3.2-3B. Both the TL:DR,
Anthropic-HH, and UltraFeedback datasets used in this work use the MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t have experiments involving crowdsourcing or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM for grammar checking only.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Societal Impacts

Our discussion highlights an ineffective regularization with direct alignment algorithms used widely
to align to human preferences. In this work we analyze and resolve these issues. However, We still
assume an underlying Bradley-Terry model of human preferences, as these models might not be
accurate in explaining the ways humans give preferences and do not experiment with larger models
due to limited computational resources. Furthermore, our IS-DPO implicitly assume hat the policy
produced the offline dataset D is generated from πref, while might not holds in practice. Our work is
to advance alignment algorithms that avoid over-optimization and ensure the development of models
that are safe for real-world deployment.

B Proofs and Derivations

B.1 IS-DPO is an unbiased estimation of online DPO

Theorem 1 Restated. Assuming Supp (πref) = Supp (πθ), then objective (Eqn. (11)) is an unbiased
estimation of the objective in Eqn. (16) and the gradient concerning πθ of the weighted squared loss
equals to the gradient of KL divergence. Proof. Online-DPO objective can be expressed as:

LOnline-DPO(πθ, πref) =

− Ex∼D,(yw,yl)∼πθ(·|x)

[
log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]

Expanding the expectation leads:

= −Ex∼D


∑

yw,yl

πθ(y
w,yl|x) log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)


= Ex∼D


∑

yw,yl

πref(y
w,yl|x) πθ(y

w,yl|x)
πref(yw,yl|x) log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)


= Ex∼D

[
E(yw,yl)∼πref(·|x)

[
πθ(y

w,yl|x)
πref(yw,yl|x) log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]]

Where we denote π(yw,yl) = π(yw|x)π(yl|x). This yields Eqn. (11).

Similarly, given a prompt x, consider the gradient of KL divergence:

∇θKL(πθ||πref) =
∑

y

∇θπθ(y|x) +
∑

y

log

(
πθ(y|x)
πref(y|x)

)
∇θπθ(y|x)

We can drop the first term since
∑
y
∇θπθ(y|x = ∇θ

(
∑
y
πθ(y|x)

)
= ∇θ(1) = 0. We now consider

the gradient of weighted-squared loss with Importance Sampling:

1

2
Ex∼D,(yw,yl)∼πref(·|x)

[
πθ(y

w,yl|x)
πref(yw,yl|x)∇θ

(
log

πθ(y
w|x)

πref(yw|x − log
πθ(y

l|x
πref(yl|x

)2
]

= Ex∼D,(yw,yl)∼πθ(·|x)

[(
log

πθ(y
w|x)

πref(yw|x) − log
πθ(y

l|x)
πref(yl|x)

)(
∇θ log πθ(y

w|x)−∇θ log πθ(y
l|x)
)]

= Ex∼D,(yw,yl)∼πθ(·|x)

[
log

πθ(y
w|x)

πref(yw|x)∇θ log πθ(y
w|x) + log

πθ(y
l|x)

πref(yl|x)∇θ log πθ(y
l|x)
]

= Ex∼D,y∼πθ(·|x)

[
log

πθ(y|x)
πref(y|x)

∇θ log πθ(y|x)
]
= Ex∼D [∇θKL (πθ||πref)]

Which concludes the proof.
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B.2 Detailed derivation of regularization effect in DAAs

E(x,yw,yl)∼(D,πref)

[
∇θ

1

2
ρ2θ

]

=E(x,y1,y2)∼(D,πref)

[
∇θ

1

2
ρ2θ

]

=2E(x,y)∼(D,πref)

[
log

πθ(y|x)
πref(y|x)

∇ log πθ(y|x)
]
−

2E(x,y)∼(D,πref)

[
log

πθ(y|x)
πref(y|x)

]
E(x,y)∼(D,πref) [∇ log πθ(y|x)]

=2E(x,y)∼(D,πref)

[
log

πθ(y|x)
πref(y|x)

∇ log πθ(y|x)
]
+

2DKL [πref(·|x)|πθ(·|x)]E(x,y)∼(D,πref) [∇ log πθ(y|x)]

C Training Details

For the following dialogue history to a chatbot, which response is more
helpful?

Dialogue history:
<dialogue history>

Response A:
<Response A>

Response B: <Response B>

FIRST provide a one-sentence comparison of the two responses and explain
which you feel is more helpful. SECOND, on a new line, state only "A" or
"B" to indicate which response is more helpful. Your response should use
the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

Table 2: Prompt for GPT-4 evaluation on the dialogue generation task. Texts in blue are placeholders
to be substituted by the real data.

SFT Training For the summarization task, we use the SFT split of Reddit TL;DR summarization.
For Anthropic-HH we use the chosen responses from the preference dataset for SFT stage. We pool
together both datasets into a single SFT dataset.

Preference Training For TL;DR summarization dataset, we train all methods for 2 epochs. To
evaluate the efficiency of addressing the over-optimization problem, we vary the regularization
strength β ∈ {0.01, 0.05, 0.1}.

Across all SFT and Preference training, we use a global batch size of 64 (with 4 gradient accumulation
steps), and AdamW optimizer with a learning rate of 1× 10−6 (cosine learning rate scheduler warm-
up for 100 steps) and a max length of 640.

Golden Reward Training details We follow the synthetic setup where the golden reward model
serves as human evaluation and provides preference labels [Gao et al., 2022, Tang et al., 2024a].

We first initialize the golden reward model with a SFT version of Llama-3.1-8B on the pooled
SFT data. We then train the golden reward model on the combined preference of the TL;DR and
Anthropic-HH dataset. Specifically, we use a batch size of 128, with a learning rate of 5× 10−6, we
train for one epoch with a cosine learning rate schedule.
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The golden reward model achieves high validation accuracies with 75.2% validation accuracy,
showing high correlation with human preferences.

Details of KL Divergence Estimation In this paper, we construct an unbiased estimate of
KL(πθ||πref) by sampling. More specifically, we first sample N prompts {xi} from the evaluation
set, for each prompt xi, we sample a response y ∼ πθ(·|xi) from the learned policy πθ. Following
[Schulman, 2020], The KL divergence is estimated as follows:

1

N

N∑

i=1

log
πθ(y

i|xi)

πref(yi|xi)
+

(
πθ(y

i|xi)

πref(yi|xi)
− 1

)

Compute Resources Specification We train and evaluate our models using NVIDIA 4xH100 GPUs.
All evaluations are computed with "gpt-4o-mini" as judge, with random positional flips to avoid
position bias.

D Evaluation Details

Golden reward Evaluation we sample 2 completions per prompt from the learned policy with 512
prompts from the evaluation set. We sample with temperature τ = 0.7 and top-p sampling with
p = 0.95. to evaluate its performance. To calculate the winrate, we consider all combinations of
pairs between the completions generated by the learned policy and the reference completions from
the preference dataset, and then compare the scores from the golden reward model on the pair of
generations to calculate win-rate.

GPT-4 Evaluation For GPT-4 evaluation, we sample 256 prompts from the evaluation set. For each
prompt, we sample 1 completion from the learned policy. To evaluate the dialogue generation task,
we use the prompt shown in Table 2, similar to [Ji et al., 2024] with random position flipping to avoid
position bias.

E IS-DPO as an approximation of Online-DPO
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Figure 7: Scaling law curve fits between DPO, IS-DPO and Online-DPO

We have conducted experiments to understand how well the IS-DPO can better approximate the
Online-DPO Guo et al. [2024]. Our findings are below:
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IS-DPO can closely approximate Online-DPO up to a specific KL divergence threshold: We
observe that IS-DPO also follows a similar performance trajectory to Online-DPO in the low to
moderate KL divergence regime . In this region, both methods show a similar and steady increase in
win rate. This suggests that IS-DPO is capable of closely approximating the behavior and performance
of Online-DPO within a certain KL "budget".

On-policy benefits from large KL "budget": While IS-DPO does not show signs of over-
optimization, it also does not extrapolate to higher KL regimes, while Online-DPO can find better
policies under higher KL regimes. This indicates that on-policy optimization remains beneficial when
the optimal policies lie farther from the , as Online-DPO is able to leverage a larger KL budget.

Comparison with DPO: We also provide a comparison between Online-DPO and DPO. Interestingly,
we observe that under a low KL budget, DPO appears to outperform Online-DPO. However, it sharply
declines as KL increases, indicating over-optimization, while IS-DPO and DPO effectively utilize a
larger KL budget to achieve higher performance.

F The role of Importance Sampling in IS-DPO and PPO.

While Importance Sampling (IS) has also been used to address distribution shift in PPO, its usage is
fundamentally different from our paper.

PPO uses clipped importance sampling (IS-clip) to improve sample efficiency. Since each batch is
typically discarded after a single gradient update in standard policy gradient methods, IS allows PPO
to reuse the same batch multiple times, extracting the most information from each batch. In contrast,
our objective is to enforce an effective regularization, to prevent them from pushing up the probability
of responses that are out of the offline data distribution, mitigating the over-optimization issue. In
addition, in PPO, the clipping mechanism acts as a surrogate trust region to prevent the policy from
deviating too far from the previous one (which can help mitigate over-optimization), but in a fully
offline setting (as in our paper), this mechanism becomes overly conservative-where gradient is zero
when the probability ratio falls outside the clipping range, limiting the potential improvement from
[Chen et al., 2023, Meng et al., 2023]. Our clipping strategy, conversely, mitigates excessively large
updates with IS while still providing meaningful updates even when the ratio lies outside the clipping
region.

G Theoretical Insight of clipping ratio ϵ and KL regularization.

Proposition 2 Assuming supp(πθ) = supp(πref), then the variance of the importance weight

Varπref

(
πθ

πref

)
is an upper bound of KL divergence:

KL(πθ||πref) ≤ Var
(

πθ

πref

)
(16)

The proof is straightforward by utilizing the inequality log x ≤ x − 1,∀x > 0. This proposition
highlights that when regularization is weak (i.e., small β), the policy can deviate significantly from
πref, leading to high variance in the importance weights. This motivates the use of a smaller clipping
threshold to control variance and stabilize training under such regimes.

Additionally, we also conduct the relationship between the regularization parameter β and the clipping
ratio ϵ. We present the win-rate and KL values for TL;DR summarization dataset below: We observe
that increasing the clipping threshold allows for larger policy updates, which in turn leads to higher
KL divergence across all values of β. Interestingly, at low regularization levels (small β), using a
smaller clipping ratio yields better performance, as it helps prevent over-optimization. Overall, our
experimental results is consistent with Proposition 2, where smaller clipping threshold should be
used for small regularization strength to avoid over-optimizaion issue.

H Computational cost of calculating importance ratio.

The computational overhead of calculating the importance ratios is negligible and results in almost
the same time complexity as DPO. Despite adding the additional importance ratio calculation step to
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Figure 8: Win rate and KL divergence across different ϵ and β.

the original DPO loss, this ratio can be efficiently computed using intermediate quantities already
available in the DPO loss calculation. Specifically, as presented in the paper, the importance ratio can
be computed in the log-space as follows:

w(yw,yl) = exp (log πθ(yw) + log πθ(yl)− log πref(yl)− log πref(yw)) (17)
Hence, IS-DPO only adds a small calculation, negligible compared to the much more heavier
computations in the vanilla DPO. This implementation is also straightforward and simple, requiring
only a single additional line of code.

To empirically validate this claim, we report the average training time over 100 steps for both DPO
and IS-DPO. We use 4 A100-80GB GPUs, a batch size of 16, and LLaMA-3.2-3B as the base model:

IS-DPO DPO
92.829s ± 5.144 92.571s ± 4.837

As can be observed, the training time for IS-DPO is nearly identical to that of the vanilla DPO,
confirming that our approach is computationally efficient and negligible in overhead.

I The necessity of support constraint in IS-DPO.

While the optimal policy under the DPO objective satisfies:

π∗(y|x) = 1

Z(x)
πref(y|x) exp(r(x,y)) (18)

Thus shares the same support as πref. However, prior works [Rafailov et al., 2024, Azar et al., 2024,
Song et al., 2024, Xu et al., 2024] have shown that DAAs assume that πref has full support over the
entire prompt-response space to achieve π∗. In practice, this assumption rarely holds, as preference
datasets only cover a small fraction of the prompt-response space. Consequently, multiple distinct
policies can achieve the same global optimum of the DPO objective [Xu et al., 2024, Azar et al.,
2024, Rafailov et al., 2024], including policies that assign probability mass to responses outside the
support of πref. This contrasts to the original RLHF framework, which prevents generating responses
that are of support via explicit KL regularization. Thus, our proposed importance sampling method
further enforces the support constraint, helping to avoid this failure mode.

J Connection to principle of pessimism in Offline RL.

At a high level, the principle of pessimism explicitly subtracts uncertainty-based penalties such as KL
divergence or divergence from the estimated value with the aim of preventing overestimation of the
value of candidate policies in regions with low data coverage or high uncertainty.

24



IS-DPO also incorporates a form of pessimism by assigning lower weights to trajectories that are less
likely under the learned policy, effectively penalizing policies that place high probability mass in areas
poorly covered by the data. This mechanism aligns conceptually with pessimism-based regularization
[Liu et al., 2024a, Zhu et al., 2024]. Moreover, there is a deeper theoretical connection worth
exploring: the variance of the IS estimator Varπref

(
πθ

πref

)
is proportional to the chi-squared divergence

between χ2(πθ, πref) This observation suggests a promising direction to formalize the connection
between importance sampling and pessimism. χ2 divergence has been used in LLM alignment to
impose stronger regularization, thereby effectively mitigating over-optimization issues. We believe
that bridging this connection more formally, possibly through uncertainty-aware confidence intervals,
is a promising avenue for future work.
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