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ABSTRACT

AI models capable of comprehending humor hold real-world promise—for example,
enhancing engagement in human-machine interactions. To gauge and diagnose the
capacity of multimodal large language models (MLLMs) for humor understanding,
we introduce v-HUB, a novel visual-centric video humor understanding benchmark.
v-HUB comprises a curated collection of minimally verbal short videos, sourced
from classic silent films and online resources, and reflecting real-world scenarios
where humor can be appreciated purely through visual cues. Each video clip is
paired with rich annotations, including captions, descriptions, and explanations,
supporting evaluation tasks like caption matching and humor explanation. To
broaden its applicability, we further construct an open-ended video QA task, making
it readily integrable into existing video understanding benchmarks. We evaluate
a diverse set of MLLMs, from specialized Video-LLMs to versatile OmniLLMs
that can process audio, covering both open-source and proprietary domains. The
experimental results expose the difficulties MLLMs face in comprehending humor
from visual cues alone. For example, all models exhibit a marked performance
drop on caption matching when moving from text-based to video-based evaluation
(without audio). Our findings also demonstrate that incorporating audio helps with
video humor understanding, highlighting the informativeness of sound and the
promise of integrating richer modalities for complex video understanding tasks.

(a) Visuals. A man placed a battery on the conveyor
belt, but it rolled against the belt’s motion, forcing the
cashier into an endless wait. For those who know the
physics of a rolling cylinder on a moving conveyor, the
scene feels even more clever.

(b) Visuals+Text. The video shows an animal rescue,
with a cow dangling beneath a helicopter, appearing to
swirl midair. The scene seems routine at first, but the
added text ‘milkshakes’ cleverly parallels the moment,
making it unexpectedly witty.

(c) Visuals+Audio. As the man flips through the pages,
cartoon characters gradually appear, accompanied by
a distinct melody. First, the dancer’s rhythm and the
suona player’s piercing tune, then the cymbal player’s
resonant clash, together creating an evolving effect.

(d) Visuals+Audio+Text. A guy messaged his friend
that he was making a birthday cake for them. After it
was baked and sliced, the inside mimicked their chat
bubble layout. The whole scene was made even merrier
by the Happy Birthday melody.

Figure 1: Examples of visual-centric humor understanding, where ‘audio’ and ‘text’ refer to
environmental sound (cf. human speech) and visual text, respectively.
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1 INTRODUCTION

Humor enriches our daily lives and appears in many forms, from jokes and cartoons to comedies and
viral videos. AI models capable of understanding humor hold promise for engaging with humans
empathetically (Hampes, 2001; 2010), but perceiving and comprehending humor can be challenging
even to humans due to the heavy reliance on nontrivial reasoning, social and cultural contexts, etc
(see Figure 1). This, on the other hand, makes humor understanding a promising testbed to evaluate
how well state-of-the-art AI models understand humor. Indeed, there has been a line of research
centering around gauging the capability of pre-trained large language models (LLMs) for humor
understanding (Hessel et al., 2022; Hyun et al., 2023; Ko et al., 2023), but parallel work on multimodal
LLMs is still lacking, though they are more naturally suited for understanding multimodal humor.

In this work, we address this gap by investigating humor understanding with multimodal LLMs
(MLLMs), focusing specifically on MMLMs that are capable of processing video. We choose
video as the primary medium of humor, since it captures nuanced variations and diverse styles,
presenting a unique challenge for MLLMs. For example, perceiving the humor in Figure1d requires
recognizing visual text and the layout of chat bubbles and understanding their temporal and semantic
correspondences with the cut surface of the cake slice. While there have been a few benchmarks
containing humorous videos (see Table 1), all of them were designed exclusively for the evaluation
of LLMs (Ko et al., 2023; Hyun et al., 2023).1 Moreover, they are limited in that each humor either is
dominated solely by spoken language (Hyun et al., 2023) or can be understood only when both the
video and linguistic cues are present (Ko et al., 2023), ignoring the fact that humans can understand
humor from visual cues alone, exemplified by Charlie Chaplin’s silent comedies.

To address this limitation, we curate a set of visual-centric humorous videos from two complementary
sources: Charlie Chaplin’s silent films and user-generated short funny videos. Silent film humor
is conveyed through visual cues, but is thematically and culturally constrained due to the scripted
performance. To increase diversity, we incorporate user-generated funny short videos from various
occasions and cultural backgrounds. We rigorously filtered the videos to retain only those where the
humor is primarily visual. Our final dataset consists of videos where humor is derived predominantly
from the visual modality (e.g., 99% of all videos), making it visual-centric and more suitable for
diagnosing the visual reasoning ability of MLLMs.

To assess how well MLLMs understand humor in video, we create a visual-centric humor under-
standing benchmark (v-HUB), which consists of three distinct tasks. (1) First, the Caption Matching
task challenges MLLMs to align video captions with the corresponding videos. Apart from testing
surface-level matching, the task is carefully designed to require an appreciation of nuanced, extended
humor. (2) Second, the Humor Explanation task evaluates whether MLLMs can extract humor
elements and provide accurate rationales. (3) Finally, the Open-ended QA task evaluate the MLLMs’
fundamental understanding of videos from humor genre across temporal, descriptive, and causal
dimensions, broadening the applicability of v-HUB. Together, these tasks provide a comprehensive
framework to benchmark MLLMs in visual-centric humor understanding.

We evaluate representative MLLMs from both open- and closed-source domains. Depending on the
input modalities, we consider the following three task settings. (1) The Text-Only setting assumes
human-level interpretation of video contents and provides detailed human-written descriptions. (2)
The Video-Only setting offers only videos (without audio) to assess the ability of MLLMs to derive
humor solely from visual cues. (3) We further propose a novel Video+Audio setting that combines
visual and auditory signals to determine whether sound cues—such as background music and sound
effects—help MLLMs (aka. OmniLLMs) better understand humor.2

We empirically find that MLLMs generally perform better with text-only inputs than with video-
only inputs (see Table 2). For example, Qwen2.5-VL-72B drops in accuracy from 0.719 to 0.673
on Caption Matching, and Gemini-2.5-Flash from 0.611 to 0.583, under the video-only setting,
indicating their struggles in capturing subtle visual cues for humor understanding. Adding audio
yields slight improvements across most OmniLLMs. For instance, MiniCPM-2.6-o improves from
0.364 to 0.404 in accuracy on Caption Matching, confirming the effectiveness of the audio modality,
though it still lags behind the text-only setting. Overall, our v-HUB presents a new challenge and

1They translated videos into language descriptions and performed verbal humor evaluation with LLMs.
2In this work, audio primarily refers to environmental sound rather than human speech (see Section 2.2).
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Table 1: Comparison between v-HUB and prior humor video datasets.

Dataset Type Visual-Centric Tasks
Humor Explanation Caption Matching Open-ended QA

NYCC (Hessel et al., 2022) Cartoon
MUStARD (Castro et al., 2019) Sitcom

WITS (Kumar et al., 2022) Sitcom
UR-FUNNY (Hasan et al., 2019) TED Talks

SMILE (Hyun et al., 2023) Sitcom, TED Talks
ExFunTube (Ko et al., 2023) Short videos

v-HUB (ours) Short videos, Silent films

contributes to a comprehensive evaluation of MLLMs. It exposes their weakness in visual-centric
humor understanding, stresses the need for enhancing their visual reasoning capabilities, and highlight
the promise of integrating additional modalities like sound for video understanding.

2 CURATING VISUAL-CENTRIC HUMOROUS VIDEOS

2.1 HUMOR VIDEO SOURCES

Our goal is to collect humorous videos that are visual-centric and illustrate diverse humor. A
straightforward approach is to collect humorous clips from silent comedies that are entirely devoid
of speech. Though silent films may contain recorded music, sound effect, and few captions, which
may contribute to the expression of humor, the humor primarily arises from the visual modality.
A major issue with silent film clips is that they have rather narrow themes and employ limited
storytelling techniques. To enhance the diversity of humor in our dataset, we further incorporate
user-generated short funny videos from the Internet. Specifically, we selected videos from an X
account (@humansnocontext) that frequently shares humorous clips with minimal reliance on speech
or text-based context. Thus, our dataset comprises humorous videos from two different domains that
complement each other (see Figure 2):

• Charlie Chaplin’s Silent Films: We reviewed Charlie Chaplin’s classic silent films from 1914 to
1938 and collected 729 funny clips. Each humor is ensured to be self-contained, without relying on
additional video contexts. Figure 2 shows an example in this domain.

• User-Generated Funny Videos: We reviewed the X user @humansnocontext’s tweets posted
between March 28, 2023 and October 12, 2024 and collected 18080 short funny videos.

2.2 PREPROCESSING AND FILTERING

We preprocess and filter the initially collected videos according to duration, appropriateness, and
speech reliance, sequentially. (1) Duration: We retain videos ranging from 5 to 60 seconds long.
Short clips under 5 seconds generally fail to convey meaningful humor, while clips exceeding
1 minute often rely on dialogue. For silent films, we segment long scenes to isolate individual
humorous moments, ensuring that each segment captures the full humor, without becoming too long
for generation tasks. (2) Appropriateness: To ensure that the contents of our videos are appropriate,
we adhered to the safety objectives outlined in Thoppilan et al. (2022) and excluded videos that
violated the established criteria (see details in Appendix B.1). (3) Speech reliance: We minimize
reliance on speech. Since there is little to no speech in Charlie Chaplin’s silent films, we primarily
focused on user-generated funny videos and employed both manual and automatic approaches to
filter out speech-heavy videos (see details in Appendix B.1).

2.3 ANNOTATION

We recruited eight annotators based on the following criteria: (1) sufficient English proficiency to
understand video content, (2) broad cultural knowledge to interpret humor arising from various
contexts, and (3) strong observational skills assessed through a qualification test (see Appendix B.2).
To ensure consistency, we provided detailed guidelines for each annotation task and created a
reference manual for on-demand use. Each video underwent three rounds of annotation to guarantee
correctness and thoroughness. We conducted the following primary annotation tasks (see Figure 3 for
an example annotation):
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Charlie Chaplin’s Silent Film Clips User-Generated Funny Videos

Caption Matching Open-Ended QAHumor Explanation

Humorous ClipsSilent Films Manually Cut Short VideosHumorous Videos Collect & Filter

Manually Filter

Annotate

Humor Level Caption Prior KnowledgeExplanationDescription Humorous Elements

Figure 2: Data Curation Pipeline. To collect visual-centric humorous videos, the pipeline consists
of two main stages: (a) Humorous video collection, where annotators identify timestamps of self-
contained humorous clips for silent films and verify humor presence in short videos (see Section 2.1).
(b) Filtering and annotation, where only visual-dominant humor is retained and annotated (see Sec-
tion 2.3). The annotation is further used for task construction (see Section 3).

• Humor Evaluation: Annotators independently evaluated whether the video was humorous.

• Captioning: Each annotator was asked to write two types of captions for each video, without seeing
existing annotations, including captions and descriptions, from other annotators, thus ensuring an
independent and unbiased judgment.

1. Descriptive Captions directly describe or highlight the humor present in the video content
from the original publisher’s perspective.

2. Creative Captions extend beyond the video’s original humor by adding imaginative or novel
elements (see the added visual caption in Figure 1b).

The dual-caption annotation supports a comprehensive assessment of humor in video from both
comprehension and generation perspectives (see Section 3).

• Video Description: Annotators were instructed to describe the events in each video without making
inferences, focusing only on observable objects, actions, and expressions. After the first annotator
completes the video description, subsequent annotators review and refine these descriptions for
correctness and completeness.

• Video Labeling: Annotators labeled the key humor sources (e.g., human actions, objects, visual
effects, or sound cues) in each video and noted whether any visual text was present. If an element
appeared, but did not contribute to humor, it was not selected.

• Humor Explanation: Three annotators sequentially create and refine humor explanations by
adding missing details, guaranteeing comprehensive coverage of the labeled humor sources through
an iterative refinement process.

2.4 DATA ANALYSIS

After all filtering processes, we were left with 960 videos, including 267 silent humor clips from
Charlie Chaplin and 693 user-generated short funny videos from the Internet. The total duration of the
videos is 4h, and the average duration is around 15s. All of them rely on the visual modality to express
humor. We identify two key modalities that dominate the delivery of humor: visuals and audio.
Apart from 600 videos (63%) conveying humor primarily via pure visual cues (denoted by ‘Visual’),
92 videos (9%) contain additional linguistic cues in visual form—such as embedded captions and
subtitles (denoted by ‘Visual+Text’)—that extend humor, 214 video humor (22%) is enhanced by
additional sound that covers non-speech auditory elements, such as background music, sound effects,
and character vocalizations (denoted by ‘Visual+Audio’), and 46 videos (5%) convey humor through
visuals, sound, and visual text (denoted by ‘Visual+Audio+Text’). The video distribution over the
four groups is illustrate in Figure 8 in Appendix C, and more analysis can be found there.
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Prior Knowledge: ‘Happy Birthday’ is playing.​​

Humor Level: Very Humorous Humorous Elements: ‘Visuals’; ‘Visual Text’; ‘Sound’

Text/Subtitle Presence: Visual text existsDescriptive Caption: Have you seen a message cake? 

Creative Caption: He even made a red heart.

Description: In the video, the guy told someone on the

phone that he would give them a cake exactly like “this”,

and the listener was confused. After the cake was baked and

cut, the cut surface revealed the same pattern as the chat

bubble layout in the conversation.

Explanation: When the guy said the cake was exactly

the same as “this”, the listener didn’t understand what he

meant. But after the cake was cut, its cut surface revealed

the same pattern as the chat bubble layout, which viewers

found very humorous.

Figure 3: Example annotation of a short video that conveys humor through visuals, visual text, and
background sound. Knowing the Happy Birthday melody makes the video merrier (see Section 2.3).

3 V-HUB: A VISUAL-CENTRIC HUMOR UNDERSTANDING BENCHMARK

3.1 EVALUATION TASKS

To comprehensively evaluate the capability of MLLMs in humor understanding, we propose three
tasks that reflect different aspects of humor reasoning: Caption Matching, Humor Explanation, and
Open-ended QA:

• Caption Matching. In this discriminative task, models must correctly associate videos with their
corresponding captions. Unlike ordinary caption matching tasks, our design challenges MLLMs
to go beyond surface-level matching and assess their ability to understand video humor that is
pronounced by creative captions from a generation perspective. For each video with a creative
caption, we randomly sample four descriptive captions from other videos as the distractors.

• Humor Explanation. In this generative task, models must identify humor points within each video,
provide coherent explanations, and reference relevant visual or auditory cues.

• Open-ended QA. To further assess the fundamental understanding of video content, we generate a
set of open-ended question-answer pairs for each video (see details in Appendix D.1). These ques-
tions—automatically generated by GPT-4o (Hurst et al., 2024) and manually verified—encompass
temporal, descriptive, and causal aspects (Xiao et al., 2021).3 This extends the benchmark beyond
humor-specific reasoning, providing a broader assessment of video reasoning skills.

3.2 EVALUATION METHODS

We employ different evaluation strategies depending on the task type:

• Accuracy. For the caption matching task, we measure accuracy to determine whether the model
correctly identifies the most appropriate response.

• Quality of Open-ended Responses. For humor explanation and open-ended QA tasks, we adopt
both automatic and human evaluation approaches:
– Semantic Similarity. We compute similarity scores between model-generated answers and

human-provided answers using BERTScore (Zhang* et al., 2020), which captures fine-grained
semantic similarity beyond simple word overlap. It provides three metrics: recall, precision, and
F1 score (see Appendix D.2 for details). In addition, In addition, we employ SentBERT (Reimers
& Gurevych, 2019) to assess sentence-level semantic coherence, as well as METEOR (Banerjee
& Lavie, 2005), which provides a more nuanced assessment of semantic adequacy and fluency.

– Human Evaluation. We randomly sample a subset of model-generated explanations and compare
them with human-written explanations. The evaluators rate the explanations based on accuracy

3There are 62, 675, and 223 QA pairs for temporal, descriptive, and causal questions, respectively.
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and logicality, providing insight into the gap between human and MLLMs’ explanations. Results
are presented in Table 9 in Appendix E.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

MLLMs. We consider both proprietary and public MLLMs like Gemini-2.5-Flash (Team et al.,
2025) and Qwen2.5-VL (Bai et al., 2025). OmniLLMs such as Video-SALMONN-2 (Tang et al.,
2025) and Qwen-2.5-Omni (Xu et al., 2025), which can process audio, are also included (an overview
of all evaluated MLLMs is presented in Table 6).

Evaluation settings. To understand the roles of different modalities in video humor understanding,
we consider the following three settings: Text-Only, Video-Only, and Video+Audio, which means
models are tested with text, video (w/ audio), and video-audio inputs, respectively.

• Text-Only. In this setting, models receive detailed human-written video descriptions; no visual or
audio information is available to the models. Thus, it evaluates the language reasoning ability of
MLLMs in isolation.

• Video-Only. Models are provided with only raw video frames, without audio. This setting assesses
their intrinsic visual comprehension capabilities. Depending on the presence of visual text, we
further divide results into two groups: ‘w/ visual text’ and ‘w/o visual text’.

• Video+Audio. Models receive both video frames and audio signals, allowing us to examine
whether the inclusion of auditory information improves humor understanding. Depending on the
contribution of audio to humor, we further divide results into two groups: ‘w/ humor audio’ and
‘w/o humor video’.

4.2 MAIN RESULTS

Based on the results in Table 2, we analyze the humor competence of MLLMs along three dimensions:
video humor discovery, understanding, and subtle humor inference. Our results reveal several
shortcomings of MMLMs: they (i) struggle to identify humorous elements when explicit cues are
absent, (ii) inadequately fuse information across modalities for understanding, and (iii) show limited
capacity for inferring subtle humor.

Limited ability in humor discovery. Across settings, models consistently perform better on Open-
ended QA than on Humor Explanation. This performance disparity reveals that they are limited in
perceiving humor. For example, in the Text-Only setting, Qwen-2.5-VL-72B, whose score drops from
0.792 in QA to 0.553 in Humor Explanation. These findings suggest that models are more successful
when the question itself provides explicit cues that direct attention to a specific humorous element in
the scene. By contrast, the Humor Explanation task, which requires models to independently identify
and articulate the source of humor without such guidance, poses a greater challenge. This indicates
that while MLLMs are often able to reason about humor once it is highlighted for them, they struggle
with the more cognitively demanding task of discovering humor directly from contextual cues.

Heavy reliance on linguistic cues for humor understanding. Comparing text-based and video-
based evaluations, we observe marked differences across all three tasks, where the Text-Only setting
yields substantially higher scores than the video-based settings, implying that current MLLMs are
heavily dependent on linguistic cues for humor understanding. For example, On Open-ended QA,
Qwen-2.5-VL-72B achieves a SentBERT score of 0.792 with text input, but it plummets to 0.459 when
presented with raw video (w/o audio). While the addition of audio provides a marginal but consistent
performance boost, this gain is minimal compared to the contribution of text. This wide performance
gap suggests that MLLMs’ cross-modal fusion capabilities are still underdeveloped, leading them to
rely predominantly on linguistic cues rather than effectively integrating visual and auditory signals.
Thus, future work is well-suited for enhancing MLLMs beyond language understanding.
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Table 2: Model performance on Humor Explanation, Caption Matching, and Open-ended QA.

Explanation Matching Open-ended QA
MLLMs SentBERT METEOR F1 Score Accuracy SentBERT METEOR F1 Score

Text-Only

Gemini-2.5-flash 0.556 0.248 0.580 0.611 0.748 0.652 0.723
Video-SALMONN-2 0.575 0.242 0.589 0.367 0.602 0.445 0.639

MiniCPM2.6-o 0.558 0.239 0.562 0.518 0.578 0.467 0.543
Qwen-2.5-Omini 0.547 0.232 0.570 0.644 0.740 0.555 0.698

Qwen-2.5-VL-72B 0.553 0.250 0.578 0.719 0.792 0.622 0.738
Intern3.5-VL 0.567 0.255 0.580 0.632 0.721 0.578 0.689

GPT-4o 0.569 0.256 0.581 0.767 0.720 0.666 0.718

Video-Only

Gemini-2.5-flash 0.469 0.200 0.550 0.583 0.434 0.275 0.556
video-SALMONN-2 0.281 0.150 0.504 0.259 0.311 0.160 0.525

MiniCPM2.6-o 0.387 0.164 0.520 0.364 0.323 0.110 0.452
Qwen-2.5-Omini 0.388 0.157 0.521 0.55 0.385 0.104 0.488

Qwen-2.5-VL-72B 0.452 0.188 0.547 0.673 0.459 0.201 0.550
Intern3.5-VL 0.433 0.186 0.543 0.640 0.393 0.230 0.542

GPT-4o 0.478 0.198 0.547 0.667 0.431 0.300 0.556

Video+Audio

Gemini-2.5-flash 0.472 0.200 0.550 0.588 0.428 0.275 0.554
video-SALMONN-2 0.296 0.176 0.506 0.255 0.319 0.180 0.538

MiniCPM2.6-o 0.419 0.176 0.523 0.404 0.348 0.245 0.513
Qwen-2.5-Omini 0.442 0.177 0.531 0.623 0.439 0.164 0.529

Table 3: The impacts of audio (i.e., sound) and visual text on video humor understanding.

Sound contributing to humor Sound not contributing to humor

Explanation Matching Open-ended QA Explanation Matching Open-ended QAModels
SentBERT METEOR Accuracy SentBERT METEOR SentBERT METEOR Accuracy SentBERT METEOR

w/ visual text

Gemini-2.5-flash 0.532 0.212 0.630 0.488 0.359 0.509 0.219 0.739 0.476 0.319
video-SALMONN-2 0.292 0.190 0.261 0.319 0.189 0.280 0.176 0.293 0.318 0.189

MiniCPM2.6-o 0.490 0.189 0.348 0.374 0.289 0.474 0.197 0.489 0.380 0.282
Qwen-2.5-Omni 0.512 0.192 0.783 0.525 0.176 0.467 0.190 0.75 0.453 0.166

w/o visual text

Gemini-2.5-flash 0.486 0.202 0.523 0.409 0.265 0.455 0.194 0.215 0.423 0.266
video-SALMONN-2 0.296 0.181 0.243 0.299 0.168 0.298 0.173 0.178 0.325 0.182

MiniCPM2.6-o 0.451 0.178 0.341 0.355 0.271 0.393 0.170 0.215 0.334 0.226
Qwen-2.5-Omni 0.471 0.176 0.551 0.457 0.150 0.422 0.173 0.197 0.422 0.166

Incapability for subtle humor inference. The Caption Matching task goes beyond surface-level
linking between literal descriptions and videos; instead, it requires models to find the creative caption
that enhances or extends humor in the video. We find that most models exhibit limited performance
(e.g., below 0.8), suggesting their incompetence for subtle humor inference. For example, under
the most favorable conditions, that is, in the Text-Only setting, the top-performing model, GPT-4o,
achieves an accuracy of only 0.767. The difficulty is magnified when models must process raw video
data. For example, video-SALMONN-2’s accuracy falls sharply from 0.367 in the Text-Only setting
to 0.255 in the Video+Audio condition. This pronounced struggle to connect creative, non-obvious
text to original visual humor context reveals a critical weakness in the models’ capacity for the
abstract, implicit cross-modal reasoning that is fundamental to comprehending sophisticated humor.

4.3 FURTHER ANALYSIS

To conduct a deeper analysis of model results, we further divide our experimental results based on
previously annotated humor modalities and background knowledge essential for delivering humor in
video, to analyze how different types of humor affect models’ explanatory capability.
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Table 4: The impact of background knowledge on video humor understanding.

Explanation Matching Open-ended QA
MLLMs SentBERT METEOR F1 Score Accuracy SentBERT METEOR F1 Score

w/ Background Knowledge

video-SALMONN-2 0.468 0.173 0.563 0.331 0.397 0.195 0.535
MiniCPM-2.6-o 0.518 0.203 0.557 0.445 0.430 0.204 0.520
Qwen-2.5-Omni 0.514 0.197 0.557 0.667 0.496 0.220 0.556

w/o Background Knowledge

video-SALMONN-2 0.287 0.178 0.515 0.261 0.300 0.174 0.528
MiniCPM-2.6-o 0.444 0.181 0.540 0.412 0.351 0.252 0.509
Qwen-2.5-Omni 0.462 0.181 0.545 0.630 0.445 0.158 0.526

Table 5: The impact of video era on video humor understanding.

Explanation Matching Open-ended QA
MLLMs SentBERT METEOR F1 Score Accuracy SentBERT METEOR F1 Score

Last-Century Charlie Chaplin’s Silent Films

Gemini-2.5-flash 0.422 0.188 0.541 0.562 0.386 0.221 0.545
video-SALMONN-2 0.281 0.146 0.509 0.165 0.296 0.154 0.513

MiniCPM2.6-o 0.343 0.150 0.508 0.307 0.314 0.128 0.470
Qwen-2.5-Omni 0.339 0.144 0.510 0.494 0.337 0.119 0.493

Contemporary User-Generated Funny Video

Gemini-2.5-flash 0.487 0.205 0.553 0.592 0.452 0.295 0.560
video-SALMONN-2 0.280 0.151 0.503 0.296 0.315 0.163 0.529

MiniCPM2.6-o 0.404 0.170 0.524 0.385 0.326 0.104 0.446
Qwen-2.5-Omni 0.407 0.162 0.525 0.571 0.404 0.098 0.487

Both audio and visual text help with humor understanding. As shown in Table 3, MLLMs
perform better on videos containing visual text or subtitles than on those without linguistic cues under
the Video+Audio setting. For example, Gemini-2.5-Flash attains a SentBERT score of 0.532 and
a METEOR score of 0.212 for humor explanation with visual text, compared to 0.486 and 0.202
without visual text. When sound does not contribute to humor, the advantage of visual text becomes
even more pronounced: Gemini-2.5-Flash improves from 0.455 to 0.509 in Explanation SentBERT
and from 0.215 to 0.739 in Matching Accuracy with visual text. These results indicate that while
both audio and visual text help with humor understanding, MLLMs rely more heavily on textual cues,
and the presence of visual text can effectively compensate for the absence of informative sound.

Knowledge-based cues facilitate humor understanding. We identified 357 videos that require
contextual background knowledge and evaluated MLLMs under two settings: with and without the
explicit provision of such knowledge. As shown in Table 4, MLLMs consistently achieve higher
performance when background knowledge is provided. For instance, Qwen-2.5-Omni attains a
SentBERT score of 0.514 and an Explanation F1 of 0.557 with background knowledge, compared to
0.462 and 0.545 without. These findings suggest that while MLLMs implicitly encode certain aspects
of cultural context, their comprehension of humor is significantly enhanced by the explicit provision
of background knowledge, underscoring the central role of linguistic and knowledge-based cues in
complex video humor understanding tasks.

MLLMs have greater difficulty in comprehending humor in historically distant videos. We
analyze the performance of MLLMs under the Video-Only setting across two subsets from distinct
eras: last-century Charlie Chaplin’s silent films (CCSF) and contemporary user-generated funny
videos (UGFV). As shown in Table 5, MLLMs consistently achieve higher scores on UGFV across all
evaluation metrics. For example, Gemini-2.5-flash attains an F1 score of 0.553 for Humor Explanation
and 0.560 for Open-ended QA on UGFV videos, compared to 0.541 and 0.545, respectively, on
CCSF videos. These findings suggest that MLLMs face greater difficulty in comprehending humor in
historically distant videos, highlighting the sensitivity of humor understanding to the temporal and
cultural context of videos.
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5 RELATED WORK

Video LLMs. Video LLMs have shown remarkable performance in many traditional video pro-
cessing tasks such as video captioning (Xu et al., 2016; Agrawal et al., 2019; Plummer et al., 2017),
video question answering (Antol et al., 2015; Xiao et al., 2021; Yu et al., 2019; Fu et al., 2025), and
grounding (Kazemzadeh et al., 2014; Wu et al., 2022). However, most existing benchmarks primarily
target general video understanding tasks, such as MVBench (Li et al., 2024), Video-MME (Fu et al.,
2025), PerceptionTest (Patraucean et al., 2023), MLVU (Zhou et al., 2025), and LVBench (Wang
et al., 2024b), which mainly assess the recognition of basic visual cues across videos of varying
lengths. Others are designed to evaluate specific video understanding capabilities, including temporal
grounding (Gao et al., 2017; Lei et al., 2021; Hendricks et al., 2017; Wang et al., 2024c), video object
detection (Shang et al., 2019; 2017), and video hallucination (Wang et al., 2024d; Leng et al., 2024).
But there remains a pressing need for benchmarks that evaluate higher-level cognitive abilities, such
as social intelligence, in order to better measure the gap between human and MLLMs’ performance.

Our work narrows this gap. We expand the evaluation spectrum of video LLMs by introducing a novel
humor understanding evaluation framework, formulating a humor generation task, and presenting a
first comprehensive evaluation.

Humor Video Understanding. Humor understanding has been a popular research topic in the area
of artificial intelligence and has its roots in cognitive science (Hampes, 2001; 2010),. Early works
focus on verbal humor in the form of jokes, sarcasm, etc (Chłopicki, 2005; Petrović & Matthews,
2013; Joshi et al., 2017). As AI models become capable of processing more data modalities like
images, videos, and audio, many efforts have been devoted to multimodal humor understanding. For
example, Hessel et al. (2022) analyze cartoon images and humorous captions, Desai et al. (2022);
Kumar et al. (2022) investigate sarcasm, a special humor type, with image-language data, and Castro
et al. (2019); Hasan et al. (2019); Kayatani et al. (2021); Patro et al. (2021); Alnajjar et al. (2022)
focus on laughter detection and explanation with videos, including video presentations, sitcoms, and
stand-up comedy, but laughter is not the only emotion reaction to humor.

With the development of LLMs, recent works tested how well LLMs understand multimodal humor
with image-language and video-language humor (Hessel et al., 2022; Alnajjar et al., 2022), but a
parallel evaluation of video LLMs is still missing. While previous works have introduced several
video-based humor datasets (Kumar et al., 2022), humor in their videos is either primarily dominated
by spoken dialogue or restricted to those that have to be understood relying on both visual and
linguistic cues. In contrast, we introduce a visual-centric humor video dataset designed to simulate
common scenarios where humans can understand humor purely from visual cues.

Going beyond visual and verbal humor understanding, sound has been found informative of com-
monsense (Zhao et al., 2022; Zellers et al., 2022), and several studies demonstrate that integrating
textual, acoustic and visual characteristics can significantly improve humor detection accuracy (Chan-
drasekaran et al., 2016; Hasan et al., 2019). Since multimodal LLMs have recently been extended to
support audio processing (aka. OmniLLMs), we propose and conduct a first evaluation of MLLMs
on video humor understanding that involves sound.

6 CONCLUSION

We have introduced v-HUB, a visual-centric humor understanding benchmark. v-HUB is designed
to assess and diagnose the capability of MLLMs for video humor understanding. It contains a
collection of funny videos collected from two complementary domains. Each clip is annotated
with captions, descriptions, explanations, etc., supporting evaluation tasks such as caption matching
and humor explanation. To broaden the applicability of v-HUB, we further construct an open-
ended task, contributing to a comprehensive evaluation of MMLMs for video understanding. We
evaluated a diverse range of MMLMs, spanning open-sourced and proprietary domains and covering
specialized video LLMs and versatile OmniLLMs. Our findings reveal that current MLLMs heavily
rely on linguistic cues for humor understanding, but are weak in deriving nuanced visual cues for
understanding sophisticated video humor. Moreover, we empirically find that including audio is
helpful for humor understanding, highlighting the informativeness of sound and the promise of
incorporating rich modalities for complex video reasoning tasks.
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ETHICS STATEMENT

Our work follows widely recognized ethical principles in computing research, including the ACM
Code of Ethics and the ICLR ethics guidelines. In developing our benchmark, we considered the
following aspects:

• Contribute to Society and to Human Well-being: Our dataset is intended to advance multimodal
AI research on humor understanding, a capability that has broad applications in safe content
moderation, assistive technologies and cross-cultural communication. We employed three Human
Intelligence Tasks (HITs) to gather data, and we fully considered cultural and linguistic diversity in
humor to minimize potential negative impacts as much as possible, such as reinforcing harmful
stereotypes, exposing sensitive content, or infringing on personal safety and privacy. To ensure
accessibility and inclusivity, the dataset will be made broadly available for non-commercial research
purposes.

• Uphold High Standards of Scientific Excellence: We consistently adhere to principles of trans-
parency and rigor throughout dataset curation and analysis. We meticulously document all prepro-
cessing, annotation and evaluation procedures, and we will publicly release the relevant code to
ensure independent verification and reproducibility. Furthermore, we provided fair compensation
to all annotation personnel, ensuring their hourly wages exceeded the local minimum wage. Finally,
we did not fabricate, falsify, or misrepresent data. Beyond the data annotators, no other human
subjects were directly involved, and no personally identifiable information was used. Therefore, no
additional ethics approval is required.

• Avoid Harm: We carefully considered potential risks that could arise from constructing and
releasing a humor video benchmark. To mitigate negative consequences, we implemented a multi-
stage screening mechanism to exclude humorous content featuring violence, discrimination, or
relying on stereotypes targeting vulnerable groups. Simultaneously, we adopted a three-person
collaborative annotation scheme, ensuring that each data entry underwent three rounds of annotation.
We explicitly document the limitations of the dataset to minimize unintended harm arising from
cross-cultural or linguistic misunderstandings. Furthermore, we analyzed potential downstream
risks, such as misuse for generating harmful or offensive humor, and explicitly warn against such
applications in the dataset license.

• Be Honest, Trustworthy and Transparent: We transparently disclose the characteristics, strengths,
and limitations of the dataset. While this dataset thoroughly considers cultural and linguistic
diversity in humor and encompasses diverse humor scenarios, it cannot cover all dimensions of
global humor cultures. Furthermore, Charlie Chaplin’s Silent Films constitute a significant portion
of the dataset, inevitably introducing potential cultural bias. We confirm that there are no conflicts
of interest that may compromise the independence of our research, and all funding sources are
clearly acknowledged. At the same time, we guarantee that we do not misrepresent related work,
nor do we claim capabilities beyond what our benchmark enables.

• Be Fair and Take Action not to Discriminate: We strived for fairness in both dataset curation
and evaluation. And we made efforts to avoid humor that demeans particular groups. We also
emphasize that the dataset should not be used to develop systems that discriminate, disenfranchise,
or oppress individuals.

• Respect the Work Required to Produce New Ideas and Artefacts: We credit the creators
of ideas, inventions, work, and artefacts, and respect copyrights and property. All videos are
sourced from publicly available materials with appropriate licenses. Where possible, we provide
attribution to content creators and respect cultural heritage by excluding sensitive or protected
media. Where possible, we will provide attribution to content creators and respect their work by
excluding sensitive or protected media content.

• Respect Privacy: Our work did not use private or personally identifiable data. All videos have
been anonymized or utilize publicly available Charlie Chaplin silent films, carefully mitigating the
risk of re-identification. Furthermore, the dataset is restricted to legitimate academic research under
the dataset license.

• Honour Confidentiality: Our work did not involve any confidential or proprietary information.
Reviewers and collaborators were only provided with materials approved for release. We commit
to maintaining confidentiality in peer review and in handling sensitive communications.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The details of dataset
collection, filtering, and annotation protocols are described in Section 2 of the main paper, with further
implementation details provided in Appendix B. The evaluation metrics and experimental setups for
all baseline models are reported in Section 4 and Appendix D. We also provide the full benchmark
dataset along with evaluation scripts to allow replication of our results. All hyperparameters and
experimental configurations are listed in the supplementary materials. Due to the use of API-based
models and inherent randomness (e.g., random seeds during evaluation), reproduced results may
exhibit slight variations from those reported, but overall trends and conclusions remain consistent.
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Appendices

A ADDITIONAL RELATED WORK

A.1 FROM LLMS TO VIDEO LLMS

Large language models have demonstrated outstanding capabilities in many domains, including
natural language processing, coding, math, and reasoning, ushering in new breakthroughs for video
understanding technology. Video LLMs integrate visual encoders with LLMs, leading to a unified
model to reason across video and language in the same language space (Wang et al., 2024a; Liu et al.,
2024; Lin et al., 2023). Early video LLMs employ pre-trained image encoder and video encoder to
encode only video frames (Zhang et al., 2023; Maaz et al., 2023; Li et al., 2023; Lin et al., 2023).
Recent works augment video LLMs with an audio encoder to align visual, auditory, and textual
modalities in the same language space. Moreover, the audio encoder is supposed to capture diverse
environmental sound apart from human speech since sound has been shown to contain amounts of
commonsense knowledge (Cheng et al., 2024; Xu et al., 2025).

B CROWDWORKING DETAILS

B.1 PROCESSING AND FILTERING

Harmful Content Detection. Before the annotation process began, we manually filtered out videos
that contained potentially harmful content to ensure the video data’s safety and quality (Figure 4
visualizes our annotation interface). Based on the criteria outlined by Thoppilan et al. (2022), we
defined 6 categories of harmful contents, following aspects are checked for each video.

• Discrimination. Videos that display discrimination based on race, gender, sexual orientation, age,
disability, appearance (e.g., obesity), or religion.

• Animal Cruelty. Videos that depict the abuse or mistreatment of animals.
• Dangerous Activities. Videos that include dangerous content such as drug use, criminal behavior,

bullying, terrorism, rumor propagation, incitement, or misinformation.
• Physical Violence. Videos containing acts of physical violence against individuals, including

fighting, severe injuries, bleeding, self-harm, or torture.
• Obscenities. Videos that contain explicit language, sexual behavior, or suggestive content.
• Shocking Content. Videos that include startling or fear-inducing elements such as gunshots,

explosions, or jump scares.

In addition to harmful content detection, videos are also evaluated based on their quality:

• Confusing: Videos that are incomplete or otherwise difficult to understand.
• Low Resolution: Videos with a level of clarity that makes it challenging to discern the content.

Chaplin Video Segmentation. We selected 62 silent films by Charlie Chaplin and hired annotators
to meticulously review each film, manually recording humorous moments to ensure each mime clip
illustrates a whole mime through a single event or multi events. And we removed videos where both
the reason for the humor and the action were repetitive (e.g. humor arising from a comical action due
to inflexibility, such as failing to position a ladder properly) to ensure the quality and consistency of
the videos and their annotations.

Speech reliance minimization. To ensure reliable identification of humorous content, we instructed
two annotators to independently review each video and confirm the presence of clear humor. Each
annotator was also instructed to review each video and label whether humor was primarily conveyed
through visual cues and could be understood independently of speech. Only videos for which both
annotators agreed were retained for the final dataset. We further employed Whisper (Radford et al.,
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2023), a performant speech-to-text model, to transcribe audio. Since Whisper transcribes filler sounds
(e.g., “uh,” “hmm”) and other minimal utterances, we excluded any videos where the transcribed text
exceeded 10 characters. Additionally, videos containing non-English speech were retained but muted,
removing dependence on linguistic cues.

B.2 ANNOTATION

Annotator Training. We provided appropriate annotation training for crowdworkers, offering de-
tailed explanations of the annotation platform’s usage and the annotation guidelines for different tasks.
Additionally, we supplied an annotation manual (Figure 6) and corresponding instructional videos,
which included specific descriptions and examples of the annotation requirements for crowdworkers
to consult at any time during the annotation process.

Qualification.The recruited crowdworkers were mainly from China, all possessing at least an under-
graduate education and with English background. Before formal annotation began, we conducted
training sessions and a qualification review. During the qualification stage, crowdworkers were
required to annotate 15 video samples. We manually reviewed their results and assigned scores based
on the annotation guidelines. Ultimately, we selected eight qualified annotators.

For the annotation process, we adopted a three-person collaborative annotation scheme, ensuring
that each data entry underwent three rounds of annotation. First, an annotator performed the initial
annotation. Next, a second annotator reviewed and supplemented the annotation. Finally, a third
annotator reviewed and further refined the previous two rounds of annotations. The annotators rotated
through these three roles, and each annotation round was tracked to ensure that the three rounds
for each data entry were completed by different annotators. For humor rating and video captions,
annotators were required to independently provide their own answers. For the remaining annotation
tasks, when the second and third annotators reviewed and modified the previous annotations, they
were required to submit a new annotation if they identified any issues. If a specific annotation issue
was modified in all three rounds for a given video, we conducted a final review to assess the validity
of the annotation results.

C DATA STATISTICS

Duration. All videos in our final dataset are restricted to a duration of 5–60 seconds, with the
majority concentrated within 30 seconds (see Figure 7a). This design ensures that humor is self-
contained, sufficiently nuanced, and compatible with the context length limits of most MLLMs.

Diversity. To show our dataset contains a variety of humor, we follow Buijzen & Valkenburg (2004)
to categorize humor into five categories (see Figure 7b): Slapstick humor, Clownish humor, Surprise,
Irony, Misunderstanding and Others (e.g. Parody, Miscellaneous, Satire).

Visual-centric. Our dataset is predominantly visual centric, with 99% of videos relying primarily
on visual cues. Specifically, per the four groups defined in Section 2.4: Visual, Visual+Text, Vi-
sual+Audio, and Visual+Autio+Text, 600 videos (63%) fall into the category Visual, meaning humor
is entirely derived from facial expressions, object interactions, or visual effects without reliance on
text or sound effects. 214 videos (22%) integrate audio, indicating that while humor remains visually
driven, auditory elements such as background music or sound effects enhance the comedic impact. 92
videos (9%) are classified as Visual+Text indicating that video humor is extended through additional
visual text. 46 videos (5%) combines the three modalities to deliver humor. The remaining 1%
includes videos, in which speech plays a minor role but does not dominate the expression of humor.

D ADDITIONAL EXPERIMENTAL NOTES

D.1 DETAILS OF GENERATE OPEN-ENDED QA PAIRS

We employed GPT-4o to generate QA pairs for each video, with the questions primarily covering
temporal, descriptive, and causal aspects. The specific prompts used for QA generation are provided
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Figure 4: Interface for the Harmful Content Detection HIT.
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Figure 5: Interface for HIT.
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Figure 6: Interface for Annotation Manual for data annotation.
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Figure 7: Data statistics: video length and humor type distributions.
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Table 6: Evaluated Models.

Models #Parameter Proprietary Input Modality

Text Video Video+Audio

Qwen2.5-VL 72B
Qwen-2.5-Omni 7B

Intern3.5-VL 8B
MiniCPM2.6-o 8B

Video-SALMONN-2 7B
GPT-4o -

Gemini-2.5-flash -

in Table 16. Subsequently, annotators manually reviewed and revised the QA pairs for each video to
ensure their accuracy and quality.

D.2 DETAILS OF EVALUATION METHODS

BERTScore evaluates the semantic similarity between generated answers and ground truth (GT)
references by leveraging contextual embeddings from pre-trained language models (Zhang* et al.,
2020). Instead of relying on exact lexical overlap, BERTScore computes similarity at the token level
in embedding space and aggregates these scores into three metrics:

• Recall measures how well the GT tokens are semantically captured by the generated answer.
• Precision measures how relevant the generated tokens are with respect to the GT reference.
• F1 Score is the harmonic mean of precision and recall, providing a balanced assessment of semantic

alignment.

The inclusion of BERTScore allows us to evaluate whether model-generated answers semantically
align with human references, thereby assessing the adequacy and quality of humor comprehension.

Human Preference We randomly sampled 50 explanations generated by models for human evaluation.
To ensure consistency in the evaluation criteria, we assigned one annotator to rate the humor explana-
tions generated by models. The scores ranged from 0 to 100, and were subsequently normalized by a
factor of 100, yielding final results within the range [0, 1].

D.3 BASELINE MODELS

To evaluate multimodal large language models’ ability to understand video humor, we selected state-
of-the-art models representing three distinct input modalities, as summarized in Table 6. Specifically,
we include multimodal LLMs that process raw visual frames and text, and omni LLMs that integrate
both text, video and audio signals. This set covers both public models (e.g., Qwen2.5-VL-72B,
Intern3.5-VL) and proprietary models (e.g., Gemini-2.5-flash, GPT-4o), offering a broad perspective
on current approaches. Each model is evaluated under all input conditions it can handle (see
Section 4.1): for instance, omni-modal models can participate in the Text-Only, Video-Only, and
Video+Audio groups, whereas multimodal models are tested exclusively with textual input and
raw visual frames. This setup allows us to isolate how each model category—multimodal and
omni-modal—contributes to humor understanding across diverse input modalities.

E ADDITIONAL EXPERIMENTAL RESULTS

MLLMs vs. its base LLM. Each multimodal model (MLLM) is derived from a base LLM by
adding a visual encoder or multimodal modules. For instance, Qwen2.5-VL-72B extends Qwen2.5-
72B, and Qwen2.5-Omni extends Qwen2.5-7B (see Table 7). In the Text-Only setup, Qwen2.5-Omni
surpasses Qwen2.5-7B with a SentBERT score of 0.740 (vs. 0.692) and an F1 score of 0.698 (vs.
0.667) on Open-ended QA task, suggesting that multimodal training can confer advantages even when
only textual descriptions are available—possibly because the model has learned richer contextual
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Table 7: Comparison between MLLMs and their base LLMs under the Text-Only setting.

Models Open-ended QA

SentBERT METEOR Precision Recall F1 Score

Qwen2.5-VL-72B 0.792 0.622 0.744 0.740 0.738
Qwen2.5-72B 0.710 0.636 0.680 0.723 0.700
Qwen2.5-Omni-7B 0.740 0.555 0.703 0.703 0.698
Qwen2.5-7B 0.692 0.539 0.657 0.688 0.667

Table 8: The impact of requiring background knowledge support on video humor understanding.

Models Explanation Matching Open-ended QA

SentBERT METEOR F1 Score Accuracy SentBERT METEOR F1 Score

Gemini-2.5-flash 0.503 0.211 0.568 0.633 0.437 0.268 0.550
video-SALMONN-2 0.273 0.153 0.513 0.266 0.306 0.159 0.520

MiniCPM2.6-o 0.404 0.166 0.532 0.378 0.318 0.103 0.442
Qwen-2.5-Omni 0.404 0.157 0.531 0.571 0.384 0.105 0.486

associations during training. For more details about humor explanation and caption matching tasks
(see Table 11).

Background knowledge does not necessarily improve video humor understanding. The results
in Table 2 and Table 8 show that there is no significant difference between the mean scores and the
scores for videos that need background knowledge to perceive humor under Video+Audio setting. For
example, under the Video+Audio setting, the Gemini-2.5-flash attains an average F1 score of on the
Explanation task for Background-Dependent videos 0.568, which is statistically similar to its F1 score
of 0.550 on the full dataset. This suggests that the language-model component of MLLMs already
encodes most of the cultural background knowledge necessary for humor comprehension, meaning
that the absence of explicit background knowledge in the input does not significantly degrade their
performance. MLLMs do not show a significant disadvantage in understanding videos that require
background knowledge compared to those that do not, potentially because video humor rarely relies
on specific background knowledge, making it universally understandable.

Proprietary MLLMs show stronger resilience to multimodal inputs compared to public MLLMs.
The results in Table 9 indicate that current MLLMs rely heavily on linguistic cues to generate
reasonable explanations, and struggle to effectively extract semantic information from raw visual or
auditory signals. For example, Qwen2.5-VL-72B attains a preference score of 0.687 under Text-Only,
significantly outperforming its Video-Only score of 0.423. Furthermore, although closed-source
models demonstrate greater robustness under multimodal inputs, they still struggle to align visual
and audio cues to enhance humor comprehension. For instance, Gemini-2.5-flash achieves 0.546
(Video-Only) and 0.566 (Video+Sound).

F THE USE OF LARGE LANGUAGE MODELS

In this work, we used LLMs as assistive tools in several stages of the research:

• Dataset construction. We initially employed GPT-4o to assist in generating candidate QA pairs
and humor categories from video content. All outputs were subsequently reviewed and revised by
human annotators to ensure correctness and quality.

• Code assistance. LLMs were used to help generate parts of the evaluation code, which were then
verified and refined by the authors.

• Writing support. LLMs were used to write and polish some sentences in the paper for readability.
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Table 9: Human preference comparison of humor explanations across four model categories.

Models Proprietary Type Setting

Text-Only Video-Only Video+Sound

Qwen2.5-VL-72B MLLM 0.687 0.423 –
Qwen2.5-Omni OmniLLM 0.574 0.430 0.381

GPT-4o MLLM 0.654 0.576 –
Gemini-2.5-flash OmniLLM 0.651 0.546 0.566

Table 10: Model performance on Humor Explanation, Caption Matching, and Open-ended QA.

Explanation Matching Open-ended QA
Models Precision Recall F1 Score Accuracy Precision Recall F1 Score

Text-Only

Gemini-2.5-flash 0.550 0.616 0.580 0.611 0.710 0.744 0.723
video-SALMONN-2 0.570 0.612 0.589 0.367 0.650 0.636 0.639

MiniCPM2.6-o 0.519 0.614 0.562 0.518 0.460 0.666 0.543
Qwen-2.5-Omini 0.540 0.605 0.570 0.644 0.703 0.703 0.698

Qwen-2.5-VL-72B 0.548 0.615 0.578 0.719 0.744 0.740 0.738
Intern3.5-VL 0.548 0.618 0.580 0.632 0.688 0.701 0.689

GPT-4o 0.546 0.626 0.581 0.767 0.698 0.746 0.718

Video-Only

Gemini-2.5-flash 0.522 0.583 0.550 0.583 0.547 0.570 0.556
video-SALMONN-2 0.487 0.525 0.504 0.259 0.549 0.509 0.525

MiniCPM2.6-o 0.500 0.543 0.520 0.364 0.397 0.522 0.452
Qwen-2.5-Omini 0.503 0.543 0.521 0.55 0.538 0.457 0.488

Qwen-2.5-VL-72B 0.526 0.571 0.547 0.673 0.567 0.541 0.550
Intern3.5-VL 0.522 0.568 0.543 0.640 0.544 0.545 0.542

GPT-4o 0.515 0.585 0.547 0.667 0.538 0.579 0.556

Video+Sound

Gemini-2.5-flash 0.521 0.583 0.550 0.588 0.543 0.570 0.554
video-SALMONN-2 0.487 0.529 0.506 0.255 0.556 0.526 0.538

MiniCPM2.6-o 0.501 0.553 0.523 0.404 0.494 0.541 0.513
Qwen-2.5-Omini 0.509 0.558 0.531 0.623 0.565 0.507 0.529

G PROMPTS

We list our prompt in Tables 15 to 25

Table 11: Comparison between MLLMs and their base LLMs under the Text-Only setting.

Models Explanation Matching

SentBERT METEOR Precision Recall F1 Score Accuracy

Qwen2.5-VL-72B 0.553 0.250 0.548 0.615 0.553 0.719
Qwen2.5-72B 0.546 0.245 0.552 0.615 0.581 0.646

Qwen2.5-Omni-7B 0.547 0.232 0.605 0.570 0.547 0.644
Qwen2.5-7B 0.568 0.241 0.540 0.613 0.573 0.522
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Table 12: The impact of requiring background knowledge support on video humor understanding.

Models Explanation Matching Open-ended QA

Precision Recall F1 Score Accuracy Precision Recall F1 Score

Gemini-2.5-flash 0.545 0.595 0.568 0.633 0.540 0.566 0.550
Qwen-2.5-Omni 0.517 0.547 0.531 0.571 0.533 0.460 0.486
MiniCPM2.6-o 0.516 0.550 0.532 0.378 0.396 0.521 0.442

video-SALMONN 2 0.501 0.527 0.513 0.266 0.542 0.507 0.520

Table 13: The impact of background knowledge on video humor understanding.

Explanation Matching Open-ended QA
Models Precision Recall F1 Score Accuracy Precision Recall F1 Score

w/ Background Knowledge

video-SALMONN-2 0.561 0.568 0.563 0.331 0.554 0.525 0.535
MiniCPM-2.6-o 0.533 0.585 0.557 0.445 0.508 0.553 0.520
Qwen-2.5-Omni 0.536 0.582 0.557 0.667 0.583 0.540 0.556

w/o Background Knowledge

video-SALMONN-2 0.499 0.533 0.515 0.261 0.545 0.517 0.528
MiniCPM-2.6-o 0.521 0.563 0.540 0.412 0.490 0.537 0.509
Qwen-2.5-Omni 0.462 0.181 0.545 0.630 0.445 0.158 0.526

Table 14: The impact of video era on video humor understanding.

Explanation Matching Open-ended QA
Models Precision Recall F1 Score Accuracy Precision Recall F1 Score

Charlie Chaplin’s Silent Films

Gemini-2.5-flash 0.517 0.570 0.541 0.562 0.529 0.567 0.545
video-SALMONN-2 0.492 0.528 0.509 0.165 0.521 0.511 0.513

MiniCPM2.6-o 0.492 0.527 0.508 0.307 0.431 0.535 0.470
Qwen-2.5-Omni 0.495 0.528 0.510 0.494 0.515 0.482 0.493

User-Generated Funny Video

Gemini-2.5-flash 0.525 0.588 0.553 0.592 0.553 0.572 0.560
video-SALMONN-2 0.485 0.523 0.503 0.296 0.559 0.509 0.529

MiniCPM2.6-o 0.503 0.549 0.524 0.385 0.405 0.518 0.446
Qwen-2.5-Omni 0.506 0.549 0.525 0.571 0.547 0.448 0.487

And I will provide a description of the video and a list of
descriptive captions that break down what happens in it.
Your task is to write a caption in one sentences from the video
creator’s perspective -- something you would write to attract
viwers.
Requirements:
Please ensure it is related to the video content.
- Write as if you’re sharing it with an audience (e.g., use
’this’ or ’me’ naturally).
Output format:
Caption: <caption>
Video description: {video_description}
Descriptive captions: {descriptive_captions}

Table 15: Prompt for writing captions of videos.
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These are frames from a video.
And you’ll be given a description of a video and an explanation of
why it’s humorous to watch.
Based on given information, generate a Video Reasoning QA pair,
try to make answer only as phrases. Let’s think step by step. \n
Additionally, classify this question into one of the following
categories using the concise definitions provided: \n
Descriptive question: Involves factual details such as location
or count \n
Temporal question: Involves time-related aspects (e.g., previous,
after) \n
Causal question: Involves reasons or explanations (e.g., why,
how) \n\n
Example 1: \n
Description: \n
Two hands are stretched out, one hand holding KFC chicken nuggets
and the other hand holding seeds. In the distance, a chicken runs
over, but the chicken prefers to eat the KFC chicken. \n
Explanation: The chicken surprisingly likes to eat KFC chicken,
which is unexpected and a bit funny. The man realizes something
is wrong and tries to push the chicken pieces away with his hand,
which adds to the humor with a sense of panic. \n\n
Question: What does the man holding in his hand? \n
Answer: KFC chicken nuggets and seeds. \n
Type: Descriptive \n\n
Example 2: \n
Description: A man poured red liquid into the water, and a group
of fish came to snatch the food. Another man poured beer into the
water, and a group of men came to snatch the food like fish. \n
Explanation: The portrait of people snatching food like fish
humorously reflects the attraction of beer to men, and the
connection between them is very funny. \n\n
Question: After the man poured beer into the water, what
happened? \n
Answer: A group of men came. \n
Type: Temporal \n\n
Example 3: \n
Description: A woman was lying on the handrail of an escalator
while moving down. A man saw her, and lying on the handrail on
the other side, and as a result, there was no barrier on that
side, and he fell directly down the escalator. \n
Explanation: The man tried to show off by imitating others, but
ended up falling hard, which made people find it funny. \n\n
Question: Why does the man fall off on the other side of the
handrail? \n
Answer: There was no barrier. \n
Type: Causal \n\n
Output format: \n
Question: <question> \n
Answer: <answer> \n
Type: <type> \n\n
Video Description: {video_description} \n
Humor Explanation: {humor_explanation} \n

Table 16: Prompt for generate QA pairs.
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System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Respond
with short and concise answers. Avoid using unpronouncable
punctuation or emojis.

User: These are frames from a video. Based on these frames,
answer the following question: {question} \n\n

Output format: \n
Answer: <answer> \n\n

Table 17: Prompt for video QA.

System: You are a helpful AI assistant specialized in video
understanding and humor analysis. You can explain jokes
clearly and naturally based on video content and video
description. Please respond with short and concise answers.
Avoid using unpronouncable punctuation or emojis.

User: These are frames from a video. Your job is to explain
why the video is humorous in 2-3 sentences as if you were
explaning to a friend who doesn’t get the joke yet. Respond
with a 2-3 sentence explanation of the joke and how it relates
to the video. \n\n

Output format: \n
Explanation: <answer> \n\n

Table 18: Prompt for video explanation.

System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Please only
output in the specified format. No extra text.

User: Along with the frames from the video. And {question} \n
Please respond with response with the option letter only. \n\n

Output format: \n

Table 19: Prompt for video caption matching.

System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Respond
with short and concise answers. Avoid using unpronouncable
punctuation or emojis.

User: You’ll be given a description of the video. Based on
this information, answer the following question: {question}
\n\n

Output format: \n
Answer: <answer> \n\n

Video Description: {video_description}

Table 20: Prompt for video with description QA.
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System: You are a helpful AI assistant specialized in video
understanding and humor analysis. You can explain jokes
clearly and naturally based on video content and video
description. Please respond with short and concise answers.
Avoid using unpronouncable punctuation or emojis.

User: You will also be given a description of the video. Your
job is to explain why the video is humorous in 2-3 sentences as
if you were explaning to a friend who doesn’t get the joke yet.
Respond with a 2-3 sentence explanation of the joke and how it
relates to the video. \n\n

Output format: \n
Explanation: <answer> \n\n

Video Description: {video_description}

Table 21: Prompt for video with description explanation.

System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Please only
output in the specified format. No extra text.

User: You’ll be given a description of the video. And
{question}\n Please respond with response with the option
letter only.\n\n Output format:\n Answer: <answer>\n\n Video
Description: {video_description}

Table 22: Prompt for video with description caption matching.

System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Respond
with short and concise answers. Avoid using unpronouncable
punctuation or emojis.

User: Here’s a humorous video. Based on the its visual and
audio information, answer the following question: {question}
\n\n

Output format: \n
Answer: <answer> \n\n

Table 23: Prompt for video with sound QA.
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System: You are a helpful AI assistant specialized in video
understanding and humor analysis. You can explain jokes
clearly and naturally based on video content and video
description. Please respond with short and concise answers.
Avoid using unpronouncable punctuation or emojis.

User: Here’s a humorous video. Your job is to explain why
the video is humorous in 2-3 sentences as if you were explaning
to a friend who doesn’t get the joke yet. Respond with a 2-3
sentence explanation of the joke and how it relates to the
video. \n\n

Output format: \n
Explanation: <answer> \n\n

Table 24: Video with sound explanation.

System: You are a helpful AI assistant. You can analyze
videos and answer questions about their content. Please only
output in the specified format. No extra text.

User: Along with visual and audio information in the video.
And {question} \n
Please respond with response with the option letter only. \n\n

Output format: \n
Answer: <answer> \n\n

Table 25: Video with sound caption matching
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