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Abstract

Training critique models to assess and provide
feedback on model outputs is a promising way
to improve large language models (LLMs) for
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complex reasoning tasks. However, existing ap-
proaches typically rely on stronger supervisors
for annotating critique data. To address this,
we propose Critique-RL, an online RL frame-
work for developing critique models without
stronger supervision. Our framework operates
on a two-player paradigm: the actor generates a
response, the critic provides feedback, and the
actor refines the response accordingly. We first
reveal that relying solely on indirect reward
signals from the actor’s outputs for RL opti-
mization often leads to unsatisfactory critics:
while their helpfulness improves, the discrim-
inability remains poor, resulting in marginal
performance gains. To overcome this, Critique-
RL adopts a two-stage optimization strategy. In
stage I, it reinfoces the discriminability of the
critic with direct rule-based reward signals; in
stage II, it introduces indirect rewards based on
actor refinement to improve the critic’s help-
fulness, while maintaining its discriminability
via appropriate regularization. Extensive ex-
periments across different tasks and models
demonstrate that Critique-RL achieves signifi-
cant performance improvements across differ-
ent models and tasks.'

1 Introduction

With the development of large language models
(Ouyang et al., 2022; OpenAl, 2023; Touvron et al.,
2023; Jiang et al., 2023; Dubey et al., 2024), pro-
viding reliable supervision for them has become a
critical research challenge (Bowman et al., 2022;
Saunders et al., 2022), especially for tasks that are
difficult even for humans, such as complex reason-
ing, sequential decision-making, and coding (Shinn
et al., 2023; Snell et al., 2024; Qu et al., 2024; Ku-
mar et al., 2024). This problem is often referred to
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Figure 1: Left: Critique-RL achieves better perfor-
mance and discrimination on MATH. Right: Inference
compute scaling for Critique-RL, with @2k and @3k in-
dicating sampling amounts that are 2 times and 3 times
the x-axis value, respectively. Critique-RL improves the
performance ceiling and is more compute-efficient.

as scalable oversight (Bowman et al., 2022). One
effective method for scalable oversight is to train
critique models to assess and provide feedback to
model outputs (Welleck et al., 2023; Akyiirek et al.,
2023; Xi et al., 2024; Yao et al., 2024). Based on
this feedback, actor models can refine and optimize
their behavior or outputs.

Existing work in training critique models typi-
cally assumes a stronger supervisor to provide la-
beled critique data, which is often expensive and
difficult to scale (Saunders et al., 2022; Xi et al.,
2024; Bowman et al., 2022). Moreover, the data
labeled by the supervisor often differs significantly
from the learner’s output distribution (Kumar et al.,
2024). Another line of work does not train the
model but instead relies on the model’s inherent
abilities, using prompt engineering to elicit its cri-
tiquing abilities (Bai et al., 2022; Madaan et al.,
2023; Dhuliawala et al., 2024). However, such
methods typically assume an oracle verifier dur-
ing testing, allowing the critique model to bypass
discrimination and focus solely on providing help-
fulness feedback for revision (Huang et al., 2024).

In this work, we aim to develop critique models
without relying on stronger annotators or an oracle
reward function during testing. To this end, we pro-
pose Critique-RL, an online RL framework based



on two-player actor-critic interaction (Yao et al.,
2024; Xi et al., 2024) for developing critique mod-
els. In our framework, there are two main roles: the
actor and critic. The critic assesses (discriminabil-
ity) and provides feedback (helpfulness) for the
actor’s output, and the actor performs refinement
accordingly (Saunders et al., 2022).

To build our method, we first use the correctness
of the actor’s two attempts as the reward signals
for the RL optimization of critique models (Section
4.1), as intuitively, these indirect signals reflect the
quality of critiques (Yao et al., 2024; Zheng et al.,
2024). However, this approach fails to develop
satisfactory critique models, i.e., with low perfor-
mance. Delving into the optimization process, we
reveal that while the helpfulness of the critique
models improves, their discriminability is not well
optimized, leading to an optimization bottleneck
and even a collapse of RL training.

To address the challenges, Critique-RL em-
ployes a two-stage RL process (Section 4.2).
Specifically, as shown in Figure 2, in the first stage,
we optimize the discriminability of the critique
models using direct rule-based reward signals. In
the second stage, we introduce indirect rewards
based on the correctness of actor refinement to
enhance the helpfulness, while using appropriate
regularization to maintain their discriminability. In-
depth training dynamics shows that our method ad-
dresses the training collapse and stably optimizes
both discriminability and helpfulness. Extensive
experiments show that our method outperforms
baselines across different models and tasks. It is
also noteworthy that critique models trained with
our method can generalize to unseen tasks, demon-
strating its promise for scalable oversight.

In summary, our main contributions are:

1. Delving into the RL optimization process, we
reveal that solely depending on indirect re-
ward signals of actor’s output correctness can-
not develop satisfactory critique models, as
their discriminability is not well optimized.

2. We then propose Critique-RL, a new online
RL framework to develop critique models for
provide accurate assessment and helpful feed-
back for model outputs.

3. We perform in-depth experiments, ablation
and analysis to show the effectiveness and
stability of our method. We hope our work

provides insights for future development of
scalable oversight in the community.

2 Related Work

Prompt engineering for eliciting critiquing abil-
ity from language models. As a key technique
for scalable oversight (Bowman et al., 2022), many
previous works have explored the use of prompt
engineering to elicit the critiquing and reflection
abilities of LLMs (Bai et al., 2022; Madaan et al.,
2023; Ye et al., 2023; Dhuliawala et al., 2024).
These methods typically rely on an oracle verifier
at test time for discrimination, allowing the LM to
focus solely on providing natural language feed-
back (Huang et al., 2024). However, in the absence
of an external verifier, even SOTA models face sig-
nificant challenges (Saunders et al., 2022; Welleck
et al., 2023; Xu et al., 2024; Huang et al., 2024).
In this work, we do not assume a oracle verifier;
instead, we train critique models through RL to
optimize both discriminability and the ability to
provide helpful feedback.

Fine-tuning language models for critiquing.
Previously, a line of work has explored fine-tuning-
based approaches for training critique models
(Saunders et al., 2022; Bowman et al., 2022; Xi
et al., 2024). However, these methods primarily
rely on a stronger supervisor for data annotation,
which is costly and difficult to scale (Xi et al.,
2024). To address this issue, some researchers
have proposed self-improvement-based methods to
train models for self-critiquing (Tang et al., 2025;
Zheng et al., 2024; Yuan et al., 2025). Unlike these
approaches, we adopt a two-player paradigm and
train a separated critique model through RL.

Reinforcement learning for language mod-
els. RL has become an essential component of
LLM post-training, such as RLHF for alignment
(Ouyang et al., 2022; Zheng et al., 2023; Wang
et al., 2024; Shao et al., 2024). Additionally, var-
ious works have leveraged RL to enhance lan-
guage models’ performance in reasoning (Snell
et al., 2024; Kumar et al., 2024), coding (Kumar
et al., 2024), and decision-making tasks (Shinn
et al., 2023). Furthermore, some studies explores
using RL to improve LM’s ability for self-reflection
and self-correction (McAleese et al., 2024; Kumar
et al., 2024; Welleck et al., 2023; Shinn et al., 2023;
Xu et al., 2024; Ye et al., 2023). The most rele-
vant work to ours is ReTroformer, which focuses



Problem: If a bag of marbles costs $20 and the price increases by 20% of the original
price every two months, how much would a bag of marbles cost after 36 months?

Actor Model (original response):

Let's break it down step by step:

1. The price of the bag of marbles increases by 20/100*$20=$4 every two months.

2. After 36 months, the price of the bag of marbles will have increased 36/(2*2)=9 times.

3. The price of the bag of marbles will have increased by $4, 9 times for a total of $4*9=836.
4. The cost of a bag of marbles after 36 months will be $20+$36=$56.

The answer is 56. Correctness Verifier: €

Step sentence: The price of the bag of marbles increases by 20/100*$20=84 every two
months.

Correctness of the step: Correct

Explanation: This step correctly calculates the increase in price every two months, which is
20% of the original price of $20. The calculation is 0.20 * $20 = $4.

Step sentence: After 36 months, the price of the bag of marbles will have increased
36/(2*2)=9 times.

Correctness of the step: Wrong

Explanation: This step is wrong. The price increases every two months, so the number of
increases in 36 months is 36 /2 = 18, not 36 / (2*2) = 9. There are 18 two-month periods in
36 months.

Correctness of the final answer: Wrong Discrimination Verifier: °
Actor Model (refinement response):

Let's break it down step by step:

To determine the cost of a bag of marbles after 36 months, we need to consider the
following:

1. Initial Price: The initial price of the bag of marbles is $20.

2. Price Increase Calculation: The price increases by 20% of the original price every two
months. The increase in price every two months is calculated as 0.20 * $20 = $4.

3. Number of Increases: The price increases every two months, and there are 36 months in
total. The number of increases in 36 months is 36 /2 = 18.

4. Total Increase in Price: The total increase in price over 36 months is calculated by
multiplying the number of increases by the increase per period. Total increase = $4 * 18 =
$72.

5. Final Price Calculation: The final price of the bag of marbles after 36 months is the
initial price plus the total increase. Final price = $20 + $72 = $92.

The answer is 92. Correctness Verifier: @
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Figure 2: Left: A case illustrating the two-player actor-critic interaction, including the original response from
the actor, the critique from the critic, and the refinement from the Actor. Right: Overview of our method and its

comparison with baseline RL. The snowflake icon * on the Actor indicates that it is fixed, while the fire icon & on
the Critic indicates that it will be updated. Our method employs a two-stage RL process. It optimize discriminability
of critique models in Stage I, and optimize helpfulness while maintaining discriminability in Stage II.

on decision-making tasks, and leverages indirect
reward signals to optimize critique model’s help-
fulness (Yao et al., 2024). Different from them,
we propose a two-stage Critique-RL framework
to optimize both discriminability and helpfulness,
effectively developing critique models.

3 Preliminaries

3.1 The Two-Player Interaction Framework

The multi-agent framework in this work consists of
two main roles (Yao et al., 2024; Xi et al., 2024):
the actor model and the critique model. It operates
through a response-critique-refinement process.
Specifically, given a question x, the actor model
is expected to generate an original response y =
mp(x), which includes both the reasoning trajec-
tory and the final answer. The correctness veri-
fier then provides an oracle reward 7opycle (2, ¥) to
the actor model. Subsequently, the critique model
T4 takes the question-response pair (x,y) as in-
put and produces critique ¢ = mg(x,y), which
should include assessment of the response correct-
ness (discriminability) and offer constructive nat-

ural language feedback (helpfulness). Based on
this critique, the actor model generates a refine-
ment response y/ = my(z,y, ¢), and subsequently
receives an oracle reward 7opacte (2, y’). Using these
rewards, i.e., Toracle (%, ¥) and T'oracle (2, yl), we can
design different reward functions r.(-) for critique
models, which will be shown in Section 4.

3.2 Policy Gradient for LLMs

Policy gradient methods (Sutton et al., 1999), e.g.,
REINFORCE (Ahmadian et al., 2024; Kumar et al.,
2024), are common techniques to perform RL on
LLMs. For the policy critique model 74 param-
eterized by ¢, the objective of policy gradient is
to find an optimal policy that maximizes the re-
ward function r¢(-). It is typically expressed as
maximizing:

’

EC~”¢('|Ivy)7y/ Nﬂ—e(wyy7c) [Tc(m’ y’ C’ y )]’

e))

there E enrg ()5~ (@9:0) denotes the e).q‘)ecta-
tion over the critique sampled from the critic 7y
and the refinement response sampled from the actor
mp. Using this gradient, we can perform gradient



ascent to optimize the critique model. When the
critique is positive, it is “reinforced” by increasing
its probability.

3.3 Evaluating Metrics

To evaluate the performance of the critique
model, we consider the following metrics: (1)
Acc@Refine: the accuracy of the actor model’s
refinement response; (2) A: the improvement in
the actor model’s accuracy between the original
and refinement response, which measures the ef-
fectiveness of the critique model; (3) A the
change rate from an originally correct response to
an incorrect refinement response. A lower value
is better; (4) A*™¢: the change rate from an orig-
inally incorrect response to a correct refinement
response. A higher value is better; (5) Acc@Dis:
a direct metric to measure the discriminability of
the critique model, which quantifies the accuracy
of whether the correctness accessed by the critic
aligns with the true correctness of the original re-
sponse.

4 Methodology

4.1 Motivating Findings: RL with Indirect
Reward Signals Is Insufficient for
Training Satisfactory Critique Models

In the two-player actor-critic framework (Yao et al.,
2024; Xi et al., 2024), a natural and intuitive way
to optimize the critique models is to shape the re-
ward signals derived from the actor’s two attempts
(original and refinement responses). We explore
several reward shaping approaches, demonstrate
their failure modes, and investigate why they fail
to incentivize satisfactory critiquing ability.

Analysis setups: data, models, and training
methods. Our preliminary experiments are on
GSMBS8K (Cobbe et al., 2021), and the backbone
model is Qwen-2.5-3B (Team, 2024). Following
previous work (Xi et al., 2024), we train an ac-
tor model capable of generating responses and
faithfully refining them according to critiques. To
build the SFT dataset for initializing a base critique
model, we prompted the backbone model to obtain
critique data Dspr = {x, v, c}y:)sl”', rather than
using annotations from SOTA commercial models
like GPT-40 (OpenAl, 2023). We filter the critique
data based on the correctness of refinement to en-
sure the quality.

Next, we train the critique model 74 using the

SFT loss:
Lsrr(9) = Ewy,c)~Deer {bg my(clz, y)} )

We then employ policy gradient (Sutton et al.,
1999) to maximize:

B nBL (o) momo (o) [’“c(ﬂfv v, ¢:y)

_ SFT RL )
BKL(rS (cla,y)lImE (el )|,

where 7y is the fixed actor model, 7T§)FT is the SFT
model. Each x is a query sampled from the RL
dataset DRy, v is the original response. KL(-||-)
means the KL-divergence which constrains the dis-
tance between the RL model and the SFT model,
and /3 is a scaling factor. r(-) is the reward func-
tion for critique models. Here, with 7g,ce being
the oracle reward function that verifies the correct-
ness of an actor response, 7¢(+) can be r'efine Which
represents the correctness of the refinement:

Treﬁne(xa Y, ¢, y,) = Toracle (.1‘, y/)7 4

or it can be A which represents the difference in
correctness between the actor’s two attempts:

rA (.’L’, Y,c, y/> = Toracle (mv y/) - roracle(xy y)~ (5)

Moreover, we also include 7¢orrection @S 7c(+) for
reinforcing the ability in correcting incorrect re-
sponses:

/
Tcorrection ('r’ Y, ¢y ) =

1.0, roracle(l', y) = 0 and Toracle(I', y,) =1,
0.2, 7noracle(fﬁ, y) = 1and Toracle(i', y,) =1,
0'07 Toracle(x, y') =0.

(6)

Empirical findings and behavior analysis. We
illustrate the training dynamics during RL in Fig-
ure 3. Optimizing with 7fne and 7a can reduce
A~ preventing originally correct responses from
being altered incorrectly, but its A~ is not sig-
nificantly optimized, meaning its error correction
performance is not good enough. This phenomenon
reveals that the critique model is overly conserva-
tive, encouraging the actor to not change its an-
swers. As a result, the final Acc@Refine is not
satisfactory.

In contrast, optimizing with 7¢orection iMproves
A€, but fails to effectively reduce A%, This
means it often provides more aggressive sugges-
tions, encouraging the actor model to correct incor-
rect responses, but it also introduces a greater risk
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Figure 3: Training dynamics of preliminary experiments. “Acc@Dis Originally Correct” and “Acc@Dis Originally
Incorrect” refer to the discrimination accuracy of originally correct and incorrect responses, respectively. Baselines
using indirect reward signals to optimize helpfulness tend to exhibit overly conservative or aggressive behavior as
the discriminability is not well optimized. In contrast, our Critique-RL optimizes discriminability in Stage I, and
optimizes helpfulness while maintaining discriminability in Stage II. As a result, Critique-RL performs better in

Acc@Refine, A% and Ae,

of turning originally correct answers into incorrect
ones. Similarly, the final Acc@Refine is also not
satisfactory.

Analyzing underlying reasons for the failure
modes. To reveal the reasons behind the above
failure modes, we also visualize the discrimination
performance of the critique models during RL in
Figure 3. We find that as RL progresses, all three
reward functions 7efine, 7A and Tcorrection fail to op-
timize discriminability effectively. For originally
correct and incorrect responses, they can only op-
timize the judgment for one, while the ability to
judge the other is reduced. This may be because
both of the indirect reward functions are based
on the actor’s responses, targeting helpfulness and
overlooking discriminability. This motivates the
proposal of our method.

4.2 Two-Stage Critique-RL

Key challenges. Based on the previous analy-
sis, we have identified two key challenges in RL
for critique models: (1) optimizing the discrim-
inability of critique models to improve their ac-
curacy in judging both correct and incorrect orig-
inal responses; (2) improving the quality of the
model’s feedback, i.e., helpfulness, while main-
taining its discriminability, to prevent the issues of
being overly aggressive or overly conservative.

Method overview. To address the above chal-
lenges, we propose the two-stage Critique-RL. In
the first stage, our method explicitly optimizes the
discriminability of the critique models using direct
reward signals. We then use the model optimized
by the first stage ﬂ_(?)tage-H as the initialization for
the second stage. In the second stage, we introduce
a reward function based on the actor’s response
to optimize critic’s helpfulness, while also incor-
porating appropriate regularization to maintain its
discriminability. We illustrate our method in Figure
2 and the algorithm is summarized in Algorithm 1.

Stage I: optimizating discriminability through
direct reward signals. We decouple the discrim-
inability and helpfulness of the critique models
(Saunders et al., 2022). In Stage I, we shape the re-
ward based solely on the actor’s original response.
Given (z,y), critique models are prompted to give
correctness judgments for each step, and also pro-
vide a judgment for the final answer. Based on this,
we define the discriminability reward function of
the critique models as:

7“dis(xa y)c) = ]l<f($ayv C) = Toracle(xay)>7 @)

where f(x,y,c) is the critique model’s judgment
of the correctness of the original response. 1(-) is
indicator function that returns 1 only when the con-



Model Method MATH GSMSK AQuA
Acc A Acc@Dis Acc A Acc@Dis Acc A Acc@Dis

No Critic 36.90 — — 66.03 — — 50.00 — -
SFT 44.24 7.34 66.51 69.14 3.11 76.34 46.46 —3.54 61.97

Qwen2.5-3B STaR 44.38  7.48 66.97 71.95 591 74.79 50.39  0.39 66.13
Base-PPO 44.54 7.64 65.11 70.51 4.47 77.59 51.18 1.18 58.44
Base-RLOO 46.14  9.24 69.29 70.58  4.55 76.71 53.54 3.54 62.20
Critique-RL  48.60 11.70 82.80 75.89 9.86 87.44 56.69 6.69 69.92
No Critic 45.74 — — 75.66 — — 63.39 - -
SFT 51.84  6.10 67.59 7877  3.11 79.42 59.45 —3.94 68.67

Qwen2.5-7B STaR 54.06  8.32 69.71 80.52  4.85 81.03 57.87 —5.51 72.18
Base-PPO 52.34  6.60 68.03 80.82  5.16 77.05 63.39  0.00 70.56
Base-RLOO 53.86  8.12 71.42 81.35  5.69 83.44 64.96  1.57 71.66
Critique-RL 58.40 12.66 85.20 87.72 12.05 90.43 65.75 2.36 78.09

Table 1: Main results. The best performance is in bold and underlined, while the second-best performance is
underlined. Our method is marked in blue . No Critic means the actor model perform reasoning only, and we report
the reasoning performance. For other methods, we report the Acc@Refine performance for the acc column.

dition inside the parentheses holds, and 0 otherwise.
Based on this, our Stage I RL. maximizes:

ECNﬂitage-I(_|l_7y) [rdis(az, Y, c)

3)
S -1

— BKL(m3 (e, )|, 5 (clz, ) |

where the KL divergence with the SFT model is
still used to stabilize the training. As shown in
Figure 3, our Stage I RL can effectively and stably
optimize discriminability, regardless of the correct-
ness of the original response.

Stage II: optimizating helpfulness while main-
taining discriminability. The goal of the second
stage of Critique-RL is to optimize the helpfulness
of the critique models without sacrificing their dis-
criminability, thereby avoiding overly conservative
or overly aggressive behavior patterns. To achieve
this, we introduce a reward function based on ac-
tor refinement correctness, 7refine. Meanwhile, to
preserve the model’s discriminability, we retain
r4is and introduce a regularization term based on
the KL divergence with the Stage I model wimge'l.
Specifically, we maximize the following objective:
ECNﬂngefn(. Iz

T Tdis\ T C
) ~mo (-|,y,0) reﬁne+/81 dlS( 'Y, )

~ KL (el y) |75 (e, ) |,

©))

where 51 and (o are scaling factors. As shown
in Figure 3, our Stage II effectively optimizes the
model’s helpfulness, increasing A"~ and decreas-
ing A“7¢, ultimately leading to a stable improve-
ment in Acc@Refine and A. On the test set, our

method also achieves excellent performance (see
Section 5).

S Experiments

5.1 Experimental Setup

Datasets. Focusing on mathematical reasoning
tasks, we select 5 different commonly-used tasks,
including free-from and multiple-choice. Follow-
ing Ding et al. (2024), we construct training set
with the train-split of MATH (Hendrycks et al.,
2021), GSMSK (Cobbe et al., 2021), AQUA (Ling
et al., 2017). The testset of the three tasks are used
as in-domain testset, while the test-split of SVAMP
(Patel et al., 2021), TheoremQA (Chen et al., 2023),
are used as our OOD (out-of-domain) testset.

Models and baselines. Our experiments are con-
ducted on Qwen2.5 series (Team, 2024), i.c.,
Qwen2.5-3B and Qwen2.5-7B. We include several
baselines: (1) SFT which fine-tunes models with
high-quality critique data. (2) STaR which itera-
tively fine-tunes critique models on data generated
by themselves and filtered based on the refinement
correctness of the actor. (3) RL with 7qpe for opti-
mizing helpfulness of critique models. We include
two widely used algorithms PPO and RLOO for
this baseline.

Implementation details. All experiments are
conducted on 8 NVIDIA A800 GPUs. To initialize
an actor that can reason and refine based on the
critiquing feedback, we follow Ding et al. (2024);
Xi et al. (2024) to construct a dataset of 21,973
reasoning traces and 12, 000 refinement responses.



For critique data, we construct a set of 6,000 ex-
amples, with 2, 000 examples in each training task.
For fine-tuning actors, we set the epoch to 3 and
learning rate to e — 6; for fine-tuning critics, we
set the epoch to 5 and learning rate to 5e — 6. For
STaR and RL, we perfrom SFT to obtain an ini-
tialized model. In all RL methods, we set the KL
coefficient to 0.01. In Critique-RL, we use RLOO
as our base algorithm as it performs well and does
not require a value model. We train the critique
model for 500 steps at each stage and report best
results. During evaluation, the temperature is set
to 0. For inference-compute scaling analysis or
Pass@ K, we set temperature to 0.7.

5.2 Main Results

Generally, critique models can significantly im-
prove actor’s reasoning performance. The re-
sults in Table 1 demonstrate that when introducing
critique models, the actor’s reasoning performance
can be boosted by a large margin. For example,
in the MATH task, even the SFT Baseline outper-
forms the model without a critic by 7.34 and 6.10
points on the 3B and 7B models, respectively. This
suggests that critique models are an effective su-
pervision method, as discussed in Saunders et al.
(2022); McAleese et al. (2024).

RL-based methods outperforms fine-tuning-
based. Both SFT and STaR methods lead to
promising critique models, but in most cases, on-
line RL-based methods perform better, especially
our Critique-RL. For instance, on the 3B model,
our method surpasses the SFT method by an aver-
age of 7.11 points on accuracy across three datasets.
It is worth noting that on AQuA, fine-tuning-based
SFT and STaR may lead to negative impact on per-
formance, while our method provides significant
positive improvements. This reveals that online RL
methods have greater potential and adaptability in
eliciting the model’s critiquing ability, similar to
the findings in (McAleese et al., 2024).

Critique-RL consistently outperforms other
baselines in discrimination and final accuracy.
In terms of discrimination, our method also signifi-
cantly outperforms other baselines, such as surpass-
ing Base-RLOO by 5.31, 6.36 points for 3B and
7B models on GSMSK, respectively. This reveals
that our discrimination-related reward shaping can
effectively optimizes discriminability. Thanks to
this and the helpfulness reward design in the second
stage, our method shows a significant improvement

MATH AQuA
Acc@Refine Acc@Dis Acc@Refine Acc@Dis

Method

Critique-RL (Ours) 48.60 82.80 56.69 69.92

-w/o Stage I 47.62 79.71 53.94 66.53
-w/o Stage II 45.90 78.68 54.72 68.22
-Stage II w/o discrimination 47.32 77.66 53.54 61.56
-Stage I w/ ra 48.16 82.57 53.94 68.44
-Stage IT W/ Tcorrection 47.74 81.96 54.72 68.39

Table 2: Ablation study using Qwen2.5-3B. We report

the Acc@Refine. “w/0” means without; “Stage II w/o

discrimination” means in Stage II, we remove r4;s and
Stage-1 Stage-II\ | « 5 “

KL(mg "= ||m, ™) 5 “Stage Il w/ rA” and “Stage I

W/ Teorrection. Mean replacing the 7pefne With the corre-

sponding reward function.

in final performance compared to other baselines.
For example, on the 7B model, our method outper-
forms Base-PPO by an average of 5.11 and 12.69
points on accuracy and discriminability, across
three datasets.

6 Discussion and Analysis

6.1 Ablation Study

We conduct ablation experiments to validate the
importance of different components in our method.
The experimental results are shown in Table 2.

Ablation on different stages. Both Stage I and
Stage II are crucial, and removing either of them
leads to a decrease in performance. This indicates
that optimizing both discriminability and helpful-
ness is essential in developing critique models.

Ablation on reward design for Stage II. Next,
we perform a deeper analysis of the reward
design in Stage II. First, if we remove the
discrimination-related rg4;s and KL-based regular-
ization KL(WZtage'I| ]wztage_n), the discriminability
and accuracy suffer a significant drop. This further
emphasizes that when optimizing for helpfulness,
it is crucial to maintain the model’s discrimination
ability. Second, when we replace the reward func-
tion 7efine in Stage II with another reward function,
i.e., 7A and Tcorections WE Observe a slight perfor-
mance drop. This may be because 7fine directly
optimizes the Acc@Refine metric, which aligns
most closely with the actual test-time scenario.

6.2 Analyzing Helpfulness When the Oracle
Verifier Is Available

Many previous works have relied on an external or-
acle verifier to assess the actor’s reasoning results
(Bai et al., 2022; Madaan et al., 2023; Ye et al.,
2023; Dhuliawala et al., 2024). In this scenario, the
model’s judgment ability is isolated, allowing us
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Figure 4: Performance with and without the oracle veri-
fier. When the oracle verifier is available, the model no
longer needs to make discriminations and just needs to
provides useful feedback. This allows us to evaluate the
model’s helpfulness more accurately.

to better evaluate the critique model’s helpfulness.
We conducted relevant experiments, and the results
are shown in Figure 4. We found that when the or-
acle verifier is available, all baselines show perfor-
mance improvements. In this case, our method still
outperforms others across different datasets and
models, indicating that our approach significantly
enhances the model’s helpfulness. Furthermore,
comparisons with other RL baselines reveal that
the optimization of discriminability in our method
also implicitly contributes to the improvement of
helpfulness, suggesting that the two abilities are
not entirely independent. This further emphasizes
the importance of optimizing both abilities jointly
in developing critique models.

6.3 Scaling Test-Time Inference Compute for
Critique-RL

We investigate whether Critique-RL can be com-
bined with inference-time compute scaling strat-
egy. Following Qu et al. (2024); Snell et al.
(2024); Xi et al. (2024), we leverage the com-
monly used majority vote (MV @ K) (Wang et al.,
2023) which evaluates whether the most frequent
answer among K samples is correct. The results
of MATH are shown in Figure 1 and the results
of GSMSK are shown in Figure 5 of Appendix B.
Compared to not using critique models, Critique-
RL significantly increases the performance ceiling
and shows a more sustained upward trend as infer-
ence compute scales. More importantly, perform-
ing K x response-critique-refinement sampling is
more compute-efficient than conducting 3K x par-

Model Method SVAMP TheoremQA
Acc Pass@10 Acc Pass@10

No Critic  70.67 9200 1513  34.75

Qwen2.3-3B - (ique-RL 78.33  96.33 1675  37.75
No Critic  80.33  95.67  19.38  39.75

Qwen2.3-7B - (- iique-RL 89.67 97.00 21.38  43.00

Table 3: Out-of-domain evaluation of Critique-RL.

allel sampling responses.

6.4 Generalization to OOD Tasks

We also validated the generalization of the models
trained by Critique-RL on OOD tasks. The results
in Table 3 show that the models trained still deliv-
ers significant performance improvements, further
demonstrating the potential of this scalable over-
sight approach.

6.5 Qualitative Analysis of Critique-RL

We perform a qualitative investigation into how
Critique-RL works and provide several examples
in Appendix C. In Figure 6, facing the originally in-
correct response, the critique model after SFT is un-
able to detect errors, leading the actor’s refinement
response to retain the same errors. However, the
model trained after Critique-RL identifies the errors
in the original response and provides detailed, con-
structive suggestions for modification, leading to
the correct refinement response. In Figure 7, model
trained after Critique-RL Stage I is able to detect
errors, demonstrating its discriminability. However,
the model provides the actor with low-quality sug-
gestion, causing the actor’s refinement response to
be incorrect. In contrast, for the same erroneous
original response, model trained after Critique-RL
Stage II not only detects the error but also offers a
constructive suggestion, ultimately leading to the
correct refinement response, demonstrating the ad-
vantage of two-stage RL process.

7 Conclusion

In this paper, we propose Critique-RL, an RL
framework for developing critique models with-
out the need for additional labeled data. Through
in-depth analysis, we highlight the importance of
explicitly optimizing model discriminability and
propose a two-stage RL approach that effectively
optimizes both discriminability and helpfulness.
We validate its stability and superiority through de-
tailed experiments, and further uncover its working
mechanism through ablation studies and analyses.
We hope that our work can provide insights for the
scalable oversight community of large models.



Limitations

In this paper, we propose an RL. method for train-
ing critique models and validate its effectiveness
and stability through detailed experiments, abla-
tion studies, and analyses. However, there are still
some limitations that need to be addressed in future
work. First, our main analysis focuses on mathe-
matical reasoning tasks, and in the future, it should
be extended to more tasks to test its generaliza-
tion ability. Second, our method is primarily based
on the Qwen2.5 series of models, and future work
should explore its applicability to a broader range
of models. Third, our approach relies on an ex-
plicit two-stage training process, which increases
manual effort and reduces flexibility. Future re-
search should explore how to integrate these two
stages and train stronger critique models, making
the approach more scalable.
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Scaling Inference Compute: GSM8K
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Figure 5: Inference compute scaling for Critique-RL,
with @2k and @3k indicating sampling amounts that
are 2 times and 3 times the x-axis value, respectively.
Critique-RL improves the performance ceiling and is
more compute-efficient.

A Algorithm of Critique-RL

Our main algorithm is summarized in Algorithm 1.

B More Test-time Scaling Results

The results of test-time scaling on GSMS8K are il-
lustrated in Figure 5. Similar to the findings on
MATH, Critique-RL is more compute-efficient and
significantly increases the performance ceiling, val-
idating the potential of our approach.

C Examples of Qualitative Analysis

The examples of our qualitative analysis are in Fig-
ure 6 and Figure 7.

From Figure 6, we find the model trained af-
ter Critique-RL shows strong discriminability and
helpfulness compared to the model after SFT. From
Figure 7, we find that the model trained after
Critique-RL Stage II not only maintains strong
discriminability but also provides accurate and
constructive suggestions, outperforming the model
trained after Critique-RL Stage I.
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Algorithm 1: Critique-RL

Input: Actor model 7y, base critique model 74, SFT dataset Dsgr, RL dataset Dgy, function that
extracts the correctness of a response judged by a critique f, oracle reward function ropacle,
discrimination reward function 7 g;s.

Procedure Supervised Fine-tuning:

™ EFT < T,

Update 73" " by minimizing Lser(¢) = E (4 y.c)unger | 108 T (cl2,y) |5

Procedure Critique-RL Stage I: optimizating discriminability through direct reward signals.

qoagel ,SFT.

¢ ¢
for batch in Dy, do
for x in batch do
Stage-I

Generate y and ¢ with g and 7 ;
Compute discrimination reward with rgis(x, y,c) = 1 ( f(z,y,¢) = roracle(x, y)) ;
end
Update ﬂ_;tage—l by maximizing

S -1
E, sty | Fais (2, €) = BRL(ES (el ) |3 (e, )

end

Procedure Critique-RL Stage II: optimization helpfulness while maintaining discriminability.
7rStagc—H « 7TStage—I_

¢ ¢
for batch in Dy, do

for z in batch do

Generate y, c and y/ with 7y and 7T?)t¢~q;<:-11;

Compute discrimination reward with rgis(z, y,¢) = 1 ( f(z,y,¢) = roacte(z, y)) ;

. !
Compute refinement reward with 7'efine = Toracle (%, ¥ );
end

Stage-II L. . _
Update 7 # by maximizing ECNﬂ_Ztage-H(.‘x’ )y ~o (-|23,0) |:T'reﬁne + Brrais(z,y, ¢)

¢

Stage- -
BKL (5 (cl, ) 752 (el )|

end
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Problem: Each person in a certain household consumes 0.2 kg of rice every meal. Supposing 5 members of the household eat rice every lunch and dinner, how many weeks will a 42 kg

bag of rice last?

Ground Truth Answer:

* Each person eats 0.2 kg/meal x 2 meals/day = <<0.2*2=0.4>>0.4 kg of rice
per day.

So, the 5 members consume 0.4 kg/day/person x 5 people = <<0.4*5=2>>2
kg of rice per day.

In a week, the household consumes 2 kg/day x 7 days/week =
<<2*7=14>>14kg of rice.

Thus, 42 kg of rice will last 42 kg / 14 kg/week = <<42/14=3>>3 weeks.
The answer is 3.

Actor Model (original response):

Let's break it down step by step:

1. The household consumes 0.2 kg of rice per meal * 2 meals per day = 0.4 kg of rice
per day.

2. The household consumes 0.4 kg of rice per day * 5 days per week = 2 kg of rice per
week.

3. A 42 kg bag of rice will last 42 kg / 2 kg per week = 21 weeks.

The answer is 21. Correctness Verifier: Q

Critique Model after SFT
Cr el (criti
Step The househ
day = 0.4 kg of rice per day.
Correctness of the step: Correct
Explanation: This step correctly calculates the daily rice consumption by
multiplying the amount consumed per meal (0.2 kg) by the number of meals
per day (2).

1d. 0.2 kg of rice per meal * 2 meals per

Step sentence: The household consumes 0.4 kg of rice per day * 5 days per
week = 2 kg of rice per week.

Correctness of the step: Correct

Explanation: This step correctly calculates the weekly rice consumption by
multiplying the daily consumption (0.4 kg) by the number of days in a week
(5).

Step sentence: A 42 kg bag of rice will last 42 kg / 2 kg per week = 21 weeks.

Correctness of the step: Correct

Explanation: This step correctly calculates the number of weeks the 42 kg bag
of rice will last by dividing the total amount of rice by the weekly consumption
(2 kg per week).

Correctness of the final answer: Correct
Explanation: The final answer of 21 weeks is correct based on the calculations

provided in the solution.
Discrimination Verifier: Q

Actor Model (refinement response):
Let's break it down step by step:
1. Calculate the daily rice consumption: The household consumes 0.2 kg of
rice per meal. Since there are 2 meals per day, the daily consumption is:

0.2 kg/meal x 2 meals/day = 0.4 kg/day.
2. Calculate the weekly rice The hy hold 0.4 kg of
rice per day. Since there are 5 days per week, the weekly consumption is:

0.4 kg/day x 5 days/week = 2 kg/week.
3. Calculate how many weeks a 42 kg bag of rice will last: A 42 kg bag of
rice will last:

42 kg =+ 2 kg/week = 21 weeks.

The answer is 21.

Correctness Verifier: 6

Critique Model after Critique-RL Training

itique Model ( ique):
Step The h
of rice per day.
Correctness of the step: Wrong
Explanation: This step is wrong because it incorrectly calculates the daily rice
consumption. Since 5 members of the household eat rice every lunch and dinner, and each
person consumes 0.2 kg of rice per meal, the daily consumption is:

5 members X 2 meals/day x 0.2 kg/meal = 2 kg/day

0.2 kg of rice per meal * 2 meals per day = 0.4 kg

hold

The h

Step

rice per week.

Correctness of the step: Wrong

Explanation: This step is wrong because it incorrectly calculates the weekly rice

consumption. Given the correct daily consumption is 2 kg/day, the weekly consumption is:
2 kg/day x 7 days/week = 14 kg/week

0.4 kg of rice per day * 5 days per week = 2 kg of

Step sentence: A 42 kg bag of rice will last 42 kg / 2 kg per week = 21 weeks.
Correctness of the step: Wrong
Explanation: This step is wrong because it incorrectly calculates the duration the rice will
last. Given the correct weekly consumption is 14 kg/week, the duration the 42 kg bag will
last is:

42 kg + 14 kg/week = 3 weeks

Correctness of the final answer: Wrong
Explanation: The final answer of 21 weeks is incorrect. The correct answer is 3 weeks.
Discrimination Verifier: 0

Actor Model (refinement response):
Let's break it down step by step:
To determine how many weeks a 42 kg bag of rice will last for a household, we need to
consider the following:
1. Daily Rice C © There are 5 bers in the hold. Each
member consumes 0.2 kg of rice per meal. Each member eats rice at 2 meals per day (lunch
and dinner). Therefore, the total daily rice consumption is:

5 members x 2 meals/day X 0.2 kg/meal = 2 kg/day
2. Weekly Rice C it The daily ion is 2 kg. There are 7
days in a week. Therefore, the weekly rice consumption is:

2 kg/dayx7 days/week = 14 kg/week
3. Duration the Rice Will Last: The household has a 42 kg bag of rice. The weekly
consumption is 14 kg. Therefore, the number of weeks the rice will last is:
42 kg + 14 kg/week = 3 weeks

The answer is 3. Correctness Verifier: °

Figure 6: Example 1 of qualitative analysis. The actor’s original response is incorrect. The model after SFT is
unable to detect errors in the response, leading the actor’s refinement response to retain the same errors. However,
the model trained after Critique-RL identifies the errors in the original response and provides detailed, constructive
suggestions for modification, leading to the correct refinement response.
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Problem: Dennis uses 1 pound of butter for every dozen croissants that he makes. He needs to make 6 dozen croissants. The grocery store currently has a promotion for buy one pound
of butter get one half off. If the butter costs $4.00 a pound, how much will it cost him to purchase 6 pounds of butter?

Ground Truth Answer:

1 pound of butter makes 1 dozen croissants and he needs to make 6 dozen so
he needs 1*6 = <<1*6=6>>6 pounds of butter.

The butter is $4.00 a pound and currently on sale for buy one get one half
off so every unit of 2 pounds of butter will cost 4*1.5 =
$<<4*1.56.00>>6.00.

He needs 6 pounds of butter and the current promotion is for a unit of 2
pounds of butter so he needs to buy 6/2 = <<6/2=3>>3 units worth of butter.
The sale price is $6.00 per 2 pounds of butter and he needs to buy 3 units of
butter so 6*3 = $<<6*3=18.00>>18.00 worth of butter.

The answer is 18.

Actor Model (original response):

Let's break it down step by step:

1. He needs to buy 3 pounds of butter because 6 /2 = 3.
2. 3 pounds of butter would cost $12 because 3 x 4 = 12.
3. He will pay $6 because 12/2 = 6.

The answer is 6.

Correctness Verifier: °

Critique Model after Critique-RL Stage I Training

Step sentence: He needs to buy 3 pounds of butter because 6 /2 = 3.
Correctness of the step: Wrong

Explanation: Dennis needs to make 6 dozen croissants, and he uses 1 pound of
butter per dozen. Therefore, he needs 6 pounds of butter. The calculation 6 /2
=3 is incorrect. He needs to buy 6 pounds, not 3.

Step sentence: 3 pounds of butter would cost $12 because 3 x 4 = 12.
Correctness of the step: Wrong

Explanation: Although the calculation of the cost is correct (3 pounds at $4
per pound equals $12), the premise is wrong. Dennis needs 6 pounds of butter,
not 3. The correct calculation should be 6 pounds at $4 per pound, which
cquals $24.

Step sentence: He will pay $6 because 12/2 = 6.

Correctness of the step: Wrong

Explanation: The calculation 12 /2 = 6 is correct based on the promotion (buy
one pound get one half off), but it does not apply to the correct amount of
butter needed. Dennis needs 6 pounds, not 3. The correct calculation should be
based on the full price of 6 pounds, which is $24.

Correctness of the final answer: Wrong
Explanation: The final answer of 6 is incorrect. Based on the correct
calculations, Dennis needs 6 pounds of butter at $4 per pound, which totals $24.

Actor Model (refinement response):

Let's break it down step by step:

To determine how much it will cost Dennis to purchase 6 pounds of butter, we

need to consider the following:

1. Butter Requirement: Dennis needs to make 6 dozen croissants, and he uses

1 pound of butter per dozen. Therefore, he needs 6 pounds of butter.

2. Promotion Details: The store has a promotion where you buy one pound of

butter and get the next pound at half price.

3. Cost Calculation:

* Full Price for 6 Pounds: Since the promotion applies to each pair of
pounds, we need to calculate the cost based on the full price for 6 pounds.

* Cost for 6 Pounds: The cost of 6 pounds of butter at $4 per pound is $24.
Therefore, the total cost for 6 pounds of butter is $24.

The answer is 24.

Discrimination Verifier: °

Correctness Verifier: @

Critique Model after Critique-RL Stage II Training
[ \ (

Step sentence: He needs to buy 3 pounds of butter because 6 /2 = 3.

Correctness of the step: Wrong

Explanation: Dennis needs to make 6 dozen croissants, and he uses 1 pound of butter per
dozen. Therefore, he needs 6 pounds of butter. The promotion does not change the fact that
he needs 6 pounds. The calculation 6 / 2 = 3 is irrelevant to the problem.

Step sentence: 3 pounds of butter would cost $12 because 3 x 4 = 12.

Correctness of the step: Wrong

Explanation: Although the promotion is "buy one pound of butter, get one half off." Dennis
needs 6 pounds of butter. The promotion applies to each pound he buys, so for every 2
pounds, he pays $4 + $2 = $6. Since he needs 6 pounds, he can take advantage of the
promotion 3 times (6 pounds / 2 pounds per promotion). Therefore, the total cost is 3 * $6 =
$18.

Step sentence: He will pay $6 because 12/2 = 6.

Correctness of the step: Wrong

Explanation: The calculation "12 /2 = 6" is incorrect. Based on the previous explanation,
the total cost is 3 X $6 = $18. Therefore, he will pay $18 instead of $6.

Correctness of the final answer: Wrong
Explanation: The final answer of 6 is incorrect. Given the promotion, Dennis will pay $18
forelnotndFIofbREen Discrimination Verifier: °
Actor Model (refinement response):

Let's break it down step by step:

To determine how much it will cost Dennis to purchase 6 pounds of butter, we need to
consider the following:

1. Butter Requirement: Dennis needs to make 6 dozen croissants, and he uses 1 pound of
butter per dozen. Therefore, he needs 6 pounds of butter.

2. Promotion Details: The promotion is \"buy one pound of butter, get one half off.\" This
means for every 2 pounds of butter purchased, Dennis pays for 1 pound at full price and gets
the second pound at half price.

3. Cost Calculation:

For every 2 pounds of butter, Dennis pays $4 for the first pound and $2 for the second
pound, totaling $6 for 2 pounds.

Since Dennis needs 6 pounds, he can take advantage of the promotion 3 times (6 pounds /
2 pounds per promotion).

Therefore, the total cost is 3 * $6 = $18.
The answer is 18.

Correctness Verifier: °

Figure 7: Example 2 of qualitative analysis. The actor’s original response is incorrect. The model trained after
Critique-RL Stage 1 is able to detect this error, demonstrating its discriminability. However, the model provides
the actor with low-quality suggestion, causing the actor’s refinement response to be incorrect. In contrast, for the
same erroneous original response, model trained after Critique-RL Stage II not only detects the error but also offers
a constructive suggestion, ultimately leading to the correct refinement response, demonstrating the advantage of

two-stage RL process.
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