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Abstract001

Mitigating positional bias of language models002
(LMs) for listwise inputs is a well-known and003
important problem (e.g., lost-in-the-middle).004
While zero-shot order-invariant LMs have been005
proposed to solve this issue, their success on006
practical listwise problems has been limited. In007
this work, as a first contribution, we identify008
and overcome two limitations to make zero-009
shot invariant LMs more practical: (1) train-010
ing and inference distribution mismatch arising011
from modifying positional ID assignments to012
enforce invariance, and (2) failure to adapt to013
a mixture of order-invariant and sensitive in-014
puts in practical listwise problems. Then, to015
overcome these issues we propose (1) RoToR,016
a zero-shot invariant LM for genuinely order-017
invariant inputs with minimal modifications of018
positional IDs, and (2) Selective Routing, an019
adaptive framework that handles both order-020
invariant and order-sensitive inputs in listwise021
tasks. On the Lost in the middle (LitM), Knowl-022
edge Graph QA (KGQA), and MMLU bench-023
marks, we show that ROTOR with Selective024
Routing can effectively handle practical list-025
wise input tasks in a zero-shot manner.1026

1 Introduction027

Language conveys meaning in part through posi-028

tional information, such as word placement and029

sentence structure. Given this nature, Language030

Models (LMs) that learn from human language are031

trained sensitive to positional information related to032

the ordering of segments. However, there are some033

listwise inputs that require neutrality to positional034

information. For example, for inputs such as sets,035

tables, databases, or multiple-choice questions, the036

ordering of the input segments—e.g., rows in a037

table or elements in an unordered set—require an038

order-agnostic understanding. We refer to such in-039

puts as “order-invariant inputs,” on which LMs re-040

portedly struggle. For example, in LLM-as-a-judge041

1The code will be publicly available upon acceptance.

Figure 1: Self-attention alteration from order-invariant
models. (a) PCW by elimination (b) PINE by re-
assignment of position IDs based on query-based pair-
wise ordering. In contrast, (c) RoToR minimizes the
distribution mismatch by global ordering with circular
assignment.

scenarios, LMs exhibit a preference of up to 75% 042

for the first answer in pairwise inputs (Zheng et al., 043

2024b), and ranking between LMs can change up to 044

8 positions in different orderings of multiple choice 045

questions on MMLU (Alzahrani et al., 2024). Such 046

results question the reliability of LMs on order- 047

invariant inputs. Meanwhile, existing methods for 048

enforcing invariance to LMs showed limited effec- 049

tiveness in real-world tasks, which we hypothesize 050

to arise from the following limitations. 051

First, training and inference distribution mis- 052

match due to the positional ID re-assignment of 053

zero-shot order-invariant LMs: Fig. 1 illustrates 054

how self-attention is altered in these models. Un- 055

like the original non-invariant model which always 056

assigns position IDs in a causal, ascending man- 057

ner, order-invariant models either eliminate inter- 058

segment attention, such as PCW (Ratner et al., 059

2023) in Fig. 1a, or re-assign position IDs as in 060

PINE (Wang et al., 2024) in Fig. 1b, re-ordering 061

segments using pairwise similarity, placing simi- 062

lar segments closer to the query. For each query 063

segment, it computes segment-wise query-key at- 064

tention (for each attention head in each decoder 065
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layer) and re-assigns position IDs of segments as066

keys. This query-dependent segment ordering leads067

to excessively frequent alterations of positional ID068

assignments. Frequent re-assignments can also con-069

fuse the model and risk collisions which violate the070

invariance property (e.g., multiple key segments071

having the same similarity to a query).072

To overcome this, we propose a query-agnostic073

global sorting with circular arrangement for order-074

invariant positional ID assignment. Ours is named075

ROTOR, inspired by the word rotary to express cir-076

cular assignment, and also a palindrome, to reflect077

order invariance. Fig. 1c contrasts with PINE in078

Fig. 1c, where ROTOR only needs a single global079

ordering (e.g., A->B->O->K->G) with no extra at-080

tention computation. The ordering of segments on081

suffix tokens remains in a fixed order, since it does082

not rely on their similarity to the query. Finally, we083

propose three different global sorting algorithms084

for ROTOR, and demonstrate that they consistently085

outperform previous order-invariant models.086

Second, for practical listwise inputs, order-087

invariant tasks may partially include order-sensitive088

inputs that require order-specific understanding.089

For example, the (d) None of the above option090

in MMLU cannot be reordered. Such a “mixed” na-091

ture requires handling each of the cases adaptively,092

for which we propose a simple Selective Routing093

method. Selective Routing adapts to a given input094

by routing between two models, invariant and non-095

invariant (original), based on the confidence scores096

of their predictions. Experiments on the MMLU097

benchmark show that Selective Routing effectively098

handles datasets with order-invariant and sensitive099

inputs, and achieves better order robustness while100

maintaining the original performance.101

In summary, our contributions are as follows: 1.102

Clarifying key challenges to robust understand-103

ing of listwise inputs. We pinpoint the distribution104

mismatch and positional ID assignment complexi-105

ties that hinder zero-shot order-invariance in LMs,106

and the need to adaptively handle order-invariant107

and order-sensitive inputs. 2. A stable, order-108

invariant solution (RoToR): We propose a query-109

agnostic global ordering with minimal positional110

ID modifications, resulting in stable and efficient111

order-invariance. 3. Adaptive handling of list-112

wise inputs (Selective Routing): We introduce a113

simple routing method that switches between the114

original and invariant LMs based on confidence.115

On MMLU, we show that Selective Routing can116

adaptively deal with both types of input, leading117

to better stability. To this end, we aim to develop 118

a model that excels at processing a wide range of 119

listwise inputs reliably and efficiently. 120

2 Related Works 121

2.1 Positional bias of LLMs 122

Problem statement. Recent works on (zero- 123

shot) retrieval augmented generation (RAG) with 124

LLMs have found that the models exhibit un- 125

wanted bias on the ordering of the retrieved doc- 126

uments (Chhabra et al., 2024). Widely known as 127

the lost-in-the-middle problem (Liu et al., 2024), 128

many prior studies (Chen et al., 2024; Gupta et al., 129

2024; Pezeshkpour and Hruschka, 2023; Zhao 130

et al., 2023; Zhou et al., 2024; Wei et al., 2024; 131

Alzahrani et al., 2024; Zheng et al., 2024a) also in- 132

vestigate the importance of positional bias, extend- 133

ing the domain to structured knowledge grounding 134

(SKG) tasks (Zhao et al., 2023; Zhou et al., 2024) 135

and multiple-choice questions (Gupta et al., 2024) 136

where changing the ordering of rows, schemas, or 137

choices greatly degrades performance. 138

Considerations for decoder-only LMs. While 139

successful approaches are presented to mitigate 140

this issue for encoder-only (Yang et al., 2022) and 141

encoder-decoder (Yen et al., 2024; Cai et al., 2023) 142

models, they leave decoder-only models, which 143

account for most of the current LLMs, for more 144

consideration. In contrast to transformer encoders 145

that use bidirectional attention which is invariant 146

by nature (Lee et al., 2019), transformer decoders 147

use causal attention to learn causal relation sig- 148

nals, which is not invariant by nature (Haviv et al., 149

2022a). Therefore, positional bias for decoder-only 150

models is known to stem from both positional en- 151

coding and causal attention mask (Yu et al., 2024; 152

Wang et al., 2024) and is harder to mitigate. 153

2.2 Zero-shot order-invariance for LLMs 154

Long context modeling. Zero-shot approaches for 155

mitigating positional bias in LLMs were first raised 156

in long-context tasks, with a goal to correctly han- 157

dle relevant information located in the middle of 158

lengthy inputs2. Nonetheless, these works focus 159

primarily on understanding long texts without los- 160

ing precision (Li et al., 2023; Zhang et al., 2024a; 161

An et al., 2023; Bai et al., 2024), whereas positional 162

bias is a more general problem that can occur even 163

on multiple-choices questions with relatively short 164

contexts (Alzahrani et al., 2024). Technically, this 165

2github.com/gkamradt/LLMTest_NeedleInAHaystack
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line of works modify the attention mechanism by166

altering the positional encoding to adapt an LLM167

to longer contexts (Peng et al., 2023; Hsieh et al.,168

2024; Peysakhovich and Lerer, 2023; Chen et al.,169

2023; Junqing et al., 2023; Xu et al., 2023; Yu et al.,170

2024; Zhang et al., 2024b). But since they do not171

modify the causal mask which also contributes to172

positional bias, order-invariance is not guaranteed173

in general (Haviv et al., 2022b).174

(Zero-shot) order-invariance. Recent line of175

works focused on achieving order-invariance by176

mechanistically altering both positional encoding177

and causal masking. While several works require178

training (Junqing et al., 2023; Zhu et al., 2023),179

we focus on zero-shot approaches for practical-180

ity, namely PCW, Set-Based Prompting (Ratner181

et al., 2023; McIlroy-Young et al., 2024), and182

PINE (Wang et al., 2024), which we explain in183

detail at Sec. 3.1. Another line of works based184

on self-consistency try to mitigate positional bias185

simply by running inference multiple times with186

different orderings of contexts (Zheng et al., 2024a).187

However, in principle, this requires evaluating n!188

forward passes in total, enforcing Monte Carlo189

approximations (Tang et al., 2024). More recent190

work optimizes the number or passes (Lee et al.,191

2025b) with similar comprehensiveness (Hwang192

and Chang, 2007), or replaces with contrastive193

training objective (Lee et al., 2025a). In contrast,194

our method guarantee invariance with a single for-195

ward pass, without requiring any approximations.196

3 Methodology197

3.1 Baseline: Order-invariant causal LMs198

In this section, we briefly overview the existing199

work on endowing decoder-only models on order-200

invariance by adjusting attention mechanism, and201

review their limitations.202

Isolated parallel processing Prior works like203

PCW (Ratner et al., 2023) and Set-Based Prompt-204

ing (McIlroy-Young et al., 2024) have modified the205

attention mask and positional ID assignments of the206

language model to isolate the processing of each207

segment and apply same positional embeddings are208

applied across segments, and thus achieve order in-209

variance: However, this design completely prevents210

one segment from attending to the others, and ag-211

gregating the information from different segments212

is solely handled at suffix and generated tokens, sig-213

nificantly hindering the LM’s cross-segment con-214

textualized understanding of the text. Yang et al.215

(2023) have argued that this essentially degenerates 216

to mere ensemble of conditioning on each context 217

separately. Such information bottleneck and train- 218

test time discrepancy limits the applicability, more 219

severely as the number of segments is increased. 220

Bidirectional processing with Q-K similarity A 221

more recent work, PINE (Wang et al., 2024) has 222

addressed these issues through a bidirectional atten- 223

tion mechanism, by letting each segment attend to 224

all other segments. However, to allow this within 225

decoder-only models with causal attention and still 226

achieve order invariance, PINE modifies the multi- 227

head self-attention procedure to create an ‘illusion’: 228

it treats each query segment as if it were the final 229

segment in the input list, so that it can attend to 230

all other segments as keys. For each query seg- 231

ment, the ordering among the key segments is de- 232

termined by their attention scores (without posi- 233

tional embeddings, AttnNoPoS), ensuring that seg- 234

ments with stronger relevance to the query appear 235

closer. Meanwhile, the tokens within a query seg- 236

ment still follow causal ordering. Fig. 2 illustrates 237

this with the input [T1“Given”, S1[“Apple”], 238

S2[“Ban”, “ana”], S3[“Orange”], T6“which 239

one”, .. T10“red?”]. Prefix tokens “Given” 240

and suffix tokens “which one .. red?” remain 241

in their original positions and follow normal causal 242

attention, equally attending to all segments. In con- 243

trast, the segments in the middle (S1 - S3) require 244

the order-invariant mechanism. PINE dynamically 245

re-assigns positional IDs depending on a token’s 246

role as a query or a key, instead of using a single 247

fixed positional ID. For Case 1: When “ana” (T4, 248

S2) acts as a query, S2 is assigned the largest posi- 249

tion IDs (5) so it can attend to all previous segments. 250

Within S2, the tokens “ban” (4) and “ana” (5) still 251

maintain their local causal order (i.e., smaller to 252

larger positions). Case 2: When “ana” serves as a 253

key, the placement of S2 depends on its AttnNoPoS 254

scores with the query segment. If “banana” (S2) is 255

more relevant to the query segment “apple” (S1) 256

than “orange” (S3), (i.e., AttnNoPos(S1, S2) > 257

AttnNoPos (S1, S3)) S2 is placed nearer to S1, 258

with “ban” and “ana” preserving their internal se- 259

quence. For prefix, suffix, and generated tokens, 260

they do not participate in order invariance, so they 261

are always placed at their standard causal positions. 262

However, the same dynamic reordering applies to 263

segment tokens (T2–T5) when computing attention 264

scores of suffix (T6–T10) and the generated token 265

(T11) as query. 266
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Figure 2: For example input “Given Apple Banana Orange which one is most related to the color red?
A: It is ...”, demonstration of how PINE and RoToR (ours) modify the attention mask and positional IDs for
each query-key combination, resulting in segment-wise order invariance. Assume each block represents a single
token, and blocks are colored in positional ID assignment. White (no-block) area indicate masked attention.

Figure 3: Comparing the ordering of 5 segments (S1 - S5) of PINE (Wang et al., 2024; left) and ROTOR (Ours;
right). PINE sorts segments using aggregated attention scores. In order to be fully ordering-invariant, segment
sorting is changed per token in suffix level, causing confusion. In contrast, we define one global sorting of segments
and conduct circular assignment between segments. With this, we simply use the global sorting for position id
assignment on suffix tokens, without harming invariance.

3.2 ROTOR: minimal OOD from positional267

ID assignments268

While PINE achieves order-invariance by contex-269

tualization across segments, its query-specific or-270

dering scheme introduces (1) significant train-test271

behavior discrepancy as well as (2) unnecessary272

complexity and numerical instability, which lim-273

its its scalability. During decoding with PINE,274

position IDs are assigned differently for every275

query token (each token in the suffix), decoder276

layer, and attention head, as the query-key atten-277

tion score AttnNoPos determines the position IDs.278

This complexity introduces excessively frequent279

alterations on position IDs: As the base LM is280

trained with fixed positional IDs and causal masks,281

this causes hidden activations higher risk of out-of-282

distribution (OOD) for it to process properly. More-283

over, ordering segments based on attention is com-284

putationally expensive and introduces numerical 285

instability. As computing the attention value of 286

one query segment requires computing the KV at- 287

tention over every other number of segments, PINE 288

invokes O(n2) cost overhead for each segment for 289

input length n, which is further multiplied by the 290

number of all combinations of layers, heads, and 291

the number of suffix and generated tokens. Also, in 292

practice, calculating attention without RoPE results 293

in a very narrow range of values. bfloat16 nu- 294

meric type lacks precision to distinguish these val- 295

ues, leading to non-determinism originating from 296

several tied values. The outcome may depend on 297

the initial ordering; to address these problems stem- 298

ming from query-dependent ordering, we instead 299

propose ROTOR (Fig. 3), which uses one global 300

ordering that is not a function of the initial order- 301

ing of segments (e.g., canonical ordering by lexical 302

sorting) and assign IDs for tokens in different seg- 303
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ments based on circular arrangement.304

Global ordering Instead of re-computing the rel-305

ative order of segments for each query, we reuse306

a globally shared single ordering, avoiding costly307

recomputation of numerically unstable attention308

scores. Moreover, this further reduces the gap be-309

tween the LLM’s pretrained behavior and test-time310

behavior, as consistent position IDs are assigned311

across layers/heads/across suffix tokens. Global312

ordering allows to preserve the relative placement313

of segments, further closing the gap induced from314

introducing order invariance to causal LMs. For315

example, in Figure 3, due to the global ordering,316

segments S5 and S2 are always placed in adjacent317

positions with ROTOR (right side), while it is not318

satisfied and constantly changed with PINE (left319

side). We consider three separate global sorting320

algorithm to be used in ROTOR: (1) simple lexi-321

cographical sorting which can be obtained with322

minimal overhead based on tokenized sequence of323

segments, (2) using a pointwise reranker3 to score324

relevancy of each row with respect to the question,325

or (3) simple frequency-based sorting which nor-326

malizes token ids based on the inverse frequency327

of each token (Details at Fig. 6). Empirically, we328

find that using simple lexicographical sorting is329

sufficient for bringing improvements over PINE.330

Circular arrangement To mimic bidirectional-331

ity with causal LMs, each segment should be as-332

signed position IDs so that they appear to them-333

selves as being placed at the end of the sequence of334

segments. To achieve this with a shared global or-335

dering, we employ circular arrangement, each seg-336

ment taking turns to be placed at the end while their337

relative ordering is preserved. Given the global or-338

dering, we can construct a single directed graph339

by combining the front and last parts. Then, we340

assign orderings for each segment as query by fol-341

lowing the path from the graph, starting from the342

query segment, which is illustrated in Fig. 3. For343

all suffix and generated tokens, segments are ar-344

ranged according to the initial front and last part of345

the global ordering. Compared to PINE where we346

have to assign different orderings of segments for347

each suffix and generated tokens, ROTOR assign348

the same positional ID, acting merely the same as349

the original token. This also accounts for reducing350

the distributional gap between the original model.351

3castorini/monot5-base-msmarco-10k

Figure 4: Illustration of Selective Routing (Sec. A.5).

Computational overhead By adopting global 352

sorting, we can avoid extra attention scores com- 353

putation and thus improve efficiency. While 354

the cost with PINE to obtain hidden states is 355

O(n2d + nk log k) for input length n, hidden di- 356

mension d, and k segments (Wang et al., 2024), 357

our method with lexicographical sorting achieves 358

O(nk log k) cost, being more efficient and faster 359

(lightweight) than PINE. We empirically validate 360

that our method is much faster than PINE as k 361

increases, at Tab. 4. 362

3.3 Selective Routing for handling 363

order-sensitive inputs 364

Since many practical benchmarks such as MMLU 365

involves semi-invariant inputs, we propose a rout- 366

ing mechanism that uses the order-invariant model 367

in conjunction with the standard causal model for 368

further applicability. Our design is partly based 369

on the finding from Wei et al. (2024) that there is 370

correlation between task difficulty (which is in turn 371

correlated with confidence values) and the model’s 372

sensitivity to ordering. Selective Routing, illus- 373

trated in Fig. 4, combines confidence, the model 374

output probability for the generated answer, from 375

two different model versions—the original model 376

and the order-invariant model—on the same input 377

and choose a more confident answer. Both models 378

first produce a maximum probability over possible 379

answer tokens (e.g., A, B, C, D for MMLU) and 380

a corresponding answer choice. We then compare 381

the original model’s maximum probability, plus 382

a bias term α, to the invariant model’s maximum 383

probability. If the original model’s adjusted score is 384

higher, we take its answer; otherwise, the invariant 385

model’s answer is chosen. α is a hyperparame- 386

ter that controls how strongly the original model 387

is favored, which was selected as 0.2 according 388

to hyperparameter search on the validation subset 389

(Appendix Sec. A.5). 390
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Total ndoc (segments) 10 20 30

Gold idx at: 0 4 9 0 4 9 14 19 0 4 9 14 19 24 29

Llama-3.1-8B-Instruct

Original 54.7 53.0 50.2 54.8 52.6 52.8 52.4 51.0 55.6 51.5 52.4 52.8 52.1 52.3 53.0
PCW 12.4 11.9 12.2 3.7 4.0 4.0 4.0 3.9 2.3 1.8 2.0 2.0 2.1 2.0 2.0
Set-Based Prompting 42.5 42.5 42.5 26.3 26.3 26.3 26.3 26.3 14.1 14.1 14.1 14.1 14.1 14.1 14.1
PINE 58.6 58.8 59.0 56.2 55.7 55.5 55.7 55.5 54.2 54.8 54.3 53.7 54.8 54.2 54.0
ROTOR-lexical 61.4 61.6 61.6 61.4 59.8 59.6 59.6 59.8 59.2 59.5 59.4 59.1 59.0 59.3 59.1
ROTOR-reversed lexical 61.6 61.8 61.8 58.9 59.3 58.8 58.6 58.7 57.9 58.2 57.9 57.4 57.9 57.6 57.5
ROTOR-MonoT5 61.2 61.4 61.2 60.9 61.0 61.2 61.2 61.2 60.9 60.7 60.7 60.7 60.8 60.8 60.7
ROTOR-Freq. 61.0 61.1 61.1 60.4 60.3 58.6 60.2 60.0 59.3 60.4 59.7 59.5 59.5 59.6 59.2

Qwen1.5-4B-Chat

Original 61.3 54.8 53.1 59.5 49.1 47.9 45.9 48.3 56.8 45.6 44.9 44.6 45.3 43.5 48.3
PINE 57.2 57.4 57.0 48.6 48.2 48.2 48.1 48.9 46.4 - - 46.6 46.4 46.4 46.3
ROTOR 58.5 58.4 58.1 49.9 49.7 49.6 49.8 49.9 44.6 44.8 44.7 44.7 44.9 44.8 44.7
ROTOR-MonoT5 58.9 58.5 58.7 52.2 52.1 52.1 52.2 52.6 50.6 50.7 50.5 50.6 50.5 50.6 50.4
ROTOR-Freq. 56.7 56.9 56.9 51.9 51.5 51.8 51.6 52.4 46.8 46.7 46.7 46.4 47.0 46.8 46.6

Qwen1.5-7B-Chat

Original 72.5 63.3 62.9 72.5 58.5 56.1 56.0 58.2 73.1 58.6 55.8 53.3 53.2 52.5 57.5
PINE 65.4 65.5 66.3 59.1 59.4 59.1 58.6 - - - - 56.3 55.1 - -
ROTOR 68.6 68.7 68.6 62.6 62.9 62.7 63.0 62.7 57.0 57.3 - - - - -
ROTOR-MonoT5 68.8 69.4 69.0 65.2 65.5 65.0 64.9 65.0 - - - - - 62.8 62.5
ROTOR-Freq. 68.2 68.4 68.4 62.6 62.9 62.8 62.7 62.3 - - - - - - -

Table 1: The best_subspan_em (%) scores on the lost in the middle (LitM) benchmark, with indexing bias
removed, across varying numbers of documents (ndoc ∈ {10, 20, 30}) and models. Results on Llama-3.1-70B-
Instruct are on Appendix Tab. 6. ROTOR shows the best performance across all setups. Due to resource constraints,
some results are unavailable at the moment but will be reported during the author response period.

4 Experiment setup391

4.1 Baselines392

Original causal LM with no modifications (Orig.)393

were compared, which processes text sequen-394

tially. Also, we compare ROTOR against pre-395

vious zero-shot order-invariant LMs discussed396

in Sec. 3.1, namely PCW (Ratner et al., 2023),397

PINE (Wang et al., 2024), and Set-Based Prompt-398

ing (McIlroy-Young et al., 2024). We use the399

LLaMA 3.1 (AI, 2024) 8B-Instruct4, Qwen1.5-400

4B-Chat and Qwen1.5-7B-Chat5 as our backbone401

model for all of our experiments. As our method402

doesn’t need training, a single A6000 GPU was403

sufficient to run all of the experiments except404

for the Llama-3.1-70B-Instruct model (Appendix,405

Tab. 6). We also conduct experiments on a subset406

of benchmarks (LitM and MMLU) on the runtime407

latency, perplexity, and collision rate of PINE and408

ROTOR, to further compare ROTOR with PINE409

and validate our claims on Sec. 3.2.410

4.2 Benchmarks with listwise inputs411

We experiment with three benchmarks involving412

real-world listwise input data. Examples of exact413

inputs and outputs are provided in Appendix A.7.414

4meta-llama/Meta-Llama-3.1-8B-Instruct
5Qwen/Qwen1.5-4/7B-Chat

All reported scores are rounded to the nearest tenth, 415

except for the standard deviation (rounded to the 416

second decimal place). 417

Knowledge Graph QA (KGQA) In KGQA tasks, 418

the model takes facts over knowledge graphs rep- 419

resented as (subject, relation, object), and answers 420

the given question based on the given facts. We ba- 421

sically follow the KGQA dataset preprocessing and 422

evaluation setup from Baek et al. (2023), which 423

uses Mintaka (Sen et al., 2022) with Wikidata for 424

knowledge source, and use the Exact Match (EM), 425

Accuracy (Acc), and F1 score metric for evaluation. 426

We also use MPNet (Song et al., 2020) as a dense 427

retriever to retrieve top-k facts over each question, 428

and experiment with segment size of 30 and 50. 429

Replication details and example dataset format are 430

at Appendix Sec. A.3 and Fig. 10. Along with mea- 431

suring the performance of the initial input ordering, 432

we report performance after we shuffle the order 433

of segments with 3 different seeds to see shuffle 434

robustness. 435

Lost in the middle (LitM) We use the Lost in the 436

Middle (LitM) benchmark (Liu et al., 2024), which 437

draws from 2655 queries in the Natural Questions 438

(NQ) dataset. It provides sets of (10, 20, 30) pas- 439

sages, placing the gold passage at predetermined 440

positions (e.g., 0, 4, 9) and filling the remaining 441

slots with irrelevant passages. Following Liu et al. 442
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Llama-3.1-8B-Instruct Qwen1.5-4B-Chat Qwen1.5-7B-Chat

N = 30 N = 50 N = 30 N = 50 N = 30 N = 50

Method Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1

Initial, no shuffling of segments

Original 50.2 44.0 51.9 50.0 44.0 51.7 30.7 27.9 34.9 31.6 28.6 35.8 31.5 27.8 35.4 31.7 28.0 35.7
PINE 51.5 45.0 52.6 51.6 45.1 52.6 31.6 28.7 35.6 31.6 28.8 35.3 32.3 28.8 36.4 32.0 28.5 35.9
RoToR 53.1 46.5 54.1 52.9 46.0 53.6 32.0 29.0 35.7 32.7 29.6 36.2 34.3 29.8 37.7 34.3 30.1 38.0
RoToR-MonoT5 51.6 45.0 52.5 52.4 45.4 52.8 32.3 29.1 36.2 32.3 29.3 35.9 32.9 28.4 36.3 32.9 28.9 36.6
RoToR-Freq. 52.6 46.1 53.7 53.1 46.4 53.7 32.3 29.2 36.0 32.3 29.2 35.9 33.7 29.5 37.2 33.5 29.5 37.2

After shuffling segments, averaged over 3 seeds

Original 49.5 43.3 51.0 49.7 43.5 51.0 30.1 27.5 34.7 30.3 27.6 35.0 31.4 27.3 35.0 31.6 27.9 35.5
↪→ stdev. (±) 0.07 0.14 0.17 0.34 0.28 0.46 0.41 0.34 0.43 0.26 0.24 0.35 0.26 0.28 0.29 0.40 0.56 0.42

PINE 51.8 45.2 52.8 51.8 45.3 52.7 31.5 28.7 35.6 31.5 28.7 35.3 32.3 28.8 35.7 31.7 28.2 35.7
↪→ stdev. (±) 0.05 0.07 0.16 0.15 0.16 0.19 0.20 0.18 0.13 0.17 0.20 0.21 0.17 0.20 0.13 0.18 0.16 0.14

RoToR 52.8 46.2 53.8 52.7 45.9 53.5 31.8 28.8 35.5 32.5 29.6 36.1 34.2 29.9 37.7 34.2 30.1 38.0
↪→ stdev. (±) 0.05 0.05 0.02 0.05 0.09 0.04 0.05 0.02 0.09 0.11 0.06 0.09 0.09 0.07 0.06 0.06 0.05 0.04

RoToR-MonoT5 51.6 45.0 52.6 52.2 45.2 52.8 32.4 29.2 36.3 32.3 29.4 35.9 33.0 28.8 36.5 32.8 28.8 36.5
↪→ stdev. (±) 0.12 0.06 0.10 0.16 0.18 0.18 0.04 0.02 0.13 0.16 0.13 0.07 0.12 0.09 0.07 0.16 0.09 0.07

RoToR-Freq. 52.5 45.9 53.5 53.1 46.4 53.7 32.3 29.3 36.0 32.4 29.3 36.1 33.8 29.6 37.4 33.7 29.6 37.4
↪→ stdev. (±) 0.10 0.15 0.11 0.02 0.07 0.03 0.13 0.16 0.09 0.09 0.04 0.06 0.04 0.00 0.09 0.04 0.16 0.22

Table 2: Results on the Mintaka (KGQA) dataset on different models, with standard deviation of the average scores
with ±. N refers to number of top-k segments per query.

Llama-3.1-8B-Instruct Qwen1.5-4B-Chat Qwen1.5-7B-Chat
Method Init. Rev. Avg. Init. Rev. Avg. Init. Rev. Avg.
Orig. 68.3 64.8 65.5 ± 1.0 53.6 51.9 52.6 ± 0.6 60.1 56.6 58.6 ± 0.9
PCW 57.0 55.1 56.1 ± 1.1 – – – – – –
Set-Based Prompting 31.1 33.0 31.6 ± 0.8 – – – – – –
PINE 64.8 63.3 63.6 ± 0.7 50.5 49.3 49.4 ± 0.5 57.0 54.4 55.8 ± 0.9
RoToR 63.2 62.6 62.8 ± 0.7 49.6 47.7 48.3 ± 0.7 56.5 55.8 56.2 ± 0.6
↪→ +S.R. 68.5 65.1 65.7 ± 0.9 53.7 51.8 52.6 ± 0.6 60.1 57.4 58.8 ± 0.7
RoToR - MonoT5 64.2 62.9 63.5 ± 0.5 49.7 47.6 48.7 ± 0.7 56.2 54.4 55.5 ± 0.7
↪→ +S.R. 68.4 65.2 65.8 ± 0.9 53.8 51.9 52.6 ± 0.6 60.1 57.3 58.7 ± 0.8
RoToR - Freq. 64.3 63.6 63.8 ± 0.6 49.9 47.6 48.7 ± 0.5 56.4 54.7 55.7 ± 0.7
↪→ +S.R. 68.5 65.3 65.8 ± 0.8 53.7 52.3 52.6 ± 0.6 60.0 57.3 58.6 ± 0.8
RoToR + S.R. (Optim.) 75.0 71.9 72.7 ± 1.0 61.8 60.1 61.1 ± 1.0 68.1 66.2 67.2 ± 0.7

Table 3: Improving applicability to general listwise tasks (MMLU, N=4) with Selective Routing (S.R), which
includes both order-invariant and order-sensitive examples. ROTOR with Selective Routing shows improved
performance and stability across re-orderings of input, and its high upper-bound (Optim.) implies the potential for
further improvements.

(2024), the best_subspan_em metric is used. Ex-443

periments on LitM found that eliminating the effect444

of index bias is another important detail for measur-445

ing true order robustness: (Appendix Sec. B). Thus,446

we report experiments with index bias eliminated.447

The exact prompt and full results including index448

bias is reported at Appendix Fig. 8 and Sec. A.1.449

MMLU The Massive Multitask Language Under-450

standing (MMLU) benchmark (Hendrycks et al.,451

2021) (prompts at Appendix Fig. 11) consists of 57452

diverse sub-tasks with a total of 14,015 queries453

to measure general performance of LMs about454

the knowledge of the world. Despite its popular-455

ity, many works report that performance fluctuates456

heavily depending on the order of choices (Gupta457

et al., 2024; Pezeshkpour and Hruschka, 2023; Wei458

et al., 2024; Alzahrani et al., 2024; Zheng et al.,459

2024a) and is widely investigated to measure the 460

positional bias of the model. We notice that a lot 461

of proportions consist of ordering-sensitive inputs, 462

which showed the effectiveness of adaptively ap- 463

plying Selective Routing. We additionally report 464

the average performance for all possible (4!-1) re- 465

orderings. 466

5 Results & Analysis 467

We report results for KGQA in Tab. 2, and results 468

for MMLU in Tab. 3. Results for LitM are in Tab. 1, 469

with a visualization in Appendix Fig. 5. We use 470

lexical sorting for ROTOR unless stated otherwise. 471

Effectiveness of ROTOR We observe that shuf- 472

fling input segments leads to non-trivial perfor- 473

mance degradations in the original model, which 474

exhibits a statistically significant performance drop 475
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Runtime latency (s)
Perple-
xity (↓)

Collision
Rate(↓)

MMLU LitM LitM

data count 14015 2655 2655

# segments 4 10 30 20 30

PINE 7,371 18,551 41,664 6.91 42.3%
RoToR 6,608 14,264 23,569 6.65 0 (None)
Reduced % 10.4% 23.1% 43.4%

Table 4: Compared to PINE, ROTOR with lexical sort
is faster, has lower perplexity, and have zero collision
rate between segments. We use a subset of LitM with
index bias removed and gold index = 0.

on our experimented dataset (two-tailed t-test, p <476

0.05, Appendix C). In contrast, our proposed Ro-477

ToR model does not show a statistically significant478

difference in performance before and after shuf-479

fling, indicating that it is more robust against such480

perturbations. On LitM (Tab. 1), we notice PCW481

and Set-Based Prompting has impractical perfor-482

mance, with PINE degrading heavily as number483

of documents (k) increases, while RoToR is less484

affected. On KGQA (Tab. 2), we show ROTOR485

outperform PINE with lower standard deviation486

across shuffled segments, consistent with different487

model architectures.488

Improvements from PINE Experiments against489

comparing ROTOR with PINE (Tab. 4) analyze the490

following: Runtime, scalability: Actual inference491

times (Appendix Sec. A.6) find that ROTOR out-492

performs PINE substantially, with efficiency gains493

increasing alongside n. For instance, on LitM (30494

docs), ROTOR achieves a 43% reduction in total495

runtime. Practical scalability with increasing k is496

critical, but we find that previous order-invariant497

LMs struggle handling larger k (on KGQA and498

LitM). In contrast, RoToR shows better perfor-499

mance with improved efficiency and robustness.500

Perplexity: Lower generation perplexity indicates501

input representations are closer to in-distribution.502

On the same LitM dataset, ROTOR’s reduced per-503

plexity implies its positional ID assignment effec-504

tively mitigates out-of-distribution effects. Colli-505

sion Rate: PINE’s similarity-based ordering often506

collides: on average, only 17.3 of 30 similarity val-507

ues are unique, causing 42% of the segments to be508

indistinguishable and thus breaking invariance. In509

contrast, ROTOR with lexical sorting only collides510

if the segment texts are identical. On LitM, this511

yields zero collisions, preserving full invariance.512

Selective Routing MMLU (Tab. 3) is a repre- 513

sentative of a task that involves not only order- 514

invariant, but also order-sensitive (e.g., "None 515

of the above"), inputs. Therefore, single use of 516

order-invariant models does not always outperform 517

the original model, limiting applicability of order- 518

invariant models to practical listwise tasks, i.e., 519

we observe significant performance drops for Set- 520

based Prompting in MMLU, falling short of half the 521

performance of the original model on initial order- 522

ing. However, using ROTOR with Selective Rout- 523

ing to handle order-sensitive inputs outperforms, 524

or is at least competitive as the original model in 525

all possible orderings of candidate choices. Se- 526

lective Routing improves the generalizability and 527

extends the applicability on practical listwise tasks 528

by adaptively handling order-sensitive inputs. The 529

RoToR + Selective Routing (Optimal) performance 530

on Tab. 3 was evaluated using a relaxed accuracy 531

metric based on the union of predictions from the 532

original and the invariant (RoToR-lexical) model. 533

This improves significantly, which highlights the 534

potential of Selective Routing for further accuracy 535

gains through optimizing design choices on routing 536

methods, which we plan to explore in future work. 537

Impact of global ordering algorithm While 538

most of our experiments focus on the simplest lex- 539

ical sorting method, ROTOR supports any global 540

sorting approach. To demonstrate this flexibility, 541

we report experiments with various global sort- 542

ing strategies, including reversed lexical sorting, 543

MonoT5-based reranking, and token frequency- 544

based sorting. Lexical sort is presented as a base- 545

line (lower bound) - a simple algorithm ensuring 546

global sorting. Our experiments on Tab. 1 show 547

that any type of global sorting, with the use of circu- 548

lar assignment is superior than PINE, which relies 549

on pairwise attention arrangements. 550

6 Conclusion 551

Our work addresses order-invariance in listwise 552

inputs by identifying core issues in distribution 553

mismatch and adaptive handling of mixed inputs. 554

Our proposed RoToR provides a stable zero-shot 555

order-invariant solution that reduces the complexity 556

of positional ID modification, while Selective Rout- 557

ing adaptively routes between invariant and sensi- 558

tive LMs to handle real-world scenarios. Together, 559

these methods demonstrate improved performance 560

and reliability on LitM, KGQA, and MMLU bench- 561

marks. 562
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7 Limitations563

Our method can utilize any kind of deterministic564

sorting algorithm, but we have only experimented565

with limited global sorting algorithms due to time566

and resource constraints. We plan to investigate567

potentially better sorting algorithms in the future.568

Also, current ordering-invariant models are limited569

to inputs given as prefix + parallel + suffix. It would570

be beneficial to support more complex structures,571

such as ability to process multiple order-invariant572

contexts interleaved with serial text.573

References574

Meta AI. 2024. Build the future of ai with meta llama575
3.576

Norah Alzahrani, Hisham Abdullah Alyahya, Yazeed577
Alnumay, Sultan Alrashed, Shaykhah Alsubaie,578
Yusef Almushaykeh, Faisal Mirza, Nouf Alotaibi,579
Nora Altwairesh, Areeb Alowisheq, M Saiful Bari,580
and Haidar Khan. 2024. When benchmarks are tar-581
gets: Revealing the sensitivity of large language582
model leaderboards. Preprint, arXiv:2402.01781.583

Chenxin An, Shansan Gong, Ming Zhong, Xingjian584
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and585
Xipeng Qiu. 2023. L-eval: Instituting standard-586
ized evaluation for long context language models.587
Preprint, arXiv:2307.11088.588

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C.589
Park, and Sung Ju Hwang. 2023. Knowledge-590
augmented language model verification. Preprint,591
arXiv:2310.12836.592

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,593
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao594
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,595
and Juanzi Li. 2024. Longbench: A bilingual, mul-596
titask benchmark for long context understanding.597
Preprint, arXiv:2308.14508.598

Tianle Cai, Kaixuan Huang, Jason D. Lee, and Mengdi599
Wang. 2023. Scaling in-context demonstrations with600
structured attention. In Workshop on Efficient Sys-601
tems for Foundation Models @ ICML2023.602

Xinyun Chen, Ryan A Chi, Xuezhi Wang, and Denny603
Zhou. 2024. Premise order matters in reason-604
ing with large language models. arXiv preprint605
arXiv:2402.08939.606

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen,607
Yuchuan Wu, Fei Huang, Yongbin Li, and Rui Yan.608
2023. Fortify the shortest stave in attention: Enhanc-609
ing context awareness of large language models for610
effective tool use. arXiv preprint arXiv:2312.04455.611

Anshuman Chhabra, Hadi Askari, and Prasant Moha-612
patra. 2024. Revisiting zero-shot abstractive sum-613
marization in the era of large language models614

from the perspective of position bias. Preprint, 615
arXiv:2401.01989. 616

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 617
Sid Black, Anthony DiPofi, Charles Foster, Laurence 618
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 619
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 620
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 621
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 622
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 623
2024. A framework for few-shot language model 624
evaluation. 625

Vipul Gupta, David Pantoja, Candace Ross, Adina 626
Williams, and Megan Ung. 2024. Changing an- 627
swer order can decrease mmlu accuracy. Preprint, 628
arXiv:2406.19470. 629

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer 630
Levy. 2022a. Transformer language models without 631
positional encodings still learn positional information. 632
In Findings of the Association for Computational 633
Linguistics: EMNLP 2022. 634

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer 635
Levy. 2022b. Transformer language models without 636
positional encodings still learn positional information. 637
Preprint, arXiv:2203.16634. 638

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 639
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 640
2021. Measuring massive multitask language under- 641
standing. Preprint, arXiv:2009.03300. 642

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, 643
Zifeng Wang, Long T Le, Abhishek Kumar, James 644
Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Kr- 645
ishna, et al. 2024. Found in the middle: Calibrating 646
positional attention bias improves long context uti- 647
lization. arXiv preprint arXiv:2406.16008. 648

Seung-won Hwang and Kevin Chen-chuan Chang. 2007. 649
Optimizing top-k queries for middleware access: A 650
unified cost-based approach. ACM Trans. Database 651
Syst., 32(1):5–es. 652

He Junqing, Pan Kunhao, Dong Xiaoqun, Song 653
Zhuoyang, Liu Yibo, Liang Yuxin, Wang Hao, Sun 654
Qianguo, Zhang Songxin, Xie Zejian, et al. 2023. 655
Never lost in the middle: Improving large language 656
models via attention strengthening question answer- 657
ing. arXiv preprint arXiv:2311.09198. 658

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Ko- 659
siorek, Seungjin Choi, and Yee Whye Teh. 2019. 660
Set transformer: A framework for attention-based 661
permutation-invariant neural networks. In ICML. 662

Youngwon Lee, Seung won Hwang, Daniel Campos, 663
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A Appendix785

A.1 Full results on the Lost in the Middle Benchmark786

(a) Results with index bias (indexed by numbers). (Example input at Appendix Fig. 7)

(b) Results without index bias (indexed by title) (Example input at Appendix Fig. 8)

Figure 5: Results on the Lost-in-the-middle benchmark. Visualization of the best_subspan_em results at Appendix
Tab. 1. ROTOR (dark red, red, yellow) generally performs the best regardless of the position of the gold index,
with less fluctuations when we remove index bias. Ours is ROTOR with lexical sort, and ours-reversed is the one
with the reversed lexical ordering. For brevity, only the performance of ROTOR with reranking sort (MonoT5)
is annotated as numbers, and the performance of PCW and Set-Based Prompting are reported only at the Table
(Appendix Tab. 1) due to its low performance.

Impact of removing index bias on LitM Tab.5 presents the full results on the Lost in the Middle (LitM)787

benchmark, comparing scenarios where indexing bias is present versus removed. Fig.5 provides a visual788

representation of these results.789

As shown in Appendix Tab.5, invariant LMs exhibit stable performance regardless of the gold index,790

especially when index bias is removed (as described in Sec.4.2; see also Appendix Fig.5b). However,791

when index bias is present, performance fluctuations are observed (Appendix Fig.5a). Notably, ROTOR792

achieves the highest performance across all setups, demonstrating its effectiveness in mitigating positional793

bias in a zero-shot setting while maintaining overall performance.794

These findings suggest that index bias acts as an implicit source of additional positional bias and that795

invariant LMs benefit significantly from its removal.796

Results on other models. Table 6 shows results in different model (Llama-3.1-70B-Instruct). We can797

see that the trend continues for the 70B model, implying the robustness of ROTOR.798

A.2 Illustration of the global sorting method799

We show the two different global sorting algorithms presented in our paper at Fig. 6.800

A.3 Details about preprocessing and evaluation of datasets801

A.3.1 General.802

All inferences were done with a single NVIDIA RTX A6000 48GB GPU. Note that all of the baseline803

models including our method can be applied directly in a zero-shot, training-free manner. For repro-804

12



Total ndoc (segments) 10 20 30

Gold idx at: 0 4 9 avg. 0 4 9 14 19 avg. 0 4 9 14 19 24 29 avg.

Indexing bias present

Original 52.8 51.1 46.7 50.2 55.0 50.7 50.5 50.2 47.5 50.7 56.1 50.8 51.5 51.1 50.8 50.5 48.9 51.4
PCW 12.0 11.9 12.1 12.0 3.4 3.7 3.8 3.9 3.6 5.1 2.1 2.1 2.0 1.9 2.0 2.2 2.0 2.0
Set-Based Prompting 40.8 40.7 40.8 40.8 25.6 25.8 25.7 25.5 25.3 25.6 15.8 15.9 16.1 16.0 16.1 15.7 15.8 15.9
PINE 59.2 56.8 57.7 57.9 56.2 55.1 54.5 54.2 55.3 55.5 56.1 53.6 53.3 53.9 53.2 53.7 54.5 54.0
ROTOR-lexical 63.6 60.5 59.1 61.1 52.6 58.6 57.8 56.8 58.6 57.6 64.6 58.9 56.9 56.2 57.1 56.2 57.1 58.1
ROTOR-reversed lexical 61.5 60.8 60.6 61.0 60.8 58.6 59.7 60.5 59.3 60.0 61.1 57.5 58.2 58.6 58.3 59.3 59.2 58.9
ROTOR-reranking 61.4 61.4 61.7 61.5 62.3 59.2 59.1 59.4 59.8 60.2 62.2 58.6 58.4 58.6 58.3 58.5 59.8 59.2
ROTOR-freq 62.8 61.1 59.5 61.1 62.9 58.8 56.7 57.4 58.0 59.1 61.7 58.2 56.9 56.1 56.4 55.4 56.8 57.4

Indexing bias removed (main paper)

Original 54.7 53.0 50.2 52.6 54.8 52.6 52.8 52.4 51.0 52.7 55.6 51.5 52.4 52.8 52.1 52.3 53.0 52.8
PCW 12.4 11.9 12.2 12.2 3.7 4.0 4.0 4.0 3.9 3.9 2.3 1.8 2.0 2.0 2.1 2.0 2.0 2.0
Set-Based Prompting 42.5 42.5 42.5 42.5 26.3 26.3 26.3 26.3 26.3 26.3 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
PINE 58.6 58.8 59.0 58.8 56.2 55.7 55.5 55.7 55.5 55.7 54.2 54.8 54.3 53.7 54.8 54.2 54.0 54.3
ROTOR-lexical 61.4 61.6 61.6 61.5 61.4 59.8 59.6 59.6 59.8 60.0 59.2 59.5 59.4 59.1 59.0 59.3 59.1 59.2
ROTOR-reversed lexical 61.6 61.8 61.8 61.8 58.9 59.3 58.8 58.6 58.7 58.8 57.9 58.2 57.9 57.4 57.9 57.6 57.5 57.8
ROTOR-reranking 61.2 61.4 61.2 61.3 60.9 61.0 61.2 61.2 61.2 61.1 60.9 60.7 60.7 60.7 60.8 60.8 60.7 60.8
ROTOR-freq 61.0 61.1 61.1 61.1 60.4 60.3 58.6 60.2 60.0 59.9 59.3 60.4 59.7 59.5 59.5 59.6 59.2 59.6

Table 5: The best_subspan_em (%) scores on the lost in the middle (LitM) benchmark, with results on Llama-3.1-
70B-Instruct on Appendix Tab. 6. For ROTOR, we test three different global ordering strategies (lexical, reversed
lexical, and MonoT5-base reranking) across varying numbers of documents (ndoc ∈ {10, 20, 30}). Appendix Fig. 5
visualizes the fluctuations across different gold positions. ROTOR shows the best performance across all setups, and
is especially more stable when indexing bias in the input is removed.

ndoc = 10 20

gold idx = 0 4 9 avg. 0

Orig. 66.2% 65.7% 65.7% 65.9% 65.2%
PINE 67.9% 67.8% 67.5% 67.7% 65.9%
RoToR-lex. 69.6% 69.5% 69.3% 69.5% 67.6%

Table 6: Reporting the performance with the Llama-3.1-70B-Instruct model on a subset of lost-in-the middle
benchmark (without index bias) performance. We see that the gains are consistant with the models we mainly
investigated (Llama-3.1-8B-Instruct)

ducibility, we fix the seed and disabled random sampling (i.e., used greedy decoding), set the maximum 805

number of new generated tokens to 500, and set the pad_token_id to the same value as the eos_token_id 806

for all experiments. For all datasets we tested, we separate the input to 3 parts: prefix, parallel contexts, 807

and suffix and feed them accordingly to the positional-invariant model. For the case of the original model, 808

we simply join the prefix, context, and suffix text to make one sequential text. For testing with the PCW 809

model, we concat each prefix to the parallel context due to the architectural limitations of the PCW model, 810

which doesn’t have the prefix part (which is processed casually before parallel contexts). For example, on 811

testing the PCW model on MMLU, we append the question and each answer options, which generally 812

result in longer input sequences. For PCW, we use the pcw_generate function, and we additionally 813

utilized the RestrictiveTokensLogitsProcessor provided at the official PCW repository for MMLU 814

classification, to have a similar setup with the log_likelihood option used for other models. 815

A.3.2 Knowledge Graph Question Answering 816

For evaluation with Mintaka, we follow the same setup as Baek et al. (2023). Given the gold answer 817

and model generated answer, the EM score counts if both are exactly the same; Accuracy measures if 818

the generated answer includes the gold answer, and F1 score measures the precision and recall among 819

overlapping words. Since we are testing on a non-trained zero-shot version of the model, we enforce the 820

model to output in json format to make it easier to parse. For the row shuffling setup, we fix the seed to 0, 821

1, 2 on shuffling rows and report the average scores. 822

13



Figure 6: Illustration of ordering 7 rows by 2 different global sort options, (1) lexical sort based on token ids, or (2)
reranking sort based on a reranker model (MonoT5-base in this case). (3) frequency based sorting applies lexical
sorting, but the definitive token ids are mapped into the inverse frequency.

A.3.3 Lost in the Middle823

Specifically, we use the dataset provided in the official repository6, use the same prompt as the llama824

2 chat model with only the instruction tokens adjusted to llama 3 (removed [Inst] and changed to825

<|begin_of_text|> and etc.,), and evaluate using the best_supspan_em metric.826

A.3.4 MMLU827

We follow the publicly acknowledged lm-evaluation harness (Gao et al., 2024) prompt design by eluther.ai.828

We measure accuracy between the gold answer and the token with the highest likelihood (probability)829

among possible answer tokens [‘ A’, ‘ B’, ‘ C’, ‘ D’].830

A.4 Further impact scenarios on general conversation.831

We shortly discuss about how this method may be applied to general conversational scenarios of LLMs.832

For processing contexts such as chronological history of conversations, the ordering is important, and the833

original LLM remains the better choice for this case. However, in subsets of conversational tasks requiring834

order invariance (e.g., Sets, Tables, or RAG contexts), our method enhances unbiased understanding, as835

demonstrated mainly in Lost-in-the-Middle benchmark. Here, RoToR achieves a significant 7-9% average836

accuracy gain over the original LLM, very consistently across all setups (doc indexing and ndoc) for all837

choices of the ordering algorithm, with lower standard deviation than the original model.838

A.5 Selection of α for Selective Routing on MMLU839

We report α is a hyperparameter that can be tuned per-dataset. We searched its value in the range of -0.5840

to 0.5 with a step size of 0.1 using the validation split of MMLU7 on RoToR with lexical sorting, and841

applied the found value (0.2) on the test set to obtain the reported results for all models. We report the full842

variation of Selective Routing results on the investigated α value at Tab. 7.843

6github.com/nelson-liu/lost-in-the-middle
7https://huggingface.co/datasets/cais/mmlu/viewer/abstract_algebra/validation
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α = no Selective Routing -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Validation set (1531) <— bias towards invariant model —— bias towards orig model —>

Selective Routing (orig, pine) 64.9 65.3 65.8 66.4 67.3 67.4 67.6 67.5 67.9 67.8 68.0 67.9
Selective Routing (orig, ours-lexical) 63.9 64.1 64.5 65.4 65.8 67.0 67.4 68.1 68.2 68.1 67.9 67.9
Selective Routing (orig, ours-monot5) 66.0 66.1 66.3 66.7 67.0 67.6 68.0 68.1 68.1 68.1 67.7 67.9

Test set (14015)

Selective Routing (orig, pine) 64.8 64.9 65.4 66.0 66.8 67.5 68.4 68.5 68.5 68.4 68.3 68.3
Selective Routing (orig, ours-lexical) 63.2 63.5 64.2 65.2 66.2 67.3 68.0 68.4 68.5 68.5 68.4 68.3
Selective Routing (orig, ours-monot5) 64.2 64.4 64.8 65.5 66.4 67.3 68.1 68.5 68.4 68.5 68.3 68.3

Table 7: Reporting full ablation results on application of Selective Routing. α = 0.2 was the best for the validation
set, which was then applied to obtain the reported results for all models.

A.6 Replication details on the runtime experiment 844

Apart from the theoretical runtime efficiency, we measured the actual end-to-end runtime in seconds, to 845

better analyze the practical runtime efficiency between PINE and ROTOR. The runtime of each experiment 846

was measured on an ASUS ESC8000-E11 server featuring dual 4th Gen Intel Xeon Scalable processors, 847

64 CPU threads, 1.1 TB of RAM across 32 DIMM slots, and 8 NVIDIA A6000 GPUs with 48 GB of 848

memory each. We Except for the experiments on Llama-3.1-70B-Instruct, we only use a single A6000 849

GPU for all of the experiments. 850

A.7 Input data examples 851

To illustrate the input and output formats used in our experiments, we provide example inputs for the 852

Lost-in-the-Middle (LitM), Knowledge Graph Question Answering (KGQA), and MMLU datasets. For 853

experiments using the Qwen-Chat model, special tokens were adjusted accordingly. While the example 854

prompts are based on the Llama-3.1-8B-Instruct model, the specific differences in token usage for the 855

Qwen-Chat variants can be observed by comparing the prompts in Fig. 8 and Fig. 9. This adjustment is 856

consistently applied across all datasets. Note that no special tokens are added for the MMLU benchmark, 857

which aligns with the lm-evaluation harness setup. 858

lost in the middle
Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|eot_id|><|start_header_id|>user<|end_header_id|>

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
Document [1](Title: List of Nobel laureates in Physics) The first ...
...
Document [10](Title: Nobel Prize in Chemistry) on December 10, the ...

Suffix:
Question: who got the first nobel prize in physics<|eot_id|><|start_header_id|>assistant
<|end_header_id|>

859
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Figure 7: Example input for the lost in the middle dataset.
860

16



lost in the middle no indexing

Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|eot_id|><|start_header_id|>user<|end_header_id|>

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
[Document Title: List of Nobel laureates in Physics] The first ...
...
[Document Title: Nobel Prize in Chemistry] on December 10, the ...

Suffix:
Question: who got the first nobel prize in physics<|eot_id|><|start_header_id|>assistant
<|end_header_id|>

861

Figure 8: Example input for the lost in the middle dataset, without indexing by numbers. Prompt for the Llama-3.1-
8B-Instruct model. 862

lost in the middle no indexing (Qwen variant)

Prefix:
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|im_end|><|im_start|>user

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
[Document Title: Thorax] when deep breaths are attempted. Different people ...
...
[Document Title: Chest pain] present with chest pain, and carry a significantly higher ...

Suffix:
Question: for complaints of sudden chest pain patients should take a<|im_end|>
<|im_start|>assistant

863

Figure 9: Example input for the lost in the middle dataset, without indexing by numbers, prompt for the Qwen1.5-
Chat model. 864
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Mintaka

Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Below are the facts in the form of the triple meaningful to answer the question. Answer the given
question in a JSON format, such as "Answer": "xxx". Only output the JSON, do NOT say any
word or explain.

<|eot_id|><|start_header_id|>user<|end_header_id|>

Parallel texts:
(Super Bowl XLII, winner, New York Giants)
(Super Bowl XLII, participating team, New York Giants)
(Super Bowl XLII, point in time, time: +2008-02-03)
(Super Bowl XLII, followed by, Super Bowl XLIII)
(Super Bowl XLII, location, State Farm Stadium)
...
(Super Bowl XLII, sport, American football)
(Super Bowl XLII, instance of, Super Bowl)

Suffix:
Question: which team did the super bowl xlii mvp play for?, Answer: <|eot_id|><|start_header_id|>
assistant <|end_header_id|>

Gold Answer(s):
(‘NYG’, ‘Giants’, ‘NY Giants’, ‘New York Giants’)

Example generated output:
{"Answer": "New York Giants"} (Parsed to: New York Giants)

865

Figure 10: Example input for the Mintaka dataset.
866

MMLU
Prefix:
The following are multiple choice questions (with answers) about moral disputes.

Norcross agrees that if a being is incapable of moral reasoning, at even the most basic level, then it
cannot be

Parallel texts:
A. a being of value.
B. an object of moral sympathy.
C. a moral agent.
D. a moral patient.

Suffix:
Answer:

867

Figure 11: Example input for the MMLU benchmark.
868
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B Why is removing index bias an important detail for invariant models to be effective? 869

The alphabetic index (A/B/C/D) introduced in Fig. 1 associated with each segment, reportedly introduces 870

token bias (Wei et al., 2024) of preferring the choice marked as ‘A.’ The same thing can be applied to 871

listwise inputs with simple numeric indexing (1/2/3/4), which was the case for the lost-in-the middle 872

benchmark. While a standard model with no modifications on positional encoding correctly places contexts 873

indexed A before contexts indexed with D by positional encoding, an invariant model sees contexts in an 874

order-agnostic way, meaning that the alphabetical indexing may not always be interpreted sequentially and 875

thus can confuse the model from accurately interpreting the contexts. For example, even for cases where 876

the index ordering of the input was in alphabetical order (A->B->C->D), the ordering-invariant model 877

may interpret contexts with (C->A->B->D) at one point (e.g., when the query is D on self attention), 878

which can cause unnatural, out-of-distribution representation, leading to decreased performance. 879

C Statisticial significance before and after shuffling segments 880

We conducted paired two-tailed t-tests (Table 9) for both the baseline (“original”) model and our proposed 881

method (ROTOR), using the results in Table 8. Our goal was to determine whether the performance 882

differences between the initial ordering and shuffled ordering are statistically significant. We excluded the 883

Lost-in-the-Middle (LitM) dataset because it does not provide an initial ordering. Specifically, the tests 884

evaluate whether the mean performance difference (Before Shuffle - After Shuffle) significantly deviates 885

from zero. 886

For KGQA, we selected the F1 score as the representative metric among the three available, gathering 887

data points from various task configurations and different models. For MMLU, the results are based on 888

our ROTOR variant with selective routing. As shown in Table 9, the original model shows a statistically 889

significant drop in performance when the segments are shuffled, while ROTOR does not, indicating 890

increased robustness to segment-order perturbations. 8 891

Original Model RoToR-lexical

Before
Shuff.

After
Shuff.

Diff.
Before
Shuff.

After
Shuff.

Diff.

Mintaka, Llama3.1-8B-Instruct, ndoc=30 51.9 51.0 0.9 54.1 53.8 0.3
Mintaka, Llama3.1-8B-Instruct, ndoc=50 51.7 51.0 0.7 53.6 53.5 0.1
Mintaka, Qwen1.5-4B-Chat, ndoc=30 34.9 34.7 0.2 35.7 35.5 0.2
Mintaka, Qwen1.5-4B-Chat, ndoc=50 35.8 35.0 0.8 36.2 36.1 0.1
Mintaka, Qwen1.5-7B-Chat, ndoc=30 35.4 35.0 0.4 37.7 37.7 0
Mintaka, Qwen1.5-7B-Chat, ndoc=50 35.7 35.5 0.2 38.0 38.0 0
MMLU, Llama3.1-8B-Instruct 68.3 65.5 2.8 68.5 65.7 2.8
MMLU, Qwen1.5-4B-Chat 53.6 52.6 1 53.7 52.6 1.1
MMLU, Qwen1.5-7B-Chat 60.1 58.6 1.5 60.1 58.8 1.3

Table 8: Performance of the Original model and ROTOR before and after shuffling.

Derivation for the original model. Let the nine paired differences (Before − After) be 892

{d1, d2, d3, ...d8, d9}. Mean Difference: d̄ = 1
9

∑9
i=1 di. In this case, d̄ ≈ 0.9444%. Sample Stan- 893

dard Deviation: sd =
√

1
n−1

∑n
i=1(di − d̄)2 ≈ 0.7632. Standard Error (SE): SE = sd√

n
≈ 0.2544. 894

t-Statistic: t = d̄
SE ≈ 3.7124, (df = 8). Since the critical value at df = 8 and α = 0.05 is 2.306, we 895

have 3.71 > 2.306. Therefore, the difference is statistically significant. 896

8All statistical calculations were validated using an online t-test calculator: https://www.mathportal.org/calculators/
statistics-calculator/t-test-calculator.php
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Original RoToR

Degrees of Freedom 8

Mean Difference 0.94 0.66

t-Statistic 3.71 2.23

Critical Value 2.306

Statistically Significant Yes No

Table 9: Paired two-tailed t-test results comparing the original model and ours.

Derivation for the ROTOR model. Under the same procedure, d̄ ≈ 0.6556%, sd ≈ 0.8833, SE ≈897

0.2944. t-Statistic: t ≈ 2.2265. Since 2.2265 < 2.306, there is no significant difference in performance898

before and after shuffling for ROTOR.899

Conclusion. While the original model shows a statistically significant performance drop with shuffled900

inputs, ROTOR remains unaffected, demonstrating greater robustness to segment-order perturbations.901
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