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ABSTRACT

The asymptotic mean squared test error and sensitivity of the Random Features
Regression model (RFR) have been recently studied. We build on this work and
identify in closed-form the family of Activation Functions (AFs) that minimize
a combination of the test error and sensitivity of the RFR under different notions
of functional parsimony. We find scenarios under which the optimal AFs are
linear, saturated linear functions, or expressible in terms of Hermite polynomials.
Finally, we show how using optimal AFs impacts well established properties of the
RFR model, such as its double descent curve, and the dependency of its optimal
regularization parameter on the observation noise level.

1 INTRODUCTION

For many neural network (NN) architectures, the test error does not monotonically increase as
a model’s complexity increases but can go down with the training error both at low and high
complexity levels. This phenomenon, the double descent curve, defies intuition and has motivated
new frameworks to explain it. Explanations have been advanced involving linear regression with
random covariates (Belkin et al., 2020; Hastie et al., 2022), kernel regression (Belkin et al., 2019b;
Liang & Rakhlin, 2020), the neural tangent kernel model (Jacot et al., 2018), and the Random
Features Regression (RFR) model (Mei & Montanari, 2022). These frameworks allow queries beyond
the generalization power of NNs. For example, they have been used to study networks’ robustness
properties (Hassani & Javanmard, 2022; Tripuraneni et al., 2021).

One aspect within reach and unstudied to this day is finding optimal Activation Functions (AFs)
for these models. It is known that AFs affect a network’s approximation accuracy and efforts to
optimize AFs have been undertaken. Previous work has justified the choice of AFs empirically, e.g.,
Ramachandran et al. (2017), or provided numerical procedures to learn AF parameters, sometimes
jointly with models’ parameters, e.g. Unser (2019). See Rasamoelina et al. (2020) for commonly
used AFs and Appendix C for how AFs have been previously derived.

We derive for the first time closed-form optimal AFs such that an explicit objective function involving
the asymptotic test error and sensitivity of a model is minimized. Setting aside empirical and
principled but numerical methods, all past principled and analytical approaches to design AFs focus
on non accuracy related considerations, e.g. Milletarí et al. (2019). We focus on AFs for the RFR
model and expand its understanding. We preview a few surprising conclusions extracted from our
main results:
1. The optimal AF can be linear, in which case the RFR model is a linear model. For example, if no

regularization is used for training, and for low complexity models, a linear AF is often preferred if
we want to minimize test error. For high complexity models a non-linear AF is often better;

2. A linear optimal AF can destroy the double descent curve behaviour and achieve small test error
with much fewer samples than e.g. a ReLU;

3. When, apart from the test error, the sensitivity of a model becomes important, optimal AFs that
without sensitivity considerations were linear can become non-linear, and vice-versa;

4. Using an optimal AF with an arbitrary regularization during training can lead to the same, or
better, test error as using a non-optimal AF, e.g. ReLU, and optimal regularization.
*Work done during undergrad at Boston College.
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1.1 PROBLEM SET UP

We consider the effect of AFs on finding an approximation 5 to a square-integrable function 53 on the
3-dimensional sphere S3−1(

√
3), the function 53 having been randomly generated. The approximation

5 is to be learnt from training data D = {x8 , H8}=8=1 where x8 ∈ S3−1(
√
3), the variables {x8}=8=1 are

i.i.d. uniformly sampled from S3−1(
√
3), and H8 = 53(x8) + n8 , where the noise variables {n8}=8=1 are

i.i.d. with E(n8) = 0,E(n2
8
) = g2, and E(n4

8
) < ∞.

The approximation 5 is defined according to the RFR model. The RFR model can be viewed as a
two-layer NN with random first-layer weights encoded by a matrix Θ ∈ R#×3 with 8th row θ8 ∈ R3
satisfying ‖θ8 ‖=

√
3, with {θ8} i.i.d. uniform on S3−1(

√
3), and with to-be-learnt second-layer

weights encoded by a vector a = [08]#8=1 = R# . Unless specified otherwise, the norm ‖·‖ denotes the
Euclidean norm. The RFR model defines 5a,Θ : S3−1(

√
3) ↦→ R such that

5a,Θ(x) =
#∑
8=1

08f(〈θ8 ,x〉/
√
3). (1)

where f(·) is the AF that is the target of our study and 〈G, H〉 denotes the inner product between
vectors G and H. When clear from the context, we write 5a,Θ as 5 , omitting the model’s parameters.
The optimal weights a★ are learnt using ridge regression with regularization parameter _ ≥ 0, namely,

a★ = a★(_,D) = arg min
a∈R#

{
1
=

=∑
9=1

(
H 9 −

#∑
8=1

08f(〈θ8 ,x 9〉/
√
3)

)2
+
#_

3
‖a‖2

}
. (2)

We will tackle this question: What is the simplest f that leads to the best approximation of 53?

We quantify the simplicity of an AF f with its norm in different functional spaces. Namely, either
‖f‖1, E(|f′(/))|), or (3) ‖f‖2,

√
E((f′(/))2), (4)

where f′ is the derivative of f and the expectations are with respected to a normal random variable
/ with zero mean and unit variance, i.e. / ∼ N (0, 1). For a comment on these choices please
read Appendix A. We quantify the quality with which 5 = 5a★,Θ approximates 53 via !, a linear
combination of the mean squared error and the sensitivity of 5 to perturbations in its input. For
U ∈ [0, 1], x uniform on S3−1(

√
3), we define

! , (1−U)E +US, (5) where E , E(( 5 (x) − 53(x))2), (6) and S , ‖E∇x 5 (x)‖2. (7)

See Appendix B for a comment on our choice for sensitivity.

Like in Mei & Montanari (2022); D’Amour et al. (2020), we operate in the asymptotic proportional
regime where =, 3, # → ∞, and have constant ratios between them, namely, #/3 → k1 and
=/3 → k2. In this asymptotic setting, it does not matter if in defining (6) and (7), in addition to
taking the expectation with respect to the test data x, independently of D, we also take expectations
over D and the random features in RFR. This is because when =, 3, # →∞ with the ratios defined
above, E and S will concentrate around their means (Mei & Montanari, 2022; D’Amour et al., 2020).

Mathematically, denoting by ‖f‖ either (4) or (3), our goal is to study the solutions of the problem

min
f★
‖f★‖ subject to f★ ∈ arg min

f
!(f). (8)

Notice that the outer optimization only affects the selection of optimal AF in so far as the inner
optimization does not uniquely define f★, which, as we will later see, it does not.

To the best of our knowledge, no prior theoretical work exists on how optimal AFs affect performance
guarantees. We review literature review on non-theoretical works on the design of AFs, and a work
studying the RFR model for purposes other than the design of AFs in Appendix C.

2 BACKGROUND ON THE ASYMPTOTIC PROPERTIES OF THE RFR MODEL

Here we will review recently derived closed-form expressions for the asymptotic mean squared error
and sensitivity of the RFR model, which are the starting point of our work. First, however, we explain
the use-inspired reasons for our setup. Our assumptions are the same as, or very similar to, those of
published theoretical papers, e.g. Jacot et al. (2018); Yang et al. (2021); Ghorbani et al. (2021); Mel
& Pennington (2022).
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1. Data on a sphere: Normalization of input data is a best practice when learning with NNs (Huang
et al., 2020). Assuming that input data lives on a sphere is one type of normalization.

2. Random features: The seminal work of Rahimi & Recht (2007a) showed the success of using
random features on real datasets. For a recent review on their use see Cao et al. (2018).

3. Asymptotic setting: Mei & Montanari (2022) empirically showed that the convergence to the
asymptotic regime is relatively fast, even with just a few hundreds of dimensions. Most real world
applications involve larger dimensions 3, lots of data =, and lots of neurons # .

4. Shallow architecture: For a finite input dimension 3, the RFR model can learn arbitrary functions
as the number of features # grows large (Bach, 2017; Rahimi & Recht, 2007b; Ghorbani et al.,
2021). Existing proof techniques make it very hard yet to extend our type of analysis to more than
two layers or complex architectures. A few papers consider models with depth > 2 but do not
tackle our problem and have other heavy restrictions on the model, e.g. Pennington et al. (2018).

5. Regularization: Using regularization during training to control the weights’ magnitude is com-
mon. It can help convergence speed and generalization error (Goodfellow et al., 2016). For a
review on different types of regularization for learning with NNs see Kukačka et al. (2017).

We make the following assumptions, which we assume hold in the theorems in this section.
Assumption 1. We assume that the AF f is weakly differentiable with weak derivative f′, it satisfies
|f(D)|, |f′(D)|≤ 204

21 |D |∀D ∈ R for some constants 0 < 20, 21 < ∞, and that it also satisfies

`0 = E{f(/)}, `1 = E{/f(/)}, `2 = E{f(/)2}, `2
★ = `2 − `2

0 − `
2
1, Z = `1/`★, (9)

for some `0, `1, `2 ∈ R, where the expectations are with respect to / ∼ N (0, 1).
Assumption 2. We assume that # = #(3) and = = =(3) such that the following limits exist in (0,∞):
lim3→∞ #(3)/3 = k1 and lim3→∞ =(3)/3 = k2.
Assumption 3. We assume that H8 = 53(x8)+n8 , where {n8}8≤= ∼8.8.3. Pn are independent of {x8}8≤=,
with E(n1) = 0, E(n2

1 ) = g2, E(n4
1 ) < ∞, expectations with respect to {n8}. Furthermore,

53(x) = V3,0 + 〈β3,1,x〉 + 5 NL
3 (x) , (10)

where V3,0 ∈ R, β3,1 ∈ R3 are deterministic with lim3→∞ V2
3,0 = �2

0 , lim3→∞‖β3,1‖22= �2
1 > 0. The

non-linear 5 NL
3

is a centered Gaussian process indexed by x ∈ S3−1(
√
3), with covariance

E 5 NL
3
{ 5 NL
3 (x1) 5 NL

3 (x2)} = Σ3(〈x1,x2〉/3), (11)

where Σ3(·) satisfies Ex∼Unif(S3−1(
√
3)){Σ3(G1/

√
3)} = 0, Ex∼Unif(S3−1(

√
3)){Σ3(G1/

√
3)G1} = 0, where

G1 is the 1st component of x. We define the Signal to Noise Ratio (SNR) d by

d = �2
1 /(�

2
★ + g2), where �2

★ , lim
3→∞

Σ3(1). (12)
Informally, `★ quantifies how non-linear the AF is (cf. Lemma 3.1), k1 quantifies the complexity of
the RFR model relative of the dimension 3, k2 quantifies the amount of data used for training relative
to 3, g2 is the variance of the observation noise, �1 is the magnitude of the linear component of our
target function 53 , which is controlled by V3,1, �★ is the magnitude of the non-linear component
5 NL
3

in the target function, and d is the ratio between the magnitude of the linear component and the
magnitude of all of the sources of randomness in the noisy function 53 + n . Recall that all of our
results will be derived in the asymptotic regime when 3 →∞.

Our contributions are divided into two parts, Section 3.1 and Section 3.2. The theorems’ statements
in Section 3.2 quickly get prohibitively complex as they are stated more generally, with lots of special
cases having to be discussed. Hence, in Section 3.2 we display our analysis on the following three
different important regimes: '1: Ridgeless limit regime, when _→ 0+; '2: Highly overparameterized
limit, when k1 →∞; '3: Large sample limit, when k2 →∞. Section 3.1’s results are general and
not restricted to these regimes. In the context of the RFR model, these regimes were introduced and
discussed in Mei & Montanari (2022). For what follows we define _ , _/`2

★. Any “lim3→∞ - = .”
should be interpreted as - converging to . in probability with respect to the training data D, the
random features Θ, and the random target 53 as 3 →∞.

2.1 ASYMPTOTIC MEAN SQUARED TEST ERROR OF THE RFR MODEL

The following theorems are a specialization of a more general theorem, Theorem 12 Mei & Montanari
(2022), which we include in the Appendix G for completeness.
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Theorem 1 (Theorem 3 Mei & Montanari (2022)). The asymptotic test error (6) for regime '1 equals
E∞'1
≡ lim
_→0+

lim
3→∞
E = �2

1 Brless(Z, k1, k2) + (g2 + �2
★)Vrless(Z, k1, k2) + �2

★, (13)

where Brless(Z, k1, k2) ≡ E1,rless/E0,rless ,Vrless(Z, k1, k2) ≡ E2,rless/E0,rless, and the functions
E0,rless, E1,rless and E2,rless are polynomials that are functions of Z2, k1, k2 and j, where j is a function
of k ≡ min{k1, k2} and Z2. See Appendix D for details.
Remark 1. As a function of k1, E∞

'1
has a discontinuity at k1 = k2 called the interpolation threshold.

For k2 high enough, and for k1 < k2, E∞
'1

decreases, reaches a minimum and then explodes
approaching k2. However, past k2, E∞

'1
decreases again with k1. This double descent behavior has

been observed/studied in many settings, including Mei & Montanari (2022) and references therein.
Theorem 2 (Theorem 4 Mei & Montanari (2022)). The asymptotic test error (6) for regime '2 equals

E∞'2
≡ lim
k1→∞

lim
3→∞
E = �2

1 Bwide(Z, k2, _) + (g2 + �2
★)Vwide(Z, k2, _) + �2

★, (14)

where Bwide and Vwide are defined in Appendix E
Theorem 3 (Theorem 5 Mei & Montanari (2022)). The asymptotic test error (6) for regime '3 equals

E∞'3
≡ lim
k2→∞

lim
3→∞
E = �2

1 Blsamp(Z, k1, _/`
2
★) + �2

★ (15)

where Blsamp(Z, k1, _/`
2
★) is defined in Appendix F

2.2 ASYMPTOTIC SENSITIVITY OF THE RFR MODEL

We derive a sensitivity formula for regimes '1, '2, '3. Our theorems are a specialization (proofs in
Appendix M) of the more general Theorem 13 that we include in the Appendix G for completeness.
Theorem 4. The sensitivity (7) for regime '1 equals

S∞'1
≡ lim
_→0+

lim
3→∞
S = Z2

(
�2

1 D1,rless(Z, k1, k2)
(jZ2 − 1)D0,rless(Z, k1, k2)

+
(�2
★ + g2)D2,rless(Z, k1, k2)

D0,rless(Z, k1, k2)

)
, (16)

where D0,rless(Z, k1, k2), D1,rless(Z, k1, k2), and D2,rless(Z, k1, k2) are polynomials found in App. H.
Theorem 5. Let l2 equal (32), defined in Appendix E. The sensitivity (7) for regime '2 equals

S∞'2
≡ lim
k1→∞

lim
3→∞
S =

l2
2((�2

★ + g2)(−1 + l2) + �2
1 (−1 − k2 + l2(−1 + k2)))

(−1 + l2)(k2 − 2l2k2 + l22(−1 + k2))
. (17)

Theorem 6. Let l1 equal (35), defined in Appendix F.. The sensitivity (7) for regime '3 equals
S∞'3
≡ lim
k2→∞

lim
3→∞
S = �2

1 (1 + (2/(−1 + l1)) + (k1/(k1 − 2l1k1 + l1
2(−1 + k1)))). (18)

2.3 GAUSSIAN EQUIVALENT MODELS

A string of recent work shows that the asymptotic statistics of different models, e.g. their test MSE, is
equivalent to that of a Gaussian model. This equivalence is known for the setup in (Mei & Montanari,
2022), and also for other setups Hu & Lu (2020); Ba et al. (2022); Loureiro et al. (2021); Montanari
& Saeed (2022). Setups differ on the loss they consider, the type of regularization, the random feature
matrices used, the training procedure, the asymptotic regime studied, or on the model architecture.

In the Gaussian model equivalent to our setup, the AF constants `0, `1, and `2 appear as parameters.
For example, `★ appears as the magnitude of noise added to the regressor matrix entries, and the
non-linear part of the target in the RFR model appears as additive mismatch noise. As such, e.g.,
tuning `★ is related to an implicit ridge regularization. However, since in the Gaussian equivalent
model `★ also appears as an effective model mismatch noise, tuning AFs leads to a richer behaviour
than just tuning _. Furthermore, tuning the AF requires tuning more than just one parameter, while
tuning regularization only one, making our contribution in Sec. 3.2 all the more valuable. In fact,
one of our contributions (cf. contribution 4 in Sec. 1) is quantifying the limitation of this connection:
tuning AFs can lead to strictly better performance than tuning regularization (cf. Section 3.3).

Gaussian equivalent models derive a good portion of their importance from their connection to the
original models to which their equivalence is proved, and which are typically closer to real-world use
of neural networks. By themselves, these Gaussian models are extremely simplistic and lack basic
real-world components, such as the concept of AF that we study here. Hypothesizing an equivalence
to a Gaussian models greatly facilitates analytical advances and numerous unproven conjectures have
been put forth regarding how generally these equivalences can be established Goldt et al. (2022);
Loureiro et al. (2021); Dhifallah & Lu (2020).
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2.4 ADVANTAGES AND LIMITATIONS OF STUDYING THE RFR MODEL

It is known (Mei & Montanari, 2022) that in the asymptotic proportional regime, the RFR cannot
learn the non-linear component of certain families of non-linear functions, and in fact cannot do better
than linear regression on the input for these functions. Ba et al. (2022) show that a single not-small
gradient step to improve the initially random weights of RFR’s first layer allows surpassing linear
regression’s performance in the asymptotic proportional regime. However, for not-small steps, no
explicit asymptotic MSE or sensitivity formulas are given that one could use to tune AFs parameters.
Also, Ba et al. (2022), and others, e.g. Hu & Lu (2020), work with a slightly different class of
functions than Mei & Montanari (2022), e.g. their AFs are odd functions, making comparisons
not apples-to-apples. It is known that the RFR can learn non-linear functions in other regimes, e.g.
= ∼ poly(3), and asymptotic formulas for the RFR in this setting also exist Misiakiewicz (2022).
There is numerical evidence of the real-word usefulness of the RFR (Rahimi & Recht, 2007b).

Linear regression also exhibits a double descent curve in the asymptotic proportional regime (Hastie
et al., 2019). However, under e.g. overparameterization this curve exhibits a minimizer at a finite k2,
while empirical evidence for real networks shows that the error decreases monotonically as k2 →∞.
Therefore, linear regression is not as good as the RFR to explain observed double-descent phenomena.
Furthermore, linear regression does not deal with AFs, which is our object of study. Finally, even
in a setting where the RFR cannot learn certain non-linear functions with zero MSE, it remains an
important question to study how much tuning AF can help improve the MSE and how this affects
properties like the double descent curve.

3 MAIN RESULTS
We will find the simplest AFs that lead to the best trade-off between approximation accuracy and
sensitivity for the RFR model. Mathematically, we will solve (8). From the theorems in Section 2 we
know that E and S, and hence ! = (1 − U)E + US, only depend on the AF via `0, `1, `2. Therefore,
we will proceed in two steps. In Section 3.1, we will fix `0, `1, `2, and find f with associated values
`0, `1, `2 that has minimal norm, either (4) or (3). In Section 3.2, we will find values of `0, `1, `2
that minimize ! = (1 − U)E + US. Together, these specify optimal AFs for the RFR model.

It is the case that properties of the RFR model other than the test error and sensitivity also only depend
on the AF via `0, `1, `2. One example is the robustness of the RFR model to disparities between the
training and test data distribution (Tripuraneni et al., 2021). Although we do not focus on these other
properties, the results in Section (3.1) can be used to generate optimal AFs for them as well, as long
as, similar to in Section 3.2, we can obtain `0, `1, `2 that optimize these other properties.

We made the decision to, as often as possible, simplify expressions by manipulating them to expose
the signal to noise ratio d = �2

1 /(g
2 + �2

★), �1 > 0, rather than using the variables �1, g, and �★. The
only downside is that conclusions in the regime g = �★ = 0 require a bit more of effort to be extracted,
often been readable in the limit d →∞.

The complete proofs of our main results can be found in Appendix M and their main ideas below.
The proofs of Section 3.2 are algebraically heavy and we provide a Mathematica file to symbolically
check expressions of theorem statements and proofs in the supplementary material.

3.1 OPTIMAL ACTIVATION FUNCTIONS GIVEN FIXED `0, `1 , AND `2
Since one of our goals is knowing when an optimal AF is linear we start with the following lemma.
Lemma 3.1. The AF f is linear (almost surely) if and only if `2

★ , `2 − `2
1 − `

2
0 = 0.

We now state results for the norms (4) and (3). The problem we will solve under both norms is similar.
Let / ∼ N (0, 1). We consider solving the following functional problem, where 8 = 1 or 2,

min
f
‖f‖8 subject to E(f(/)) = `0,E(/f(/)) = `1,E(f(/)2) = `2, with / ∼ N (0, 1). (19)

If 8 = 2, we seek solutions over the Gaussian-weighted Lebesgue space of twice weak-differentiable
functions that have E((f(/))2) and E((f′(/))2) defined and finite. If 8 = 1, we seek solutions over
the Gaussian-weighted Lebesgue space of weak-differentiable functions that have E((f(/))2) and
E(|f′(/)|) defined and finite. The derivative f′ is to be understood in a weak sense.

Since f is a one-dimensional function, the requirement of existence of weak derivative implies that
there exists a function E that is absolute continuous and that agrees with f almost everywhere (Rudin
et al., 1976). Therefore, any specific solution we propose should be understood as an equivalent class
of functions that agree with E up to a set of measure zero with respect to the Gaussian measure.
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Theorem 7. The minimizers of (19) for 8 = 2, i.e. ‖f‖2= E((f′(/))2), are

f(G) = 0G2 + 1G + 2, where 0 = ±`★/
√

2, 1 = `1, and 2 = `0 − 0. (20)
In Theorem 7, if `★ = 0 there is only one minimizer, a linear function. If `★ > 0, there are exactly
two minimizers, both quadratic functions. Note that both minimizers satisfy the growth constraints of
Assumption 1, and hence can be used within the analysis of the RFR model. We note that quadratic
AFs have been empirically studied in the past, e.g. Wuraola & Patel (2018).
Theorem 8. One minimizer of (19) for 8 = 1, i.e. ‖f‖= E(|f′(/)|), is

f(G) = `0 + 1max{min{G,−B}, B}, (21)
where 1 = `1

erf(B/
√

2)
, erf is the Gauss error function, and B ∈ R is the unique solution to the equation

Z2 , `2
1/`

2
★ = 6(B) if `★ 6= 0, and B = +∞ if `★ = 0, where 6 is specified in Appendix I.

When ‖f‖= E(|f′(/)|), we can characterize the complete solution family to (19). These are AFs of
the form f(G) = 0 + 1max{B,min{C, G}}, where 0, 1, B, and C are chosen such that the constraints in
(19) hold. It is possible to explicitly write 0 and 1 as a function of `0, `1, B, C, and express B, C as the
solution of �(B, C) = `2

1/`
2
★, where �(·, ·) has explicit form. In this case, for each `0, `1, `2 there are

an infinite number of optimal AFs since �(B, C) = `2
1/`

2
★ has an infinite number of solutions. ReLU’s

are included in this family as C →∞. The involved lengthy expressions do not bring any new insights,
so we state and prove only Thr. 8, which is a specialization of the general theorem to B = −C.
Proofs’ main ideas: We give the main ideas behind the proof of Theorem 7. The proof of Theorem
8 follows similar techniques. The first-order optimality conditions imply that −2Gf′(G) + 2f′′(G) +
_1 + _2G + _3f(G) = 0, where the Lagrange multipliers _1, _2, and _3 must be later chosen such
that E{f(/)} = `0,E{/f(/)} = `1, and E{f2(/)} = `2. Using the change of variable f(G) =
f̃(G/
√

2) − _1/_3 − G_2/(_3 − 1) we obtain −2Gf̃′(G) + f̃′′(G) + _3f̃(G) = 0 which is the Hermite
ODE, which is well studied in physics, e.g. it appears in the study of the quantum harmonic
oscillator. The cases _3 ∈ {0, 3} require special treatment. Using a finite energy/norm condition
we can prove that _3 is quantized. In particular _3 = 4:, : = 1, 2, ..., which implies that f(G) =
−_1/_3 − _2G/(_3 − 2) + 2�2: (G/

√
2), where �8 is the 8th Hermite polynomial and 2 a constant. The

energy/norm is minimal when : = 1, which implies a quadratic AF. �

3.2 OPTIMAL ACTIVATION FUNCTION PARAMETERS

We will find AF parameters that minimize a linear combination of sensitivity and test error. We are
interested in an asymptotic analytical treatment in the three regimes mentioned in Section 2. To be
specific, we will compute

U'8 (k1, k2, g, U, �1, �★, _) ≡ arg min
`0 ,`1 ,`2

(1 − U)E∞'8 + US∞'8 , where 8 = 1, 2, or 3. (22)

We are not aware of previous work explicitly studying the trade-off between E and S for the RFR
model. For the RFR model, the work of Mei & Montanari (2022) studies only the test error and
D’Amour et al. (2020) studies a definition of sensitivity related but different from ours. Other papers
have studied trade-offs between robustness and error measures related but different than ours and for
other models, e.g. Tsipras et al. (2018); Zhang et al. (2019).

To simplify our exposition, we do not present results for the edge case U = 1, for which problem (22)
reduces to minimizing the sensitivity. Below we focus on the case when U ∈ [0, 1).

Special notation: In Theorem 9 we use the following special notation. Given two potential choices
for AF parameters, say G and H, we define Gt H to mean that G exists and that H might exist or not, and
that G t H = H if H exists and it leads to a smaller value of (1 − U)E + US than using G, and otherwise
G t H = G. Note that G t H and H t G make different statements about the existence of G and H. This
notation is important to interpret the results of Table 1 in Theorem 9.

Theorem 9. Let U ∈ [0, 1), k ≡ min{k1, k2} and k ≡ max{k1, k2}. We have that
U'1 =

{
(`0, `1, `2) : G`2

1(−1 + G + k) = `2
★(k + G)

}
, where G is as in Table 1. (23)

In Table 1, G1, G2, and G3 are the smallest, second smallest and third smallest roots of a 4th degree
polynomial ?(G), specified in Appendix J, in the range (G! , G') , (−k,min{0, 1 − k}), if these exists.
The variables V1, V2, V3, U! , U� , U', the polynomial ?(G), and the conditions �1 and �2 are defined
in Appendix J.2 when k1 < k2, and when k1 > k2 these are defined in Appendix J.3.
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V1 ≤ k V2 < k < V1 V3 < k ≤ V2 k ≤ V3
(U < U!) ∧ �1 G' G' t G1 G' G'
(U < U!) ∧ �2 ∧ (U > U� ) G1 G1 t G3 G1 −−
(U < U!) ∧ �2 ∧ (U < U� ) G1 G1 t G3 G1 −−
(U > U!) ∧ �1 ∧ (U > U� ) −− G! G! G!
(U > U!) ∧ �1 ∧ (U < U� ) −− G' G' G'
(U > U!) ∧ �2 G! G! t G2 G! t G2 G!

Table 1: The optimal AFs (23) depends on G according to this table. Cells with “- -” never happen. The values
of G1, G2, G3, V1, V2, V3, U! , U� , U' , G! , G' , and the events �1 and �2 are specified below.

Remark 2. Excluding the U = 1 scenario, it follows directly from (23) that the optimal AF is linear
if and only if G = G'. With this information and Table 1, we have all the information needed to find
exactly when the optimal AF is, or is not, linear. For regime '1, changing U alone can change the
optimal AF from linear to non-linear and vice-versa (see e.g. 3rd column of Table 1), which justifies
the observation 3 in Section 1.
Remark 3. For the cases considered in Table 1, G is unique. When U ∈ {U', U! , U� }, or when
(k1 > k2) ∧ (k1 ∈ {�, �}), (�&� are defined in Appendix J.3), we can lose the uniqueness of G.
Yet, we can still explicitly characterize the sets of optimal G and of optimal AFs parameters. For
simplicity we omit these cases from Thr. 9.
Remark 4. Theorem 9’s proof gives relationships among Table 1’s constants that imply that (1) no
two rows/columns simultaneously hold and (2) in some cases some cells might not hold. See App. J.

We do not consider k1 = k2 in Theorem 9 because it implies (1 − U)E∞
'1

+ US∞
'1

is not defined. Note
that k1 = k2 has been called the interpolation threshold in the context of studying the generalization
properties of the RFR model under vanishing regularization (Mei & Montanari, 2022). See Remark 1.

When G ∈ {G! , G'} we can compute the optimal value of the objective explicitly. For example, if

k1 < k2 and G = G! the optimal value of the objective is
(1−U)(k2(�2

1 +�2
★)+k1g

2)
k2−k1

. If k1 > k2 and

G = G' the optimal value of the objective is
U�2

1 (k1−k2)+�2
★((U−1)k2−U)+U(k1−1)g2−k1g

2

k1−k2
if k1 < 1 and

�2
1 (U(2k1−1)(k1−k2)+(k1−1)k2)+�2

★((U−1)k2−Uk1)−k1g
2

k1−k2
if k1 ≥ 1. This follows by substitution.

Theorem 10. Let U ∈ [0, 1). We have that,

U'2 =
{
(`0, `1, `2) : `2

1(−1 + 2k2 − G)(−1 + G) = −2(`2
★ + _k2)(1 + G)

}
, (24)

where G is the unique solution to ?(G) = 0 in the range G ∈ (−1,min{1,−1 + 2k2}), where ?(G) ,
?0 + ?1G + ?2G

2 + ?3G
3 + ?4G

4 with coefficients described in Appendix K.
Remark 5. The only way to get `★ = 0, and hence a linear optimal AF is if G simultaneously satisfies
`2

1(−1 + 2k2 − G)(−1 + G) = −2_k2(1 + G) and ?(G) = 0. Since the first equation does not depend on
U, but the zeros of ?(G) = 0 change continuously with U, only very special choices of parameters lead
to linear AFs. In general regime '2 does not have optimal linear AFs.
Theorem 11. Let U ∈ [0, 1). We have that

U'3 =


{(`0, `1, `2) : `★ = 0 ∧ `1 = ∞} , if U = 0 ∨ (k1 = 1 ∧ 0 < U ≤ 1

4 ){
(`0, `1, `2) : `★ = 0 ∧ `2

1 = −4U2_+3U_+
√
U_

16U2−8U+1

}
, if k1 = 1 ∧ U > 1

4{
(`0, `1, `2) : `★ = 0 ∧ `2

1(−1 + 2k1 − G)(−1 + G) + 2_k1(1 + G) = 0
}
, if k1 6= 1

(25)

where G is the unique solution to ?(G) = 0 in the range G ∈ (−1,min{1,−1 + 2k2}), where ?(G) is
define like in Theorem 10 but with d →∞ and with k2 replaced by k1.
Remark 6. The optimal AF is always linear and independent of the noise variables �★ and g.

Remark 7. When k1 = 1, U ≤ 1
4 there is no optimal AF inside our AF search space since no AF can

satisfy `1 = ∞. Rather, there exists a sequence of valid AFs with decreasing ! whose `1 →∞.
Remark 8. We can compute the optimal objective in closed-form in some scenarios. When U = 0 the
optimal objective is �2

★. When k1 = 1∧0 < U ≤ 1
4 , the optimal objective approaches U�2

1 + (1−U)�2
★

as `1 →∞. When k1 = 1 ∧ U > 1
4 , the optimal objective is �2

1 (4
√
U − 1 − 3U) + �2

★(1 − U).

Proofs’ main ideas: We give the main ideas behind the proof of Theorem 10. The proof of Theorems
9 and 11 follows similar techniques but require more care. The objective ! only depends on AF
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parameters via l2 = l2(k2, `
2
1, `

2
★). We use the Möbius transformation G = (1 + l2)/(l2 − 1) such

that the infinite range l2 ∈ [−∞, 0] gets mapped to the finite range G ∈ [−1, 1]. We then focus
the rest of the proof on minimizing ! = !(G) over the range of G. First we show that given that
`2

1, `
2
★ ≥ 0, k1 > 0, the range of G can be reduced to G ∈ [G! , G'] , [−1,min{1,−1 + 2k2}]. Then

we compute d!/dG and d2!/dG2, which turn out to be rational functions of G. We then show that if
G ∈ [−1,min{1,−1 + 2k2}] then d2!/dG2 > 0, so ! is strictly convex. We also show that d!/dG < 0
at G! and d!/dG > 0 at G', thus G' and G! cannot be minimizers. Finally, we show that the zeros
of the numerator ?(G) of the rational function d!/dG differ from the denominator’s zeros. So the
optimal G is the unique solution to ?(G) in [G! , G']. �

3.3 IMPORTANT OBSERVATIONS

Together, Sections 3.1 and 3.2 explicitly and fully characterize the solutions of (8) in the ridgeless,
overparametrized, and large sample regimes. A few important observations follow from our theory.
In Appendix L we discuss more on this topic and include details on the observations below.

Observation 1: In regime '1, and if U = 0, k1 < k2, the optimal AF is linear. This follows from
Theorem 9 and Remark 2. Indeed, expressions simplify and we get that ?(G) = dk2(k1 − (G + k1)2)2

if k1 6= 1 or ?(G) = −(2 + G)2dk2 if k1 = 1, which implies that G1 does not exist (since it would be
outside of (−G! , G')). Hence, the first row of Table 1 always gives G = G' and the optimal AF is
linear. Also, when U = 0, k1 < k2, we can explicitly compute the optimal objective (see paragraph
before Theorem 10). If furthermore g = �★ = 0, we can show that also when k1 > k2, G1 does not
exist and G = G', therefore the optimal objective and AF when k1 > k2 have the same formula as
when k1 < k2. Hence, if U = g = �★ = 0, k1 < k2, from the formula one can conclude that choosing
an optimal linear AF destroys the double descent curve if k2 > 11, the test error becoming exactly
zero for k1 ≥ 1. This contrasts with choosing a non-linear, sub-optimal, AF which will exhibit a
double descent curve. This justifies observation 1 (low complexity k1 < k2) and observation 2 in
Sec. 1. Fig. 1-(A,B) illustrates this and details the high-complexity (k1 > k2) observation.
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Figure 1: (A) Consider the regime '1. In a noiseless setting, if k2 > 1, the evolution of ! versus k1, when an
optimal linear AF f★ is used, can achieve 0 test error for k1 ≥ 1. However, if a non-linear fReLU is used, we
observe the typical double descent curve. (B) Consider the regime '1. If there is observation noise g > 0, the
evolution of ! versus k1 with a linear AF flinear is only optimal for k1 < k2. For k1 > k2, ! is optimal for
a linear AF until k1 < � (� = 5 for the parameters here). For k1 > � a non-linear AF f★, here close to but
different from a ReLU, achieves minimal !. (C) Consider the regime '2. When a ReLU is used (green curves),
the evolution of ! versus _ for both low and high Signal to Noise Ratio (SNR) d is only optimal for a special
choice of _, achieving the minimum !fReLU (_★). However, also for the same low and high SNR settings, when
an optimal (non-linear) AF is used (orange curves), we obtain the same, or slightly better, !f★ regardless of any
careful choice for _. For low SNR (g2 = 10) we have !f★ = !fReLU (_★) = 0.512 and for high SNR (g2 = 5) we
get !fReLU (_★) = 0.0220 > !f★ = 0.0217. (D) In a situation just like in (C) but with even higher SNR, the
difference between the minimum ! that can be achieved with a particular choice of _ (blue line ordinate value
!fReLU (_★)) and the value of ! with any choice of _ but with an optimal (non-linear) AF (orange line ordinate
value !f★) becomes clearly visible. Both (C) and (D) show that optimally tuning AFs can be different from
optimally tuning regularization. Tuning AFs is always better or equal to tuning _, showing the limits of the
connection between AFs and implicit regularization when Gaussian equivalence holds (cf. Section 2.3). We
include inside of each plot the parameters used. See Appendix L.1 for how to reproduce this figure.
Observation 2: In regime '2, looking at Theorem 2 and Theorem 5, one sees that both E and S, and
hence the objective ! (cf. (5)), only depend on the optimal AF parameters vial2. In particular, we can
solve (22) by searching for the l2 that achieves the smallest objective. Given the definition of l2 =
l2(k2, Z

2, `★, _) in (32), fixing _ and changing Z or `★ always allows one to span a larger range of
values for l2 than fixing the AF’s parameters Z, `★ and changing _. In particular, a tedious calculation
shows that in the first case the achievable range for l2 is [ k2

min{0− ,−1+k2 } , 0] which contains the range

1If k2 < 1 the optimal AF is still linear but the explosion at the interpolation threshold k1 = k2 remains.
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in the second case which is
[

1
2

(
Z2 (−k2) −

√
Z2 (

k2
(
Z2 (k2 − 2) + 2

)
+ Z2 + 2

)
+ 1+ Z2 +1

)
, 0

]
. This

implies that while for a fixed AF one needs to tune _ during learning for best performance, if an
optimal AF is used, regardless of _, we always achieve either equal or better performance. This
justifies the observation 4 made in Section 1. This is illustrated in Figure 1-(C,D).

In Appendix N we have experiments involving real data that show consistency with these observations.
The supplementary material has code to generate Fig. 1 and the figures in Appendix N for real data.

4 CONCLUSION AND FUTURE WORK

We found optimal Activation Functions (AFs) for the Random Features Regression model (RFR)
and characterized when these are linear, or non-linear. We connected the best AF to use with the
regime in which RFR operates: e.g. using a linear AF can be optimal even beyond the interpolation
threshold; in some regimes optimal AFs can replace, and outperform, regularization tuning.

We reduced the gap between the practice and theory of AFs’ design, but parts remain to be closed.
For example, we could only obtain explicit equations for optimal AFs under two functional norms in
the optimization problem from which we extract them. One could explore other norms in the future.
One could also explore adding higher order moment restrictions to the AF since some of these higher
order constraints appear in the theoretical analysis of neural models (Ghorbani et al., 2021).

One open problem is determining, both numerically and analytically, how generic our observations
are. One could numerically compute optimal AFs for several models, target functions, and regimes
beyond the ones we considered here, and determine how the conditions under which the optimal
AF is, or not, linear compare with the conditions we presented. We suspect that the choice of target
function affects our conclusions. In fact, even for our current results, the amount of non-linearity in
our target function affects our conclusions. In particular, it can affect the optimal AF being linear or
not linear (this is visible in Theorem 9 in its dependency on d, cf. (12), via the polynomial ?(G)).

Another future direction would be to study optimal AFs when the first layer in our model is also
trained, even if with just one gradient step. For this model there are asymptotic expressions for
the test error (Ba et al., 2022) to which one could apply a similar analysis as in this paper. One
could also study the RFR model under different distributions for the random weights, including the
Xavier distribution (Glorot & Bengio, 2010) and the Kaiming distribution (He et al., 2015). Some
experimental results are included in Appendix O. Regarding the use of different distributions, we note
the following: The key technical contribution in Mei & Montanari (2022) is the use of random matrix
theory to show that the spectral distribution of the Gramian matrix obtained from the Regressor
matrix in the ridge regression is asymptotically unchanged if the Regressor matrix is recomputed by
replacing the application of an AF element wise by the addition of Gaussian i.i.d. noise. Because
many universality results exist in random matrix theory, we expect that for other choices of random
weights distributions, exactly the same asymptotic results would hold. The first thing to try to prove
would be similar results for from well-known random matrix ensembles. We note that Gerace et al.
(2020) provides very strong numerical evidence that this is true for other matrix ensembles, and
stronger results are known in what concerns just spectral equivalence (Benigni & Pé ché, 2021).

One could study both the RFR and other models in regimes other than the asymptotic proportional
regime. The work of Misiakiewicz (2022) is a good lead since it provides asymptotic error formulas
derived for our setup but when = ∼ poly(3), 3 → ∞. In this regime, the RFR can learn non-
linear target functions with zero MSE (Misiakiewicz, 2022; Ghorbani et al., 2021). These formulas
are equivalent to the ones in Mei & Montanari (2022) after a renormalization of parameters, a
reparametrisation that depend on a problem’s constants, as noted in Lu & Yau (2022). It is unclear if
this reparametrisation would change the high-level observations from our work but we expect it to
change their associated low-level details, like Table 1’s thresholds. It would be interesting to make
these same investigations for more realistic neural architectures, such as Belkin et al. (2019a) and
Nakkiran et al. (2019), for which phenomena such as the double descent curve is well documented.

Finally, it would be interesting to design AFs for an RFR model that optimizes a combination of test
error and robustness to test/train distribution shifts and adversarial attacks. The starting point would
be Tripuraneni et al. (2021); Hassani & Javanmard (2022) (cf Appendix C). The results of Hassani
& Javanmard (2022) would need to be generalized from a ReLU to general AFs before one could
optimize the AFs’ parameters.
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A COMMENT ON THE CHOICE OF METRICS

A few reason for us choosing norms (3) and (4) in our setup are the following.

• We use the L1 and L2 norms because these are two of the most widely used functional
norms.

• We use these norms on a Gaussian-weighted space because the dependency of performance
on the activation functions (AFs) from prior work that we build involves Gaussian-weighted
measures. To be specific, both the sensitivity and error discussed in Section 2.1 and Section
2.2 depend on the AF only via `0, `1, and `2, defined in (9), and these in turn are defined
using a Gaussian distribution. In other words, Gaussian-weighted spaces are the natural
space in our high-dimensional setting.

• We focus on the derivative of the AF to impose the notion that the AF cannot have sudden
changes, i.e. needs to be simple.

We are aware that other choices for functional norms are possible, e.g. taking higher-order derivatives
and/or higher-order moments of the AFs, and we plan to investigate them in future work as mentioned
in Section 4.

B COMMENT ON THE CHOICES OF SENSITIVITY

This appendix pertains the choice of definition for sensitivity in (7).

We want to relate E(‖∇x 5a★,Θ(x)‖2) with ‖E(∇x 5a★,Θ(x))‖2. The expectations can be taken just
with respect to the test data x since in the asymptotic regime these quantities concentrate around their
expected values with respect to the other random variables.

The gradient ∇x 5a★,Θ(x) equals a★) ('Θ/
√
3), where ' = diag(f′(Θx/

√
3)), and for some vector v,

diag(v) is a diagonal matrix with diagonal equal to v. We can write

E‖∇x 5a★,Θ(x)‖2= E
∑
:

(
∑
8

0★8 '88Θ8:/
√
3)2 =

∑
8, 9 ,:

0★8 0
★
9 E('88' 9 9 )Θ8:Θ 9:/3. (26)

Following D’Amour et al. (2020), Appendix E.5, when 3 →∞, we use the fact that 〈θ8x〉/
√
3 → / ,

where / ∼ N (0, 1), and hence that E '88 = Ef′(〈θ8 ,x〉/
√
3) = E(f′(/)) + >(1) = `1 + >(1), to

compute E('88' 9 9 ).

We need to consider two scenarios. If 8 6= 9 , then E '88' 9 9 = E '88 E ' 9 9 = `2
1. If 8 = 9 , then

E '88' 9 9 = E(f′(/))2. Let us define `3 = E(f′(/)2). Replacing the formulas for E '88' 9 9 in (26)
we get that

E‖∇x 5a★,Θ(x)‖2= `2
1‖a

★)Θ‖2/3 + (`3 − `2
1)

∑
8,:

0★8
2
Θ2
8,:/3. (27)

The first term of the r.d.s. of (27) is exactly eq. (19) on D’Amour et al. (2020) for which we are
given asymptotic expression and which we use as the basis of Theorems 4-6, which are themselves
a specialization of Theorem 13. The second term is non-negative since by Jensen’s inequality
`3 = E(f′(/)2) ≥ E(f′(/))2 = `2

1. Therefore, E(‖∇x 5a★,Θ(x)‖2) ≥ ‖E(∇x 5a★,Θ(x))‖2.

The results we present, especially those in Section 3.2, are already extremely complex to state and to
interpret, even with us essentially optimizing only two parameters, `1 and `2 (`0 can be assumed
0 without loss of generality). Stating results on optimizing an extra parameter `3 would make our
exposition even more complex, with many more special cases. Only in the specific case where we
choose the objective (4) for the outer optimization problem (8), it clear that `3 is determined from
`0, `1 and `2, and hence it is clear that there is no added complexity in the number of parameters to
optimize. However, we still need to find an asymptotically formula for the second term in (27).

At the same time, while the first term in (27) can be expressed as the trace of a product of random
matrices, making it easier to use random matrix theory to get asymptotic formulas for it, the second
term does not easily yield to a similar type of analysis.
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C MORE ON RELATED WORK

First attempts to optimize AFs include Poli (1996), Weingaertner et al. (2002), and Khan et al.
(2013), where genetic and evolutionary algorithms were used to learn how to numerically combine
different AFs from a library into the same network. More recently, Ramachandran et al. (2017) used
reinforcement learning to empirically discover AFs that minimize test accuracy. Their search was
done over AFs that were a combination of basic units. This work produced the Swish AF. Similarly,
Goyal et al. (2020) defined AFs as the weighted sum of a pre-defined basis and searched for optimal
weights via training. Unser (2019) provided a theoretical foundation to simultaneously learn a NN’s
weights and continuous piecewise-linear AFs. They showed that learning in their framework is
compatible with learning in current existing deep-ReLU, parametric ReLU, APL (adaptive piecewise-
linear) and MaxOut architectures. Tavakoli et al. (2021) parameterized continuous piece-wise linear
AFs and numerically learnt their parameters to improve both accuracy and robustness to adversarial
perturbations. They numerically compared the performance of their SPLASH framework with that
of using ReLUs, leaky-ReLUs (Maas et al., 2013), PReLUs (He et al., 2015), tanh units, sigmoid
units, ELUs (Clevert et al., 2015), maxout units (Goodfellow et al., 2013), Swish units, and APL
units (Agostinelli et al., 2014). Similarly, Zhou et al. (2021) parameterized AFs as piece-wise linear
units and learnt the AFs parameters to optimize different tasks. Banerjee et al. (2019) proposed
an empirical method to learn variations of ReLUs. Bubeck et al. (2020) studied 2-layer NNs and
gave a condition on the Lipschitz constant of a polynomial AF for the network to perfectly fit data.
They related this condition to the model’s parameter-size and robustness and numerically related the
number of ReLUs in the model to its robustness.

Several papers proposed new AFs and empirically studied their performance without systematically
tuning them. Milletarí et al. (2019) identified ReLU and Swish as naturally arising components of
a statistical mechanics model. Rozsa & Boult (2019) introduced a “tent”-shaped AF that improves
robustness without adversarial training, while not hurting the accuracy on non-adversarial examples.
Zhou et al. (2020) proposed an AF called SRS that can overcome the non-zero mean, negative
missing, and unbounded output in ReLUs. Their work was purely empirical. Wuraola & Patel (2018)
developed the SQuared Natural Law AF. Nicolae (2018) proposed the Piece-wise Linear Unit AF.

The RFR model was introduced by Rahimi & Recht (2007a) as a way to project input data into a
low dimensional random features space and it has since then been studied considerably. A great
part of the literature has drawn connections between the expressive power of NNs and that of the
RFR model, often via the study of Gaussian processes. For example, Williams (1996) did this in the
context of shallow but infinitely wide NN and the works Garriga-Alonso et al. (2019); Novak et al.
(2019); de G. Matthews et al. (2018); Hazan & Jaakkola (2015) did this for deep networks. Daniely
et al. (2016); Daniely (2017) connected the RFR model to training a NN with gradient descent.

In addition to Mei & Montanari (2022); D’Amour et al. (2020), already discussed, other papers
studied the approximation properties of the RFR model. Ghorbani et al. (2021) studied both the RFR
model and the neural tangent kernel model and provided conditions under which these models can
fit polynomials in the raw features up to a maximum degree. These conditions were provided under
two regimes, when =→∞ and #, 3 large but finite, or when # →∞ and =, 3 large but finite. Their
results hold under weak assumptions on the AFs. Tripuraneni et al. (2021) used the RFR model to
compute how robust the test error is to distribution shifts between training and test data. This was
done in a high-dimensional asymptotic limit when random features and training data are normal
distributed. The derivations hold for a generic AF that satisfies some mild assumptions similar to the
assumptions in this paper. Hassani & Javanmard (2022) characterized the role of overparametrization
on the adversarial robustness for the RFR model under an asymptotic regime when learning a linear
function with normal-distributed random weights and normal samples. Their AF was a shifted ReLU.

Finally, a few papers have studied the behavior of models similar to the RFR but within a different
context. For example, Taheri et al. (2021) and Bean et al. (2013) seek to compute the optimal loss
function under similar asymptotic regimes of large data sets.

D DETAILS REGARDING THEOREM 1

The definition of the functions E0,rless, E1,rless, E2,rless and j is as follows.
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E0,rless(Z, k1, k2, j) ≡ − j5Z6 + 3j4Z4 + (k1k2 − k2 − k1 + 1)j3Z6 − 2j3Z4 − 3j3Z2

+ (k1 + k2 − 3k1k2 + 1)j2Z4 + 2j2Z2 + j2 + 3k1k2jZ
2 − k1k2,

E1,rless(Z, k1, k2, j) ≡ k2j
3Z4 − k2j

2Z2 + k1k2jZ
2 − k1k2, and

E2,rless(Z, k1, k2, j) ≡ j5Z6 − 3j4Z4 + (k1 − 1)j3Z6 + 2j3Z4 + 3j3Z2 + (−k1 − 1)j2Z4−2j2Z2−j2,

where j = j(Z, k) ≡ −
(√

(kZ2 − Z2 − 1)2 + 4Z2k + kZ2 − Z2 − 1
) / (

2Z2
)
. (28)

Note that all functions are a function of the square of Z , i.e. Z2. Note also that E0,rless, E1,rless, E2,rless

are polynomials of their respective variables.

E DETAILS REGARDING THEOREM 2

Bwide(Z, k2, _) ≡ (k2l2 − k2)/((k2 − 1)l2
3 + (1 − 3k2)l2

2 + 3k2l2 − k2), (29)

Vwide(Z, k2, _) ≡ (l2
3 − l2

2)/((k2 − 1)l2
3 + (1 − 3k2)l2

2 + 3k2l2 − k2), (30)
where (31)

l2 ≡ −
(√

(k2Z2−Z2−_k2 − 1)2+4k2Z2(_k2 + 1) + k2Z
2−Z2−_k2 − 1

) / (
2(_k2 + 1)

)
. (32)

F DETAILS REGARDING THEOREM 3

Blsamp(Z, k1, _)≡(((l1
3−l1

2)/Z2) + k1l1 − k1)/((k1−1)l1
3 + (1−3k1)l1

2 + 3k1l1 − k1), (33)
where (34)

l1 ≡ −
(√

(k1Z2 − Z2−_k1−1)2 + 4k1Z2(_k1 + 1) + k1Z
2 − Z2−_k1−1

) / (
2(_k1 + 1)

)
. (35)

G GENERAL THEOREMS FOR THE ASYMPTOTIC MEAN SQUARED TEST ERROR
AND SENSITIVITY OF THE RFR MODEL

This appendix is referenced at the start of Section 2.1 and at the start of Section 2.2.

Theorem 12 (Theorem 2 Mei & Montanari (2022)). If assumptions 1, 2, 3 hold, and for any value of
the regularization parameter _ > 0, the asymptotic test error (6) for the RFR satisfies

E
?
−→ E∞ ≡ �2

1 B(Z, k1, k2, _/`
2
★) + (g2 + �2

★)V (Z, k1, k2, _/`
2
★) + �2

★, (36)

where
?
−→ denotes convergence in probability when 3 → ∞ with re-

spect to the training data D, the random features Θ, and the random tar-
get function 53 , and where B(Z, k1, k2, _) ≡ E1(Z, k1, k2, _)/E0(Z, k1, k2, _),
V (Z, k1, k2, _) ≡ E2(Z, k1, k2, _)/E0(Z, k1, k2, _), and the functions E0, E1, E2 are defined
as follows,

E0(Z, k1, k2, _) ≡ − j5Z6 + 3j4Z4 + (k1k2 − k2 − k1 + 1)j3Z6 − 2j3Z4 − 3j3Z2

+ (k1 + k2 − 3k1k2 + 1)j2Z4 + 2j2Z2 + j2 + 3k1k2jZ
2 − k1k2 ,

E1(Z, k1, k2, _) ≡ k2j
3Z4 − k2j

2Z2 + k1k2jZ
2 − k1k2 ,

E2(Z, k1, k2, _) ≡ j5Z6 − 3j4Z4 + (k1 − 1)j3Z6 + 2j3Z4 + 3j3Z2 + (−k1 − 1)j2Z4 − 2j2Z2 − j2 ,

where j(k1, k2, _) ≡ a1(i(k1k2_)1/2) · a2(i(k1k2_)1/2), and a1 and a2 are two functions specified in
Def. 1 in Mei & Montanari (2022).
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Theorem 13 (Eq. (19) D’Amour et al. (2020)). If assumptions 1, 2 and 3 hold, and for any value of
the regularization parameter _ ≡ _/`2

★ > 0, the asymptotic sensitivity for the RFR, namely equation
(7) with 5 = 5a,Θ where 5a,Θ is defined as in equations (1) and (2), satisfies

S
?
−→ S∞ ≡ `2

1

(
�2

1

`2
★

· D1(Z, k1, k2, _)
(jZ2 − 1)D0(Z, k1, k2, _)

+
g2 + �2

★

`2
★

· D2(Z, k1, k2, _)
D0(Z, k1, k2, _)

)
, (37)

where
?
−→ denotes convergence in probability when 3 → ∞ with respect to the training data X , ε,

the random features Θ, and the random target function 53 , and where

D0(Z, k1, k2, _) = j5Z6 − 3j4Z4 + (k1 + k2 − k1k2 − 1)j3Z6 + 2j3Z4 + 3j3Z2 (38)

+ (3k1k2 − k2 − k1 − 1)j2Z4 − 2j2Z2 − j2 − 3k1k2jZ
2 + k1k2 ,

D1(Z, k1, k2, _) = j6Z6 − 2j5Z4 − (k1k2 − k1 − k2 + 1)j4Z6 + j4Z4 (39)

+ j4Z2 − 2(1 − k1k2)j3Z4 − (k1 + k2 + k1k2 + 1)j2Z2 − j2 ,

D2(Z, k1, k2, _) = −(k1 − 1)j3Z4 − j3Z2 + (k1 + 1)j2Z2 + j2 , (40)

and where j is defined in (28).

Remark 9. Eq. (19) in D’Amour et al. (2020) is expressed in terms of the asymptotic limit of
‖a★Θ‖2. See Appendix B for the connection between this representation and equation (7) in our
definition of S.

H DETAILS REGARDING THEOREM 4

D0,rless(Z, k1, k2) = j5Z6 − 3j4Z4 + (k1 + k2 − k1k2 − 1)j3Z6 + 2j3Z4 + 3j3Z2 (41)

+ (3k1k2 − k2 − k1 − 1)j2Z4 − 2j2Z2 − j2 − 3k1k2jZ
2 + k1k2 ,

D1,rless(Z, k1, k2) = j6Z6 − 2j5Z4 − (k1k2 − k1 − k2 + 1)j4Z6 + j4Z4 (42)

+ j4Z2 − 2(1 − k1k2)j3Z4 − (k1 + k2 + k1k2 + 1)j2Z2 − j2 ,

D2,rless(Z, k1, k2) = −(k1 − 1)j3Z4 − j3Z2 + (k1 + 1)j2Z2 + j2 , (43)

where j is defined as in (28), and k ≡ min{k1, k2}.

I DETAILS REGARDING THEOREM 8

The formula for 6(B) is as follows:

6(B) =
(
4B

2/2erf 2
(
B/
√

2
)) / (

4B
2/2

(
1 − erf

(
B/
√

2
)) (

B2 + erf
(
B/
√

2
))
−

√
2/cB

)
. (44)

J DETAILS REGARDING THEOREM 9

J.1 RELATIONSHIP AMONG THE CONSTANTS IN TABLE 1

This appendix is referenced in Remark 4.

The following relationships can be derived either from the proof of Theorem 9, or from a direct
computation based on the formulas given in Theorem 9. They do not add critical information to what
is proved in Theorem 9 but they give general rules to exclude some cells in Table 1.

Remark 10. Let k1 < k2. If k2 < min{2k1, k1 + 1}, then U! < U� < U'. In this case, the
4th and 5th rows of Table 1 never happen. If k2 > min{2k1, k1 + 1}, then U' < U� < U! . If
k2 = min{2k1, k1 + 1}, then U! = U� = U'. We always have that U! , U� , U' ∈ [0, 1], and
0 ≤ V3 < V2 < V1. Since �1 and �2 cannot simultaneously hold, no two rows can simultaneously
hold. Since V3 < V2 < V1, no two columns can simultaneously hold. Remark 10 follows from
Lemma M.13 used in the proof of Theorem 9.
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Remark 11. Let k1 > k2. We always have that U! ∈ [0, 1]. It also holds that U� ∈ [0, 1] if and only
if k1 ≤ k2/(1 − d |1 − k2 |) when 0 < d ≤ 1

|k2−1 | and k1 ≥ k2/(1 − d |1 − k2 |) when d ≥ 1
|k2−1 | . We

have that U' ∈ [0, 1] if and only if k1 ≤ k2 + 1
2 d(k2 − 1)2 min{k2, 1} and

k1 ≥
−1 + d(k2 − 1)2(2k2 + min{2k2 − 1, 1}) + k2(2 + max{k2, 2 − k2})

2(max{k2, 1} + d(k2 − 1)2)
.

Note that if k1 > k2 = 1 then U' is not defined, see statement of Theorem 9. If we had attempted
to use the formulas above we would have gotten that U ∈ [0, 1] if and only if 1 ≤ k1 ≤ 1, this last
condition never being met when k1 > k2 = 1. Also, � ≤ � always, where � and � are given in (67)
and (68). Furthermore, � < k2 if and only if 1/d > W , min{1,max{0, 2k2 − 1}}. Since � ≤ �, it
follows that �1 and �2 cannot simultaneously hold, and hence no two rows can simultaneously hold.
We always have that V3 < V2 < V1, therefore no two columns can simultaneously hold. Remark 11
follows from Lemma M.14 used in the proof of Theorem 9.

J.2 STATEMENT OF THEOREM 9 WHEN k1 < k2

Theorem (9 continued). If k1 < k2 then �1 = (U < U'), �2 = (U > U'),

V1 = min{k1 − 4,−3k1} − 8
√
|1 − k1 |max{1/k1, k

3/2
1 } + 8 max{1/k1, k

2
1}, (45)

V2 = k1(k1 + 2)/(k1 + 1), (46) V3 = k1 + |1 − k1 |min{k1, 1/k1}, (47)

U! = k2/(k2 + 1 + d−1), (48) U� = k2/(2k2 + 1 − k1 + max{0, 1 − k1} + d−1), (49)

U' = k2/(3k2 + 1 − 2 min{1 + k1, 2k1} + d−1). (50)

Furthermore, the polynomial ?(G) is defined as follows.

If k1 6= 1 then ?(G) , ?0 + ?1G + ?2G
2 + ?3G

3 + ?4G
4 + ?5G

5 where

?0 = −(k1 − 1)2k2
1 (d(U − 4Uk1 + (3U − 1)k2) + U) , (51)

?1 = 2(k1 − 1)k1 (d(U(k1(9k1 − 6k2 − 4) + k2) + 2k1k2) − 2Uk1) , (52)

?2 = 2k1 (d(U + 4Uk1(4k1 − 3) + k2(4U − 9Uk1 + 3k1 − 1)) − U(3k1 − 1)) , (53)

?3 = 4k1 (d(U(7k1 − 2) − 3Uk2 + k2) − U) , (54)

?4 = d(U(12k1 − 1) − 3Uk2 + k2) − U, (55)

?5 = 2Ud, (56)

If k1 = 1 then ?(G) , @0 + @1G + @2G
2 + @3G

3 where

@0 = d(−10U + 10Uk2 − 4k2) + 4U, (57)
@2 = d(−11U + 3Uk2 − k2) + U, (58)

@1 = d(−20U + 12Uk2 − 4k2) + 4U, (59)
and @3 = −2Ud. (60)
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J.3 STATEMENT OF THEOREM 9 WHEN k1 > k2

Theorem (9 continued). If k1 > k2 and k2 6= 1 then �1 = (k1<�) ∨ ((U<U') ∧ (�<k1<�)),
�2 = (k1>�) ∨ ((U>U') ∧ (�<k1<�)),

V1 : A(V1) = 0, where A is a 4th degree polynomial described in Appendix J.4, (61)

V2 = k2 + (Uk2/(k2 + 1 + d−1)), (62)

V3 = k2 + (min{k2, 1/k2}U |k2 − 1|3/((k2 − 1)2 + d−1(k2 + 3))), (63)

U! = (2k1 − k2)/(2k1 − k2 + 1 + d−1), (64)
U� = (dk1 − (k1 − k2)/|1 − k2 |)/(d (max {0, 1 − k2} + 2k1 − k2) + 1), (65)

U' =
2 (k1−k2)max {1, k2} −d (k2−1)2 k2

(k2−1)2 (d (2 min {1, k2} −2k1+k2) −d−1)
, (66)

� = k2 + (dmin{1, k2}(k2 − 1)2/2), and (67)

� =
d (k2−1) 2 (2k2+1+2 min{k2−1, 0}) +2k2−1+2k2 max{k2, 1}−k2

2
2d(k2−1)2+2 max{1, k2}

. (68)

If k1 > k2 and k2 = 1 then �1 = False, �2 = True and eqs. (61)-(68) hold when reading Table 1,
except (66), which is not defined, and (65) which becomes U� = −∞ implying (U > U� ) is True.

Furthermore, the polynomial ?(G) is defined as follows.

?(G) , ?0 + ?1G+ ?2G
2 + ?3G

3 + ?4G
4 + ?5G

5, where (69)

?0 = k2
2

(
d (k2 − 1) 2 (2Uk1 − (3U + 1)k2 + U) +

(
Uk2

2 − 2(U + 1)k2 + U + 2k1

))
, (70)

?1 = 2k2

(
(k2 (2U (k2−1) −1) + k1) −d (k2−1)

(
(7U+2)k2

2−k2 (4Uk1+3U + 1) +k1

))
, (71)

?2 = 2k2

(
U (3k2 − 1) − d

(
(13U + 3)k2

2 − 2k2 (3Uk1 + 5U + 1) + 2Uk1 + U + k1

))
, (72)

?3 = 4k2 (d (2U (k1 + 1) − (6U + 1)k2) + U) , (73)
?4 = d (2Uk1 − (11U + 1)k2 + U) + U, (74)
?5 = −2Ud. (75)

J.4 DEFINITION OF THE POLYNOMIAL A(G) WHEN k1 > k2

This appendix is referenced in the statement of Theorem 9 in equation (61).

The coefficient V1 is such that A(V1) = 0, where A(G) = A0 + A1G + A2G
2 + A3G

3 + A4G
4 with

A0 = dk3
2(dk2(dk2(16Udk2 − 8U(14Ud + d − 6) + d) + 8U(d((8U(2U + 5) − 1)d − 28U + 5) + 6))

+ 16U(Ud + d + 1)(−4Ud + d + 1)2),

A1 = 4dk2
2(dk2(2U(8Ud(7−2(U + 5)d) + 3(d−5)d−18)− dk2(−56U2d + 12Udk2 −6U(d−6) + d))

− 4U(d + 1)((2U − 3)d − 3)((4U − 1)d − 1)),

A2 = 2dk2(−8U2d(dk2(7dk2−20d+ 14) + 7(d+ 1)2) + 12U(dk2 + d+ 1)(dk2) + 2(d+ 1)2) + 3d3k2
2),

A3 = −8Ud(dk2 + d + 1)(dk2(2dk2 − 3d + 4) + 2(d + 1)2) − 4d4k2
2 , and

A4 = d4k2.
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K DETAILS REGARDING THEOREM 10

The coefficients of ?(G) are given below

?0 = 8k2d
−1+(U+4k2(−1+2k2)(−1+2U)), (76) ?1 = 8k2d

−1+4((1−4k2)U+2k2
2), (77)

?2 = −2(−3U + k2(2 + 4U)), (78) ?3 = 4U, (79) and ?4 = U. (80)

L IMPORTANT OBSERVATIONS

This appendix is referenced in Section 3.3.

L.1 REPRODUCING FIGURE 1

The plots in Figure 1 come directly from our theory. They involve no experiments and can be
obtained using many standard mathematical computing software tools. Nonetheless, since it does
require some effort to code our equations, we include code to generate Figure 1 in the follow-
ing Github link: https://github.com/Jeffwang87/RFR_AF. This code is also available
in the supplementary zip file provided. To generate the plots in Figure 1, run the file named
RunMeToGenerateFigure_1.nb. It runs using Wolfram Mathematica V12. We ran it using a
MacBook Pro with 2.6 GHz 6-Core Intel Core i7 and 32 GB 2667 MHz DDR4. In this machine it
takes about 1 second to run.

L.2 SOME DETAILS ABOUT OBSERVATION 1 IN SECTION 3.3

When U = 0 and k1 < k2, and using Theorem 9, we can explicitly compute the objective ! = E'1 =
(�2
★k2 + �2

1 max{1 − k1, 0}k2 + k1g
2)/(k2 − k1) if k1 < k2. This follows from making U = 0 in

the expressions in the paragraph before Theorem 10. Observe that, as function of k1, the test error
E'1 achieves a minimum of (�2

★k2 + g2)/(−1 + k2) at k1 = 1 if k2 > 1 + 1/d and a minimum of
(�2

1k2 + �2
★k2)/k2 at k1 = 0 otherwise. In particular, if g = �★ = 0+, then the condition k2 > 1 + 1/d

becomes k2 > 1.

When U = 0 and k1 > k2 the polynomial that determines G1 becomes

?(G) = k2

(
−4k2G

3−2 (k1+k2 (3k2−2)) G2−G4−2 (k2−1) (k1+k2 (2k2−1)) G− (k2−1) 2k2
2

)
. (81)

One can show that in the range k1 > k2 and G ∈ (G! , G') = (−k2,min{0, 1 − k2}), we have ?(G) < 0
and hence it has no roots. Therefore, G1 does not exist. Therefore, if furthermore we have g = �★ = 0,
then condition �2 is never true, so G must be read from the first row in Table 12, which implies that
G = G', and the optimal AF is linear also when k1 > k2.

M PROOFS

This appendix is referenced in Section 3.

M.1 PROOF OF SENSITIVITY PROPERTIES OF SECTION 2.2

Proof of Theorem 4. The proof follows directly from Theorem 13 by taking the limit when _ →
+0. �

Proof of Theorem 5. The proof follows directly from Theorem 13 by taking the limit when k1 →
+∞. �

Proof of Theorem 6. The proof follows directly from Theorem 13 by taking the limit when k2 →
+∞. �
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M.2 PROOF OF NECESSARY AND SUFFICIENT CONDITION FOR LINEARITY OF SECTION 3.1

Proof of Lemma 3.1 . If f(G) is linear function, a direct calculation shows that `★ = 0. On the other
hand, since 0 ≤ E(f(/)− `0− `1/)2 = `2

★, we have that `★ = 0 implies that f(/) = `0 + `1/ almost
surely. Since the support of the probability density function of / is R, it follows that f(G) = `0 + `1G
except on a set of measure zero in R. �

M.3 PROOF OF THEOREM 7

To prove Theorem 7, we first need to state and prove a series of intermediary results.

Lemma M.1. A necessary condition for optimally of f(G) is that

− 2Gf′(G) + 2f′′(G) + _1 + _2G + _3f(G) = 0, (82)

where _1, _2, and _3 satisfy the following constraints,

_1 + _3`0 = 0, (83)
−2`1 + _2 + _3`1 = 0, (84)

−2E((f′(/))2) + _1`0 + _2`1 + _3`2 = 0, (85)

and that
lim
G→+∞

(f′(G))24
−G2

2 = lim
G→−∞

(f′(G))24
−G2

2 = 0. (86)

Remark 12. Note that since (82) is a second order ODE, its solutions are parametrized by two
constants in addition to being parametrized by _1, _2, _3. These five constants are set by our three
constraints (19) together with two boundary conditions from our variational problem, which are

limG→±∞ f′(G)4 −G
2

2 = 0. These last two we replace (see proof) by (86).

Remark 13. The lemma implies that knowing `0, `1, `2 and the objective value E((f′(/))2) is
enough to determine _1, _2, _3, even without solving the ODE.

Proof of Lemma M.1.
Derivation of equation (82): A Lagragian for (19)-(19) is

E((f′(/))2 + _1(`0 − f(/)) + _2(`1 − /f(/)) + _3((1/2)(`2 − f(/))2)), (87)

which can be written as
∫∞
−∞ !(I, f, f′)dI where, if we define ?(I) = 1√

2c
4
−I2

2 , the Lagrangian
density ! is

!(I, f, f′) = ?(I)(f′2 + _1(`0 − f) + _2(`1 − If) + _3(1/2)(`2 − f2)). (88)

We use the Euler-Lagrange equation with free boundary conditions Gelfand et al. (2000) to get the
necessary condition (82). To do so, we compute in sequence

m!

mf
= −?(I)(_1 + _2I + _3f), (89)

m!

mf′
= ?(I)(2f′), (90)

d
dI

m!

mf′
= ?′(I)(2f′) + ?(I)(2f′′) = ?(I)(−2If′ + 2f′′). (91)

These lead to

0 =
d
dI

m!

mf′
− m!
mf

= ?(I)(−2If′ + 2f′′ + _1 + _2I + _3f) and (92)

0 = lim
I→±∞

m!

mf′
= lim
I→±∞

?(I)f′(I), (93)

where the last condition follows from the fact that there is no boundary condition on f. Since
?(I) > 0, equation (92) implies (82).
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Derivation of equations (86): Since we are working with necessary conditions, we can choose not
list (93) in our lemma. Rather, we include condition (86), which a consequence of the fact that
E((f′(/))2) must be finite. Indeed, E((f′(/))2) =

∫∞
−∞ ?(I)(f′(I))2 < ∞ implies that ?(I)(f′(I))2

must vanish at ±∞. Although not necessary for this proof, note that, since ?(I) goes to zero as
I → ±∞, equations (86) imply equations (93).

Derivation of equations (83)-(85):

Equation (82) must hold for all G. Hence, we can replace in it G by a standard normal random variable
/ and compute the expected value of both of its sides. This leads to

− 2E(/f′(/)) + 2E(f′′(/)) + _1 + _3`0 = 0. (94)

We can also multiply (82) by G, replace G by a standard normal random variable / and compute the
expected value of both of its sides. This leads to,

− 2E(/2f′(/)) + 2E(/f′′(/)) + _2 + _3`1 = 0. (95)

Finally, we multiply (82) by f(G), replace G by a standard normal random variable / and compute
the expected value of both of its sides. This leads to,

− 2E(/f(/)f′(/)) + 2E(f(/)f′′(/)) + _1`0 + _2`1 + _3`2 = 0. (96)

Using integration by parts, and the fact that for ?(I) = 1√
2c
4
−I2

2 we have that ?′(I) = −I?(I) and

?′′(I) = (1 − I2)?(I), we derive the following useful relationships

E(f′′(/)) = E(/f′(/)), (97)

E(/f′′(/)) = E(/2f′(/)) − E(f′(/)), (98)
E(f′(/)) = `1, (99)

E(f(/)f′′(/)) = E(/f(/)f′(/)) − E((f′(/))2). (100)

To derive these relationships via integration by parts we made use of the following relationships

lim
I→±∞

f′(I)f(I)?(I) = lim
I→±∞

f′(I)I?(I) = lim
I→±∞

f′(I)?(I) = lim
I→±∞

f(I)?(I) = 0, (101)

which can be proved from E((f(/))2),E((f′(/))2) < ∞. Also, from E((f(/))2),E((f′(/))2) < ∞
and `1 ∈ R, we can show that each of the expected values in the right-hand-side of (97)-(100) is
well-defined. Hence, the left-hand-side of (97)-(100) is well defined.

To finish the proof we replace (97) in (94) to get _1 + _3`0 = 0, which is equation (83). Then we
replace (98) and (99) in (95) to get −2`1 + _2 + _3`1 = 0, which is equation (84). Lastly, we replace
(100) in (96) to get −2E((f′(/))2) + _1`0 + _2`1 + _3`2 = 0, which is equation (85). �

Lemma M.2. The solutions of (82) are of the form

f(G) = f̄(G) + 21� _3
2

(
G
√

2

)
+ 22�{ −_3

4 }, {
1
2 }

(
G2

2

)
, (102)

where

f̄(G) =
_2G

2
− _1G

2

4
�{1,1}, { 3

2 ,2}

(
G2

2

)
, if _3 = 0 (103)

f̄(G) = −_1
2
− _2G

2
+

1
2

√
c

2
_24

G2
2 erf

(
G
√

2

)
− 1

4
_2G

3�{1,1}, { 3
2 ,2}

(
G2

2

)
, if _3 = 2 (104)

f̄(G) = −_1
_3
− _2G

_3 − 2
, if _3 /∈ {0, 2} (105)

where erf is the Gauss error function , �{0: }, {1: } is the generalized hypergeometric function with
parameters {0: }, {1: }, and �= is the Hermite polynomial, extended to a possibly non-integer =.
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Remark 14. By an extension of �=(G) to non-integer we mean that �=(G) = �{− 1
2 (=−1)}, { 3

2 }
(G2),

which is defined for non-integer =.

Proof of Lemma M.2. Since (82) is a second order ODE, its solutions are spanned by any particular
solution f̄(G) plus a linear combination of two solutions to its associated homogeneous ODE. The
homogenous ODE associate with (82) is −2Gf′(G) + 2f′′(G) + _3f(G) = 0. The change of variable
f(G) = f̃(G/

√
2) allows us to get −2Gf̃′(G) + f̃′′(G) + _3f̃(G) = 0, which is a well-known ODE

called the Hermite differential equation. This implies that the homogeneous solutions of our ODE
are spanned by � _3

2

(
G√
2

)
and �{ −_3

4 }, {
1
2 }

(
G2

2

)
. The particular solutions f̄(G) can be confirmed by

direct substitution. �

Lemma M.3. Let f be of the form (102). If _3 = 0, then E((f′(/))2) < ∞ implies that f(G) is of the
form

f(G) = 2 +
G_2
2
, (106)

for some 2, and that E((f′(/))2) = _2
2

4 .

Proof of Lemma M.3. If _3 = 0 then based on Lemma M.2 we can re-write that

f(G) =
√
c

2
21erfi

(
G
√

2

)
+ 22 −

1
4
G

(
_1G�

(
G2

2

)
− 2_2

)
, (107)

for some 21, 22, where erfi is the inverse of erf. From this it follows that,

f′(G) =
1
4

(
4
G2
2

(
421 −

√
2c_1erf

(
G
√

2

))
+ 2_2

)
. (108)

The objective E((f′(/))2) < ∞ implies that limG→±∞(f′(G))24−
G2
2 = 0. Since limG→±∞ erf(G) = ±1,

we have that limG→±∞(f′(G))24−
G2
2 = 0 implies that 421 = ±

√
2c_1 for both ± simultaneously. This

implies that 21 = _1 = 0.

Substituting 21 = _1 = 0 in (107) and simplifying we get f(G) = 22 + _2G
2 . From this expression one

can then directly compute E((f′(/))2). �

Lemma M.4. Let f be of the form (102). If _3 = 2, then E((f′(/))2) < ∞ implies that f(G) is of the
form

f(G) = 2G − _1
2
, (109)

for some 2, and that E((f′(/))2) = 22.

Proof of Lemma M.4. If _3 = 2 then based on Lemma M.2 we can re-write that

f(G) =
1
4

(
− G

(
_2

(
G2�{1,1}, { 3

2 ,2}

(
G2

2

)
+ 2

)
+ 2
√

2
(√
c22erfi

(
G
√

2

)
− 221

) )
+ 4

G2
2

(√
2c_2erf

(
G
√

2

)
+ 422

)
− 2_1

)
(110)

for some 21 and 22, where erfi is the inverse of erf. From this it follows that

f′(G) =
221 −

√
c22erfi

(
G√
2

)
√

2
− 1

4
_2G

2�{1,1}, { 3
2 ,2}

(
G2

2

)
. (111)

The objective E((f′(/))2) < ∞ implies that limG→±∞(f′(G))24−
G2
2 = 0. Since

limG→±∞
(
erfi

(
G√
2

))2
= limG→±∞

(
G2�{1,1}, { 3

2 ,2}

(
G2

2

))2
= ∞, and since

lim
G→±∞

G2�{1,1}, { 3
2 ,2}

(
G2

2

)
erfi

(
G√
2

) = ±c, (112)
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it follows we only have a finite objective if −
√
c22√
2

= ±_2 c
4 for both ± simultaneously. But this implies

that 22 = _2 = 0.

Substituting 22 = _2 = 0 in (110), and simplifying, leads to f(G) = 21
√

2G − _1
2 . The

√
2 factor can be

absorbed by 21. From this expression one can compute E((f′(/))2). �

Lemma M.5. Let f be of the form (102). If _3 /∈ {0, 2}, 21 = 22 = 0 then

f(G) = −_1
_3
− _2G

_3 − 2
, (113)

and

E((f′(/))2) =
(

_2
(_3 − 2)

)2
. (114)

Proof of Lemma M.5. This follows directly from Lemma M.2. �

Lemma M.6. Let f be of the form (102). If _3 /∈ {0, 2}, and either 21 or 22 are non-zero, then
E((f′(/))2) < ∞ implies that _3 = 4: for : ∈ Z+.

Proof of Lemma M.6. If _3 /∈ {0, 2}, then by Lemma M.2 we have a formula for f(G) from which
we get that

f′(G) =
21_3� _3

2 −1

(
G√
2

)
√

2
− 1

2
22_3G�{1− _3

4 }, {
3
2 }

(
G2

2

)
− _2
_3 − 2

, (115)

where � and � are as defined in Lemma M.2.

The boundeness of E((f′(/))2) is dependent on how fast � _3
2 −1

(
G√
2

)
and G�{1− _3

4 }, {
3
2 }

(
G2

2

)
grow as

G → ±∞.

If 21 = 0 and 22 6= 0, E((f′(/))2) < ∞ only if E
((
G�{1− _3

4 }, {
3
2 }

(
G2

2

))2
)
< ∞, which in turn is true

only if limG→∞
(
G�{1− _3

4 }, {
3
2 }

(
G2

2

))2
4
−G2

2 = 0. This implies that _3 is even.

If 21 6= 0 and 22 = 0, E((f′(/))2) < ∞ only if E
((
� _3

2 −1

(
G√
2

))2
)
< ∞, which in turn is true only if

limG→−∞
(
� _3

2 −1

(
G√
2

))2
4
−G2

2 = 0. This implies that _3 is even.

If 21, 22 6= 0, E((f′(/))2) < ∞ only if limG→∞ (f′(G))2 4 −G
2

2 = 0. But G�{1− _3
4 }, {

3
2 }

(
G2

2

)
grows much

faster than � _3
2 −1

(
G√
2

)
as G →∞, hence it must be that limG→∞

(
G�{1− _3

4 }, {
3
2 }

(
G2

2

))2
4
−G2

2 = 0. This
implies that _3 is even. �

Lemma M.7. Let _3 = 4: for : ∈ Z+, and let f(G) be a solution of (82), then

f(G) = −_1
_3
− _2G

_3 − 2
+ 2�2:

(
G
√

2

)
(116)

for some 2 and

E((f′(/))2) =
4: ((2:)! )2

(2: − 1)!
22 +

(
_2

_3 − 2

)2
. (117)

Proof of Lemma M.7. If _3 = 4: then

�{ −_3
4 }, {

1
2 }

(
G2/2

)
=

(−1): :!
(2:)!

�_3/2(G/
√

2), (118)
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and hence the homogenous part of f(G) can be written as 2�_3/2(G), from which (116) follows. From
this expression it follows that

f′(G) =
2_3� _3

2 −1

(
G√
2

)
√

2
− _2
_3 − 2

, (119)

and from this expression the value for E((f′(/))2) follows. �

Lemma M.8. Let f be of the form (102). If _3 /∈ {0, 2}, then E((f′(/))2) < ∞ implies that f(G) is
of the form

f(G) = −_1
_3
− _2G

_3 − 2
+ 2�_3/2

(
G
√

2

)
(120)

for some 2 that must be zero if _3 6= 4: , : ∈ Z+, and

E((f′(/))2) =
4: ((2:)! )2

(2: − 1)!
22 +

(
_2

_3 − 2

)2
. (121)

Proof of Lemma M.8. This follows directly from Lemmas M.5-M.7. �

Lemma M.9. If _1, _2, _3 satisfy (83)-(85), then(
_2

_3 − 2

)2
= `2

1. (122)

Proof of Lemma M.9. Defining ' = E((f′(/))2) and solving the linear system (83)-(85) leads to

_1 =
2`0

(
' − `2

1
)

`2
0 + `2

1 − `2
, _2 =

2`1
(
`2

0 − `2 + '
)

`2
0 + `2

1 − `2
, _3 = −

2
(
' − `2

1
)

`2
0 + `2

1 − `2
. (123)

Computing _2/(_3 − 2) we get −`1, from which the first relation follows.

If we solve _3 = − 2('−`2
1)

`2
0+`2

1−`2
for ' and recall that `2

★ = `2 − `2
0 − `

2
1, the second relation follows.

�

We are now ready to prove Theorem 7, which we restate here for convenience.
Theorem ( 7). The minimizers of (19) are

f(G) = 0G2 + 1G + 2, (124)
where

0 = ± `★√
2
, 1 = `1, and 2 = `0 − 0. (125)

Proof of Theorem 7. We will show that any minimizer of (19) must be a function f(G) = 0G2 + 1G + 2
for some 0, 1, 2. From this fact, the variational problem can be reduced to a simple quadratic
programming problem over 0, 1, 2, from which it is straightforward to derive (124) and (125).

If `★ = 0 then by Lemma 3.1, we know that the solution must be linear, and hence we are done.

If `★ > 0 then by Lemma 3.1 we know that f(G) cannot be a linear function. Hence, from Lemma
M.3 and Lemma M.4 we know that _3 cannot be 0 or 2. Therefore, its solution must be of the form
specified by Lemma M.8 with 2 6= 0 and _3 = 4: for some : ∈ Z+.

Define ' = E((f′(/))2). From the constraints (19) we know that _1, _2 and ' can be written as a
linear function of _3 = 4: . In particular, ' = `2

1 + _3
2 `

2
★. From (121) and Lemma M.9 we can write

that ' = 4: ((2:)!)2

(2:−1)! 2
2 + `2

1, which implies that 2 = ±
(
'−`2

1
4: ((2:)!)2

(2:−1)!

)
is also a function of _3. Therefore, the

solution to is parametrized by _3 alone which must be chosen to minimize ' = `2
1 + _3

2 `
2
★. Therefore,

we must choose _3 = 4, the smallest possible multiple of 4. This implies that �_3/2(G/
√

2) is a
quadratic function, from which it follows that f(G) is also a quadratic function, and hence we are
done. �
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M.4 PROOF OF THEOREM 8

Before we prove Theorem 8, we will state and prove a series of intermediary results.
Lemma M.10. A necessary condition for optimality of f(G) is that

G + _1 + _2G + _3f(G) = 0, for all G : f′(G) 6= 0, (126)

where _1, _2, and _3 must be such that,

E(f(/)) = `0, (127)
E(f(/)/) = `1, (128)

E((f(/))2) = `2. (129)

Proof of Lemma M.10. A Lagragian for (126) is

E(|f′(/)|+_1(`0 − f(/)) + _2(`1 − /f(/)) + _3((1/2)(`2 − f(/))2)), (130)

which can be written as
∫∞
−∞ !(I, f, f′)dI where, if we define ?(I) = 1√

2c
4
−I2

2 , the Lagrangian
density ! is

!(I, f, f′) = ?(I)(|f′ |+_1(`0 − f) + _2(`1 − If) + _3(1/2)(`2 − f2)). (131)

Any variation f(I)+n[(I) of an optimal f(I) must yield E(|f′(I)+n[′(I)|) ≥ E(|f′(I)|). In particular,
this must be the case for any variation such that [(I) = 0 whenever f′(I) = 0. If we focus on these
variations, from E(|f′(I) + n[′(I)|) ≥ E(|f′(I)|) the Euler-Lagrange equation can be derived despite
|·| not being differentiable at 0. To be specific, it must hold that

d
dI

m!

mf′
− m!
mf

= 0 ∀I : f′(I) 6= 0. (132)

Since there are no fixed boundary conditions on our integration domain (−∞,∞), it also needs to hold
that limI→±∞

m!
mf′ = limI→±∞ ?(I)f′(I) = 0, which we choose not to list in our necessary conditions.

Since d
dI

m!
mf′ = 0 if f′(I) 6= 0, equation (132) implies (126). First order optimality conditions imply

that the Lagrange multipliers must be choose such that E(f(/)) = `0,E(f(/)/) = `1,E((f(/))2) =
`2. �

Lemma M.11. If _3 6= 0, the solutions of (126) are of the form

f(G) = −_1
_3
− 1 + _2

_3
min{max{G, 1}, 2}, (133)

for some constants 1, 2 where 1 < 2 if 1+_2
_3
≤ 0 and 1 > 2 otherwise.

Proof of Lemma M.11. Since f is a one-dimensional function, the requirement of existence of weak
derivative implies that there exists E absolute continuous that agrees with f almost everywhere. We
will work with these absolute continuous representations of f. Other solutions can differ from the
absolute continuous solutions only up to a set of measure zero with respect to the Gaussian measure.

From (126) we know that wherever f′(G) 6= 0, we have that f(G) = 0G + 1 for the same fixed 0 and 1.
Hence, since f is continuous, f must be an alternation of flat portions and portions with the same
slope 0. Because of continuity, we cannot have a flat portion interrupt portion of slope 0 (unless
0 = 0), as illustrated in Figure 2-right, and f must be as in the other two cases in Figure 2. These
have a form as in (133). �

Lemma M.12. Let f be of the form (133). Then,

E(|f′(/)|) =
1
2

����1 + _2
_3

����P(/ ∈ [1, 2]), (134)

`1 , E(/f(/)) = −1
2

1 + _2
_3
P(/ ∈ [1, 2]), (135)

where [1, 2] should be interpreted as [2, 1] if 2 < 1. In particular, E(|f′(/)|) = |`1 |.

27



Published as a conference paper at ICLR 2023

Figure 2: The first two functions are the only two possible types of continuous functions that satisfy (126). The
right-most function also satisfies (126) but is not continuous.

Proof of Lemma M.12. From Lemma M.11, we have explicit formulas for f and f′. The proof boils
down to a direct calculation of the expected values, which themselves boil down to computing a few
Gaussian integrals. �

We are now ready to prove Theorem 8, which we restate below for convenience.
Theorem (8). One minimizer of (3) is

f(G) = `0 + 0min{max{G,−B}, B} (136)

where 0 = `1
erf(B/

√
2)

, erf is the Gauss error function, and B ∈ R is the unique solution to the equation

Z2 ,
`2

1

`2
★

=
4
B2
2 erf

(
B√
2

)2

4
B2
2

(
1 − erf

(
B√
2

)) (
B2 + erf

(
B√
2

))
−

√
2
c
B

, (137)

if `★ 6= 0, and B = ∞ if `★ = 0.

Proof of Theorem 8. From Lemma M.11, we know that if _3 6= 0, then any minimizer must have
the form (133). From Lemma M.12 we know that all of the functions of this form have the same
objective. Hence, if _3 6= 0, all of the functions of the form (133) that satisfy constraints (19) are a
global minimizer .

We set _3 = 1 6= 0. To satisfy the three constraints (19) we have 4 remaining values to play with,
namely _1, _2, 1, 2. Hence, we set 1 = −2. With a reparameterization, this leads to f having the
form f(G) = 1 + 0min{max{G,−B}, B}, where 1 has a new meaning. That is, f is flat outside of the
interval [−B/|0 |, B/|0 |], B ≥ 0, and inside of this interval it has slope 0. The goal is to find 0, 1, B from
the constraints (19).

From f(G) = 1 + 0min{max{G,−B}, B} a direct computations leads to

`0 = 1, (138)

`1 = 0erf
(
B
√

2

)
, (139)

`2 = 02
(
B2 − 1

)
erfc

(
B
√

2

)
+ 02

(
1 −

√
2
c
B4−

B2
2

)
+ 12, (140)

where erfc = 1 − erf. We can use the first two equations to write 1 and 0 as a function of `0, `1, B.
Substituting 0 and 1 with these functions in the third equation, and simplifying, leads to

`2 = `2
0 −

`2
1

(
−

(
B2 − 1

)
erfc

(
B√
2

)
+

√
2
c
4−

B2
2 B − 1

)
erf

(
B√
2

)2 . (141)

Recalling that `2 = `2
★ + `2

1 + `2
0, replacing this definition into the above equation, and simplifying

leads to

`2
1

`2
★

, Z2 = −
4
B2
2 erf

(
B√
2

)2

4
B2
2

(
erf

(
B√
2

)
− 1

) (
B2 + erf

(
B√
2

))
+

√
2
c
B

. (142)
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One can show that the function on the right hand side (142) is monotonic increasing in B ∈ [−∞,∞]
with range [0,∞], which implies that there is only one B that solves (142).

�

M.5 PROOF OF THEOREM 9

This proof involves heavy algebraic computations. To aid the reader, this paper is accompa-
nied by a Mathemetica file that symbolically checks the equations both in the theorem state-
ment as well as in the proof below. This file is in the supplementary zip file, as well as
in the following Github link https://github.com/Jeffwang87/RFR_AF. It is called
RunMeToCheckProofOfTheorem9.nb.

Proof of Theorem 9. Theorem 9 amounts a statement about the solutions of the optimization problem
(22) for regime '1.

Its proof amounts to studying the local minima of the objective via its first and second derivatives,
both on the inside and on the boundary of the variables’ domain.

We will prove the theorem for k1 < k2 and k1 > k2 separately. For k1 = k2 the objective is not
defined.

In what follows, we let ! = (1 − U)E∞
'1

+ US∞
'1

. We will use the fact that ! is a one-dimensional
function of Z2 ∈ [0, +∞], as can be seen from (13) and (16). We will use this and the fact that
(28) defines a monotonic function between j and Z2, to express ! as a function of j and study the
solutions of the optimization problem (22)

in the variable j. Notice that (28) can be solved for Z2 as Z2 = `2
1
`2
★

= j+min{k1 ,k2 }
j(−1+j+min{k1 ,k2 }) and, calling

j by G, this can be arranged to get (23), which connects optimal values of j with optimal values
of `0, `1, `2. Henceforth, we denote j by G. We note that since Z2 ∈ [0, +∞], from (28) it follows
that G ∈ [G! , G'] , [−min{k1, k2},min{0, 1 − min{k1, k2}}]. Hence, we only need to study the
function !(G) in this interval.

Case 1, k1 < k2:

For the sake of simplicity, and for the most part, we will assume that k1 6= 1 and omit the argument for
k1 = 1. The argument when k1 = 1 is almost identical to the argument when k1 6= 1 if we work with
the extended reals [−∞,∞]. Furthermore, most conclusions for k1 = 1 can be obtained by taking the
limit of k1 → 1 with k1 6= 1. The only situation where this is not the case is that the polynomial ?(G),
referenced right after Table 1, has an expression when k1 = 1 that cannot be obtained as the limit of
its expression for 1 6= k1. We will also assume that U > 0. Recall that we are already assuming that
U < 1 because when U = 1 our problem is trivial. If U = 0 one can check that !(G) is a decreasing
line, hence the minimum is at G = G', and this solution can be obtained from the first row of Table
1. This solution for U = 0 can also be obtained by studying U > 0 and taking U → 0. Below thus
assume that 0 < U < 1.

We start by studying the second derivative of !. A direct computation yields

d2!

dG2 = !̃(G) + �, where � =
2�2

1U

k1 − k2
(143)

and !̃(G) = − 2U�2
1 k1 (−3G2(k1−1)−2G3+(k1−1)2k1)

((G+k1)2−k1)3
.

A tedious calculation (omitted) shows that d2 !̃
dG2 ≥ 0 for G ∈ [G! , G'] (i.e. it is convex), that

!̃(G!) < !̃(G'), and that d!̃
dG (G = G!) < 0. From this it follows that, depending on the value of k2, the

concavity d2!
dG2 is positive or negative, as illustrated in the following figure:

To be specific, starting from large k2, i.e. small −�, and decreasing its value, i.e. increasing −�,
we obtain the following four scenarios. While k2 is large and −� is bellow �2, the function ! is
convex. After k2 reaches a value V1 at which −� touches �2, the function ! is convex for small G,
then concave, and then convex for large G. As k2 keeps decreasing, and after it reaches a value V2 at

29

https://github.com/Jeffwang87/RFR_AF


Published as a conference paper at ICLR 2023

convexxL

<latexit sha1_base64="E4eB/mrcf/+01qKywv+T5lhwyiY=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWFhENB+QHGFvM5cs2ds7dvfEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD31W4+oNI/lgxkn6Ed0IHnIGTVWun/q3fZKZbfizkCWiZeTMuSo90pf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mp07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOkUbgrf48jJpnle8aqV6Vy3XrvI4CnAMJ3AGHlxADW6gDg1gMIBneIU3RzgvzrvzMW9dcfKZI/gD5/MHNuKNwg==</latexit>

xR

<latexit sha1_base64="c6n9iDoNsrujpeVkWhOWeGrF5fg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6DHoxWN85AHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHssHM07Qj+hA8pAzaqx0/9S765XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdI8r3jVSvW2Wq5d5XEU4BhO4Aw8uIAa3EAdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8/+o3I</latexit>
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xL

<latexit sha1_base64="E4eB/mrcf/+01qKywv+T5lhwyiY=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWFhENB+QHGFvM5cs2ds7dvfEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD31W4+oNI/lgxkn6Ed0IHnIGTVWun/q3fZKZbfizkCWiZeTMuSo90pf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mp07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOkUbgrf48jJpnle8aqV6Vy3XrvI4CnAMJ3AGHlxADW6gDg1gMIBneIU3RzgvzrvzMW9dcfKZI/gD5/MHNuKNwg==</latexit>

xR

<latexit sha1_base64="c6n9iDoNsrujpeVkWhOWeGrF5fg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6DHoxWN85AHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHssHM07Qj+hA8pAzaqx0/9S765XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdI8r3jVSvW2Wq5d5XEU4BhO4Aw8uIAa3EAdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8/+o3I</latexit>

Õ(x)

<latexit sha1_base64="z+/3qGgOPyH3RNDBUsOREnjPeY8=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoMQL2FXAnoMevFmBPOA7BJmZzvJkNkHM71iWPIbXjwo4tWf8ebfOEn2oIkFDUVVN91dfiKFRtv+tgpr6xubW8Xt0s7u3v5B+fCoreNUcWjxWMaq6zMNUkTQQoESuokCFvoSOv74ZuZ3HkFpEUcPOEnAC9kwEgPBGRrJdVHIALK7afXpvF+u2DV7DrpKnJxUSI5mv/zlBjFPQ4iQS6Z1z7ET9DKmUHAJ05KbakgYH7Mh9AyNWAjay+Y3T+mZUQI6iJWpCOlc/T2RsVDrSeibzpDhSC97M/E/r5fi4MrLRJSkCBFfLBqkkmJMZwHQQCjgKCeGMK6EuZXyEVOMo4mpZEJwll9eJe2LmlOv1e/rlcZ1HkeRnJBTUiUOuSQNckuapEU4ScgzeSVvVmq9WO/Wx6K1YOUzx+QPrM8fstKRdw==</latexit>

co
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e convex

�C

<latexit sha1_base64="ADHZ7JMbInpblY7bSd6p4zil4CQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LvXisYm2hDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjRx2nimGLxSJWnYBqFFxiy3AjsJMopFEgsB2MGzO//YRK81g+mEmCfkSHkoecUWOl+4tGv1xxq+4cZJV4OalAjma//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7plJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jYZcIXMiIkllClubyVsRBVlxoZTsiF4yy+vksfLqler1u5qlfpNHkcRTuAUzsGDK6jDLTShBQxCeIZXeHPGzovz7nwsWgtOPnMMf+B8/gABf40F</latexit>

�C

<latexit sha1_base64="ADHZ7JMbInpblY7bSd6p4zil4CQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LvXisYm2hDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjRx2nimGLxSJWnYBqFFxiy3AjsJMopFEgsB2MGzO//YRK81g+mEmCfkSHkoecUWOl+4tGv1xxq+4cZJV4OalAjma//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7plJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jYZcIXMiIkllClubyVsRBVlxoZTsiF4yy+vksfLqler1u5qlfpNHkcRTuAUzsGDK6jDLTShBQxCeIZXeHPGzovz7nwsWgtOPnMMf+B8/gABf40F</latexit>

�C

<latexit sha1_base64="ADHZ7JMbInpblY7bSd6p4zil4CQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LvXisYm2hDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjRx2nimGLxSJWnYBqFFxiy3AjsJMopFEgsB2MGzO//YRK81g+mEmCfkSHkoecUWOl+4tGv1xxq+4cZJV4OalAjma//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7plJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jYZcIXMiIkllClubyVsRBVlxoZTsiF4yy+vksfLqler1u5qlfpNHkcRTuAUzsGDK6jDLTShBQxCeIZXeHPGzovz7nwsWgtOPnMMf+B8/gABf40F</latexit>

concave

co
nv
ex

concave

A1

<latexit sha1_base64="bEDLXWTsVqLdDJgD6hGlW54NCzg=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4CjMSiMeoF48RzQLJEHo6PUmTnp6hu0YIQz7BiwdFvPpF3vwbO4sQtwcFj/eqqKoXJFIYdN0PJ7eyura+kd8sbG3v7O4V9w+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR1dRv3XNtRKzucJxwP6IDJULBKFrp9qLn9Yolr+zOQNxf5MsqwQL1XvG9249ZGnGFTFJjOp6boJ9RjYJJPil0U8MTykZ0wDuWKhpx42ezUyfkxCp9EsbalkIyU5cnMhoZM44C2xlRHJqf3lT8y+ukGJ77mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFJZD+J80z8pepVy5qZRql4s48nAEx3AKHlShBtdQhwYwGMADPMGzI51H58V5nbfmnMXMIXyD8/YJu52NcQ==</latexit>

A2

<latexit sha1_base64="e6xgbrBQcXvKbIvy3u1KZYOTNE4=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4CjMhoMeoF48RzQLJEHo6NUmTnp6hu0cIQz7BiwdFvPpF3vwbO4sQtwcFj/eqqKoXJIJr47ofTm5ldW19I79Z2Nre2d0r7h80dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mvqte1Sax/LOjBP0IzqQPOSMGivdXvQqvWLJK7szEPcX+bJKsEC9V3zv9mOWRigNE1Trjucmxs+oMpwJnBS6qcaEshEdYMdSSSPUfjY7dUJOrNInYaxsSUNm6vJERiOtx1FgOyNqhvqnNxX/8jqpCc/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKSyH8D9pVspetVy9qZZql4s48nAEx3AKHpxBDa6hDg1gMIAHeIJnRziPzovzOm/NOYuZQ/gG5+0TvSGNcg==</latexit>

A3

<latexit sha1_base64="pMFoZhaIytdmkUfN6RE8F3IzUQc=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4CjMa0GPUi8eIZoFkCD2dmqRJT8/Q3SOEIZ/gxYMiXv0ib/6NnUWI24OCx3tVVNULEsG1cd0PJ7e0vLK6ll8vbGxube8Ud/caOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheTfzmPSrNY3lnRgn6Ee1LHnJGjZVuL7qn3WLJK7tTEPcX+bJKMEetW3zv9GKWRigNE1Trtucmxs+oMpwJHBc6qcaEsiHtY9tSSSPUfjY9dUyOrNIjYaxsSUOm6uJERiOtR1FgOyNqBvqnNxH/8tqpCc/9jMskNSjZbFGYCmJiMvmb9LhCZsTIEsoUt7cSNqCKMmPTKSyG8D9pnJS9SrlyUylVL+dx5OEADuEYPDiDKlxDDerAoA8P8ATPjnAenRfnddaac+Yz+/ANztsnvqWNcw==</latexit>

Figure 3: Depending on the value of k2, the function ! is convex, convex-concave-convex, concave-convex,
or concave respectively. The points A, B, and C will be referenced later in the proof. It is possible to compute
closed-form expressions for the H-coordinate of these points.

which −� touches �1, the function ! is concave for small G, and then convex for large G. Finally, after
k2 reaches a value V3 at which −� touches �3 , the function ! is concave. Note that by definition
0 ≤ V3 < V2 < V1.

It is possible to compute closed-form expressions for the H-coordinate of the points �1, �2, �3,

which we denote by �1, �2, and �3. Namely, �1 = �2
1U(2 + 2

k1
), �2 = �2

1U

(√
1−k1+1
k1

− 1
2

)
, if

k1 ≤ 1, and �2 = �2
1U

(√
k1−1
k1
− 1

2k1
+ 1

)
, if k1 > 1, and �3 = �2

1Umax
{

2
k1−k12 ,

2k1
k1−1

}
. Using

the closed-form expression for −�, see (143), we find closed-form expressions for V1, V2, and V3 as
V1 = k2 : �2(k2) + �(k2) = 0, V2 = k2 : �1(k2) + �(k2) = 0, and V3 = k2 : �3(k2) + �(k2) = 0.
By definition of V1, V2, and V3, these equations have a unique solution when k2 > k1 > 0 and their
explicit expressions are given in (45), (46) and (47) respectively.

Now that we have characterized the curvature of !(G), we are ready to locate its global minimum. To
do so, we will use the curvature of !(G) together with the first-order optimally condition d!

dG = 0, and
the following three extra pieces of information: the sign of the derivative of !(G) at G = G!; the sign
of the derivative of !(G) at G = G'; and the sign of !(G!) − !(G').

A direct computation yields

d!
dG

=
?0 + ?1G + ?2G

2 + ?3G
3 + ?4G

4 + ?5G
5

(k1 − (G + k1)2)2(k1 − k2)
, if k1 6= 1, and (144)

d!
dG

=
@0 + @1G + @2G

2 + @3G
3

(2 + G)2(−1 + k2)
, if k1 = 1. (145)

where the coefficients ?0, . . . , ?5 and @0 . . . , @3 are, apart from a multiplying constant, given in (51)-
(60).

The roots of the first denominator, i.e. −
√
k1 − k1 and

√
k1 − k1, are not a root of the first numerator

when k1 6= 1, and the roots of the second denominator, i.e. −2, are not a root of the second numerator
when k2 > k1 = 1. Therefore, the first-order optimality conditions are ?(G) = 0.

Not all solutions of ?(G) = 0 minimize !(G). To locate the minimizer, we use the sign of the derivative
of !(G) at G = G!; the sign of the derivative of !(G) at G = G'; and the sign of !(G!) − !(G'). These
signs can be determined using Lemma M.13. Lemma M.13 also proves Remark 10.
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Lemma M.13. If k1 < k2, the following relationships hold,

d!
dG

����
G=G!

= −
�1

2(U + (U − 1)k2) + U
(
�★

2 + g2)
k1 − k2

, (146)

d!
dG

����
G=G'

=
�1

2k2 − U
(
�2

1 (−4k1 + 3k2 + 1) + �2
★ + g2)

k1 − k2
if k1 ≤ 1, (147)

d!
dG

����
G=G'

=
�1

2(U + 2Uk1 − 3Uk2 + k2) − U
(
�★

2 + g2)
k1 − k2

if k1 > 1, (148)

!(G!) − !(G') =
k1

(
�2

1 (U − 2Uk1 + (2U − 1)k2) + U
(
�2
★ + g2) )

k1 − k2
if k1 ≤ 1, and (149)

!(G!) − !(G') =
U

(
�★

2 + g2) − �1
2(Uk1 − 2Uk2 + k2)

k1 − k2
if k1 > 1. (150)

Also,

d!
dG

����
G=G!

< 0 if U < U! and
d!
dG

����
G=G!

≥ 0 if U ≥ U! , (151)

d!
dG

����
G=G'

< 0 if U < U' and
d!
dG

����
G=G'

≥ 0 if U ≥ U', and (152)

!(G!) − !(G') > 0 if U < U� and !(G!) − !(G') ≤ 0 if U ≥ U� , (153)

where U! , U' and U� are given in (48), (50), and (49) respectively.

Furthermore, the following are true and help determine from which row in Table 1 to read G. If
k2 < min{2k1, k1 + 1}, then U! < U� < U'. If k2 > min{2k1, k1 + 1}, then U' < U� < U! . If
k2 = min{2k1, k1 + 1}, then U! = U� = U'. In particular, it follows from this that if k2 ≥ V1, then
U' ≤ U� ≤ U! and if k2 ≤ V3, then U! ≤ U� ≤ U'.

Finally, U! , U', U� ∈ [0, 1].

Proof. The derivation of (146)-(150) follows from direct substitution of G = G! or G = G' into !
(for which we have expressions from Theorems 1 and 4) or its derivative (in eq. (144)-(145)). The
derivation of (151)-(153) follows from the observation that the equations (146)-(150) are linear in U,
and hence we can easily compute the values of U at which these expressions change from a negative
value to a positive value. Once an explicit formula for U! , U� , and U' is obtained, it is easy to
find the criteria to decide their relative magnitude by comparing the term under parenthesis in the
denominators of (48), (50), and (49). It is also easy to see from their formulas that their value is
always in the range [0, 1]. �

To finish the proof of Theorem 9 we consider the different scenarios in Table 1. In what follows,
statements about the concavity of ! are justified via the explanation accompanying Figure 3, and
statements about the slope of ! are based on Lemma M.13.

Case 1.1, k1 < k2 ∧ k2 ≥ V1 ∧ U < U! ∧ U < U': The function ! is convex and is decreasing at
G = G! and decreasing at G = G'. Hence its minimum is at G = G'.

Case 1.2, k1 < k2 ∧ k2 ≥ V1 ∧ U' < U < U!: The function ! is convex and it is decreasing at
G = G! and increasing at G = G'. Hence it has a unique minimizer at G = G1.

When k1 < k2 ∧ k2 ≥ V1, we can use Lemma M.13 and a tedious calculation (omitted) to show that
U' < U! , which is why the 4th and 5th rows of the first column of Table 1 are empty. A simpler way
to see that the 4th and 5th rows of the first column of Table 1 must be empty is as follows. Since
k1 < k2 ∧ k2 ≥ V1 then we know (from the argument following with Figure 3) that ! is convex. If
U > U! and U < U' (i.e. �1 holds) then by Lemma M.13 we know that ! is increasing at G = G! and
decreasing at G = G', but this is impossible for a convex function.

Case 1.3, k1 < k2 ∧ k2 ≥ V1 ∧ U > U! ∧ U > U': The function ! is convex and it is increasing at
both G = G! and G = G'. Hence its minimum is at G = G! .
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Case 1.4, k1 < k2 ∧ V2 < k2 < V1 ∧ U < U! ∧ U < U': The function ! is first convex, then concave
and then convex. It is decreasing at both G = G! and at G = G'. Hence ! has at most one local
minimum in the interior of the domain, at G = G1 if it exists, and a local minimum at G', the domain
being [G! , G']. Therefore, the minimum can be expressed as G' t G1.

Case 1.5, k1 < k2 ∧ V2 < k2 < V1 ∧ U' < U < U!: The function ! is first convex, then concave
and then convex. It is decreasing at G = G! and increasing at G = G'. Hence ! has no local minimum
at the end points of the domain [G! , G']. Also, ! either has exactly one local minimum in the interior
of the domain, at G = G1, or, ! has exactly two local minimum and one local maximum (resp.) in
the interior of the domain, at G = G1, G = G3 and G = G2 respectively. Therefore, the minimum can be
expressed as G1 t G3. Note that G1 always exists but G3 might not.

Case 1.6, k1 < k2 ∧ V2 < k2 < V1 ∧ U! < U < U': The function ! is first convex, then concave
and then convex. It is increasing at G = G! and decreasing at G = G'. Hence, the minimum is either at
the G! or G', depending whether U > U� or U < U� . This case is an example where it is clear that
allowing U = U� leads to non-uniqueness in the optimal G. See Remark 9.

Case 1.7, k1 < k2 ∧ V2 < k2 < V1 ∧U > U! ∧U > U': The function ! is first convex, then concave,
and then convex. It is increasing at both G = G' and G = G! . Hence ! either has no critical point
in the interior of the domain, or it has two critical point in the interior of the domain, at G = G1
(local maximum) and G = G2 (local minimum) if they exists, and always has a local minimum at G! .
Therefore, the minimum can be expressed as G! t G2. Note that G! always exists, but G2 not always
exists.

Case 1.8, k1 < k2 ∧ V3 < k2 ≤ V2 ∧ U < U! ∧ U < U': The function ! is first concave and convex.
and is decreasing at both G = G! and G = G'. Hence its minimum is at G = G'.

Case 1.9, k1 < k2 ∧ V3 < k2 ≤ V2 ∧ U' < U < U!: The function ! is first concave and convex. It
is decreasing at G = G! and increasing at G = G'. Hence, ! has exactly one local minimum in the
interior of the domain, which is at G = G1 and always exists, and which is also a global minimum.

Case 1.10, k1 < k2 ∧ V3 < k2 ≤ V2 ∧ U! < U < U': The function ! is first concave and convex.
It is increasing at G = G! and decreasing at G = G'. Hence, the minimum is either at the G! or G',
depending whether U > U� or U < U� .

Case 1.11, k1 < k2 ∧ V3 < k2 ≤ V2 ∧U > U! ∧U > U': The function ! is first concave and convex.
It is increasing at both G = G! and G = G'. Hence ! either has no critical point in the interior of the
domain or it has two critical point in the interior of the domain, at G = G1 (local maximum) and G = G2
(local minimum) if they exists, and always has a local minimum at G! . Therefore, the minimum can
be expressed as G! t G2. Note that G! always exists, but G2 not always exists.

Case 1.12, k1 < k2 ∧ k2 ≤ V3 ∧ U < U! ∧ U < U': The function ! is concave. It is decreasing at
both G = G! and G = G'. Hence, its minimum is at G = G'
When k1 < k2 ∧k2 ≤ V3, Lemma M.13 and a tedious calculation (omitted) shows that that U! < U',
which is why the 2nd and 3rd rows of the last column of Table 1 are empty. A simpler way to
see that the 2nd and 3rd rows of the last column of Table 1 must be empty is as follows. Since
k1 < k2 ∧ k2 ≤ V3 we know (from the argument following Figure 3) that ! is concave. If U < U!
and U > U' (i.e. �2 holds) then by Lemma M.13 we known that ! is decreasing at G = G! and
increasing at G = G', but this is impossible for a concave function.

Case 1.13, k1 < k2 ∧ k2 ≤ V3 ∧ U! < U < U': The function ! is concave. It is increasing at G = G!
and decreasing at G = G'. Hence, the minimum is either at the G! or G', depending whether U > U�
or U < U� .

Case 1.14, k1 < k2 ∧ k2 ≤ V3 ∧ U > U! ∧ U > U': The function ! is concave. It is increasing at
G = G! and at G = G'. Hence, the minimum is at G! .

Case 2, k1 > k2:

The case when k2 = 1 can be proved by taking appropriate limits of the case when k2 6= 1. For now,
we assume that k2 6= 1.
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We first prove that the second derivative of ! is convex, just like in the case when k1 < k2. A direct
computation yields

d2!

dG2 = !̃(G) + �, where � = −
2�2

1U

k1 − k2
(154)

and !̃(G) = − 2k2 (3G2 ((�2
★+g2)−�2

1 (k2−1))−2G3�2
1 +6G(�2

★+g2)k2+k2 (�2
1 (k2−1)2+(�2

★+g2)(3k2+1)))
((G+k2)2−k2)3

.

A tedious calculation (omitted) shows that d2 !̃
dG2 ≥ 0 for G ∈ [G! , G'] (i.e. it is convex), that !̃(G!) <

!̃(G'), and that d!̃
dG (G = G!) < 0. To do this calculation, we recommend the following. First break !̃

into two components. One component proportional to �2
1 , called !̃1, and one component proportional

to (�2
★ + g2), called !̃★. Then, show that both components are convex, that !̃★(G!) ≤ !̃★(G'), that

!̃1(G!) < !̃1(G'), that d!̃★
dG (G = G!) = 0, and that d!̃1

dG (G = G!) < 0.

From this it follows that, depending on the value of k1, the concavity d2!
dG2 is positive or negative. The

situation is exactly the same as in the Figure 3 but now the G axis is k1, the points �1, �2 and �3
are different, and so are the definitions of V1, V2 and V3. We do however have that, by definition,
0 ≤ V3 < V2 < V1.

With a slight abuse of notation we refer to the H-coordinate value of this points by �1, �2, and �3. We

now have �1 = 2(�2
1 (k2+1)+(�2

★+g2))
k2

and �3 = − 2 max{1,k2 }(�2
1 (k2−1)2+(�2

★+g2)(3 min{1,k2 }+max{1,k2 }))
(k2−1)3 min{1,k2 }

.
Notice that when k2 = 1 we have that �3 = +∞, and in fact we also have !(G') = +∞.
Getting �2 is a bit more complicated. From the first order condition d!̃

dG = 0 and the convex-
ity of !̃ – recall that !̃ a rational function – we can extract that the G-coordinate of �2 is the
unique root of a 4th degree polynomial ℎ(G) = ℎ0 + ℎ1G + ℎ2G

2 + ℎ3G
3 + ℎ4G

4 in the range
G ∈ [G! , G'], where ℎ0 = k2

2
(
d(k2 − 1)2 + 2(k2 + 1)

)
, ℎ1 = 2k2

(
d(k2 − 1)2 + (3k2 + 1)

)
, ℎ2 = 6k2,

ℎ3 = 2 (1 − d(k2 − 1)), ℎ4 = −d, Call this root G�2 . We then have �2 = !̃(G�2 ). It turns
out that we can write �2 directly as the solution of 6(�2/((g2 + �2

★)k2)) = 0, where 6(G) =
60 +61G+62G

2 +63G
3 +64G

4 with 60 = d4, 61 = −4 (dk2 + d + 1)
(
dk2 (2dk2 − 3d + 4) + 2(d + 1)2) ,

62 = −4k2
2
(
dk2 (7dk2 − 20d + 14) + 7(d + 1)2) , 63 = −16k4

2 (dk2 + d + 1), and 64 = 16k6
2 .

Using the expressions for �1 and �3, and the expression for �, see (154), V2 and V3 are defined as
V2 = k1 : �1(k1) + �(k1) = 0, and V3 = k1 : �3(k1) + �(k1) = 0. By definition of V2 and V3, these
equations have a unique solution when k1 > k2 > 0 and their expressions are given in (62) and (63)
respectively. We can also define V1 as the solution of V1 = k1 : �2(k1) + �(k1) = 0. By definition of
V1, the solution is unique in the range k1 > k2 > 0. We can use the fact that �2 = !̃(G�2 ) to write

that V1 = k2 + 2�2
1 U

!̃(G�2 ) . We can also use the fact that 6(�2/((g2 + �2
★)k2)) = 0, which implies that

6(−�(k1) / ((g2 + �2
★)k2)) = 0 when k1 = V1, to write V1 as the root of a 4th degree polynomial A(G)

that is specified in Appendix J.4, which is the way in which we decide to state Theorem 9.

Now that we have characterized the curvature of !(G), we are ready to locate its global minimum. To
do so, we will use the curvature of !(G) together with the first-order optimally condition d!

dG = 0, and
the following three extra pieces of information: the sign of the derivative of !(G) at G = G!; the sign
of the derivative of !(G) at G = G'; and the sign of !(G!) − !(G').

A direct computation yields

d!
dG

=
?0 + ?1G + ?2G

2 + ?3G
3 + ?4G

4 + ?5G
5

(k2 − (G + k2)2)2(k1 − k2)
, (155)

where the coefficients ?0, . . . , ?5 are, apart from a multiplying constant, given in (70)- (75). The
roots of the denominator, i.e. −

√
k2 − k2 and

√
k2 − k2, are not a root of the numerator, therefore,

the first order optimalit conditions are ?(G) = 0.

Not all solutions of ?(G) = 0 minimize !(G). To locate the minimizer, we use the sign of the derivative
of !(G) at G = G!; the sign of the derivative of !(G) at G = G'; and the sign of !(G!) − !(G'). These
signs can be determined using Lemma M.14. Lemma M.14 also proves Remark 11.
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Lemma M.14. If k1 > k2 then the following relationships hold.

d!
dG

����
G=G!

=
U

(
�2
★+g2) +�2

1 (U (−k2) +2(U−1)k1+U+k2)
k1−k2

. (156)

If k2 = 1 then
d!
dG

����
G=G'

= +∞. (157)

If k2 < 1 then (158)

d!
dG

����
G=G'

=
(
Uk2

2−2(U+1)k2+U+2k1
) (
�2
★+g2) +�2

1 (k2−1) 2 (2Uk1−(3U+1)k2+U)
(k1−k2) (k2−1) 2 . (159)

If k2 > 1 then (160)

d!
dG

����
G=G'

=
�2

1 (k2−1) 2 (−2Uk1+(U+1)k2+U) − (k2 ((U−2)k2−2U+2k1) +U)
(
�2
★+g2)

(k2−1) 2 (k2−k1)
. (161)

If k2 = 1 then !(G!) − !(G') = −∞. (162)
If k2 < 1 then (163)

!(G!) − !(G') =
k2

(
�2

1 (k2−1) ((1−2U)k1+U (2k2−1)) − ((U+1)k2−U−k1)
(
�2
★+g2) )

(k1−k2) (k2−1) . (164)

If k2 > 1 then (165)
!(G!) − !(G') = (166)

k2
(
(U−1)

(
�2
★+g2) +U�2

1
)

+k1
(
(2U−1)�2

1 (k2−1) +�2
★+g2) −U (

�2
★+g2) −U�2

1k
2
2

(k2−1) (k2−k1)
. (167)

Also, the following is true.

If U < U! then
d!
dG

����
G=G!

< 0; and if U ≥ U! then
d!
dG

����
G=G!

≥ 0. (168)

Let k2 6= 1. If �1 is true then
d!
dG

����
G=G'

< 0; and if �2 is true then
d!
dG

����
G=G'

> 0. (169)

Conditions �1 and �2 are defined in Theorem 9.

Let k2 6= 1. If U < U� then !(G!) − !(G') > 0; and if U ≥ U� then !(G!) − !(G') ≤ 0 (170)

Constant U� is defined in equation (65) in Theorem 9.

Furthermore, we always have that U! ∈ [0, 1]. It also holds that U� ∈ [0, 1] if and only if
k1 ≤ k2/(1 − d |1 − k2 |) when 0 < d ≤ 1

|k2−1 | or k1 ≥ k2/(1 − d |1 − k2 |) when d ≥ 1
|k2−1 | .

We have that U' ∈ [0, 1] if and only if

k1 ≤ k2 +
1
2
d(k2 − 1)2 min{k2, 1} and (171)

k1 ≥
−1 + d(k2 − 1)2(2k2 + min{2k2 − 1, 1}) + k2(2 + max{k2, 2 − k2})

2(max{k2, 1} + d(k2 − 1)2)
. (172)

Finally, � ≥ � always, where � and � are given in (67) and (68). Furthermore, � < k2 if and only
if 1/d > W , min{1,max{0, 2k2 − 1}}.

Proof. Except (162) and (157), the derivation of (156)-(167) follows from direct substitution of
G = G! or G = G' into ! – for which we have expressions from Theorems 1 and 4 – or its derivative in
equation 155.

Equation (162), for when k2 = 1, is obtained by taking the limit of (164) and (167) as k2 ↑ 1 and
k2 ↓ 1 respectively. Equation (157) for when k2 = 1 is obtained by taking the limit of (159) and
(161) as k2 ↑ 1 and k2 ↓ 1 respectively.
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The derivation of condition (168) follows from the observation that the equation (156) is linear in
U and is always negative for U = 0 and positive for U = 1. Hence, we can easily compute a value
U! ∈ [0, 1] at which the expression changes from a negative value to a positive value. The expression
for U! we obtain is (64).

The derivation of condition (169) can be obtained through following the observations. First notice
that d!

dG |G=G' is a linear increasing function of U. Now focus on the following three implications.

1. If at U = 1 we have d!
dG |G=G' < 0, then d!

dG |G=G' < 0 for all U ∈ [0, 1];

2. If at U = 0 we have d!
dG |G=G' > 0, then d!

dG |G=G' > 0 for all U ∈ [0, 1];

3. If at U = 0 we have d!
dG |G=G' < 0 and at U = 1 we have d!

dG |G=G' > 0, then there exists
U' ∈ [0, 1] such that (U < U' ⇒ d!

dG |G=G' < 0) and (U > U' ⇒ d!
dG |G=G' > 0);

A direct computation shows that the sufficient condition in the first implication holds if and only if
k1 < �, where � is given in (68); the sufficient condition in the second implication holds if and only if
k1 > �, where � is given in (67); the sufficient condition in the the third implication holds if and only
if � < k1 < �. Therefore, if �1 = (k1 < �)∨ ((U < U')∧ (� < k1 < �)) is true, we can use the first
or third implication to conclude that d!

dG |G=G' < 0. Also, if �2 = (k1 > �)∨((U > U')∧(� < k1 < �))
is true, we can use the second or third implication to conclude that d!

dG |G=G' > 0.

A direct calculation shows that � ≥ � and that � < k2 if and only if 1/d > W , min{1,max{0, 2k2−
1}}. A direct calculation also shows that U' ∈ [0, 1] if and only if the conditions in (171) and (172)
hold.

Condition (170) can be obtained through following the observations. First, notice that both (164) and
(167) are linear decreasing functions of U. Second, when U = 1 we always have !(G!) − !(G') < 0.
Therefore, there exists U� ≤ 1 such that (U < U� ⇒ !(G!) − !(G') > 0) and (U > U� ⇒
!(G!) − !(G') < 0)). The expression for U� is given by (65). From this expression, a direct
calculation shows that U� ≥ 0 if and only if k1 ≤ k2/(1 − d |1 − k2 |) when 0 < d ≤ 1

|k2−1 | or
k1 ≥ k2/(1 − d |1 − k2 |) when d ≥ 1

|k2−1 | . �

To finish the proof of Theorem 9 for k1 > k2 we consider the different scenarios in Table 1. These
are studied via cases that are exactly the same to the Case 1.1 to Case 1.14 for k1 < k2 but with
U < U' replaced by �1 and U > U' replaced by �2 because when k1 > k2 it is �1 and �2 that
determine the sign of d!

dG |G=G' . For example, for the top left-most cell in Table 1, both when k1 < k2
or k1 > k2, we have that ! is convex and its decreasing at G! and G', so its minimum is at G = G'.
As another example, the 4th and 5th rows of the first column are not possible for exactly the same
reasons as when k1 < k2. Namely, when V1 < k = k1 then ! is convex. If U > U! and �1 holds,
then by Lemma M.14 we know that ! is increasing at G = G! and decreasing at G = G', which is
impossible for a convex function. Similarly, the 2nd and 3rd rows of the last column are not possible
because when k = k1 ≤ V3 then ! is concave and if U < U! ∧ �2 then Lemma M.14 tells us that ! is
decreasing at G = G! and increasing at G = G' which is not possible. We omit repeating the arguments
for Case 1.2 to Case 1.14.

Above, for both k1 < k2 and k1 > k2 6= 1, Table 1 was derived using the fact that �1 holding
implies that the derivative of ! at G = G' is negative and �2 holding implies that the derivative of
! at G = G' is positive. It was also derived using the fact that U < U� implies that !(G!) > !(G')
and that U > U� implies that !(G!) < !(G'). When k2 = 1, from Lemma M.14, we know that the
derivative of ! at G = G' is +∞, and that !(G!) < !(G'). Hence we can keep Table 1 for k1 > k2 = 1
unchanged if in this case we set �1 to be false, �2 to be true, and U� = −∞. �

M.6 PROOF OF THEOREM 10

This proof involves heavy algebraic computations. To aid the reader, this paper is accompa-
nied by a Mathemetica file that symbolically checks the equations both in the theorem state-
ment as well as in the proof below. This file is in the supplementary zip file, as well as
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in the following Github link https://github.com/Jeffwang87/RFR_AF. It is called
RunMeToCheckProofOfTheorem10.nb.

Proof of Theorem 10. The proof amounts to a long calculus exercise, which we shorten by some
careful observations.

We first notice that E∞
'2

and S∞
'2

can both be written as function of l2 = l2(k2, _, `0, `1, `2), and
we can use this to reduce the optimization problem (22) to an optimization problem over just one
variable.

The variable l2 is a function of `0, `1, `2 ≥ 0, which we want to optimize, and has range [−∞, 0],
the value −∞ being achieved when `2

★ = `2 − `2
1 − `

2
2 = 0.

To avoid having to deal with infinities, we make use of the Mobius transformation G = 1+l2
l2−1 , and

instead work with G.

If we substitute G = 1+l2
−1+l2

into the left hand side (24), and substitute (32) in the resulting expression
we confirm that (24) is satisfied.

Furthermore, if we use G = 1+l2
−1+l2

and (32) to write G as a function of `0, `1, `2, we can use the fact
that `0, `1, `2 ≥ 0, to conclude that G ∈ [−1,min{1,−1 + 2k2}].
Our problem is thus equivalent to solving minG(1−U)E∞

'2
+US∞

'2
subject to G ∈ [−1,min{1,−1+2k2}].

Once we know G, any `0, `1, `2 that satisfies (24) will be a minimizer.

At this point we compute d
dG [(1 − U)E∞

'2
+ US∞

'2
] and observe that this is a rational function of G.

The numerator is, apart from a multiplying constant, ?(G), and the denominator is zero if and only if
G = −1− 2

√
k2 or G = −1 + 2

√
k2. Both are outside of the range of G unless k2 = G = 1. When k2 = 1

the G = 1 zeros of the denominator only cancel zeros of the numerator if g = �★ = 0. In the remainder
of the proof we will assume that g2 + �2

★ > 0. The optimal AFs’ parameters when g = �★ = 0 can be
obtained as a limit when g, �★→ 0. Since the zeros of the numerator and of the denominator never
cancel out (assuming g2 + �2

★ > 0), all of the critical points are given by ?(G) = 0.

Now we compute the value of the derivative at the extremes of the range of G, namely, G = −1, 1, or
−1 + 2k2. The value of the derivative at G = −1 is �2

1 (−1 + U) < 0, which implies that G = −1 is not a

minimizer. The value of the derivative at G = 1 is U�2
1 + k2 (�2

★+g2)
(k2−1)2 > 0, and converges to +∞ when

k2 → 1, which implies that G = 1 is not a minimizer. The value of the derivative at G = −1 + 2k2

is U�2
1 + �2

★+g2

(k2−1)2 > 0, and converges to +∞ when k2 → 1, which implies that G = −1 + 2k2 is not a
minimizer. Another way to see that neither G = 1 nor G = −1 + 2k2 will be a solution is to see that
these choices will not satisfy the equation in (24) unless _ = 0, which never happens in this regime.
This calculation implies that we can assume that G ∈ (−1,min{1,−1 + 2k2}), which we will assume
from now on.

Finally, we show that the objective is convex in the domain of G, which implies that there is only one
critical point – that is ?(G) = 0 has only one solution in the domain (−1,min{1,−1 + 2k2}) – and that
this critical point is a global minimum. To show that the objective is convex, we compute its second
derivative, which is

8k2
(
�2

1
(
4k2

2 + k2(3(G − 2)G − 5) − G3 + 3G + 2
)

+
(
�2
★ + g2) (

4k2 + 3(G + 1)2) )(
4k2 − (G + 1)2)3 . (173)

The minimum of denominator for G ∈ [−1,min{1,−1 + 2k2}] is
{
4(k2 − 1) , k2 > 1
−4(k2 − 1)k2 , 0 ≤ k2 ≤ 1

,

which is always non-negative, and is zero only if G = 1, or G = −1 + 2k2, which have already been
excluded because they are not minimizers. Hence, for G ∈ (−1,min{1,−1 + 2k2}), the denominator
is strictly positive.
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To show that the numerator is non-negative, we only need to show that 4k2
2 + k2(3(G − 2)G − 5) −

G3 + 3G + 2 ≥ 0 in the range of G. The minimum of 4k2
2 + k2(3(G − 2)G − 5) − G3 + 3G + 2 for

G ∈ [−1,min{1,−1 + 2k2}] is
{
4(k2 − 1)2 , k2 > 1
4(k2 − 1)2k2 , 0 ≤ k2 ≤ 1,

which is always non-negative.

�

M.7 PROOF OF THEOREM 11

This proof involves heavy algebraic computations. To aid the reader, this paper is accompa-
nied by a Mathemetica file that symbolically checks the equations both in the theorem state-
ment as well as in the proof below. This file is in the supplementary zip file, as well as
in the following Github link https://github.com/Jeffwang87/RFR_AF. It is called
RunMeToCheckProofOfTheorem11.nb.

Proof of Theorem 11. Similar to proof of Theorem 10, the majority of the proof is a long calculus
exercise.

We first notice that E∞
'3

and S∞
'3

can both be written as function of l1 and Z2.

The variable l1 is a function of `0, `1, `2 ≥ 0, and has range [−∞, 0], the value −∞ being achieved
when `2

★ = `2 − `2
1 − `

2
2 = 0.

To avoid having to deal with infinities, we make use of the Mobius transformation G = 1+l1
l1−1 , and

instead work with G. If we use G = 1+l1
l1−1 and (35) to write G as a function of `0, `1, `2, we can use

the fact that `0, `1, `2 ≥ 0, to conclude that G ∈ [−1,min{1,−1 + 2k1}].
Our problem is thus equivalent to solving minG(1−U)E∞

'3
+US∞

'3
subject to G ∈ [−1,min{1,−1+2k1}]

and Z2 ≥ 0.

Let ! = (1 − U)E∞
'3

+ US∞
'3

. With a direct calculation we can check the following. The derivative
d!
dG |G=−1 is always negative (recall we are assuming U < 1) which implies that there is no local
minimum at G = −1. The derivatives d!

dG |G=1 and d!
dG |G=−1+2k1 are always positive (recall that we

are assuming k1 > 0 in addition to U < 1), which implies that there is no local minimum at either
G = 1 or G = −1 + 2k1. Therefore, we know that the minimizer has G ∈ (−1,min{1,−1 + 2k1}). For
G ∈ (−1,min{1,−1 + 2k1}), the derivative d!

d(Z 2) |Z 2=0 is always negative (when U < 1), which implies

that there is no local minimum at Z2 = 0. We thus know that the minimizer of ! is in the interior of
the domain for G and Z2 and hence it can be found via ∇! = 0, where the gradient is with respect to G
and Z2.

The remainder of the proof considers a few different cases depending on the value of U and k1.

Case when U = 0:

In this case ! = E∞
'3

and d!
d(Z 2) = �1

2(G+1)2

Z 4 ((G+1)2−4k1) . The only way that d!
d(Z 2) = 0 is if Z2 → ∞ (we

already know that G 6= 1), which corresponds to `★→ 0.

As we noted in the beginning, ! is a function of l1 and Z2, and since l1 is a function Z2 and `2
1 and

Z2 is a function of `2
1 and `2

★, we know that ! is a function of `2
1 and `2

★. We express ! in these
variables and compute d!

d(`2
1 ) when `★→ 0. We get that

d!
d(`2

1)
= −

2�2
1_

2k3
1(

2`2
1k1

(
_ − `2

1
)

+ k2
1
(
_ + `2

1
) 2 + `4

1
) 3/2

. (174)

By minimizing the denominator with respect to `1 ≥ 0, we conclude that its minimum is _2k2
1 > 0,

which implies that d!
d(`2

1 ) < 0, which implies that to achieve the minimum ! one must have `1 →∞.

In this case, if we express ! as a function of `1 and `★ and take `1 → ∞ and `★ → 0, we get
! → �2

B .
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Case when k1 = 1 ∧ 0 < U ≤ 1
4 :

In this case d!
d(Z 2) = (U−1)�1

2(G+1)2

(G−1)(G+3)Z 4 . The only way that d!
d(Z 2) = 0 is if Z2 = ∞ (recall that G 6= 1, U < 1

and �1 > 0) which corresponds to `★ = 0.

As we noted in the beginning, ! is a function of l1 and Z2, and since l1 is a function Z2 and `2
1 and

Z2 is a function of `2
1 and `2

★, we know that ! is a function of `2
1 and `2

★. We express ! in these
variables and compute d!

d(`2
1 ) when `★→ 0. We get that

d!
d(`2

1)
=

2�2
1_

2 ©« 4U_(_+4`2
1)(√

_(_+4`2
1)+_

)
2
− 1ª®¬(

_
(
_ + 4`2

1
) ) 3/2

. (175)

By maximizing the numerator with respect to `2
1 ≥ 0, we conclude that its value is always strictly

smaller than 2�2
1_

2(−1+4U) ≤ 0 for any finite `1. Hence, d!
d(`2

1 ) < 0, which implies that the minimum

is achieved only when `1 → ∞. In this case, if we express ! as a function of `1 and `★ and take
`1 →∞ and `★→ 0, we get ! → U�2

1 + (1 − U)�2
B .

Case when k1 = 1 ∧ 1
4 < U < 1:

This case is very similar to the previous case. The only difference being that, because 1
4 < U < 1,

when we solve

d!
d(`2

1)
=

2�2
1_

2 ©« 4U_(_+4`2
1)(√

_(_+4`2
1)+_

)
2
− 1ª®¬(

_
(
_ + 4`2

1
) ) 3/2

= 0, (176)

we now get two possible solutions, namely,

`2
1 ∈

{
−4U2_ + 3U_ +

(
−
√
U
)
_

16U2 − 8U + 1
,
−4U2_ + 3U_ +

√
U_

16U2 − 8U + 1

}
. (177)

First notice that if _ = 0, both expressions give `1 = 0. Let us assume now that _ > 0. If we maximize
the first expression with respect to 1

4 < U < 1, we conclude that its value is always smaller than
−((3_)/16) < 0, which implies that it is not a valid solution in the range `2

1 ≥ 0. If we minimize
the second expression with respect to 1

4 < U < 1, we conclude that its value is always non-negative,
which implies it is a valid solution in the range `2

1 ≥ 0. We therefore conclude that the second
expression is the only stationary point of ! in the range `2

1 ≥ 0 whether _ = 0 or not.

Given that this is the only stationary point of ! in the range `2
1 ≥ 0, and given that the derivative

d!
d(`2

1 ) ≤ 0 at `1 = 0 (which can be checked via substitution), we conclude that the critical point must

be a global minimum.

If we substitute the optimal values for `2
1 and `2

★ = 0 in !, we get ! =
(
4
√
U − 1 − 3U

)
�1

2+(1−U)�B2.

Case when k1 6= 1:

In this case d!
d(Z 2) = (U−1)�1

2(G+1)2

Z 4 (4k1−(G+1)2) . As before, we start from knowing that the minimizer cannot be at

the boundary of the domain. Therefore, since G 6= 1, the only way that d!
d(Z 2) = 0 is if Z2 = ∞, which

corresponds to `★ = 0.

If we substitute G = 1+l1
l1−1 into the left hand side of the last equality in (25), namely, `2

1(−1 + 2k1 −
G)(−1 + G) + 2_k1(1 + G), and let `★→ 0, we get 0, which confirms the condition on G when k1 6= 1.
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We take Z →∞ in ! to obtain,

! = �1
2
(
k1(G − 1)2

4k1 − (G + 1)2 + UG
)
− (U − 1)�★2, (178)

d!
dG

= �1
2

(
U +

4k1(G − 1)(2k1 − G − 1)(
(G + 1)2 − 4k1

)2

)
, (179)

d2!

dG2 =
8�1

2k1
(
4k1

2 + k1(3(G − 2)G − 5) − G3 + 3G + 2
)(

4k1 − (G + 1)2)3 . (180)

If we minimize d2!
dG2 over G ∈ [−1,min(1,−1 + 2k1)] and k1 ≥ 0, we obtain �2

1 /8 > 0. This shows
that our objective ! is strictly convex in the range G ∈ [−1,min(1,−1 + 2k1)] and hence there is only
one solution to d!

dG = 0.

The rational function d!
dG has a denominator which is zero only if G = −1 − 2

√
k1 or G = −1 + 2

√
k1,

both of which are outside the valid range for G. Hence the unique solution to d!
dG = 0 comes from

the zeros of the numerator of d!
dG . This numerator is (a constant times) a polynomial in G whose

coefficients are described in Theorem 11. �

N EXPERIMENT ON A REAL DATASET

It is tempting to extrapolate our theory to practice. The scope of validity of our claims is rigorously
stated in our theorems’ assumptions and one should be cautions not to claim their applicability beyond
this scope. In particular, we are not attempting to improve on existing empirical techniques to design
AFs but rather seek a better understanding of an already popular model, the RFR model. Namely, we
want to understand the effect that using optimal AFs has on the RFR model. Within the context of
designing good, or optimal, AFs for practical settings with empirical/heuristic methods we refer the
reader to Section C. Nonetheless, here we test some of our more general conclusions on real data.
This appendix is referenced in the main text in Section 3.3. In this section, the data, and the fact
that we do not work with infinite dimensions, are the only deviations from our theoretical setup. In
particular, we work with an RFR model.

We use the MNIST data Deng (2012) to train an RFR model that approximates a function 5 , our
ground truth object, defined as follows. For a given digit image G with class 2 ∈ {0, 1, . . . , 9},
we define 5 (G) = −5 + 2/9. Note that in the RFR model we are working with regressions, not
classification. The MNIST data set has input dimensions 3 = 28 × 28 = 784. For the test set we use
10000 random samples.

In Figure 4 we plot the test error E has a function of k1/k2 = #/= when we have = = 4000 train
samples and when the number of features # ranges from 1 to 14250. Training is done with _ = 10−7.
We do so in three different settings: (1) the AF is a fixed linear function; (2) the AF is a fixed ReLU;
(3) the AF is a numerically optimized linear function. This AF is optimized as follows. For each value
of k1/k2, we run a Bayesian optimization subroutine that minimizes the test error across all possible
linear AFs. We note that, despite the fact that with a linear AF our model is linear, optimizing the test
error via linear AFs is different from optimizing the weights in the second layer during training. In
this third setting, for each value of k1/k2, we are working with a different AF, which is why we use
the set notation {·} around f in Figure 4.

We observe that we see a double descent curve phenomenon also for MNIST. This was previously
known Belkin et al. (2019a), as it was also previously known that double descent curves appear for
more complex data sets and neural architectures, e.g. Nakkiran et al. (2021). Unlike for the RFR
theory, the interpolation threshold is not at k1/k2 = 1, but it around k1/k2 = 2. In this practical
setting, and consistently with what we stated in our main observations for our theoretical setting,
using different AFs affects the double descent curve phenomenon. In particular, using linear optimal
AFs (one for each k1/k2) can beat using a single ReLU function and seems to destroy the double
descent curve phenomenon.

The code to produce Figure 4 is in the following Github link: https://github.com/
Jeffwang87/RFR_AF. This code is also available in the supplementary zip file provided. To
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Figure 4: Learning a function from the MNIST data set also produces a double descent curve, i.e. the test
error decreases as the model’s complexity increases, then it increases until the interpolation threshold, which is
around k1/k2 = 2, and then it decreases against past the interpolation threshold. By optimizing the AF this
phenomenon disappears. The meaning of this figure is related to the meaning of Figure 1-(A) in the main text.

generate the plot run the file named RunMeToGenerateFigure_4.m. It runs using Matlab
2020b. We ran it using a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 and 32 GB 2667 MHz
DDR4. In this machine it takes about 10 hours to run.

In Figure 5 we plot the test error E has a function of _ when k2 = 10, when we have = = k23
train samples, and when the number of features is very large, namely, # = 10000. We do so in
two different settings: (1) the AF is a fixed ReLU; (2) the AF is a numerically optimized quadratic
function. This AF is optimized as follows. For each value of _, we run a Bayesian optimization
subroutine that minimizes the test error across all possible quadratic AFs.
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Figure 5: Learning a function from the MNIST data set using the RFR model can be improved by selecting the
appropriate ridge regularization parameter _, around 10−1 in the plot. If we are not careful about this choice,
but instead we use an optimized AF, we can achieve similarly good performance. The meaning of this figure is
related to the meaning of Figure 1-(C) in the main text.

We observe that choosing an optimized AF and being “careless” about the choice of regularization
leads to as good results as using a ReLU and optimizing _, which is the common practice.

The code to produce Figure 5 is in the following Github link: https://github.com/
Jeffwang87/RFR_AF. This code is also available in the supplementary zip file provided. To
generate the plot run the file named RunMeToGenerateFigure_5.m. It runs using Matlab
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2020b. We ran it using a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 and 32 GB 2667 MHz
DDR4. In this machine it takes about 3 hours to run.

O EXPERIMENTAL RESULTS FOR DIFFERENT RANDOM FEATURES
INITIALIZATION

Our results assume that the features in the RFR model are sampled i.i.d. uniform on the (3 − 1)-
dimensional sphere of radius

√
3.

In this section, we numerically examine if two other initializations of Θ lead to similar, or different,
asymptotic mean squared test error. Specifically, we initialize Θ with either Xavier initialization
(Glorot & Bengio, 2010) or Kaiming initialization (He et al., 2015), and compare the resulting error
curve (! when U = 0) with the curve for the original initialization for the three different regimes in
our paper.

If the new error curves agree with the ones for the original initialization for some regime, we take
that as evidence that our conclusion might hold for these initializations and that regime as well.

In Figure 6-(A) and (D), we see that in regime 1 and when U = 0, there is a agreement between the
three initializations. However, this is not the case for regimes 2 (Plot (B) and (E)) or 3 (Plot (C) and
(F)). In regime 3, it is unclear if Xavier and Kaiming initialization agree for large values of _.
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Figure 6: Plot (A), (B), and (C) are generated under the condition when �1 = 1, 3 = 200, �★ =
√

0.5, and
g =
√

0.5. Plot (D), (E), and (F) are generated under the condition when �1 = 1, 3 = 200, �★ = 1, and g = 1. (A)
shows the error curve for regime 1 (ridgeless-limit regime) when _→ 0 and k2 = 3. (B) shows the error curve
for regime 2 (over-parameterized regime) when k1 = 100, k2 = 3, and _ = 0.1. (C) shows the error curve for
regime 3 (large-sample regime) when k1 = 3, k2 = 100, and _ = 0.1. (D) shows the error curve for regime 1
(ridgeless-limit regime) when _→ 0 and k2 = 5. (E) shows the error curve for regime 2 (over-parameterized
regime) when k1 = 200, k2 = 2, and _ = 0.1. (F) shows the error curve for regime 3 (large-sample regime)
when k1 = 2, k2 = 200, and _ = 0.1.
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