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ABSTRACT

Leveraging massive knowledge from large language models (LLMs), recent ma-
chine learning models show notable successes in general-purpose task solving in
diverse domains such as computer vision and robotics. However, several significant
challenges remain: (i) most of these models rely on 2D images yet exhibit a limited
capacity for 3D input; (ii) these models rarely explore the tasks inherently defined
in 3D world, e.g., 3D grounding, embodied reasoning and acting. We argue these
limitations significantly hinder current models from performing real-world tasks
and approaching general intelligence. To this end, we introduce LEO, an embod-
ied multi-modal generalist agent that excels in perceiving, grounding, reasoning,
planning, and acting in the 3D world. LEO is trained with a unified task interface,
model architecture, and objective in two stages: (i) 3D vision-language (VL) align-
ment and (ii) 3D vision-language-action (VLA) instruction tuning. We accordingly
collect large-scale datasets comprising diverse object-level and scene-level tasks,
which require considerable understanding of and interaction with the 3D world.
Moreover, we meticulously design an LLM-assisted pipeline for the generation of
high-quality 3D VL data. Through extensive experiments, we demonstrate LEO’s
remarkable proficiency across a wide spectrum of tasks, including 3D captioning,
question answering, embodied reasoning, embodied navigation, and robotic manip-
ulation. Our ablative studies and scaling analyses further provide valuable insights
for the development of future embodied generalist agents.

1 INTRODUCTION

Building one generalist model that can handle comprehensive tasks like humans has been a long-
existing pursuit in artificial intelligence and neuroscience (Lake et al., 2015; 2017; Zhu et al., 2020;
Mountcastle, 1979; Schmidhuber, 2018; Huang et al., 2022a). Recent advances in LLMs (Brown
et al., 2020) and “foundation models” (Bommasani et al., 2021) emerge as a promising paradigm
in building such generalist models in natural language processing (OpenAI, 2022; 2023), computer
vision (Kirillov et al., 2023; Alayrac et al., 2022), and robotics (Brohan et al., 2022; 2023; Reed
et al., 2022; Driess et al., 2023; Li et al., 2023c). The keys to the success of this paradigm lie in
large-scale internet-level datasets from numerous tasks and domains, as well as scalable Transformer
architectures (Vaswani et al., 2017) that can absorb generalizable and task-agnostic knowledge
from the data. Nonetheless, existing generalist models primarily thrive within 2D domains, lacking
comprehension of the 3D physical environment that envelops human-level intelligence. This limitation
stands as an obstacle that prevents current models from solving real-world tasks and approaching
general intelligence. Therefore, we ask a fundamental question: how to equip the generalist agent
with a comprehensive understanding of and the ability to interact with the real 3D world?

The development of such generalist agents encounters three primary challenges: the lack of suitable
datasets, unified models, and effective learning strategies. Despite substantial progress in scaling up
image-text models (Tsimpoukelli et al., 2021; Alayrac et al., 2022) and the curation of corresponding
datasets (Radford et al., 2021; Schuhmann et al., 2022), advancement in 3D scene-level understanding
has significantly lagged behind. This is largely attributed to the limited scale and manual labeling of
3D datasets (Dai et al., 2017; Wald et al., 2019; Chen et al., 2020), given the higher cost associated
with collecting 3D data compared to 2D data. Furthermore, large-scale unified pretraining and
efficient finetuning are under-explored by previous 3D VL models, which are often designed with
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Embodied
Navigation

LEO: 
1. Move forward
2. Turn right
3. Move forward
4. …

Human: Find the pillow

Robotic 
Manipulation

Human: pack 
the yoshi fig-
ure in the 
brown box
LEO: 

P = [𝟎. 𝟏, −𝟎. 𝟐, 𝟎]
R = [𝟎, 𝟎, 𝟎, 𝟏]

Task Planning

Human: Organize and tidy up 
the bedroom.
LEO: 
1. Clean the floor by 
sweeping to remove …
2. Make the bed …
3. Fold and organize …

3D Question 
Answering

Question: Where is the Printer 
located?
LEO: Standing on the desk 
next to the wardrobe.

3D Dialogue
Human: I need help organizi-
ng my bedroom. Can you assi-
st me?
LEO: Of course! What speci-
fically do you need help with?
Human: Can you check if the-
re are any clean clothes hangi-
ng on the wall?
LEO: I'm sorry, but the clot-
hes hanging on the wall are 
messy.
Human: Thanks! Also, can yo-
u check if there are any clean 
clothes hanging on the wall?

Scene Captioning
LEO: In this 
room, there is a 
wooden floor 

that is clean 
and flat. A tall 

wardrobe …

Embodied Reasoning

Situation: Sitting at the edge of  the bed and 
facing the couch.
Question: Can I go straight to the coffee 
table in front of me?
LEO: No.

3D Object Captioning
LEO: A 3D model of a Southern White Rhino, 
one of largest animal species in the world.

LEO: It’s a 3D model of a midnight 
green ceramic coffee cup with a plate.

User: Please desc-
ribe the toy house 

over ...

❄🔥🔥

You are an assi-
stant situated
in a 3D scene.
❄ Tokenizer

Action ResponseText Response
There is a sofa 
next to the TV.

It’s a kitchen for 
cooking. 

Embodied Generalist Agent in 3D World

2D Encoder 3D Encoder

System 
Message

Egocentric 
Image

3D Scene Instruction

Tokenizer

P = [𝟎. 𝟏, −𝟎. 𝟐, 𝟎]
R = [𝟎, 𝟎, 𝟎, 𝟏] “Turn right”

De-tokenize

Large Language Model LoRA🔥𝜹

Figure 1: The proposed embodied generalist agent LEO. It takes egocentric 2D images, 3D point clouds, and
texts as input and formulates comprehensive 3D tasks as autoregressive sequence prediction. By instruction-
tuning LEO, it extends the capability of LLMs to multi-modal vision-language-action tasks with a unified model.

strong priors (Zhao et al., 2021; Chen et al., 2022). Notably, recent works (Zhu et al., 2023c; Hong
et al., 2023) utilize multi-modal Transformer together with synthetic data to enhance the model’s
capability in grounded 3D scene understanding. Nevertheless, they fall short in embodied tasks, e.g.,
acting within 3D environments. Additionally, there are significant yet rarely explored problems, e.g.,
the potential of VLA learning and efficient adaptation of LLMs for 3D tasks.

In this work, we introduce the generalist agent LEO, which is generically embodied, multi-modal,
and general-purpose. It can take egocentric 2D images, 3D point clouds, and texts as task input
and handle comprehensive tasks within the 3D environment. As shown in Fig. 1, LEO exhibits the
capability of perceiving, grounding, reasoning, planning, and acting with a unified task interface,
model architecture, and objective. LEO perceives through an egocentric 2D image encoder for
the embodied view and an object-centric 3D point cloud encoder for the third-person global view.
Such perception modules can be flexibly adapted to various embodied environments and enhance
3D reasoning. The encoded visual tokens are interleaved with text tokens to form a unified multi-
modal task sequence, which further serves as the input to a decoder-only LLM. Equipped with
a vocabulary containing both text and action tokens, the LLM can generate responses to various
tasks simultaneously. Consequently, all the tasks are formulated as sequence prediction, thereby
accommodating a unified training objective.

Following prior experiences (Liu et al., 2023b), we adopt a two-stage learning scheme, i.e., 3D
VL alignment and 3D VLA instruction tuning. We accordingly collect large-scale comprehensive
datasets LEO-align and LEO-instruct, which comprise diverse object-level and scene-level tasks.
Notably, we meticulously design an LLM-assisted pipeline to generate high-quality 3D VL data,
wherein we propose to prompt LLMs (OpenAI, 2022) with scene graphs and Object-centric Chain-
of-Thought (O-CoT) method. To further enhance quality control, we devise refinement procedures
with regular expression matching and scene graph retrieval. We demonstrate our approach largely
enriches the data scale and diversity, meanwhile mitigating hallucination in LLM-generated data.

We quantitatively evaluate and ablate LEO on diverse 3D tasks, including 3D captioning (Chen
et al., 2021), 3D question answering (Azuma et al., 2022), situated question answering (Ma et al.,
2023), embodied navigation (Ramrakhya et al., 2022), and robotic manipulation (Shridhar et al.,
2021). The results indicate (i) through task-agnostic instruction tuning with a unified model, LEO
achieves state-of-the-art performances on most tasks, particularly surpassing previous task-specific
models; (ii) LEO shows proficiency in scene-grounded dialogue and planning, capable of generating
flexible and coherent responses; (iii) LEO achieves comparable performances to state-of-the-art
task-specific models on navigation and manipulation tasks, and exhibits remarkable generalization
ability; (iv) LEO’s strong performances stem from both data and model aspects, including the
alignment stage, data diversity, generalist-style instruction tuning, and object-centric representation;
(v) LEO manifests the scaling law that echoes prior findings (Kaplan et al., 2020; Reed et al., 2022;
OpenAI, 2023). We also present qualitative results to illustrate LEO’s versatility and proficiency in
grounded 3D scene understanding.
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Table 1: Datasets statistics. We illustrate key statistics of datasets for
3D VL alignment (LEO-align) and 3D VLA instruction tuning (LEO-
instruct). res. (response) denotes tokens to be predicted, while prefix
denotes those in the context.

Dataset Task 2D input 3D assets #data #token
(res.)

#token
(prefix+res.)

LEO-align
object captioning ✗ Objaverse 660K 10M 27M
object referring ✗ ScanNet + 3RScan 354K 15M 39M

scene captioning ✗ 3RScan 20K 3.3M 4.4M

LEO-instruct

3D captioning ✗ ScanNet 37K 821K 3M
3D QA ✗ ScanNet + 3RScan 83K 177K 4M

3D dialogue ✗ 3RScan 11K 1.1M 8.3M
task planning ✗ 3RScan 14K 1.9M 2.7M

navigation ✓ MP3D 60K 11.4M 272M
manipulation ✓ CLIPort 300K 7.2M 734M

Table 2: Accuracy of LLM-generated
data on three types of questions.

Counting Existence Non-existence

3D-LLM 56.5 96.8 40.0

Ours 57.4 91.3 27.4
+ O-CoT 78.0 93.4 30.5
+ refinement 100.0 100.0 100.0

Table 3: The amount of examined
data in Tab. 2. 3D-LLM data (Hong
et al., 2023) is much less since we
can only access a subset.

Counting Existence Non-existence

3D-LLM 434 95 10
Ours 2666 6766 3314

In summary, our main contributions are as follows: (i) we propose LEO, the first embodied generalist
agent capable of following human instructions to perceive, ground, reason, plan, and act in the 3D
world; (ii) we propose a simple yet effective framework that connects object-centric 3D representation
and LLM to efficiently bridge the gap between vision, language, and embodied action; (iii) we collect
large-scale comprehensive datasets for our two-stage generalist training scheme, and particularly
propose an LLM-assisted pipeline for the generation of high-quality 3D VL data; (iv) we conduct
extensive experiments to demonstrate LEO’s proficiency across various tasks, and present in-depth
analyses to reveal valuable insights; (v) we release the data, code, and model weights to endow the
future research in embodied generalist agents.

2 MODEL

The leading design principles of LEO are two-fold: 1) It should handle the multi-modal input of
egocentric 2D, global 3D, and textual instruction, and the output of textual response as well as
embodied action commands in a unified architecture; 2) It should leverage pre-trained large language
models (LLMs) as a powerful prior for the downstream tasks. We therefore convert all data of
different modalities into a sequence of tokens, illustrated below:

You are...︸ ︷︷ ︸
system message

s
(1)
2D , ..., s

(M)
2D︸ ︷︷ ︸

2D image tokens
(optional)

s
(1)
3D , ..., s

(N)
3D︸ ︷︷ ︸

object-centric
3D tokens

,USER:... ASSISTANT:︸ ︷︷ ︸
instruction

s(1)res , ...s
(T )
res︸ ︷︷ ︸

response

.
(1)

With this representation, we formulate the learning of LEO as GPT-style autoregressive language
modeling (Brown et al., 2020) given the prefix (from system message to instruction), i.e. prefix
language modeling (Raffel et al., 2020). Therefore, a pretrained LLM can be used to process such
sequences. Next, we will detail the tokenization of multi-modal data, model architecture, training
loss, and inference settings. An overview of our model can be found in Fig. 1.

2.1 TOKENIZATION

We follow prior practices in 2D VLM (Liu et al., 2023b; Alayrac et al., 2022) and 3D VLM (Zhu
et al., 2023c) to tokenize the multi-modal data in LEO. We use SentencePiece tokenizer (Kudo &
Richardson, 2018) to encode text with 32k subwords; 2D image tokens for egocentric 2D images;
and object-centric 3D tokens extracted over Mask3D-based (Schult et al., 2022) object proposals for
3D point cloud inputs. For embodied action commands, continuous actions (e.g. in manipulation) are
discretized (details in Appendix D.3) to join the discrete actions (e.g. navigation) and form a unified
discrete action space. We follow Brohan et al. (2023) to map these discrete actions to the least used
tokens in SentencePiece. After tokenization, all tokens are ordered into the format in (1).

2.2 TOKEN EMBEDDING & LLM

We apply several token embedding functions to process the tokens in the sequence before sending
them to the LLM. The LLM will then align these tokens of different modalities, and produce the
response. Most of the responses are text and can be decoded directly. For responses that include
embodied actions, we will map the reserved SentencePiece text tokens back to action commands.

Text & 2D token embedding. For text tokens (including embodied actions that have been mapped
to the reserved text tokens), an embedding look-up table is used to map them into vectors. While the
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egocentric 2D image is encoded by a pretrained OpenCLIP ConvNext (Liu et al., 2022) for obtaining
image token embeddings. We apply MLP adapters to match the dimensions of all token embeddings.

Object-centric 3D token embedding. Each 3D object token (i.e., the point cloud of a 3D object) is
first encoded by a pretrained point cloud encoder (e.g., PointNet++ (Qi et al., 2017)). We then adopt
the Spatial Transformer introduced in Chen et al. (2022) to further process the point cloud embedding
of all objects into object-centric 3D token embeddings. In a nutshell, Spatial Transformer biases the
standard attention score with relative position and size for capturing 3D relations between objects.
Due to space limit, the readers are referred to Chen et al. (2022) and Appendix D.2 for more details.

Pretrained LLM. We choose Vicuna-7B (Chiang et al., 2023) to process the token sequence. In
order to tackle the challenging alignment and grounding problem of multi-modal tokens (2D, 3D,
text, embodied action) while preserving the LLM pretrained knowledge, we employ LoRA (Hu et al.,
2022) to introduce additional tunable parameters to the frozen pretrained LLM.

2.3 TRAINING & INFERENCE

We formulate the learning objective of LEO following (Brown et al., 2020; Raffel et al., 2020) in a
prefix language modeling fashion. For a batch B of token sequence s, we optimize LEO via:

L(θ,B) = −
|B|∑
b=1

T∑
t=1

log pθ(s
(b,t)
res |s(b,<t)

res , s
(b)
prefix), (2)

where sprefix denotes the prefix tokens (from system message to instruction) in (1). During training,
we freeze the pretrained 3D point cloud encoder and the LLM and finetune the 2D image encoder,
the Spatial Transformer, and the LoRA parameters. In total, LEO has ~7B parameters and ~142M
of them will be tuned. During inference, we use beam search to generate textual responses. For
tasks that require action commands, we map the textual outputs to action commands as discussed in
Sec. 2.1. More details on the model and training can be found in Appendix D.

3 DATASETS

Since LEO is a generalist agent that receives multi-modal inputs and follows instructions, we adopt
the two-stage training proposed by Liu et al. (2023b) and split the data into two sets: (i) LEO-
align (Sec. 3.1) that focuses on 3D vision-language (VL) alignment to bridge the gap between 3D
scene representation and natural language; and (ii) LEO-instruct (Sec. 3.2) that targets at 3D VLA
instruction tuning to endow LEO with various capabilities. The statistics and examples of these
datasets can be found in Tab. 1 and Appendix C, respectively. Due to the data scarcity, we adopt
LLMs to facilitate the data generation process and outline the details in Sec. 3.3.

3.1 LEO-ALIGN: 3D VISION-LANGUAGE ALIGNMENT

In LEO-align, we focus on 3D VL alignment. Similar to BLIP-2 (Li et al., 2023d), we train LEO to
generate captions given various 3D inputs. Specifically, we collect three types of 3D captioning data:
1) object-level captions, where we align 3D individual objects with their descriptions (Luo et al.,
2023); 2) object-in-the-scene captions, where the goal is to generate the referring expressions of
objects in a 3D scene context (Achlioptas et al., 2020; Zhu et al., 2023c); and 3) scene-level captions,
which focuses on depicting global 3D scene using natural language. Due to the space limit, we defer
details including data source and components to Appendix B.1.

3.2 LEO-INSTRUCT: INSTRUCTION FOLLOWING IN 3D WORLD

In LEO-instruct, LEO will be tuned to follow instructions and accomplish various 3D VLA tasks. We
curate a comprehensive set of tasks that covers a broad spectrum from grounded scene understanding
and reasoning (Chen et al., 2021; Ma et al., 2023), to dialogue, planning, and embodied acting (Savva
et al., 2019; Shridhar et al., 2021). Specifically, we introduce 1) 3D captioning and question
answering – given 3D scene input, the agent needs to generate a natural language response to
describe the scene or answer questions; 2) 3D dialogue and task planning, where the agent is
expected to generate flexible and coherent responses to complex instructions with respect to the given
3D scene, and 3) navigation and manipulation, which require the agent to accomplish a variety of
embodied acting tasks in the 3D scene. We defer details to Appendix B.2.
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Dialogue(O-CoT):

Dialogue Context: high level task: organize the bedroom. low level task: 

check some objects.

Human: I need help organizing my bedroom. Can you assist me? Thought: 

no specific objects

Assistant: Of course! What specifically do you need help with?

Human: Can you check if there are any clean clothes hanging on the wall? 

Thought: clothes-13

Assistant: I'm sorry, but the clothes hanging on the wall are messy.

Human: Thanks for your help! Thought: no specific object

Assistant: You're welcome! If you need any further assistance, feel free to ask.

QA(O-CoT):

Question: Where is the printer located? Thought: printer-8 

Answer: standing on the desk

Question: How many blankets are on the bed? Thought: 

blanket-16, blanket-17 Answer: 2

Question: What is the type of the room? Thought:wardrobe-

2, desk-7, chair-11, bed-15 Answer: bedroom

Object Scene Caption:

The showcase is supported by 

the wall and positioned behind, 

close to, and to the left of the 

shelf. The wall is flat, architectural, 

and dark in color. The shelf is 

made of wood and has a low size.

Scene Caption:

In this room, there is a wooden floor that is 

clean and flat. A tall wardrobe stand on the 

right side of a desk, close to a basket. The 

wardrobe is in front of a chair, a bed, and 

behind a bedside table. Clothes are hanging 

on a white wall, to the right of a closed 

curtain. The bed is wide, clean, and covered 

with blue blanket. The room has a 

comfortable and organized setting with 

functional furniture.

Planning:

High-Level Task: Organize and tidy up the bedroom. 

Low-Level Actions:

1. Clean the floor by sweeping to remove any dirt.

2. Make the bed by arranging the blanket and pillows.

3. Place any loose items or belongings into the basket.

4. Arrange items on the shelves and showcase in a tidy way.

Scene-Graph-based Prompting

1. System Message

2. Demonstrations

3.Query(a new scene)

Scene Graph Context:

{'sofa-1': {'attributes': {'color': 'red'}, 'relations': ['to 

the right of chair-2', 'in front of table-3']}, 'chair-2': 

{'attributes': {'color': 'brown'}, 'relations': []}}

Human-labeled Responses

Scene Graph Context

1) Object scene caption

2) Scene caption

3) Dialogue(O-CoT)

4) QA(O-CoT)

5) Planning

Refinement Procedures

1. Wrong Answers

There are two curtains in the room.

1. Answer Refinement

There are 3 curtains in the room.

3. Responses with ID

The kitchen cabinet-9 and kitchen 

counter-10 are parts of the kitchen.

3. GPT-based rewriting

The kitchen features a cabinet  and 

a counter.

2. Negative Responses 

Question: Where is the football table? 

Thought: football table-17 Answer: 

unknown

2. Removing Negative Responses 

The negative responses will be 

removed.

You are an AI visual assistant in a 3D scene… 

Raw Responses Refined ResponsesResponses

4. Others

Unnecessary content (Thought, etc.)

4. Others

Remove unnecessary content.

Messages

Potential Issues:

1) Wrong Answers

2) Negative Responses

3) Responses with IDs

3) Others 

Figure 2: Our proposed LLM-assisted 3D-language data generation pipeline and data examples.. (Top-left)
Messages with 3D scene graphs, including object attributes and relations in a phrasal form, used for providing
scene context when prompting LLM. (Top-right) The human-defined refinement procedures were conducted
over raw LLM responses to improve data quality. (Bottom) Examples of LLM-assisted generation in LEO-align
and LEO-instruct. Thoughts, colored in gray, will be removed after refinements.

3.3 LLM-ASSISTED 3D-LANGUAGE DATA GENERATION

As mentioned above, at the core of producing a large proportion of LEO-align and LEO-instruct is
the assistance of LLMs. We now detail the key techniques of prompting LLMs (i.e., ChatGPT) to
generate 3D-text paired data. An overview can be found in Fig. 2.

Scene-graph-based prompting. Our data generation pipeline starts with 3D scene graphs from
3DSSG (Wu et al., 2021), which provide scene contexts for prompting. Compared to counterparts
that utilize object boxes (Yin et al., 2023; Hong et al., 2023; Wang et al., 2023d), it offers both rich
object attributes and accurate spatial relation information among objects, allowing LLMs to generate
data with high-quality 3D details (comparisons in Appendix B.8). Next, we manually design some
examples as seed tasks Liu et al. (2023b), including scene and object captioning, QA, dialogue, and
planning, and ask LLM to produce more tasks as well as the responses. Details for designing the seed
tasks can be found in Appendix B.3.

Object-centric CoT. To further combat the hallucination of LLMs (Bang et al., 2023) in open-
ended generation as in our pipeline, we propose the object-centric chain of thought (O-CoT) prompt-
ing that requires the LLM to explicitly provide the label and ID of object candidates as thoughts
during text generation. We also utilize subgraph sampling to further enhance the diversity of 3D
scene graphs (see details in Appendix B.7). We provide examples of O-CoT in Fig. 2.

Refinement procedures. Upon the scene graph and O-CoT prompting, we introduce refinement as
an additional safeguard to the quality and reliability of our generated data. Specifically, we send raw
LLM responses to several human-defined filters based on the 3D scene graphs: negative responses
(e.g., lacking the necessary information to answer) will be removed; unnatural narratives will be
rewritten, etc. Further, we detect text that involves logical reasoning (e.g., counting) or hallucination,
and manually fix the wrong responses according to the ground truth provided by scene graphs. We
provide illustrative examples in Fig. 2 and Appendix B.6, and quantitative analysis on the impact of
data refinement procedures in Appendix I.1.

Assess the quality of generated data. In addition to data examples, we propose to assess the quality
of generated data quantitatively. We focus on the LLM-produced question-answer pairs about objects
(questions starting with How many/Is there and ending with in the room/bedroom/kitchen/living
room/bathroom). We first divide these pairs into three categories: counting, existence, and non-
existence, which examines the number of certain objects/whether an object exists/whether an object
does not exist in the scene, respectively. We manually check if the answers in these pairs are correct,
and report the overall accuracy. Results in Tab. 2 demonstrate that our proposed scene-graph-based
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Table 4: Quantitative comparison with state-of-the-art models on
3D VL understanding and embodied reasoning tasks. “C” stands for
“CIDEr”, “B-4” for “BLEU-4”, “M” for “METEOR”, “R” for “ROUGE”,
“Sim” for sentence similarity, and “EM@1” for top-1 exact match. The
n-gram metrics for Scan2Cap are governed by IoU@0.5. † indicates an-
swering questions via prompting GPT-3 with the generated scene caption.
Gray indicates evaluation results with refined exact-match protocol.

Scan2Cap (val) ScanQA (val) SQA3D (test)

C B-4 M R Sim C B-4 M R EM@1 EM@1

Task-specific models
Scan2Cap 35.2 22.4 21.4 43.5 - - - - - - 41.0†
3DJCG 47.7 31.5 24.3 51.8 - - - - - - -
Vote2Cap-DETR 61.8 34.5 26.2 54.4 - - - - - - -
ScanRefer+MCAN - - - - - 55.4 7.9 11.5 30.0 18.6 -
ClipBERT - - - - - - - - - - 43.3
ScanQA - - - - - 64.9 10.1 13.1 33.3 21.1 47.2

Task-specific fine-tuned
3D-VisTA 66.9 34.0 27.1 54.3 53.8 69.6 10.4 13.9 35.7 22.4 48.5
3D-LLM (FlanT5) - - - - - 69.4 12.0 14.5 35.7 20.5 -

LEO 72.4 38.2 27.9 58.1 55.3 101.4 13.2 20.0 49.2 24.5 (47.6) 50.0 (52.4)

Table 5: Results on robot manipula-
tion. seen indicates in-domain tasks.
unseen marks OOD tasks with novel
colors or objects.

separating-piles packing-google
-objects-seq

put-blocks-in
-bowls

seen unseen seen unseen seen unseen

CLIP-only 90.2 71.0 95.8 57.8 97.7 44.5
CLIPort (single) 98.0 75.2 96.2 71.9 100 25.0
CLIPort (multi) 89.0 62.8 84.4 70.3 100 45.8

LEO 98.8 75.2 76.6 79.8 86.2 35.2

Table 6: Results on object naviga-
tion. † indicates zero-shot evaluation.

MP3D-val HM3D-val

Success(↑) SPL(↑) Success(↑) SPL(↑)
Habitat-web (shortest) 4.4 2.2 - -
Habitat-web (demo) 35.4 10.2 - -

ZSON 15.3† 4.8† 25.5 12.6

LEO 23.1 15.2 23.1† 19.1†

prompting, O-CoT prompting and refinement bring consistent improvement to data quality and the
complete data generation pipeline outperforms a recent counterpart (3D-LLM). We also demonstrate
how we help address the grammatical errors compared to counterparts in Appendix B.9. Finally,
we provide the data distribution in Appendix B.10 to illustrate the diversity of our generated data.

4 CAPABILITIES AND ANALYSES

We demonstrate LEO’s capabilities by a comprehensive evaluation on the full spectrum of embodied
3D tasks encompassing perceiving, grounding, reasoning, planning, and acting. In Sec. 4.1, we
present quantitative comparisons between LEO and state-of-the-art models on various 3D VL tasks,
underscoring LEO’s proficiency in 3D VL understanding and reasoning. In Sec. 4.2, we highlight
LEO’s strength in scene-grounded dialogue and task planning. In Sec. 4.3, we extend LEO to
embodied acting tasks wherein LEO exhibits remarkable versatility. In Sec. 4.4, we conduct ablative
studies to reveal more insights into LEO, including data and model aspects. In Sec. 4.5, we probe the
scaling effect and manifest the potential for further development.

4.1 3D VISION-LANGUAGE UNDERSTANDING AND REASONING

Overview. Understanding and reasoning about object attributes, object relations, and other facets
of 3D scenes from an agent’s egocentric perspective is a fundamental capability of an embodied
generalist agent in the 3D world. We investigate how well can LEO perform 3D VL understanding
and embodied reasoning tasks, especially when being compared against task-specific models and
existing generalist agents. Specifically, we consider three renowned 3D tasks: 3D captioning on
Scan2Cap (Chen et al., 2021), 3D QA on ScanQA (Azuma et al., 2022), and 3D embodied reasoning
on SQA3D (Ma et al., 2023). Our evaluation metrics include conventional scores (e.g., CIDEr, BLEU,
METEOR, ROUGE) and other metrics adapted for open-ended generation, e.g., sentence similarity
(Reimers & Gurevych, 2019) and refined exact-match accuracy (see details in Appendix H.1).
Following 3D-VisTA (Zhu et al., 2023c), we use object proposals from Mask3D (Schult et al.,
2022) instead of ground-truth object segments for evaluation.

Baselines. For quantitative comparisons, we include both task-specific approaches and generalist
models: 1) state-of-the-art specialists in 3D dense captioning (Chen et al., 2021; Cai et al., 2022;
Chen et al., 2023); 2) state-of-the-art specialists in 3D QA (Azuma et al., 2022; Ma et al., 2023); 3)
task-specific fine-tuned generalist models like 3D-VisTA (Zhu et al., 2023c) and 3D-LLM (Hong et al.,
2023). To the best of our knowledge, LEO is the first model that, in stark contrast to prior models,
can directly handle the aforementioned 3D VL tasks in a unified architecture without task-specific
fine-tuning. This lends greater credence to LEO’s comparative superiority.

Results & analysis. As shown in Tab. 4, LEO surpasses both state-of-the-art single-task and
task-specific fine-tuned models significantly on 3D dense captioning and 3D QA tasks. In contrast
to the specialist models that utilize task-specific heads, our LLM-based approach not only affords
the flexibility of generating open-ended responses but also exhibits excellent quantitative results.
On the other hand, considering the complicated feature aggregation in 3D-LLM, we believe that
object-centric 3D representation is a simple yet effective option to connect 3D scenes with LLM
while harnessing the inherent knowledge of LLM.
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Table 7: Quantitative results of LEO trained
with different data configurations. w/o Align:
without alignment stage. ScanNet: tuned on
ScanNet scenes only. w/o Act: tuned without em-
bodied acting tasks. We report the exact match
metrics for QA tasks and sentence similarity for
others. Underlined figures indicate zero-shot re-
sults on novel scenes (3RScan).

ScanNet 3RScan

Scan2Cap ScanQA SQA3D 3RQA 3RDialog 3RPlan

w/o Align 62.8 22.7 (45.0) 50.9 (53.2) 49.7 (53.7) 73.0 80.3
ScanNet 64.0 24.4 (49.2) 46.8 (49.5) 35.8 (50.0) 25.5 23.4
w/o Act 65.4 24.3 (48.5) 50.0 (52.5) 51.9 (57.4) 73.3 81.1
VLA 65.3 25.0 (48.9) 46.2 (48.3) 51.3 (55.8) 72.3 77.2

Table 8: TrueSkill scores with
human preference. Dialg: dia-
logue and planning data.

Answerable Unanswerable NLP

w/o Dialg 24.4±1.3 23.1±1.4 23.4±1.4
w/ Dialg 25.6±1.3 26.8±1.4 26.6±1.4

Table 9: Answer accuracy (EM)
on object-existence questions.
Aug: augmented data.

3RScan ScanNet (0-shot)

Yes No Overall Yes No Overall

w/o Aug 1.00 0.01 0.34 0.98 0.16 0.43
w/ Aug 0.72 0.91 0.85 0.88 0.81 0.83

Figure 3: LEO-instruct test
loss with the growth of data
and model scale, manifesting
the scaling law.
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4.2 SCENE-GROUNDED DIALOGUE AND PLANNING

Overview. Upon the 3D VL understanding and reasoning, we anticipate LEO to support more
sophisticated interaction with humans, e.g., responding to complex multi-round user instructions in
the 3D world. To verify these capabilities, we conduct qualitative studies on 3D dialogue and planning
tasks, with unseen scenarios from the held-out test sets of LEO-instruct. We defer the quantitative
results of dialogue and planning to our ablation study in Sec. 4.4. Quantitative comparison with other
approaches is infeasible given the absence of comparable benchmarks.

Results & analysis. As shown in Fig. A.1, LEO is capable of generating high-quality responses,
which encompass two features: 1) Precisely grounded to the 3D scenes. The task plan proposed by
LEO involves concrete objects related to the 3D scene, as well as plausible actions regarding these
objects. 2) Rich informative spatial relations. The entities in LEO’s responses often accompany
detailed depictions. Such information helps identify specific objects in complex 3D scenes and
affords considerable assistance to humans.

4.3 EMBODIED ACTION IN 3D WORLD

Overview. To probe LEO’s capacity of bridging vision-language-acting in the 3D world, we select
two canonical embodied AI tasks: embodied navigation (ObjNav) on AI Habitat (Ramrakhya et al.,
2022) and robotic manipulation on CLIPort (Shridhar et al., 2021). Specifically, for CLIPort robotic
manipulation, we evaluate LEO on the three tasks listed in Tab. 5 including their unseen counterparts,
and report the success scores. For ObjNav, we evaluate LEO on the original MP3D ObjNav
validation split. Additionally, we test generalization to the validation split of the newly introduced
HM3D ObjNav task (Ramakrishnan et al., 2021). We report the success rate and SPL metrics
following Ramrakhya et al. (2022). We consider both Habitat-web (Ramrakhya et al., 2022) (fully
supervised) and ZSON (Majumdar et al., 2022) (zero-shot) as baselines.

Results & analysis. We present the results of CLIPort manipulation and object navigation in Tabs. 5
and 6. Our findings are as follows: 1) In robotic manipulation, LEO is comparable to state-of-the-art
performances and even better on some challenging unseen tasks. In particular, LEO directly produces
motor commands without inductive bias (e.g., heatmap) that benefit previous methods, showcasing
LEO’s considerable capacity for learning embodied actions. 2) In ObjNav, LEO achieves a success
rate that is comparable to the baselines and has a better SPL on MP3D-val, suggesting that LEO can
leverage the object-centric 3D scene input (potentially offering a coarse global map) and take a shorter
path to the target. Furthermore, results on HM3D-val confirm LEO’s zero-shot generalization to novel
scenes. Notably, all baselines are equipped with recurrent modules while LEO only incorporates
truncated past actions, which could account for a lower success rate (see discussion in Appendix H.2).
3) Overall, the two-stage learning scheme endows LEO with semantic-level generalization (novel
objects, etc.) in both manipulation and navigation tasks. We demonstrate the efficacy of tackling
embodied acting tasks with a general framework from 3D VL.

Additional results. We further investigate the perception modules, data regime, and generalization
to unseen objects in ObjNav task. See the results in Appendix I.4.

4.4 MORE INSIGHTS INTO LEO

Overview. In this section, we aim to offer deeper insights into LEO’s characteristics, mainly from
the data perspective (model perspective is deferred to Appendix G.2). Specifically, we evaluate
LEO when trained with different data configurations, including exact match, sentence similarity, and
human rating. We regard LEO instruction-tuned without embodied acting tasks (w/o Act) as the
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default setting. Following Achlioptas et al. (2020), we use ground-truth object segments in these
analyses. We present additional analyses on data in Appendix I.2 and model in Appendix I.3.

Alignment stage. In contrast to complete two-stage training (w/o Act), we direct instruction-tune
a model without alignment stage (w/o Align). The results in Tab. 7 show the consistent impact of
alignment. In particular, the benefit of alignment is significant on Scan2Cap since it concerns detailed
scene understanding and captioning, which is a primary focus of alignment training.

Specialist vs. generalist. We train a specialist on ScanNet scenes (ScanNet). As shown in Tab. 7,
ScanNet performs slightly worse than w/o Act even on ScanNet tasks, and particularly struggles
at generalization across scenes (3RQA) and tasks (3RDialog and 3RPlan). This demonstrates the
advantage of generalist-style instruction tuning with broad coverage of scenes and tasks.

VL vs. VLA. We compare w/o Act and VLA, which differ in whether embodied acting tasks are
included for training. The results in Tab. 7 show that incorporating embodied acting tasks could lead
to performance drops on 3D VL tasks. This may stem from 1) the gap between language generation
and embodied action prediction, and 2) the imbalanced data scale of embodied acting tasks. In
contrast to the finding that VL data benefits embodied acting tasks in VLA co-training (Brohan et al.,
2023), our observation implies that embodied acting tasks may harm VL capabilities in turn. How
to continually bridge the gap between VL and embodied acting tasks is an important direction for
further exploration.

Dialogue and planning data. In contrast to the default model (w/ Dialg in Tab. 8), we train LEO
without dialogue and planning data (w/o Dialg). We design an evaluation set with three types of
questions (Answerable, Unanswerable, and NLP) and evaluate with TrueSkill (Graepel et al., 2007)
according to human preference (see details in Appendix G.3). The results in Tab. 8 confirm more
hallucinations (less preferred by users on “Unanswerable”) and worse NLP skills for w/o Dialg.
This is probably because 1) the diverse conversations in our dialogue data can help cultivate flexible
responses to complex instructions, and 2) our planning data can offer scene-grounded commonsense
knowledge and also encourage detailed coherent text.

Data balancing. We find imbalanced data could induce hallucination in LEO, e.g., it tends to
respond with “Yes” when asked “Is there something in this room?”. To address this, we augment
the 3RScanQA data with more negative samples where non-existent objects are queried. We also
design an evaluation set with different types (Yes and No) of object-existence questions (see details
in Appendix G.4). Results in Tab. 9 demonstrate that we can effectively mitigate the hallucination
problem by balancing the tuning data. Moreover, the benefit of augmenting 3RScan data can transfer
to ScanNet scenes in a zero-shot manner.

4.5 SCALING LAW ANALYSIS

Settings. We study the scaling effect (Kaplan et al., 2020; Reed et al., 2022) of data and model in
LEO by tracking the instruction-tuning loss on the test set with the growth of data scale. In addition
to the default Vicuna-7B, we incorporate two LLMs at different scales: OPT-1.3B (Zhang et al., 2022)
and Vicuna-13B (Chiang et al., 2023). For Vicuna-7B, we also probe the influence of alignment
(Scratch vs. Aligned).

Results & analysis. From the test loss curves in Fig. 3, we have the following findings: 1) The
instruction tuning of LEO conforms to the scaling law (Kaplan et al., 2020; Reed et al., 2022).
We observe that all curves decrease log-linearly with the data scale. 2) Scaling up LLM leads
to consistent improvements. Aligned Vicuna-7B shows significantly lower losses than Aligned
OPT-1.3B. In contrast, despite the consistent improvements, the gap between Aligned Vicuna-7B and
Vicuna-13B appears less significant, suggesting potential saturation if we continue to scale up the
LLM. This indicates the scalability of LEO and the necessity of scaling up data to match the model
capacity. 3) Alignment leads to consistent improvements. Aligned Vicuna-7B shows consistently
lower losses than Scratch Vicuna-7B, which echoes the inferior performances of w/o Align in Tab. 7.

5 RELATED WORK

Generalist agents. The AI community has witnessed the rising generalist models in both vision (Lu
et al., 2023; Wang et al., 2023b; Kirillov et al., 2023) and language (OpenAI, 2022; 2023) domains.
A generalist agent requires additional embodiment knowledge to interact with the environment and
complete embodied acting tasks. Existing efforts towards generalist agents include: grounded reason-
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ing and task planning in the real world (Ahn et al., 2022; Huang et al., 2022b), skill generalization in
open-world environment (Fan et al., 2022; Cai et al., 2023a; Wang et al., 2023e;a; Cai et al., 2023b;
Gong et al., 2023b), general robotic manipulation (Brohan et al., 2022; Jiang et al., 2023; Gong
et al., 2023a), and unified vision-language-action (VLA) models such as Gato (Reed et al., 2022),
PaLM-E (Driess et al., 2023), EmbodiedGPT (Mu et al., 2023), and RT-2 (Brohan et al., 2023). LEO
belongs to the VLA model, however, its goal is to build a generalist agent that can understand the
real 3D world beyond 2D images, which is absent in existing works.

Multi-modal instruction tuning. Pre-trained LLMs demonstrated practical for solving vision-
language tasks (Tsimpoukelli et al., 2021; Alayrac et al., 2022; Guo et al., 2023; Li et al., 2023d; Zhao
et al., 2023). Meanwhile, the instruction-tuning paradigm exhibited strong zero-shot generalization
in NLP tasks (Wei et al., 2022; Sanh et al., 2022; Ouyang et al., 2022; Chung et al., 2022). The two
streams merged into instruction-tuned LVLMs (Liu et al., 2023b; Zhu et al., 2023b; Ye et al., 2023;
Gao et al., 2023; Li et al., 2023b; Gong et al., 2023c; Dai et al., 2023). Despite the burst, these models
are confined to 2D visual modalities, e.g., image or video. Concurrent works (Yin et al., 2023; Hong
et al., 2023; Wang et al., 2023d; Xu et al., 2023) extend to 3D vision tasks, but these models either
lack the acting capability or unified efficient architecture.

Grounded 3D scene understanding. One key obstacle to building LEO is grounding the 3D world
with natural languages. There exist diverse methods of grounded scene understanding, e.g., spatial
relation modeling (Zhao et al., 2021; Chen et al., 2022; Zhu et al., 2023c) and fine-grained open-scene
understanding (Peng et al., 2023b; Kerr et al., 2023). However, due to data scarcity, how to utilize
LLMs to ground the 3D scene is rarely explored. Recently, 3D-LLM (Hong et al., 2023) leverages
multi-view images and Chat-3D (Wang et al., 2023d) uses object-centric point clouds to enable the
LLMs with 3D grounding. In this work, we devise both 2D and 3D encoders for grounding various
visual representations and employ LoRA (Hu et al., 2022) to efficiently fine-tune the LLMs.

3D data prompting from LLMs. LLMs exhibit extraordinary capabilities of text generation and
serve as a source for collecting diverse instruction-following data (Wang et al., 2023c; Taori et al.,
2023; Peng et al., 2023a). However, the lack of access to visual modalities makes it troublesome
to collect visual instruction-tuning data. To address this issue, existing methods provide bounding
boxes (Liu et al., 2023b) and add dense captions (Li et al., 2023a; Liu et al., 2023a) as image
descriptions or directly use off-the-shelf large vision-language models (LVLM) (Zhu et al., 2023a;
Luo et al., 2023) to help collect such data. Unlike concurrent attempts (Yin et al., 2023; Hong
et al., 2023; Wang et al., 2023d) in collecting 3D instruction-tuning data, our approach features a
scene-graph-based prompting and refinement method to prompt and correct the data.

6 CONCLUSIONS

The proposed agent LEO extends the current generalist ability of LLMs from text towards the
3D world and embodied tasks. It is a crucial initial step towards building embodied generalist
agents. Nonetheless, there are also limitations, e.g., generalization to novel scenes, and a notable
gap between VL learning and embodied action control. In light of this work, we identify several
promising directions that hold the potential for substantial advancement: (1) enhancing the 3D VL
understanding capability by leveraging larger-scale VL data from richer 3D domains; (2) continually
bridging the gap between 3D VL and embodied action, as our experiments reveal the efficacy of
their joint learning; (3) investigating the issues of safety and alignment in the context of embodied
generalist agents, particularly given that our scaling law analysis suggests significant enhancements
through scaling on data and model.

BROADER IMPACT

This work introduces LEO, an embodied multi-modal generalist agent designed to extend machine
learning capabilities into the 3D realm, marking a significant advance in the field. The potential
societal implications of LEO are manifold, touching on robotics, AR/VR, assistive technologies, and
environmental planning. Ethically, it underscores the importance of responsible AI development,
emphasizing safety, privacy, and fairness in automated decision-making. As LEO ventures into new
territories of human-machine interaction, it prompts a re-evaluation of ethical frameworks to ensure
that advancement contributes positively to society. While the immediate societal consequences of our
work align with the goals of advancing machine learning, we acknowledge the necessity of ongoing
ethical consideration as applications of LEO evolve.
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A QUALITATIVE RESULTS

To right of toilet

Where is the bathtub 

located in the bathroom?

There is a rectangular brown table. It 

is in the center of the room.

Describe object.

Closed

Is the door closed or open 

to my left side?

Of course! I'd be happy to help. What do you need advice on?

I'm redecorating my bedroom and I need some advice. Can you help me?

1. Wipe down the door, including 

the handle and any glass panels.

2. Vacuum or sweep the floor to 

remove any dust, dirt, or debris.

3. Dust and clean the cabinet, 

including any shelves or drawers.

4. Arrange the pillows on the 

couch neatly and fluff them up.

5. Dust and clean the ceiling using 

a long-handled duster or 

appropriate cleaning tool.

6. Check and adjust the 

temperature or settings of the 

radiator if necessary.

Neatly organize and remove dirt 

from the living room.

I want to add some color to the room. Are there any colorful objects in the room? 

Yes, there is a colorful picture hanging on the wall. It is in front of a shelf 

and behind an armchair. It adds a nice pop of color to the room.

That sounds great! What other decorations or furniture are in the room?

There is a wardrobe to the right of a stuffed animal. It is in front of a doorframe. 

Additionally, there are shelve attached to the wall, with various item displayed on them.

Thank you for the information! It's really helpful for my redecorating plans.

You're welcome! I'm glad I could assist you. If you have any questions, feel free to ask.

Pack the black shoe with green stripes in the brown box.

([0.29, 0.07, 0.06], [0., 0., 0., 1.0]), ([0.53, -0.18, 0.01], [0., 0., 0.38, 0.92]).

Please navigate to the toilet in the scene.

Forward Left Stop

…

Figure A.1: Qualitative results of interacting with LEO on unseen scenarios from a held-out test set of
LEO-instruct. LEO’s responses and actions can be grounded in novel scenes.

B DATA

B.1 MORE DETAILS ON LEO-ALIGN

Object-level caption. To facilitate object-level grounding of detailed object attributes, we leverage
Cap3D (Luo et al., 2023), which contains language descriptions for objects in Objaverse (Deitke
et al., 2023). Given a single 3D object as input, LEO will be asked to predict its caption.

Object-in-the-scene caption. For a better understanding of how an object can be related to others
(spatial relations, etc.) when situated in a 3D scene, we collect referring expressions of objects in
scenes from existing datasets, including ScanScribe (Zhu et al., 2023c) and ReferIt3D (Achlioptas
et al., 2020). Further, we generate additional object-referring expressions on 3RScan (Wald et al.,
2019) scenes by prompting LLMs (details in Appendix B.4). During alignment, LEO needs to predict
these referring expressions given the object-centric 3D input of the scene and the referred object.

Scene-level caption. Finally, we encourage LEO to capture scene-level descriptions of a 3D scene.
These scene-level captions focus on global information depicting key objects in the scene as well as
their attributes and functionalities, relations among multiple objects, and room types and styles. We
leverage scene graph annotations (Wald et al., 2019) and prompt LLMs to produce a total of ~20K
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captions. To further increase caption diversity, we propose a subgraph sampling strategy to prevent
LLMs from always attending to certain notable facets of the scene (details in Appendix B.7). Similar
to previous settings, LEO needs to predict these captions given the corresponding 3D input.

B.2 MORE DETAILS ON LEO-INSTRUCT

Below, we provide a comprehensive illustration of the data preparation process for these tasks and an
overview of generated data in Fig. 2. We list the corresponding instructions in Appendix C.

3D captioning. The task is to produce a generic caption given 3D input. We adopt the Scan2Cap
dataset (Chen et al., 2021), which is based on the ScanNet (Dai et al., 2017) 3D scenes and covers
various levels (object-level and scene-level) and aspects (attributes, relations, etc.) of scene details.

3D question answering. The 3D-QA task is an extension of VQA (Antol et al., 2015) to 3D scenes
with a focus on 3D knowledge, ranging from spatial relations to functionalities of objects. For this
task, we first aggregate two existing 3D-QA datasets: ScanQA (Azuma et al., 2022) and SQA3D (Ma
et al., 2023). To further generate questions concerning rich 3D knowledge, we prompt LLMs to
generate ~35K QA pairs on 3RScanQA with our quality refinement techniques discussed in Sec. 3.3.

3D dialogue. The goal of this task is to support natural conversations between LEO and users
about a given 3D scene. This task necessitates coherence and continuity across multiple rounds of
conversational interactions. We build such dialogues on 3RScan scenes by prompting LLMs with a
variant of the Chain-of-Thought prompting method discussed in Sec. 3.3 to facilitate diverse dialogues
about relevant and accurate details about the 3D scene. In total, ~11K dialogues are collected.

Scene-aware task planning. In this task, LEO is required to decompose high-level tasks into
step-by-step low-level plans given 3D scenes. We expect LEO to generate feasible plans based on
the current 3D scene and ground its inherent common sense knowledge about procedures to the scene
configurations, including, objects, their attributes, relations, and functional characteristics, etc. By
prompting LLMs, we end up collecting ~14K task-plan pairs on 3RScan scenes.

Embodied navigation. We follow imitation learning setting in Habitat-web (Ramrakhya et al.,
2022) for the embodied navigation task. We choose ObjNav, where LEO needs to map navigation
instructions (e.g. “find bed”), object-centric 3D input, and an egocentric 2D input into discrete
habitat motor commands. For simplicity, we use shortest path navigation trials rather than human
demonstrations for learning as they are less noisy and therefore easier to learn when provided with
the 3D scene. In total, we generate ~60K navigation episodes out of the MP3D ObjNav training
scenes (Savva et al., 2019) for this task.

Robotic manipulation. We employ a subset of the manipulation tasks introduced in CLIPort (Shrid-
har et al., 2021). The input of this task includes instructions, egocentric 2D observations, and
object-centric 3D information. As discussed in Sec. 2.1, we discretize the continuous action space
of CLIPort into bins to unify the action decoding of navigation and manipulation (more details
in Appendix D.3). We generate 100K demonstrations for each selected manipulation task.

B.3 DESIGN OF SEED TASKS FOR LLM-ASSISTED 3D DATA GENERATION

Object Scene Caption & Scene Caption. To align the 3D scene/object with language, we prompt
ChatGPT to curate these two types of caption data. Object Scene Caption includes the spatial rela-
tionships of the object with some adjacent objects in the scene. Scene Caption is the comprehensive
description for the whole 3D scene, including some key objects and their spatial relationships.

QA & Dialogue. For QA, we design several question-answer pairs given a scene graph. A diverse
set of questions are asked about the 3D scene, including the object attributes, object counting, object
existence, spatial relationships between the objects, object types, object affordance, room type and so
on. For dialogue, we design a conversation between the assistant and a person asking questions about
this scene. The answers are in a tone as if the assistant is understanding the scene and helping the
person. Different from single-round QA, dialogue has some high-level tasks such as ’searching for
specific objects’ that require multi-round conversations.

Planning. To include a deeper understanding of the global 3D scene information, we prompt
ChatGPT to generate a high-level task and 5-10 action steps(interaction between the assistant and the
objects in the scene) to finish the task.
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messages = [{''role'': ''system'', ''content'': ''You are an AI visual assistant in a 3D scene. The scene 

contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance, 

with a class label and an object id. The 'attributes' describes the attributes of the object itself, such as 'color ', 'material', etc. 

The 'relations' describes the spatial relations with other objects.

For example, from the scene graph

{'sofa-1': {'attributes': {'color': 'red'}, 'relations': ['to the right of chair-2', 'in front of table-3']}, 'chair-2': {'attributes': {'color': 

'brown'}, 'relations': ['to the left of sofa-1']}, 'table-3': { 'attributes': {'material': 'wood'}, 'relations': []}}

we can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of 

the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects 

with uncertainty cannot appear in the answer. 

You need to generate meaningful conversations based on the scene information. The conversations include questions 

from human and responses from an AI assistant. Ask questions about the object types, counting the objects, object attributes, 

relative positions between objects. Also ask questions concerning commonsense, e.g., how the objects can be used by human 

and human activity in the scene. You can ask questions about the affordance of the objects in the scene. The questions should 

conform to the given scene information. The attributes of objects and spatial relations between objects can only be inferred 

from the 'attributes' and 'relations' in scene graph, respectively. The questions should contain interrogative sentences and 

declarative sentences to cover diverse tones. You need to first provide the context of the dialogue. The context can be high 

level or low level tasks. The dialogue should be related to the context. Then you need to provide the clues about the question. 

Then the robot answers the question according to the thought. The dialogue has the following format:Dialogue Context: 

<Dialogue Context>\nHuman:<Question>\nThought:<Thought>\nRobot:<Answer>. Do not use IDs of the objects('<object>-

<ID>' or '<object> <ID>') in <Question> and <Answer>. The IDs of the objects can appear in the <Thought>''}]
for sample in fewshot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})

messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.2: The prompt for generating 3D Dialogue.

messages = [{''role'': ''system'', ''content'': ''You are an AI visual assistant in a 3D scene. The scene 

contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance, 

with a class label and an object id. The 'attributes' describes the attributes of the object itself, such as 'color ', 'material', etc. 

The 'relations' describes the spatial relations with other objects.

For example, from the scene graph

{'sofa-1': {'attributes': {'color': 'red'}, 'relations': ['to the right of chair-2', 'in front of table-3']}, 'chair-2': {'attributes': {'color': 

'brown'}, 'relations': ['to the left of sofa-1']}, 'table-3': { 'attributes': {'material': 'wood'}, 'relations': []}}

we can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of 

the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects 

with uncertainty cannot appear in the answer. 

You need to generate 10-15 question-answer pairs based on the scene information. The question-answer pairs include the 

object types, counting the objects, object attributes, relative positions between objects. The questions should conform to the 

given scene information. The attributes of objects and spatial relations between objects can only be inferred from the 

'attributes' and 'relations' in scene graph, respectively. The questions must be able to be answered correctly based on the scene 

graph. You need to provide the queried object. Note that all answers to the questions must be single words or phrases. The 

question answer pair should be following format:\nQ: <question>\nT: <queried object(s)>\nA: <Answer>. You can answer 

the question according to the queried object(s). If there is no information about the question, the <Answer> should be 

'unkown'.''}]
for sample in few_shot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})

messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.3: The prompt for generating 3D QA.

B.4 PROMPTS FOR LLM-ASSISTED 3D DATA GENERATION

In Fig. A.2–A.6, we show the prompts for five types of LLM-assisted 3D-language data generation.
We provide few-shot examples as the context. In each example, the “content” contains a scene graph,
and the “response” refers to a human-labeled response. The query is a new scene graph, based on
which ChatGPT (OpenAI, 2022) generates responses.

Fig. A.2 shows the prompt for generating 3D dialogue data. Red fonts outline our requirements of the
dialogue content, including object attributes, spatial relations, and commonsense topics. Purple fonts
formulate the template of the response. We require the response generated by the ChatGPT should
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messages = [{''role'': ''system'', ''content'': ''You are an AI visual assistant that can analyze a 3D 

scene. The scene contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes 

an object instance, with a class label and an object id. The 'attributes' describes the attributes of the object itself, such as 'color', 

'material', etc. The 'relations' describes the spatial relations with other objects.

For example, from the scene graph:

{'sofa-1': {'attributes': {'color': 'red'}, 'relations': ['to the right of chair-2', 'in front of table-3']}, 'chair-2': {'attributes': {'color': 

'brown'}, 'relations': ['to the left of sofa-1']}, 'table-3': { 'attributes': {'material': 'wood'}, 'relations': []}}

We can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of 

the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects 

with uncertainty cannot appear in the answer. Do not use the id of the object in the dialogue, use ordinal words and attributes 

to refer to different objects with the same label.

Using the provided scene graph, design a high-level task that can be performed in this 3D scene. Besides, decomposing 

this high-level task into a sequence of action steps that can be performed using the instances in this3D scene.

Remeber, the high-level task and action steps must be able to be performed in the 3D scene using the given object instances. 

Do not use IDs of the objects('<object>-<ID>' or '<object> <ID>') in the planning.''}]
for sample in fewshot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})

messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.4: The prompt for generating 3D planning.

messages = [{''role'': ''system'', ''content'': ''You are an AI visual assistant in a 3D scene. The scene 

contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance, 

with a class label and an object id. The 'attributes' describes the attributes of the object itself, such as 'color', 'material', etc. 

The 'relations' describes the spatial relations with other objects.

For example, from the scene graph:{'sofa-1': {'attributes': {'color': 'red'}, 'relations': ['to the right of chair-2', 'in front of table-

3']}, 'chair-2': {'attributes': {'color': 'brown'}, 'relations': ['to the left of sofa-1']}, 'table-3': { 'attributes': {'material': 'wood'}, 

'relations': []}}

We can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of 

the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects 

with uncertainty cannot appear in the answer. Don't use IDs of the objects('<object label>-<ID>' or '<object label> <ID>') in 

the summary. 

You need to provide a summary for a scene. The summary should be about the object types, object attributes, relative 

positions between objects. Also describe the scene concerning commonsense, e.g., how the objects can be used by human and 

human activity in the scene. The description should conform to the given scene information. The attributes of objects and 

spatial relations between objects can only be inferred from the 'attributes' and 'relations' in scene graph, respectively. You 

don't need to describe each object in the scene, pick some objects of the scene for summary. You can also summarize the 

room's function, style, and comfort level based on the arrangement and color of objects within the room. Your summary must 

not exceed 110 words.''}]
for sample in few_shot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})

messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.5: The prompt for generating 3D scene caption.

messages = [{''role'': ''system'', ''content'': ''You are a helpful assistant. You will receive a dictionary 

of an object. This dictionary provides information about a node in a scene graph, as well as its adjacent nodes. The value of 
the key 'object' is the object represented by the node. The value of 'relations' includes the spatial relationships with the 

adjacent nodes . The value of the key 'attribute' provides the attributes of the object. The value of 'edge attribute' provides a list 

of object attributes for the adjacent nodes. You need to describe the object according to the information of the target 
object node. The IDs of objects cannot appear in the summary.''}]
for sample in few_shot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})

messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.6: The prompt for generating 3D object-in-the-scene caption.

include the dialogue context as well; the “thought” contains the involved objects in the question,
which is used to enhance the reliability of the answer. These two components will be removed after
the refinement procedures.
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Table A.1: The effect of O-CoT on the answer accuracy for Object Counting questions.

Settings Seed 1 Seed 2 Seed 3 Seed 4 Average Avg. Gain

w/o O-CoT 0.5838 0.5349 0.5962 0.5816 0.5741
0.2061

O-CoT 0.7647 0.8117 0.7778 0.7667 0.7802

B.5 ANALYSIS OF THE OBJECT-CENTRIC CHAIN-OF-THOUGHT

To further investigate the impact of Object-centric Chain-of-Thought (O-CoT) on data quality,
we analyze the answer accuracy for Object Counting questions. Specifically, we collect several
demonstrations, and for each run, we select two of them as the prompt seed. With these seeds, we
generate dialogues across all scenes in 3DSSG (Wu et al., 2021) and then assess the answer accuracy
for Object Counting questions. The results are presented in Tab. A.1.

The results in Tab. A.1 indicate that O-CoT consistently improves the answer accuracy for Object
Counting questions. Though there remain errors after applying O-CoT, we will conduct refinement
to fix them. Examples of Object Counting questions are provided in Appendix B.6.

B.6 REFINEMENT DETAILS

We conduct refinement by passing raw LLM-generated responses into several human-defined filtering
procedures based on the 3D scene graph. The refinement considers five raw response categories:

• Object Counting. The question concerns counting the target object.
• Object Existence. The response claims the existence of objects, which can be actually either

existent or non-existent.
• Object Non-existence. The response claims the non-existence of objects, which can be actually

either existent or non-existent.
• Negative Response. The scene graph cannot provide a solid response to the question, which means

the question cannot be answered and will be discarded.
• Response with ID. The response contains unexpected object IDs.

Specifically, we employ regular expression matching to detect errors in these five categories. We also
employ this method to correct the responses except for Response with ID, which will be rewritten by
ChatGPT instead. The QA pair will be eliminated if multiple rounds of rewriting fail to remove the
IDs. Tab. A.2 and Tab. A.3 show some examples of the responses subject to the above five categories
as well as the effect of our refinement.

B.7 SUBGRAPH SAMPLING

To enhance the diversity of the 3D scene graphs used for prompting, we perform subgraph sampling
on the 3DSSG according to a sampling rate, which denotes the ratio of preserved nodes. The sampled
subgraphs are used for generating scene captions and planning data. We analyze the distribution of
node numbers across the 3DSSG dataset in Fig. A.7 and set different sampling rates for scenes with
different numbers of nodes in Tab. A.4. For each sampling rate, we set 4 random prompt seeds to
further enhance the diversity of prompted data.

To verify whether the subgraph sampling strategy can maintain the consistency and diversity of scene
captions, we generate scene captions for the same scene using both the full graph and subgraph. We
then employ GPT-4 (OpenAI, 2023) to evaluate the similarities and differences between the two
captions. The results in Tab. A.5 indicate that our subgraph sampling strategy can maintain both
consistency and diversity.

B.8 SCENE-GRAPH-BASED PROMPTING vs. BOX-BASED PROMPTING

In this section, we provide a comparative analysis of scene-graph-based prompting and box-based
prompting (Hong et al., 2023). We refer the readers to Figure 6 in 3D-LLM (Hong et al., 2023) for
details of the box-based prompting method. Fig. A.8 shows the contents of two methods. To present
a fair comparison between the two methods, we prompt with 1) demonstrations that have similar
content under the same scene (see Fig. A.9) and 2) identical new scene queries. Since 3D-LLM does
not elaborate on attribute-related prompts, we mainly compare the spatial relations in the responses.
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Table A.2: Examples of dialogue refinement.

Types Raw Responses Refined Responses

Object Counting There are 3 chairs in the room.
I see there are two washing ma-
chines in the bathroom.

There are 4 chairs in the room.
I see there are 4 washing machines
in the bathroom.

Object Existence Yes, there is a cutting board in the
kitchen.
Yes, there is a computer and a moni-
tor on the desk. However, the moni-
tor is currently off.

No, there is no cutting board in the
room.
No, there is no computer in the
room.

Object Non-existence No, there is no stereo equipment in
the room.
I’m sorry, but I couldn’t find a hair
dryer in the bathroom.

Yes, there is a stereo equipment in
the room.
Yes, I found a hair dryer in the room.

Negative Response No, there is nothing else mentioned
in the scene graph.
I’m sorry, but there is no mention of
a mirror in the scene graph for the
bathroom.

The negative responses will be re-
moved.

Response with ID You can place your backpack on the
floor, to the left of the dining table-
33. As for your bag, you can place it
on the floor, to the left of the bed-10.

You can place your backpack on the
floor, to the left of the dining table.
As for your bag, you can place it on
the floor, to the left of the bed.

Table A.3: Examples of QA refinement.

Types Raw Responses Refined Responses

Object Counting Q: How many chairs are in the
room?
A: 3

Q: How many chairs are in the
room?
A: four

Object Existence Q: Is there a mirror in the room?
A: yes

Q: Is there a mirror in the room?
A: no

Object Non-existence Q: Is there an ironing board in the
room?
A: no

Q: Is there an ironing board in the
room?
A: yes

Negative Response Q: What is the material of the bath-
tub? A: unknown
Q: Where is the shampoo dispenser?
A: unknown

The negative responses will be re-
moved.

Response with ID Q: Where is the mirror located?
A: attached to wall-3, behind heater-
18, to the left of shelf-19

Q: Where is the mirror located?
A: attached to a wall, behind a
heater, to the left of a shelf

Table A.4: Sampling rates for scenes with different node numbers. The hyphen denotes a sweep of sampling
rates, e.g., “0.7-0.9” means “0.7,0.8,0.9”.

Node Number 10-20 20-30 30-40 40-50 50-60 60-70 >70

Sampling Rate 0.8,0.9 0.7-0.9 0.6-0.9 0.6-0.9 0.5-0.9 0.5-0.9 0.4-0.9

As shown in Fig. A.10, we highlight some spatial relations in red. The comparison shows that
our method provides more diverse and reliable spatial relations, which are important for 3D scene
understanding.
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Figure A.7: The distribution of node numbers for 3DSSG scenes. The node number represents the number of
objects in a scene.

Table A.5: The comparative analysis of full graph prompting and subgraph prompting.

Settings Generated Scene Captions

Full Graph In this scene, there is a colorful and flat white wall. A small TV stand is
positioned in front of a low upholstered couch, to the left of a brown lamp, and
to the right of a wooden table. The couch is covered with a pink padded square
pillow and a patterned blanket. A light hangs on the wall and another light is
supported by the table. There is a rectangular glass window attached to the
wall, behind which is a yellow curtain. The room has a comfortable and cozy
atmosphere, suitable for relaxation and entertainment.

Sampling Rate 0.6 In this scene, there is a colorful white wall attached to a brown wooden floor. The
couch is upholstered and low in size, located to the right of a small TV stand and
a table. A red blanket covers the couch, and there are patterned, padded square
pillows on the couch. A black glass window is attached to the wall, and there are
artificial lamps standing on the floor and close to the couch. The lamps are also
near a table and to the right of the TV stand. The scene suggests a comfortable
living room with a cozy couch, pillows, and a blanket, suitable for relaxation and
entertainment.

GPT-4 Evalutaion Similarities: 1. Both scenes describe a living room setting, emphasizing comfort
and coziness suitable for relaxation and entertainment. 2. Both rooms have a
white wall. 3. Each scene features a couch and a TV stand. 4. Both scenes
describe a blanket and a padded square pillow on the couch.
Differences: 1. The first scene has a brown wooden floor, while the floor is not
mentioned in the second scene. 2. The first scene has a red blanket on the couch;
the second has a patterned blanket but doesn’t specify the color. 3. The first
scene describes the lamps as “standing on the floor”, while the second mentions
one light hanging on the wall and another supported by the table. 4. The second
scene includes a yellow curtain behind the window, which the first scene does
not mention.
Summary: Overall, both summaries provide a similar thematic view of a com-
fortable living room but differ in the specific arrangement and color details of
the items within the room.

B.9 ADDITIONAL COMPARISION REGARDING DATASET QUALITY

In addition to assessing the factual accuracy of responses compared to 3D-LLM, we also compared
the grammatical correctness of the responses with ScanScribeZhu et al. (2023c), a template-based
synthetic dataset that focuses on 3D object caption. We observed that their dataset exhibited some
grammar errors, whereas our dataset did not manifest such issues. We provide some data examples
in Tab. A.6 and Tab. A.7. We highlighted the grammar errors present in ScanScribe dataset in red.
Through comparison, it is evident that our sentences exhibit accurate and natural syntax, and also
surpasses ScanScribe in the diversity and complexity of object descriptions.
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Box-based Content
wall:[-0.66, 0.853, -0.329], floor:[0.291, 0.454, -1.533], ceiling:[0.3, 0.955, 0.9], wall:[0.997, 0.577, -0.353], light:[0.213, 0.59, 

0.905], wall:[0.971, 3.168, -0.351], window:[0.943, 3.385, 0.074], board:[-0.649, -0.117, -1.183], desk:[0.696, 2.259, -0.987], 

box:[-0.395, 0.64, -1.33], bowl:[0.631, 3.071, -0.803], box:[0.797, 3.121, -0.91]

Scene-Graph-based Content
{'wall-1': {'relations': ['attached to floor-2'], 'attribute': {'shape': 'flat', 'lexical': 'architectural', 'color': 'white'}}, 'floor-2': {'relations': 

[], 'attribute': {'material': 'plastic', 'shape': 'flat', 'lexical': 'inside', 'color': 'blue'}}, 'ceiling-3': {'relations': ['attached to wall-1', 

'attached to wall-4', 'attached to wall-7'], 'attribute': {'shape': 'flat', 'lexical': 'overhead', 'color': 'white'}}, 'wall-4': {'relations': 

['attached to floor-2'], 'attribute': {'shape': 'flat', 'lexical': 'architectural', 'color': 'white'}}, 'light-6': {'relations': ['hanging on ceiling-

3'], 'attribute': {'state': 'off'}}, 'wall-7': {'relations': ['attached to floor-2'], 'attribute': {'shape': 'flat', 'lexical': 'architectural', 'color': 

'white'}}, 'window-8': {'relations': ['attached to wall-7', 'behind desk-10'], 'attribute': {'material': 'glass', 'color': 'dark', 'shape': 

'rectangular', 'state': 'closed'}}, 'board-9': {'relations': ['lying on floor-2', 'to the left of desk-10', 'close by box-11'], 'attribute': 

{'shape': 'flat', 'lexical': 'flat', 'color': 'brown'}}, 'desk-10': {'relations': ['standing on floor-2', 'in front of window-8', 'to the right of 

board-9', 'to the right of box-11', 'close by box-11'], 'attribute': {'other': 'rigid', 'size': 'narrow'}}, 'box-11': {'relations': ['standing on 

floor-2', 'close by board-9', 'close by desk-10', 'to the left of desk-10', 'in front of box-15', 'to the left of box-15'], 'attribute': 

{'state': 'written on', 'shape': 'rectangular', 'lexical': 'rectangular', 'other': 'rigid', 'size': 'tall'}}, 'bowl-14': {'relations': [], 'attribute': 

{}}, 'box-15': {'relations': ['standing on desk-10', 'to the right of box-11', 'behind box-11'], 'attribute': {'color': 'dark', 'shape': 

'rectangular', 'lexical': 'rectangular', 'size': 'small'}}}

Figure A.8: Comparison of the content between box-based and scene-graph-based prompting.

Box-based Prompting
Demonstration #1:

Human: Do you think the room is suitable for

me to read a book?

Robot: Let me check the arrangement of the

room. There is a light in the room, which can

provide adequate lighting. There is a desk for

you to put your book. However, there is no

chair of sofa in the room. It means you

cannot seat down and rest in the room.

Human: Thanks a lot. Can you describe the

position of the desk?

Robot: Sure! The desk is in front of the

window.

Human: Thanks a lot.

Robot: You are welcome!

Demonstration #2:

Human: Can you help me print a document?

Robot: Sure! There is a printer in the room.

You can use it for printing.

Human: Ok. I also need a laptop to download

the document.

Robot: Ok. I find a laptop on the table. Do

you need any other help?

Human: Thanks a lot.

Robot: You are welcome!

Scene-Graph-based Prompting
Demonstration #1:

Dialogue Context: high level task: verify if the furniture arrangement is suitable for 

reading. low level task: check specific object.

Human: Do you think the room is suitable for me to read a book?

Thought:light-6,desk-10

Robot: Let me check the arrangement of the room. There is a light in the room, which

can provide adequate lighting. There is a desk for you to put your book. However, there

is no chair of sofa in the room. It means you cannot seat down and rest in the room.

Human: Thanks a lot. Can you describe the position of the desk?

Thought: desk-10

Robot: Sure! The desk is in front of the window.

Human: Thanks a lot.

Thought: no specific object

Robot: You are welcome!

Demonstration #2:

Dialogue Context: high level tasks: find proper objects to print a document.

Human: Can you help me print a document?

Thought: printer-30

Robot: Sure! There is a printer in the room. You can use it for printing.

Human: Ok. I also need a laptop to download the document.

Thought: laptop-28

Robot: Ok. I find a laptop on the table. Do you need any other help?

Human: Thanks a lot.

Thought: no specific object

Robot: You are welcome!

Figure A.9: The demonstrations for prompting, which are designed to be similar for a fair comparison.

Box-based Prompting
Response:

Human: Can you help me find a towel?

Robot: Of course! I found three towels in the room.

One is near the bathtub, one is near the sink, and

another one is near the stool. Which one would you

like to use?

Human: The one near the sink, please.

Robot: Alright. I will fetch the towel near the sink for

you. Is there anything else I can assist you with?

Human: No, thank you. That's all.

Robot: You're welcome! If you need any further 

assistance, feel free to ask.

Scene-Graph-based Prompting
Response:

Dialogue Context: high level task: describe the objects in the bathroom.

Human: Can you describe the objects in the bathroom?

Thought: bathtub-8, sink-12, toilet-15, mirror-4

Robot: Sure! In the bathroom, there is a bathtub made of ceramic, with a shiny

texture and a white color. There is also a sink with an oval shape and a shiny

texture. The toilet is white and seat down. There is a mirror attached to the wall,

which is polished. Is there anything specific you want to know about these objects?

Human: Is there a towel in the bathroom?

Thought: towel-10

Robot: Yes, there is a folded together rectangular towel in the bathroom. It is 

located to the right of the door.

Figure A.10: The responses of two prompting methods. Descriptions highlighted in red show our method leads
to more flexible and reliable spatial relations.

B.10 DATASET STATISTICS

We provide statistics on the instruction-tuning datasets. We visualize the distribution of the question
types in 3RQA (Fig. A.11) and 3RDialog (Fig. A.12). The pie chart’s inner circle represents the first
word of the questions, while the outer circle accounts for the second or third word in the corresponding
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Table A.6: Object captions in the 3Rscan scene 8f0f144b-55de-28ce-8053-2828b87a0cc9.

object label-id method response id caption

microwave-8 ours 1 The microwave is black in color and is standing on
the table. It is located behind and to the left of the
toaster.

2 The microwave is black in color. It is standing on
a table and is positioned behind and to the left of a
toaster.

ScanScribe 1 This is a black microwave. It is standing on the
table. It is close by the toaster. A black microwave
is in front of the this microwave.

2 This is a black microwave. It is behind the toaster.
It is standing on the table. A black microwave is in
front of the this microwave.

Table A.7: Object captions in the 3Rscan scene 0cac753c-8d6f-2d13-8e27-e0664fc33bb9.

object label-id method response id caption

counter-4 ours 1 The counter is standing on a wooden floor. It is
close to 4 stools and an armchair. The stools are
simple and wide in size, while the armchair is nar-
row in size. The floor is wooden and flat, and it is
clean.

2 The counter is standing on the wooden floor. It
is close to 4 stools and an armchair. The floor is
made of wooden material and is flat in shape. It is
also clean. The armchair is narrow in size while
the stools are simple in design. Three of the stools
are wide in size.

ScanScribe 1 This is a counter. It is close by the armchair. It is
close by the stool. A counter is close by the this
counter. A counter is close by the this counter.

Figure A.11: Question types: 3RQA. Figure A.12: Question types: 3RDialog.

questions. The results show that the questions cover the attributes and spatial relations of the objects,
as well as high-level topics such as room types and functionalities.
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Figure A.13: Noun-verb pairs: 3RDialog instruction. Figure A.14: Noun-verb pairs: 3RPlan instruction.

Figure A.15: Noun-verb pairs: 3RDialog response. Figure A.16: Noun-verb pairs: 3RPlan response.

We also provide statistics of the root noun-verb pairs for instructions and responses in 3RDialog and
3RPlan, as shown in Fig. A.13–A.16.

C DATA EXAMPLES

Please refer to Tabs. A.25–A.27 for examples of our dataset.

D MODEL DETAILS

D.1 PROMPTS

The first portion of prompts sent into the LLM is a system message. It consists of two parts: a role
prompt and a situation prompt. The role prompt is the same for all tasks:

You are an AI visual assistant situated in a 3D scene. You can perceive (1) an ego-view image
(accessible when necessary) and (2) the objects (including yourself) in the scene (always
accessible). You should properly respond to the USER’s instructions according to the given
visual information.

The situation prompt begins with a common sentence:
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Table A.8: Examples from our object-level caption instruction set.

"Produce a description for the object at the chosen spot in the 3D scene.",
"How would you depict the object located at the selected point in the 3D environment?",
"Formulate a description of the item at the picked position within the 3D scene.",
"How would you describe the entity at the designated location in the 3D backdrop?",
"Can you detail the object situated at the selected point in the 3D setting?",
"Compose a narrative for the object at the chosen locale within the 3D environment.",
"What does the object at the specified position in the 3D visualization look like?",
"Provide a description for the item located at the marked site in the 3D world.",
"How would you illustrate the object placed at the selected spot in the 3D landscape?",
"Craft a depiction of the object at the pinpointed location within the 3D territory.",
"What kind of object is illustrated at the identified site in the 3D tableau?",
"Develop a description of the object at the specified position in the 3D backdrop.",
"What is the entity’s detail at the highlighted site in the 3D view?",
"Write up a description of the entity at the selected spot in the 3D realm.",
"What does the object look like at the pinpointed location in the 3D space?",
"Detail the entity located at the chosen position within the 3D scene.",
"Can you explain the essence of the object at the selected spot in the 3D zone?",

You are at a selected location in the 3D scene.

For SQA3D (Ma et al., 2023), the situation prompt is further extended with the situation description
in the dataset. The situation prompt is only used jointly with the embodiment token to support tasks
that require information about the embodiment. Details can be found in Appendix D.2.1.

Next are the visual tokens, including 2D image tokens and object-centric 3D tokens. Each token
sequence is interleaved within text tokens and starts with a text prefix.

Ego-view image: {IMAGE_TOKENS}
Objects (including you) in the scene: {OBJECT_TOKENS}

The last portion of prompts is a task-specific instruction. For object-level caption and object-
in-the-scene caption, we randomly chose one sentence from 151 sentences to be the instruction.
Some examples can be found in Tab. A.8. For scene-level caption, we randomly choose one from
183 instructions. Examples can be found in Tab. A.9. For 3D question answering task, we simply
use the question as the instruction. The dialog history is used as the instruction for 3D dialogue to
provide continuity across multiple rounds of interactions. A planning instruction pool consisting of
202 instructions is introduced for scene-aware task planning and we randomly choose one from it as
done in the caption tasks. Examples from the pool can be found in Tab. A.10. The chosen instruction
is further followed by an instruction that specifies the task, e.g., set up a home office.

With past action tokens {PAST_ACTIONS} appended at the end, the instruction for embodied
navigation is as follows, where {GOAL} stands for the goal specified by the target object name:

The task is navigation. Your goal is to find {GOAL} by moving around in the scene. Past
actions: {PAST_ACTIONS}.

The instruction for robotic manipulation is similar to the one in embodied navigation. Here {GOAL}
is the task description in CLIPort:

The task is manipulation. Your goal is to {GOAL}. Past actions: {PAST_ACTIONS}.
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Table A.9: Examples from our scene-level caption instruction set.

"Describe this scene.",
"Generate a description of this scene.",
"Generate a caption of this scene.",
"Can you describe the scene?",
"Can you generate a description of the scene?",
"Can you generate a caption of the scene?",
"Summarize this scene.",
"Provide an outline of this 3D scene’s characteristics.",
"How would you describe the 3D scene?",
"How would you summarize this scene?",
"Convey a summary of the 3D structure of this scene.",
"How would you interpret this 3D scene?",
"Offer a summary of the 3D scene.",
"Can you describe this scene in detail?",
"I’m interested in this scene, can you explain?",
"What is this scene made of?",
"Could you provide more info about this scene?",

Table A.10: Examples from our planning instruction pool.

"Plan for the task",
"Can you come up with a plan for this task",
"How can we do this task, provide a step-by-step plan",
"Draft a plan for completing this task",
"Detail a strategy for the task",
"What’s the best plan for this task",
"Draw out a procedure for the task",
"Lay out the steps for this task",
"Could you devise a plan for the task",
"Show me a plan for this task",
"I need a plan for the task",
"Sketch a plan for the task at hand",
"Set up a plan for this",
"Recommend a plan for this task",
"Offer a strategy for this task",
"Design a blueprint for the task",
"Outline the approach for this task",

D.2 FEATURE ENCODING

We have several modules to encode the multi-modal features.

• Object-centric 3D token embedding. The encoder for 3D object-centric point clouds is a
PointNet++ (Qi et al., 2017) pre-trained on ScanNet (Dai et al., 2017) with object-classfication task.
We sample 1024 points for every object as in Chen et al. (2022). The architecture parameters all
remain the same with Chen et al. (2022). We freeze the PointNet++ for empirically better results.

• Spatial Transformer (Chen et al., 2022). Spatial Transformer is a modified transformer archi-
tecture that explicitly encodes spatial relations between object pairs. Specifically, consider the
vanilla self-attention (Vaswani et al., 2017) mechanism which takes as input a feature matrix
X ∈ RN×d, where N stands for the number of tokens and d is the feature dimension. Vanilla
self-attention first compute Q = XWQ,K = XWK , V = XWV from X using learnable projec-
tion matrices WQ,WK ,WV ∈ Rd×dh where dh stands for the output feature dimension. Then the
attention weight matrix is computed by (ωo

ij)N×N = Ωo = softmax(QKT

√
dh

) and finally used for
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re-weighting ΩoV . The intuition of Spatial Transformer is that we can re-scale the elements ωo
ij in

the weight matrix Ωo.

In the object-centric reasoning setting, the input feature matrix is O ∈ RN×d. Consider an object
pair (Oi, Oj) with their geometric centers ci, cj . Spatial Transformer (Chen et al., 2022) computes
the Euclidean distance dij = ||ci − cj ||2 and the horizontal and vertical angles θh, θv of the line
connecting ci and cj . The spatial feature between the two objects (Oi, Oj) is a 5-dimensional
vector fij = [dij , sin (θh), cos (θh), sin (θv), cos (θv)]. To combine this feature with objects, the
spatial attention computes ωs

ij = gifij where gi = WT
S oi is a 5-dimensional vector. The spatial

attention further reweights the original self-attention weight matrix as

ωij =
σ(ωs

ij)exp(ω
o
ij)∑N

l=1 σ(ω
s
il)exp(ω

o
il)

.

Readers are referred to Chen et al. (2022) for more details. In summary, Spatial Transformer
explicitly computes pairwise spatial relations and fuses them with vanilla self-attention to provide
better spatial reasoning ability. We use a three-layer Spatial Transformer with 8 heads to process
the object-centric features produced by PointNet++ and output object tokens for LLM. For other
settings, We follow all the default hyperparameters in Chen et al. (2022).

• 2D token embedding. We use OpenCLIP ConvNext-base model (Liu et al., 2022) pre-trained on
LAION2B (Schuhmann et al., 2022) to process the egocentric 2D image.

• CLIP semantic guidance. To inject more semantics into visual tokens, we use the text encoder
from CLIP (Radford et al., 2021) to process the instruction tokens to obtain a global semantics
feature. Next, we update the visual tokens via element-wise product between the CLIP semantics
feature and each image & object token embedding.

D.2.1 EMBODIMENT ENCODING

In addition to the egocentric 2D input, we introduce an embodiment token to help LEO reason in
an embodiment-aware fashion. We find it useful to use it together with the situation prompt and
2D egocentric input. Specifically, an embodiment token e is introduced in embodied navigation,
embodied reasoning, and object-in-the-scene caption tasks. Specifically, e is a learnable embedding
that will be inserted into the 3D object list.

So what does embodiment information mean in these tasks? In embodied navigation, it means
the agent’s position and orientation in the scene, which can be derived from a GPS and a compass
sensor. The orientation of the agent is further represented by a rotation which is Fourier-embedded
and mapped to a feature vector r by a linear layer. It is the same in embodied reasoning task. In the
object-in-the-scene caption task, we assume the agent is situated at the location of the object that is
being referred to. Therefore, embodiment information also means the location of the referred object.
We obtain this location by randomly choosing a spot inside the referred object bounding box. To sum
up, we could simply treat the embodiment token as a special self object, where its object embedding
is learnable, and its location/orientation corresponds to the actual or assumed “agent”.

After inserting the embodiment token, we obtain a new 3D object token list: e, s(1)3D , s
(2)
3D , . . . , s

(N)
3D ,

where s
(i)
3D , i ∈ {1, 2, . . . , N} are 3D object token embeddings produced by PointNet++, along with

location specified for each object (including the self-object). We can concatenate them together to
get a feature matrix O ∈ R(N+1)×d and send them to the Spatial Transformer to explicitly fuse the
spatial information of all the 3D objects and the self-object.

D.3 ACTION TOKENIZATION

To empower LEO to exert control over an embodiment or a robot, we encode all actions within the
context of Object Navigation (Ramrakhya et al., 2022) and CLIPort (Shridhar et al., 2021) tasks
using the least frequently employed language tokens. Specifically, for the Object Navigation task, we
allocate 4 tokens to represent actions of move forward, turn right, turn left, and stop. For the CLIPort
task, we use a total of 516 tokens to discretize action poses, with 320 tokens dedicated to the x-axis
pose bins, 160 tokens for the y-axis pose bins, and 36 tokens for the z-rotation bins.
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Table A.11: Hyperparameters for LEO inference.

Hyperparameters Value

Number of beams 5
Maximum output length 256
Minimum output length 1
Top p 0.9
Repetition penalty 3.0
Length penalty 1.0
Temperature 1.0

Table A.12: Hyperparameters for the alignment stage.

Hyperparameter Value

Optimizer AdamW
Weight decay 0.05
Betas [0.9, 0.999]
Learning rate 3× 10−4

Warmup steps 400
Number of workers 4
Parallel strategy DDP
Type of GPUs NVIDIA A100
Number of GPUs 4
Accumulate gradient batches 5
Batch size per GPU (total) 4 (80)
Training precision bfloat16
Gradient norm 5.0
Epochs 5

D.4 LLM HYPERPARAMETERS

We set the maximum output length of our Vicuna-7B to be 256. The maximum context length is also
set to 256 and if the length of the input is greater than 256, we truncate it to 256 by deleting tokens
from the left (i.e., only the rightmost 256 tokens are preserved). We set rank and α in LoRA (Hu et al.,
2022) to be 16 and the dropout rate to be 0. LoRA is implemented for all the projection matrices in
the LLM, i.e., (Wq,Wk,Wv,Wo) in attention modules and (Wgate,Wup,Wdown) in MLPs.

The hyperparameters for inference are listed in Tab. A.11.

E ALIGNMENT SETUP

The hyperparameters for 3D VL alignment are presented in Tab. A.12.

F INSTRUCTION-TUNING SETUP

The hyperparameters for 3D VLA instruction tuning are presented in Tab. A.13.

G ABLATION DETAILS

G.1 OBJECT-CENTRIC MASK

Ground truth vs. object proposals. As we adopt an object-centric 3D representation, the object-
centric masks are necessary to segment the scene point cloud. For scenes that lack annotations of
object-centric masks, we can utilize off-the-shelf detection or segmentation models to generate object
proposals and thus obtain the masks. We compare the performances of LEO (w/o Act) between using
ground-truth masks and Mask3D (Schult et al., 2022) proposals. The results in Tab. A.14 indicate
that using Mask3D proposals leads to a moderate performance drop on Scan2Cap (mainly due to the
IoU@0.5 metrics) and comparable performances on QA tasks.
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Table A.13: Hyperparameters for the instruction-tuning stage.

Hyperparameter Value

Optimizer AdamW
Weight decay 0.05
Betas [0.9, 0.999]
Learning rate 3× 10−5

Warmup steps 400
Number of workers 4
Parallel strategy DDP
Type of GPUs NVIDIA A100
Number of GPUs 4
Accumulate gradient batches 5
Batch size per GPU (total) 4 (80)
Training precision bfloat16
Gradient norm 5.0
Epochs 10

Table A.14: Quantitative comparison between LEO (w/o Act) using ground-truth masks and Mask3D proposals.
Metrics follow Tab. 4.

Scan2Cap (val) ScanQA (val) SQA3D (test)

C B-4 M R Sim C B-4 M R EM@1 EM@1

w/o Act (Mask3D) 72.4 38.2 27.9 58.1 55.3 101.4 13.2 20.0 49.2 24.5 (47.6) 50.0 (52.4)
w/o Act (GT) 87.4 44.5 30.8 65.7 65.4 103.0 14.6 20.1 49.7 24.3 (48.5) 50.0 (52.5)

Table A.15: Quantitative results of LEO equipped with LLMs at different scales. Metrics follow Tab. 7.

ScanNet 3RScan

Scan2Cap ScanQA SQA3D 3RQA 3RDialog 3RPlan

w/o Act (OPT-1.3B) 64.6 20.3 (44.2) 45.5 (47.6) 50.0 (54.5) 71.1 78.3
w/o Act (Vicuna-7B) 65.4 24.3 (48.5) 50.0 (52.5) 51.9 (57.4) 73.3 81.1
w/o Act (Vicuna-13B) 65.2 23.4 (48.9) 49.7 (52.3) 56.2 (60.4) 72.5 80.5

G.2 MODEL ABLATION

LLM. Following the setting of LEO (w/o Act), we ablate the default LLM (Vicuna-7B) with OPT-
1.3B (Zhang et al., 2022) and Vicuna-13B (Chiang et al., 2023), respectively. We report the evaluation
results on ScanNet and 3RScan tasks in Tab. A.15. The results show a significant gap between
OPT-1.3B and Vicuna-7B and comparable performances between Vicuna-7B and Vicuna-13B. This
indicates the notable improvements when scaling from smaller LLM to 7B scale and the potential
saturation if we continue to scale up, resembling the finding in Sec. 4.5.

Point cloud backbone. We have tried substituting PointNet++ (Qi et al., 2017) with Point-BERT
(Yu et al., 2022) as the point cloud backbone. Specifically, we utilize the Point-BERT checkpoint
from PointLLM (Xu et al., 2023), which has adapted Point-BERT to 6-channel (XYZRGB) input and
learned a language-aligned representation for 3D objects. We have not observed notable difference
between the performances of using Point-BERT and PointNet++ so we omit the results here.

G.3 DIALOGUE AND PLANNING DATA

To evaluate w/o Dialg, we design an evaluation set with three types of questions: 1) Answerable:
general questions that can be answered based on the given 3D scenes; 2) Unanswerable: questions
that cannot be answered given the 3D scenes due to a lack of information, e.g., “Tell me about the
elephant in the room”; 3) NLP: questions that solely examine the language functionality of LEO in
term of factual knowledge, reasoning, and text coherence. We collect 30 representative questions for
each subset and generate LEO’s responses for each question. We then ask humans to choose their
preferred responses between w/o Dialg and w/ Dialg Based on the human preferences, we evaluate
the two models with TrueSkill Graepel et al. (2007), which is an algorithm that quantifies players’
rating scores by Bayesian inference. The scores are estimated by Gaussian distribution and expressed
as µ± σ.
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G.4 DATA BALANCING

To investigate the hallucination problem, we collect 150 questions querying object existence on
3RScan and ScanNet respectively. We split three subsets according to the category of queried object.
The queried object can exist in the given scene (Yes), exist in other scenes instead of the given scene
(No-1), or not exist in all the scenes (No-2). Each subset comprises 50 questions. We merge No-1
and No-2 when reporting the exact-match accuracy, as shown in Tab. 9.

H EVALUATION DETAILS

H.1 3D QUESTION ANSWERING

Rationality of QA evaluation protocol. We argue that exact match (EM), as a conventional metric
for 3D QA, is unsuitable for evaluating the open-ended answer generated by LLMs. For example,
given the question “On what side of the towel is a bathroom curtain?” with ground-truth answer
“left side of towel”, it is never wrong to answer “left”. However, this will be deemed incorrect if we
adopt the strict exact match protocol. Such a misjudgment is quite likely to occur when evaluating
the answers from LLMs. By contrast, the classifier heads for QA (e.g., MCAN) are less affected
because they collect all possible answers in advance to formulate the QA as a close-set classification
problem. Hence, we refine the strict exact match protocol as follows.

1 """
2 code for QA protocols
3 pred: str
4 gts: List[str]
5 """
6

7 def strict_em(pred, gts):
8 for gt in gts:
9 if pred == gt:

10 # case 1
11 return True
12

13

14 def refined_em(pred, gts):
15 for gt in gts:
16 if pred == gt:
17 # case 1
18 return True
19 elif ’’.join(pred.split()) in ’’.join(gt.split()):
20 # case 2
21 return True
22 elif ’’.join(gt.split()) in ’’.join(pred.split()):
23 # case 3
24 return True
25 return False

In a nutshell, we squeeze the pred and gt, and then check whether one is a subset of the other. To
justify our refined exact match protocol, in Tab. A.16 we provide some representative examples in
the ScanQA validation set. Despite the improvements, we speculate such a simple refinement is still
insufficient for a sound evaluation metric considering the flexibility of human language.

H.2 EMBODIED NAVIGATION

To construct our training set, we adopt all 57 scenes in the MP3D ObjNav training split (Savva et al.,
2019; Ramrakhya et al., 2022) and generate ~60K shortest-path navigation episodes. The evaluation
is conducted on the original validation split of the MP3D ObjNav task and the newly introduced
HM3D ObjNav task (Ramakrishnan et al., 2021).

In contrast to most ObjNav agents that utilize recurrence through either RNN (Ramrakhya et al.,
2022) or DT-style Transformer (Suglia et al., 2021), LEO only employs a simplistic feed-forward
policy, i.e., the Transformer in LEO only takes in the instruction, current state (2D and 3D observa-
tion), and past 4 actions, and predicts the next action, similar to RT-2 (Brohan et al., 2023). Therefore,
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Table A.16: Examples from ScanQA validation set manifest the rationality of our refined exact match protocol.
Question Ground-truth answer Predicted answer Strict EM Refined EM

What color is the chair in the kitchen? dark brown brown ✗ ✓(case 2)
What is under the long kitchen counter? kitchen cabinets brown rectangular kitchen cabinets ✗ ✓(case 2)
What type of refrigerator is on the right of a kitchen counter? stainless steel refrigerator stainless steel ✗ ✓(case 2)
Where is the beige wooden desk placed? up against wall against wall ✗ ✓(case 2)
What color does the sofa look? it looks black black ✗ ✓(case 2)
Where is the black office chair located? in front of desks in front of desk ✗ ✓(case 2)
What is in the corner by windows? book shelf bookshelf ✗ ✓(case 2)
Where is the chair pulled into? table under table ✗ ✓(case 3)
How many chairs are to the left of the table? 4 4 chairs ✗ ✓(case 3)
What objects are sitting on the black couch? pillow pillows ✗ ✓(case 3)
Where are the two different size tables located in room? in center in center of room ✗ ✓(case 3)
Where is the laptop located? desk on desk ✗ ✓(case 3)
Where is the soap dispenser mounted above sink on wall above sink ✗ ✓(case 3)

Table A.17: Quantitative comparison between LEO pretrained on the generated data before/after refinement.
Metrics follow Tab. 4.

Scan2Cap (val) ScanQA (val) SQA3D (test)

C B-4 M R Sim C B-4 M R EM@1 EM@1

Before refinement 84.1 45.8 30.9 66.1 65.3 99.4 12.6 19.4 48.6 24.5 (49.1) 48.2 (50.5)
After refinement 87.1 45.2 31.1 66.1 65.7 105.7 14.9 20.5 50.7 24.7 (49.8) 52.4 (55.0)

Table A.18: Quantitative comparison between LEO trained on the LL3DA data and our data. Metrics follow
Tab. 4.

Scan2Cap (val) ScanQA (val)

C B-4 M R Sim C B-4 M R EM@1

LL3DA data 73.9 43.5 30.2 65.0 63.4 99.7 14.8 19.7 47.8 22.9 (46.4)
Our data 86.4 44.4 30.9 65.8 65.6 104.9 13.8 20.4 50.3 24.5 (49.2)

the only information relayed from the past is past actions. The absence of recurrence in LEO’s acting
policy is indeed the result of a trade-off between better performances and training efficiency. We
will commit to exploring the possibility of looping in more sophisticated policy architectures (e.g.,
recurrence) in future work.

I ADDITIONAL RESULTS

I.1 IMPACT OF DATA REFINEMENT

Settings. We investigate the impact of data refinement by comparing the downstream performances
between pretraining on the generated data before/after refinement. Specifically, since our generated
data (where the refinement occurs) pertains to 3RScan scenes, we first pretrain the LEO after the
alignment stage on a mix of 3RScan datasets, and then train on a mix of ScanNet datasets (Scan2Cap,
ScanQA, and SQA), where we report the quantitative results as downstream performances.

The results in Tab. A.17 demonstrate that data refinement elicits consistent improvements. In
particular, data refinement primarily benefits reasoning (QA) tasks, probably because the refinement
operation mainly concerns QA and dialogue data.

I.2 DATA COMPARISON

Settings. We collect the training data of LL3DA (Chen et al., 2024) to train LEO and compare the
quantitative results with LEO trained with our original data to showcase the impact of training data.
We report the performances on Scan2Cap and ScanQA, where their data overlaps ours.

The results in Tab. A.18 exhibit a consistent performance gap between training on LL3DA data and
our original data, underscoring the advantage of our collected training data.

I.3 MODEL COMPARISON

Settings. LEO adopts an object-centric 3D representation to encode 3D scenes, which is a novel
approach compared with recent works. For example, 3D-LLM (Hong et al., 2023) leverages 2D
foundation models to obtain dense semantic features and lift them to 3D space, and LL3DA (Chen
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Table A.19: Quantitative comparison between LL3DA and LEO when both trained on LL3DA data. Metrics
follow Tab. 4.

Scan2Cap (val) Nr3D (val) ScanQA (val)

C B-4 M R C B-4 M R C B-4 M R

LL3DA 63.0 36.0 25.7 54.7 23.9 13.4 22.3 45.8 75.7 13.3 15.4 37.0
LEO 64.9 37.2 27.4 57.5 22.1 10.9 22.9 46.3 99.2 14.9 19.4 47.3

Table A.20: Quantitative comparison between 3D-LLM and LEO when both trained on 3D-LLM data. Metrics
follow Tab. 4.

ScanQA (val) SQA3D (test)

C B-4 M R EM@1 EM@1

3D-LLM 74.5 12.9 15.1 37.5 21.2 49.8
LEO 97.4 14.6 19.1 46.8 23.2 (45.4) 50.6 (52.9)

et al., 2024) adopts scene-level encoding. They both use learnable queries to extract 3D features.
Here we investigate the influence of model design with the same training data. For a fair comparison,
we use Mask3D (Schult et al., 2022) object proposals instead of ground-truth masks for the evaluation
results of LEO.

LL3DA vs. LEO. We train LEO on the LL3DA training data and compare the performances with
LL3DA generalist results (without task-specific fine-tuning). From the results in Tab. A.19, we
highlight two takeaways: 1) with the same training data, LEO outperforms LL3DA on most metrics;
2) the gap between LL3DA and LEO is significant on ScanQA, which indicates a major advantage of
object-centric 3D representation lies in handling the reasoning task.

3D-LLM vs. LEO. As LL3DA collects a subset (ScanNet part) of 3D-LLM training data, we
leverage this subset to pretrain LEO and compare the downstream performances with 3D-LLM.
In contrast to the task-specific fine-tuning results of 3D-LLM, we report LEO’s evaluation results
after instruction tuning without task-specific fine-tuning. The results in Tab. A.20 show that LEO
consistently outperforms 3D-LLM when adopting the same training data. Notably, the magnitude of
this subset is much smaller than their original training data, which further underscores the efficiency
of our model.

I.4 EMBODIED ACTING

Quantitative results of ObjNav. We provide additional results of LEO 1) generalizing to unseen
objects on MP3D (below is a list of the objects used during training (seen) and for OOD evaluation
(unseen)), 2) learning with 70K human demonstrations provided by Habitat-web (Ramrakhya et al.,
2022) instead of shortest path, and 3) learning without one modality (full vs. w/o 3D vs. w/o 2D).
Evaluation results are shown in Tab. A.21. Note that the baseline Habitat-web is unable to generalize
to novel objects as it uses categorical embedding rather than natural language to represent object
goals.

# Objects (seen)
“gym_equipment”, “tv_monitor”, “picture”, “counter”,
“chair”, “cabinet”, “table”, “stool”, “plant”, “towel”,
“sofa”, “cushion”, “sink”, “fireplace”, “toilet”, “seating”,
“chest_of_drawers”, “bed”, “shower”, “bathtub”, “clothes”

# Objects (unseen)
“shelf”, “pillow”, “lamp”, “box”, “desk”, “refrigerator”,
“vase”, “armchair”

The results show that LEO can generalize to novel objects. On the other hand, human demonstrations
include more explorations, compared with shortest-path data. Therefore, it will be much harder
for agents without a recurrent module (e.g., LEO) to learn from human demonstrations (see Ap-
pendix H.2), leading to significantly weaker performances. Finally, more modalities (2D + 3D) are
indeed crucial to the success of mastering object navigation skills.
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Table A.21: Results on object navigation with OOD objects and human demonstrations. Note that the
baseline Habitat-web is unable to generalize to MP3D-unseen as it uses categorical embedding rather than
natural language to represent object goals.

MP3D-seen MP3D-unseen

Success(↑) SPL(↑) Success(↑) SPL(↑)
Habitat-web (shortest) 4.4 2.2 - -
Habitat-web (70k demo) 35.4 10.2 - -

LEO (shortest, w/o 2D) 7.8 4.6 - -
LEO (shortest, w/o 3D) 8.6 6.8 - -
LEO (shortest) 23.1 15.2 11.1 9.6
LEO (70k demo) 7.1 5.3 8.9 8.6

Qualitative results. We provide more qualitative results of robotic manipulation and embodied
navigation in the supplementary video.

I.5 SCAN2CAP

We provide additional qualitative results on Scan2Cap validation set in Tab. A.22. The results show
that LEO can correctly refer to the queried object and provide accurate descriptions, including spatial
relationships with other objects. However, LEO’s responses are confined to simple formats that lack
diversity. How to unlock more flexible responses while maintaining accuracy can be a direction for
future research.

I.6 SCANQA

We provide additional qualitative results on ScanQA validation set in Tab. A.23 and categorize the
responses into several types:

• Wrong. The response is inaccurate and deemed wrong.
• Wrong but reasonable. The response is deemed wrong but is reasonable to some extent, probably

due to ambiguities in the scene. Consider the second case in Tab. A.23. There are many objects
such as a coat rack, a coat, and a mini fridge-shaped cabinet on the right side of the organizer.
Though LEO’s response “mini fridge” does not match the ground truth “coat rack”, it is consistent
with the 3D scene layout.

• Wrong but accurate. The response is accurate according to the scene but is deemed wrong due to
imperfect ground truth annotations.

• Correct. The response is accurate and deemed correct.
• Correct and more accurate. The response is more accurate than the ground truth annotations.

I.7 SQA3D

We provide additional qualitative results on SQA3D test set in Tab. A.24 and follow the aforemen-
tioned response types. The embodied reasoning in SQA3D requires the understanding of not only
the scene but also the situation of embodiment. In Tab. A.24, answering “What am I sitting at?”
necessitates that LEO accurately identifies the objects at its current location. And the response to
“How many beds are in front of me?” indicates that LEO can reason based on the understanding of
its orientation.
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Table A.22: Additional qualitative results on Scan2Cap validation set.

Scene Instruction Response Ground Truth

Develop a descrip-
tion of the object
at the specified posi-
tion in the 3D back-
drop.

This is a black key-
board. It is in front
of two monitors.

The keyboard sits atop
the workstation desk. It
is located in front of the
left-side monitor.

Focus on the object
at the given 3D loca-
tion and describe it.

This is a white pil-
low. It is on the
couch.

It is a small pillow lo-
cated on the couch. You
can notice it directly on
your left when walking
through the door into the
room.

Provide a clearer de-
scription of the ob-
ject at that specific
3D spot.

This is a white cabi-
net. It is to the right
of a couch.

This is a white ottoman.
It is located to the right
of the black couch.

What does the ob-
ject at the specified
position in the 3D
visualization look
like?

There is a rectangu-
lar brown door. It is
next to a couch.

There is a door in the mid-
dle of the northern wall
next to a metal cabinet.
The door is shaped like a
brown rectangle and as a
dark yellow colored door-
knob.
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Table A.23: Additional qualitative results on ScanQA validation set.

Scene Question Response Ground Truth Response Type

What is placed
on the black
chair out of
the three chairs
present in the
room?

pillow tan jacket, guitar
box like object

Wrong

What is next to
the organizer
shelf?

mini fridge coat rack Wrong but rea-
sonable

Where is
the dresser
located?

to right of door underneath televi-
sion next to black
guitar case and
green guitar case,
under tv set next to
guitar cases

Wrong but ac-
curate

What kind of
desk is the elec-
tric piano on?

wooden desk wooden desk Correct

How many
monitor sits
on top of the
desk?

2 2 Correct

What is on the
left side of the
brown desk?

black computer
monitor

monitor / computer
monitor

Correct and
more accurate
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Table A.24: Additional qualitative results on SQA3D test set.

Scene Question Response Ground Truth Response Type

What is the
only orange
object on my
left side?

backpack jacket Wrong

Is there any-
thing on the
desk?

yes laptop Wrong but ac-
curate

What type of
bed is the one
on the right?

loft bed loft bed Correct

What am I sit-
ting at?

desk desk Correct

How many
beds are in
front of me?

one one Correct
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Table A.25: Examples from our datasets. We provide the tasks, 2D images (optional), 3D point clouds, and
instructions as the input of LEO, as well as the expected responses of LEO.

Dataset & Task 2D & 3D input Instruction Response

LEO-align
object captioning USER: Ex-

plain the
object at the
pinpointed
location in
the 3D setting.
ASSISTANT:

a yellow metal cage with a
fence around it.

LEO-align
object referring USER: Give

me a snapshot
of the object
at the chosen
3D location.
ASSISTANT:

find the office chair that is near
the copier

LEO-align
scene captioning USER: Relay a

brief summary
of this scene’s
elements. AS-
SISTANT:

In this scene, there is a gray
flat picture hanging on the
wall, standing in front of a win-
dowsill. There is also a rectan-
gular white padded pillow ly-
ing on the bed, close to a big
rectangular white padded pil-
low. The room has a white ar-
chitectural wall and a flat over-
head ceiling. The bed is tidy
and white, located in front of a
narrow tall commode. The cur-
tains are hanging on the wall.
The room has a calm and com-
fortable atmosphere, suitable
for relaxation and sleep.
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Table A.26: Examples from our datasets. Continued.

LEO-instruct
3D captioning USER: What does

the object at the
specified position in
the 3D visualization
look like? ASSIS-
TANT:

there is a door in the mid-
dle of the northern wall
next to a metal cabinet.
the door is shaped like a
brown rectangle and as a
dark yellow colored door-
knob.

LEO-instruct
3D QA USER: What is in

the right corner of
room by curtains?
ASSISTANT:

brown cabinet with tv sit-
ting in it

LEO-instruct
3D dialogue USER: I’m redec-

orating my living
room. Can you
give me some sug-
gestions on how to
arrange the furni-
ture?
ASSISTANT: Of
course! I’d be
happy to help. What
furniture do you
have in your living
room?
USER: I have a sofa,
a table, a chair, and
a couch table. AS-
SISTANT:

Great! Here’s a sug-
gestion: you can place
the sofa against the wall,
with the table in front
of it. The chair can be
placed to the right of the
table, and the couch table
can be placed to the right
of the chair. This arrange-
ment creates a cozy seat-
ing area.

LEO-instruct
task planning USER: Develop a

plan for this: Ar-
range and embel-
lish the family room.
ASSISTANT:

1. Arrange and fluff the
cushions and pillows on
the armchair.
2. Place decorations,
such as figurines or vases,
on the cabinet or shelf.
3. Place hygiene prod-
ucts, such as wipes or lo-
tions, on the commode.
4. Turn on the lights and
adjust their brightness if
needed.
5. Arrange diapers in a
designated storage area.
6. Place a blanket or pil-
low on the armchair for
added comfort.
7. Adjust the festoon or
other decorative elements
if desired.
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Table A.27: Examples from our datasets. Continued.

LEO-instruct
embodied navigation USER: The task is

navigation. Your
goal is to find
counter by mov-
ing around in the
scene. Past actions:
<31999> <31999>
<31999> <31999>.
ASSISTANT:

<31996>

LEO-instruct
robotic manipulation USER: The task is

manipulation. Your
goal is to put the
blue blocks in a
green bowl. Past
actions: <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511>. ASSIS-
TANT:

<31748> <31644> <31511>
<31736> <31595> <31500>
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