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Abstract001

Training critique models to assess and provide002
feedback on model outputs is a promising way003
to improve large language models (LLMs) for004
complex reasoning tasks. However, existing ap-005
proaches typically rely on stronger supervisors006
for annotating critique data. To address this,007
we propose Critique-RL, an online RL frame-008
work for developing critique models without009
stronger supervision. Our framework operates010
on a two-player paradigm: the actor generates a011
response, the critic provides feedback, and the012
actor refines the response accordingly. We first013
reveal that relying solely on indirect reward014
signals from the actor’s outputs for RL opti-015
mization often leads to unsatisfactory critics:016
while their helpfulness improves, the discrim-017
inability remains poor, resulting in marginal018
performance gains. To overcome this, Critique-019
RL adopts a two-stage optimization strategy. In020
stage I, it reinfoces the discriminability of the021
critic with direct rule-based reward signals; in022
stage II, it introduces indirect rewards based on023
actor refinement to improve the critic’s help-024
fulness, while maintaining its discriminability025
via appropriate regularization. Extensive ex-026
periments across different tasks and models027
demonstrate that Critique-RL achieves signifi-028
cant performance improvements across differ-029
ent models and tasks.1030

1 Introduction031

With the development of large language models032

(Ouyang et al., 2022; OpenAI, 2023; Touvron et al.,033

2023; Jiang et al., 2023; Dubey et al., 2024), pro-034

viding reliable supervision for them has become a035

critical research challenge (Bowman et al., 2022;036

Saunders et al., 2022), especially for tasks that are037

difficult even for humans, such as complex reason-038

ing, sequential decision-making, and coding (Shinn039

et al., 2023; Snell et al., 2024; Qu et al., 2024; Ku-040

mar et al., 2024). This problem is often referred to041

1We will release our codes and data for further research.
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Figure 1: Left: Critique-RL achieves better perfor-
mance and discrimination on MATH. Right: Inference
compute scaling for Critique-RL, with @2k and @3k in-
dicating sampling amounts that are 2 times and 3 times
the x-axis value, respectively. Critique-RL improves the
performance ceiling and is more compute-efficient.

as scalable oversight (Bowman et al., 2022). One 042

effective method for scalable oversight is to train 043

critique models to assess and provide feedback to 044

model outputs (Welleck et al., 2023; Akyürek et al., 045

2023; Xi et al., 2024; Yao et al., 2024). Based on 046

this feedback, actor models can refine and optimize 047

their behavior or outputs. 048

Existing work in training critique models typi- 049

cally assumes a stronger supervisor to provide la- 050

beled critique data, which is often expensive and 051

difficult to scale (Saunders et al., 2022; Xi et al., 052

2024; Bowman et al., 2022). Moreover, the data 053

labeled by the supervisor often differs significantly 054

from the learner’s output distribution (Kumar et al., 055

2024). Another line of work does not train the 056

model but instead relies on the model’s inherent 057

abilities, using prompt engineering to elicit its cri- 058

tiquing abilities (Bai et al., 2022; Madaan et al., 059

2023; Dhuliawala et al., 2024). However, such 060

methods typically assume an oracle verifier dur- 061

ing testing, allowing the critique model to bypass 062

discrimination and focus solely on providing help- 063

fulness feedback for revision (Huang et al., 2024). 064

In this work, we aim to develop critique models 065

without relying on stronger annotators or an oracle 066

reward function during testing. To this end, we pro- 067

pose Critique-RL, an online RL framework based 068
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on two-player actor-critic interaction (Yao et al.,069

2024; Xi et al., 2024) for developing critique mod-070

els. In our framework, there are two main roles: the071

actor and critic. The critic assesses (discriminabil-072

ity) and provides feedback (helpfulness) for the073

actor’s output, and the actor performs refinement074

accordingly (Saunders et al., 2022).075

To build our method, we first use the correctness076

of the actor’s two attempts as the reward signals077

for the RL optimization of critique models (Section078

4.1), as intuitively, these indirect signals reflect the079

quality of critiques (Yao et al., 2024; Zheng et al.,080

2024). However, this approach fails to develop081

satisfactory critique models, i.e., with low perfor-082

mance. Delving into the optimization process, we083

reveal that while the helpfulness of the critique084

models improves, their discriminability is not well085

optimized, leading to an optimization bottleneck086

and even a collapse of RL training.087

To address the challenges, Critique-RL em-088

ployes a two-stage RL process (Section 4.2).089

Specifically, as shown in Figure 2, in the first stage,090

we optimize the discriminability of the critique091

models using direct rule-based reward signals. In092

the second stage, we introduce indirect rewards093

based on the correctness of actor refinement to094

enhance the helpfulness, while using appropriate095

regularization to maintain their discriminability. In-096

depth training dynamics shows that our method ad-097

dresses the training collapse and stably optimizes098

both discriminability and helpfulness. Extensive099

experiments show that our method outperforms100

baselines across different models and tasks. It is101

also noteworthy that critique models trained with102

our method can generalize to unseen tasks, demon-103

strating its promise for scalable oversight.104

In summary, our main contributions are:105

1. Delving into the RL optimization process, we106

reveal that solely depending on indirect re-107

ward signals of actor’s output correctness can-108

not develop satisfactory critique models, as109

their discriminability is not well optimized.110

2. We then propose Critique-RL, a new online111

RL framework to develop critique models for112

provide accurate assessment and helpful feed-113

back for model outputs.114

3. We perform in-depth experiments, ablation115

and analysis to show the effectiveness and116

stability of our method. We hope our work117

provides insights for future development of 118

scalable oversight in the community. 119

2 Related Work 120

Prompt engineering for eliciting critiquing abil- 121

ity from language models. As a key technique 122

for scalable oversight (Bowman et al., 2022), many 123

previous works have explored the use of prompt 124

engineering to elicit the critiquing and reflection 125

abilities of LLMs (Bai et al., 2022; Madaan et al., 126

2023; Ye et al., 2023; Dhuliawala et al., 2024). 127

These methods typically rely on an oracle verifier 128

at test time for discrimination, allowing the LM to 129

focus solely on providing natural language feed- 130

back (Huang et al., 2024). However, in the absence 131

of an external verifier, even SOTA models face sig- 132

nificant challenges (Saunders et al., 2022; Welleck 133

et al., 2023; Xu et al., 2024; Huang et al., 2024). 134

In this work, we do not assume a oracle verifier; 135

instead, we train critique models through RL to 136

optimize both discriminability and the ability to 137

provide helpful feedback. 138

Fine-tuning language models for critiquing. 139

Previously, a line of work has explored fine-tuning- 140

based approaches for training critique models 141

(Saunders et al., 2022; Bowman et al., 2022; Xi 142

et al., 2024). However, these methods primarily 143

rely on a stronger supervisor for data annotation, 144

which is costly and difficult to scale (Xi et al., 145

2024). To address this issue, some researchers 146

have proposed self-improvement-based methods to 147

train models for self-critiquing (Tang et al., 2025; 148

Zheng et al., 2024; Yuan et al., 2025). Unlike these 149

approaches, we adopt a two-player paradigm and 150

train a separated critique model through RL. 151

Reinforcement learning for language mod- 152

els. RL has become an essential component of 153

LLM post-training, such as RLHF for alignment 154

(Ouyang et al., 2022; Zheng et al., 2023; Wang 155

et al., 2024; Shao et al., 2024). Additionally, var- 156

ious works have leveraged RL to enhance lan- 157

guage models’ performance in reasoning (Snell 158

et al., 2024; Kumar et al., 2024), coding (Kumar 159

et al., 2024), and decision-making tasks (Shinn 160

et al., 2023). Furthermore, some studies explores 161

using RL to improve LM’s ability for self-reflection 162

and self-correction (McAleese et al., 2024; Kumar 163

et al., 2024; Welleck et al., 2023; Shinn et al., 2023; 164

Xu et al., 2024; Ye et al., 2023). The most rele- 165

vant work to ours is ReTroformer, which focuses 166
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Figure 2: Left: A case illustrating the two-player actor-critic interaction, including the original response from
the actor, the critique from the critic, and the refinement from the Actor. Right: Overview of our method and its
comparison with baseline RL. The snowflake icon on the Actor indicates that it is fixed, while the fire icon on
the Critic indicates that it will be updated. Our method employs a two-stage RL process. It optimize discriminability
of critique models in Stage I, and optimize helpfulness while maintaining discriminability in Stage II.

on decision-making tasks, and leverages indirect167

reward signals to optimize critique model’s help-168

fulness (Yao et al., 2024). Different from them,169

we propose a two-stage Critique-RL framework170

to optimize both discriminability and helpfulness,171

effectively developing critique models.172

3 Preliminaries173

3.1 The Two-Player Interaction Framework174

The multi-agent framework in this work consists of175

two main roles (Yao et al., 2024; Xi et al., 2024):176

the actor model and the critique model. It operates177

through a response-critique-refinement process.178

Specifically, given a question x, the actor model179

is expected to generate an original response y =180

πθ(x), which includes both the reasoning trajec-181

tory and the final answer. The correctness veri-182

fier then provides an oracle reward roracle(x, y) to183

the actor model. Subsequently, the critique model184

πϕ takes the question-response pair (x, y) as in-185

put and produces critique c = πϕ(x, y), which186

should include assessment of the response correct-187

ness (discriminability) and offer constructive nat-188

ural language feedback (helpfulness). Based on 189

this critique, the actor model generates a refine- 190

ment response y
′
= πθ(x, y, c), and subsequently 191

receives an oracle reward roracle(x, y
′
). Using these 192

rewards, i.e., roracle(x, y) and roracle(x, y
′
), we can 193

design different reward functions rc(·) for critique 194

models, which will be shown in Section 4. 195

3.2 Policy Gradient for LLMs 196

Policy gradient methods (Sutton et al., 1999), e.g., 197

REINFORCE (Ahmadian et al., 2024; Kumar et al., 198

2024), are common techniques to perform RL on 199

LLMs. For the policy critique model πϕ param- 200

eterized by ϕ, the objective of policy gradient is 201

to find an optimal policy that maximizes the re- 202

ward function rc(·). It is typically expressed as 203

maximizing: 204

Ec∼πϕ(·|x,y),y′∼πθ(x,y,c)
[rc(x, y, c, y

′
)], (1) 205

where Ec∼πϕ(·|x,y),y′∼πθ(x,y,c)
denotes the expecta- 206

tion over the critique sampled from the critic πϕ 207

and the refinement response sampled from the actor 208

πθ. Using this gradient, we can perform gradient 209
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ascent to optimize the critique model. When the210

critique is positive, it is “reinforced” by increasing211

its probability.212

3.3 Evaluating Metrics213

To evaluate the performance of the critique214

model, we consider the following metrics: (1)215

Acc@Refine: the accuracy of the actor model’s216

refinement response; (2) ∆: the improvement in217

the actor model’s accuracy between the original218

and refinement response, which measures the ef-219

fectiveness of the critique model; (3) ∆c→i: the220

change rate from an originally correct response to221

an incorrect refinement response. A lower value222

is better; (4) ∆i→c: the change rate from an orig-223

inally incorrect response to a correct refinement224

response. A higher value is better; (5) Acc@Dis:225

a direct metric to measure the discriminability of226

the critique model, which quantifies the accuracy227

of whether the correctness accessed by the critic228

aligns with the true correctness of the original re-229

sponse.230

4 Methodology231

4.1 Motivating Findings: RL with Indirect232

Reward Signals Is Insufficient for233

Training Satisfactory Critique Models234

In the two-player actor-critic framework (Yao et al.,235

2024; Xi et al., 2024), a natural and intuitive way236

to optimize the critique models is to shape the re-237

ward signals derived from the actor’s two attempts238

(original and refinement responses). We explore239

several reward shaping approaches, demonstrate240

their failure modes, and investigate why they fail241

to incentivize satisfactory critiquing ability.242

Analysis setups: data, models, and training243

methods. Our preliminary experiments are on244

GSM8K (Cobbe et al., 2021), and the backbone245

model is Qwen-2.5-3B (Team, 2024). Following246

previous work (Xi et al., 2024), we train an ac-247

tor model capable of generating responses and248

faithfully refining them according to critiques. To249

build the SFT dataset for initializing a base critique250

model, we prompted the backbone model to obtain251

critique data DSFT = {x, y, c}|DSFT|
i=1 , rather than252

using annotations from SOTA commercial models253

like GPT-4o (OpenAI, 2023). We filter the critique254

data based on the correctness of refinement to en-255

sure the quality.256

Next, we train the critique model πϕ using the257

SFT loss: 258

LSFT(ϕ) = E(x,y,c)∼DSFT

[
log πϕ(c|x, y)

]
. (2) 259

We then employ policy gradient (Sutton et al., 260

1999) to maximize: 261

Ec∼πRL
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rc(x, y, c, y

′)

− βKL(πSFT
ϕ (c|x, y)||πRL

ϕ (c|x, y))
]
,

(3) 262

where πθ is the fixed actor model, πSFT
ϕ is the SFT 263

model. Each x is a query sampled from the RL 264

dataset DRL, y is the original response. KL(·||·) 265

means the KL-divergence which constrains the dis- 266

tance between the RL model and the SFT model, 267

and β is a scaling factor. rc(·) is the reward func- 268

tion for critique models. Here, with roracle being 269

the oracle reward function that verifies the correct- 270

ness of an actor response, rc(·) can be rrefine which 271

represents the correctness of the refinement: 272

rrefine(x, y, c, y
′) = roracle(x, y

′), (4) 273

or it can be r∆ which represents the difference in 274

correctness between the actor’s two attempts: 275

r∆(x, y, c, y′) = roracle(x, y
′)− roracle(x, y). (5) 276

Moreover, we also include rcorrection as rc(·) for 277

reinforcing the ability in correcting incorrect re- 278

sponses: 279

rcorrection(x, y, c, y
′) =

1.0, roracle(x, y) = 0 and roracle(x, y
′) = 1,

0.2, roracle(x, y) = 1 and roracle(x, y
′) = 1,

0.0, roracle(x, y
′) = 0.

(6) 280

Empirical findings and behavior analysis. We 281

illustrate the training dynamics during RL in Fig- 282

ure 3. Optimizing with rrefine and r∆ can reduce 283

∆c→i, preventing originally correct responses from 284

being altered incorrectly, but its ∆i→c is not sig- 285

nificantly optimized, meaning its error correction 286

performance is not good enough. This phenomenon 287

reveals that the critique model is overly conserva- 288

tive, encouraging the actor to not change its an- 289

swers. As a result, the final Acc@Refine is not 290

satisfactory. 291

In contrast, optimizing with rcorrection improves 292

∆i→c, but fails to effectively reduce ∆c→i. This 293

means it often provides more aggressive sugges- 294

tions, encouraging the actor model to correct incor- 295

rect responses, but it also introduces a greater risk 296
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Figure 3: Training dynamics of preliminary experiments. “Acc@Dis Originally Correct” and “Acc@Dis Originally
Incorrect” refer to the discrimination accuracy of originally correct and incorrect responses, respectively. Baselines
using indirect reward signals to optimize helpfulness tend to exhibit overly conservative or aggressive behavior as
the discriminability is not well optimized. In contrast, our Critique-RL optimizes discriminability in Stage I, and
optimizes helpfulness while maintaining discriminability in Stage II. As a result, Critique-RL performs better in
Acc@Refine, ∆c→i and ∆i→c.

of turning originally correct answers into incorrect297

ones. Similarly, the final Acc@Refine is also not298

satisfactory.299

Analyzing underlying reasons for the failure300

modes. To reveal the reasons behind the above301

failure modes, we also visualize the discrimination302

performance of the critique models during RL in303

Figure 3. We find that as RL progresses, all three304

reward functions rrefine, r∆ and rcorrection fail to op-305

timize discriminability effectively. For originally306

correct and incorrect responses, they can only op-307

timize the judgment for one, while the ability to308

judge the other is reduced. This may be because309

both of the indirect reward functions are based310

on the actor’s responses, targeting helpfulness and311

overlooking discriminability. This motivates the312

proposal of our method.313

4.2 Two-Stage Critique-RL314

Key challenges. Based on the previous analy-315

sis, we have identified two key challenges in RL316

for critique models: (1) optimizing the discrim-317

inability of critique models to improve their ac-318

curacy in judging both correct and incorrect orig-319

inal responses; (2) improving the quality of the320

model’s feedback, i.e., helpfulness, while main-321

taining its discriminability, to prevent the issues of322

being overly aggressive or overly conservative.323

Method overview. To address the above chal- 324

lenges, we propose the two-stage Critique-RL. In 325

the first stage, our method explicitly optimizes the 326

discriminability of the critique models using direct 327

reward signals. We then use the model optimized 328

by the first stage π
Stage-II
ϕ as the initialization for 329

the second stage. In the second stage, we introduce 330

a reward function based on the actor’s response 331

to optimize critic’s helpfulness, while also incor- 332

porating appropriate regularization to maintain its 333

discriminability. We illustrate our method in Figure 334

2 and the algorithm is summarized in Algorithm 1. 335

Stage I: optimizating discriminability through 336

direct reward signals. We decouple the discrim- 337

inability and helpfulness of the critique models 338

(Saunders et al., 2022). In Stage I, we shape the re- 339

ward based solely on the actor’s original response. 340

Given (x, y), critique models are prompted to give 341

correctness judgments for each step, and also pro- 342

vide a judgment for the final answer. Based on this, 343

we define the discriminability reward function of 344

the critique models as: 345

rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
, (7) 346

where f(x, y, c) is the critique model’s judgment 347

of the correctness of the original response. 1(·) is 348

indicator function that returns 1 only when the con- 349
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Model Method MATH GSM8K AQuA

Acc ∆ Acc@Dis Acc ∆ Acc@Dis Acc ∆ Acc@Dis

Qwen2.5-3B

No Critic 36.90 − − 66.03 − − 50.00 − −
SFT 44.24 7.34 66.51 69.14 3.11 76.34 46.46 −3.54 61.97
STaR 44.38 7.48 66.97 71.95 5.91 74.79 50.39 0.39 66.13
Base-PPO 44.54 7.64 65.11 70.51 4.47 77.59 51.18 1.18 58.44
Base-RLOO 46.14 9.24 69.29 70.58 4.55 76.71 53.54 3.54 62.20
Critique-RL 48.60 11.70 82.80 75.89 9.86 87.44 56.69 6.69 69.92

Qwen2.5-7B

No Critic 45.74 − − 75.66 − − 63.39 − −
SFT 51.84 6.10 67.59 78.77 3.11 79.42 59.45 −3.94 68.67
STaR 54.06 8.32 69.71 80.52 4.85 81.03 57.87 −5.51 72.18
Base-PPO 52.34 6.60 68.03 80.82 5.16 77.05 63.39 0.00 70.56
Base-RLOO 53.86 8.12 71.42 81.35 5.69 83.44 64.96 1.57 71.66
Critique-RL 58.40 12.66 85.20 87.72 12.05 90.43 65.75 2.36 78.09

Table 1: Main results. The best performance is in bold and underlined, while the second-best performance is
underlined. Our method is marked in blue . No Critic means the actor model perform reasoning only, and we report
the reasoning performance. For other methods, we report the Acc@Refine performance for the acc column.

dition inside the parentheses holds, and 0 otherwise.350

Based on this, our Stage I RL maximizes:351

E
c∼π

Stage-I
ϕ (·|x,y)

[
rdis(x, y, c)

− βKL(πSFT
ϕ (c|x, y)||πStage-I

ϕ (c|x, y))
]
,

(8)352

where the KL divergence with the SFT model is353

still used to stabilize the training. As shown in354

Figure 3, our Stage I RL can effectively and stably355

optimize discriminability, regardless of the correct-356

ness of the original response.357

Stage II: optimizating helpfulness while main-358

taining discriminability. The goal of the second359

stage of Critique-RL is to optimize the helpfulness360

of the critique models without sacrificing their dis-361

criminability, thereby avoiding overly conservative362

or overly aggressive behavior patterns. To achieve363

this, we introduce a reward function based on ac-364

tor refinement correctness, rrefine. Meanwhile, to365

preserve the model’s discriminability, we retain366

rdis and introduce a regularization term based on367

the KL divergence with the Stage I model πStage-I
ϕ .368

Specifically, we maximize the following objective:369

E
c∼π

Stage-II
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rrefine + β1rdis(x, y, c)

− β2KL(πStage-I
ϕ (c|x, y)||πStage-II

ϕ (c|x, y))
]
,

(9)370

where β1 and β2 are scaling factors. As shown371

in Figure 3, our Stage II effectively optimizes the372

model’s helpfulness, increasing ∆i→c and decreas-373

ing ∆c→c, ultimately leading to a stable improve-374

ment in Acc@Refine and ∆. On the test set, our375

method also achieves excellent performance (see 376

Section 5). 377

5 Experiments 378

5.1 Experimental Setup 379

Datasets. Focusing on mathematical reasoning 380

tasks, we select 5 different commonly-used tasks, 381

including free-from and multiple-choice. Follow- 382

ing Ding et al. (2024), we construct training set 383

with the train-split of MATH (Hendrycks et al., 384

2021), GSM8K (Cobbe et al., 2021), AQUA (Ling 385

et al., 2017). The testset of the three tasks are used 386

as in-domain testset, while the test-split of SVAMP 387

(Patel et al., 2021), TheoremQA (Chen et al., 2023), 388

are used as our OOD (out-of-domain) testset. 389

Models and baselines. Our experiments are con- 390

ducted on Qwen2.5 series (Team, 2024), i.e., 391

Qwen2.5-3B and Qwen2.5-7B. We include several 392

baselines: (1) SFT which fine-tunes models with 393

high-quality critique data. (2) STaR which itera- 394

tively fine-tunes critique models on data generated 395

by themselves and filtered based on the refinement 396

correctness of the actor. (3) RL with rrefine for opti- 397

mizing helpfulness of critique models. We include 398

two widely used algorithms PPO and RLOO for 399

this baseline. 400

Implementation details. All experiments are 401

conducted on 8 NVIDIA A800 GPUs. To initialize 402

an actor that can reason and refine based on the 403

critiquing feedback, we follow Ding et al. (2024); 404

Xi et al. (2024) to construct a dataset of 21, 973 405

reasoning traces and 12, 000 refinement responses. 406
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For critique data, we construct a set of 6, 000 ex-407

amples, with 2, 000 examples in each training task.408

For fine-tuning actors, we set the epoch to 3 and409

learning rate to 5e− 6; for fine-tuning critics, we410

set the epoch to 5 and learning rate to 5e− 6. For411

STaR and RL, we perfrom SFT to obtain an ini-412

tialized model. In all RL methods, we set the KL413

coefficient to 0.01. In Critique-RL, we use RLOO414

as our base algorithm as it performs well and does415

not require a value model. We train the critique416

model for 500 steps at each stage and report best417

results. During evaluation, the temperature is set418

to 0. For inference-compute scaling analysis or419

Pass@K, we set temperature to 0.7.420

5.2 Main Results421

Generally, critique models can significantly im-422

prove actor’s reasoning performance. The re-423

sults in Table 1 demonstrate that when introducing424

critique models, the actor’s reasoning performance425

can be boosted by a large margin. For example,426

in the MATH task, even the SFT Baseline outper-427

forms the model without a critic by 7.34 and 6.10428

points on the 3B and 7B models, respectively. This429

suggests that critique models are an effective su-430

pervision method, as discussed in Saunders et al.431

(2022); McAleese et al. (2024).432

RL-based methods outperforms fine-tuning-433

based. Both SFT and STaR methods lead to434

promising critique models, but in most cases, on-435

line RL-based methods perform better, especially436

our Critique-RL. For instance, on the 3B model,437

our method surpasses the SFT method by an aver-438

age of 7.11 points on accuracy across three datasets.439

It is worth noting that on AQuA, fine-tuning-based440

SFT and STaR may lead to negative impact on per-441

formance, while our method provides significant442

positive improvements. This reveals that online RL443

methods have greater potential and adaptability in444

eliciting the model’s critiquing ability, similar to445

the findings in (McAleese et al., 2024).446

Critique-RL consistently outperforms other447

baselines in discrimination and final accuracy.448

In terms of discrimination, our method also signifi-449

cantly outperforms other baselines, such as surpass-450

ing Base-RLOO by 5.31, 6.36 points for 3B and451

7B models on GSM8K, respectively. This reveals452

that our discrimination-related reward shaping can453

effectively optimizes discriminability. Thanks to454

this and the helpfulness reward design in the second455

stage, our method shows a significant improvement456

Method MATH AQuA

Acc@Refine Acc@Dis Acc@Refine Acc@Dis

Critique-RL (Ours) 48.60 82.80 56.69 69.92
-w/o Stage I 47.62 79.71 53.94 66.53
-w/o Stage II 45.90 78.68 54.72 68.22
-Stage II w/o discrimination 47.32 77.66 53.54 61.56
-Stage II w/ r∆ 48.16 82.57 53.94 68.44
-Stage II w/ rcorrection 47.74 81.96 54.72 68.39

Table 2: Ablation study using Qwen2.5-3B. We report
the Acc@Refine. “w/o” means without; “Stage II w/o
discrimination” means in Stage II, we remove rdis and
KL(πStage-I

ϕ ||πStage-II
ϕ ) ; “Stage II w/ r∆” and “Stage II

w/ rcorrection” mean replacing the rrefine with the corre-
sponding reward function.

in final performance compared to other baselines. 457

For example, on the 7B model, our method outper- 458

forms Base-PPO by an average of 5.11 and 12.69 459

points on accuracy and discriminability, across 460

three datasets. 461

6 Discussion and Analysis 462

6.1 Ablation Study 463

We conduct ablation experiments to validate the 464

importance of different components in our method. 465

The experimental results are shown in Table 2. 466

Ablation on different stages. Both Stage I and 467

Stage II are crucial, and removing either of them 468

leads to a decrease in performance. This indicates 469

that optimizing both discriminability and helpful- 470

ness is essential in developing critique models. 471

Ablation on reward design for Stage II. Next, 472

we perform a deeper analysis of the reward 473

design in Stage II. First, if we remove the 474

discrimination-related rdis and KL-based regular- 475

ization KL(πStage-I
ϕ ||πStage-II

ϕ ), the discriminability 476

and accuracy suffer a significant drop. This further 477

emphasizes that when optimizing for helpfulness, 478

it is crucial to maintain the model’s discrimination 479

ability. Second, when we replace the reward func- 480

tion rrefine in Stage II with another reward function, 481

i.e., r∆ and rcorrection, we observe a slight perfor- 482

mance drop. This may be because rrefine directly 483

optimizes the Acc@Refine metric, which aligns 484

most closely with the actual test-time scenario. 485

6.2 Analyzing Helpfulness When the Oracle 486

Verifier Is Available 487

Many previous works have relied on an external or- 488

acle verifier to assess the actor’s reasoning results 489

(Bai et al., 2022; Madaan et al., 2023; Ye et al., 490

2023; Dhuliawala et al., 2024). In this scenario, the 491

model’s judgment ability is isolated, allowing us 492
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Figure 4: Performance with and without the oracle veri-
fier. When the oracle verifier is available, the model no
longer needs to make discriminations and just needs to
provides useful feedback. This allows us to evaluate the
model’s helpfulness more accurately.

to better evaluate the critique model’s helpfulness.493

We conducted relevant experiments, and the results494

are shown in Figure 4. We found that when the or-495

acle verifier is available, all baselines show perfor-496

mance improvements. In this case, our method still497

outperforms others across different datasets and498

models, indicating that our approach significantly499

enhances the model’s helpfulness. Furthermore,500

comparisons with other RL baselines reveal that501

the optimization of discriminability in our method502

also implicitly contributes to the improvement of503

helpfulness, suggesting that the two abilities are504

not entirely independent. This further emphasizes505

the importance of optimizing both abilities jointly506

in developing critique models.507

6.3 Scaling Test-Time Inference Compute for508

Critique-RL509

We investigate whether Critique-RL can be com-510

bined with inference-time compute scaling strat-511

egy. Following Qu et al. (2024); Snell et al.512

(2024); Xi et al. (2024), we leverage the com-513

monly used majority vote (MV@K) (Wang et al.,514

2023) which evaluates whether the most frequent515

answer among K samples is correct. The results516

of MATH are shown in Figure 1 and the results517

of GSM8K are shown in Figure 5 of Appendix B.518

Compared to not using critique models, Critique-519

RL significantly increases the performance ceiling520

and shows a more sustained upward trend as infer-521

ence compute scales. More importantly, perform-522

ing K× response-critique-refinement sampling is523

more compute-efficient than conducting 3K× par-524

Model Method SVAMP TheoremQA

Acc Pass@10 Acc Pass@10

Qwen2.5-3B
No Critic 70.67 92.00 15.13 34.75

Critique-RL 78.33 96.33 16.75 37.75

Qwen2.5-7B
No Critic 80.33 95.67 19.38 39.75

Critique-RL 89.67 97.00 21.38 43.00

Table 3: Out-of-domain evaluation of Critique-RL.

allel sampling responses. 525

6.4 Generalization to OOD Tasks 526

We also validated the generalization of the models 527

trained by Critique-RL on OOD tasks. The results 528

in Table 3 show that the models trained still deliv- 529

ers significant performance improvements, further 530

demonstrating the potential of this scalable over- 531

sight approach. 532

6.5 Qualitative Analysis of Critique-RL 533

We perform a qualitative investigation into how 534

Critique-RL works and provide several examples 535

in Appendix C. In Figure 6, facing the originally in- 536

correct response, the critique model after SFT is un- 537

able to detect errors, leading the actor’s refinement 538

response to retain the same errors. However, the 539

model trained after Critique-RL identifies the errors 540

in the original response and provides detailed, con- 541

structive suggestions for modification, leading to 542

the correct refinement response. In Figure 7, model 543

trained after Critique-RL Stage I is able to detect 544

errors, demonstrating its discriminability. However, 545

the model provides the actor with low-quality sug- 546

gestion, causing the actor’s refinement response to 547

be incorrect. In contrast, for the same erroneous 548

original response, model trained after Critique-RL 549

Stage II not only detects the error but also offers a 550

constructive suggestion, ultimately leading to the 551

correct refinement response, demonstrating the ad- 552

vantage of two-stage RL process. 553

7 Conclusion 554

In this paper, we propose Critique-RL, an RL 555

framework for developing critique models with- 556

out the need for additional labeled data. Through 557

in-depth analysis, we highlight the importance of 558

explicitly optimizing model discriminability and 559

propose a two-stage RL approach that effectively 560

optimizes both discriminability and helpfulness. 561

We validate its stability and superiority through de- 562

tailed experiments, and further uncover its working 563

mechanism through ablation studies and analyses. 564

We hope that our work can provide insights for the 565

scalable oversight community of large models. 566
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Limitations567

In this paper, we propose an RL method for train-568

ing critique models and validate its effectiveness569

and stability through detailed experiments, abla-570

tion studies, and analyses. However, there are still571

some limitations that need to be addressed in future572

work. First, our main analysis focuses on mathe-573

matical reasoning tasks, and in the future, it should574

be extended to more tasks to test its generaliza-575

tion ability. Second, our method is primarily based576

on the Qwen2.5 series of models, and future work577

should explore its applicability to a broader range578

of models. Third, our approach relies on an ex-579

plicit two-stage training process, which increases580

manual effort and reduces flexibility. Future re-581

search should explore how to integrate these two582

stages and train stronger critique models, making583

the approach more scalable.584
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Figure 5: Inference compute scaling for Critique-RL,
with @2k and @3k indicating sampling amounts that
are 2 times and 3 times the x-axis value, respectively.
Critique-RL improves the performance ceiling and is
more compute-efficient.

A Algorithm of Critique-RL894

Our main algorithm is summarized in Algorithm 1.895

B More Test-time Scaling Results896

The results of test-time scaling on GSM8K are il-897

lustrated in Figure 5. Similar to the findings on898

MATH, Critique-RL is more compute-efficient and899

significantly increases the performance ceiling, val-900

idating the potential of our approach.901

C Examples of Qualitative Analysis902

The examples of our qualitative analysis are in Fig-903

ure 6 and Figure 7.904

From Figure 6, we find the model trained af-905

ter Critique-RL shows strong discriminability and906

helpfulness compared to the model after SFT. From907

Figure 7, we find that the model trained after908

Critique-RL Stage II not only maintains strong909

discriminability but also provides accurate and910

constructive suggestions, outperforming the model911

trained after Critique-RL Stage I.912
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Algorithm 1: Critique-RL
Input: Actor model πθ, base critique model πϕ, SFT dataset DSFT, RL dataset DRL, function that

extracts the correctness of a response judged by a critique f , oracle reward function roracle,
discrimination reward function rdis.

Procedure Supervised Fine-tuning:
πSFT
ϕ ← πϕ;

Update πSFT
ϕ by minimizing LSFT(ϕ) = E(x,y,c)∼DSFT

[
log πϕ(c|x, y)

]
;

Procedure Critique-RL Stage I: optimizating discriminability through direct reward signals.
π

Stage-I
ϕ ← πSFT

ϕ ;
for batch in DRL do

for x in batch do
Generate y and c with πθ and π

Stage-I
ϕ ;

Compute discrimination reward with rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
;

end
Update π

Stage-I
ϕ by maximizing

E
c∼π

Stage-I
ϕ (·|x,y)

[
rdis(x, y, c)− βKL(πSFT

ϕ (c|x, y)||πStage-I
ϕ (c|x, y))

]
;

end
Procedure Critique-RL Stage II: optimization helpfulness while maintaining discriminability.

π
Stage-II
ϕ ← π

Stage-I
ϕ ;

for batch in DRL do
for x in batch do

Generate y, c and y
′

with πθ and π
Stage-II
ϕ ;

Compute discrimination reward with rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
;

Compute refinement reward with rrefine = roracle(x, y
′
);

end
Update π

Stage-II
ϕ by maximizing E

c∼π
Stage-II
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rrefine + β1rdis(x, y, c)−

β2KL(πStage-I
ϕ (c|x, y)||πStage-II

ϕ (c|x, y))
]
.

end
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Figure 6: Example 1 of qualitative analysis. The actor’s original response is incorrect. The model after SFT is
unable to detect errors in the response, leading the actor’s refinement response to retain the same errors. However,
the model trained after Critique-RL identifies the errors in the original response and provides detailed, constructive
suggestions for modification, leading to the correct refinement response.
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Figure 7: Example 2 of qualitative analysis. The actor’s original response is incorrect. The model trained after
Critique-RL Stage I is able to detect this error, demonstrating its discriminability. However, the model provides
the actor with low-quality suggestion, causing the actor’s refinement response to be incorrect. In contrast, for the
same erroneous original response, model trained after Critique-RL Stage II not only detects the error but also offers
a constructive suggestion, ultimately leading to the correct refinement response, demonstrating the advantage of
two-stage RL process.
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