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Abstract

Neural operators serve as efficient, data-driven surrogate models for complex phys-
ical and engineering problems. In this work, we demonstrate that neural operators
can directly learn the key properties of sonic crystals, a type of acoustic metamate-
rial consisting of a lattice of parameterized shapes. We predict the transmission loss
curve, a critical characteristic in applications, bypassing the expensive meshing and
solving steps typical of classical techniques. We evaluate established architectures,
DeepONet (DON) and Fourier Neural Operator (FNO), alongside two new ones,
Deep Neural Operator (DNO) and Deep Cat Operator (DCO), which demonstrate
significant performance improvements. In our experiments, all models achieve
high accuracy, while being up to 106 times faster than the traditional method,
significantly advancing practical real-time metamaterial design.

1 Introduction

Metamaterials are composite materials with behavior not found in nature, whose properties arise
from their internal structure rather than their composition [1]. They can be designed to have,
e.g., new elastic, electromagnetic, or thermal properties [2, 3, 4], and have numerous applications
including advanced sensors, antenna design, energy harvesting, and civil engineering [5, 6, 7, 8],
to name a few. In acoustics, they are mostly concerned with sound attenuation [9, 10], wave
manipulation [11, 12, 13], or architectural acoustics [7]. Efficient and accurate simulation methods
are essential in order to predict the performance of acoustic metamaterials in silico. State-of-the-art
approaches [14, 15, 16, 17, 18], while sufficient for this purpose, can be computationally expensive,
requiring a mesh of the domain and solving optimization problems for a large number of parameters.

Sonic crystals are acoustic metamaterials composed of identical unit cells organized in a lattice,
cf. Figure 1. The composition creates so-called band-gaps in the transmission loss graph, where
the transmission loss (TL) describes the decrease in power from the incident to the transmitted
wave [9, 19]. The graph of the TL over the frequency is a key characteristic, describing the interaction
of the crystal with the environment, cf. Figure 1 (right). The primary objective in designing these
metamaterials is to predict and achieve a sonic crystal with a specific TL profile.

Neural operators (NOs) [20] and related techniques [21, 22, 23, 24] have been successfully applied
to model complex physical systems, particularly to approximate the solution operators of partial
differential equations. They are accurate enough to complement or even replace traditional numerical
simulators in areas like computational fluid dynamics, weather forecasting, and material modeling,
while being orders of magnitude faster [25, 26].

In this work, we train NOs to learn the mapping from the parameterization of sonic crystals to their
corresponding transmission loss graph, see Section 2. This bypasses the expensive step required in
conventional approaches, where one must first compute the pressure solution of the system before
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Figure 1: Our sonic crystals consist of parameterized C-shapes (left), 10 in a row in x-direction
with periodicity in y-direction. The sound wave is incident from the left-hand side, traveling to the
right-hand side. We learn the operator G† mapping the parameterization to the transmission loss graph
of the sonic crystal (right). The plot shows the sonic crystal for R1 = 6.5mm, R2 = 5.0mm, and
b = 2.0mm (see text), along with the real part of the corresponding pressure field for f = 14.8 kHz.

evaluating the transmission loss, cf. Figure 1. We compare standard NO architectures like DeepONet
(DON) [22] and FNO [21] with two new architectures: Deep Neural Operator (DNO) and Deep Cat
Operator (DCO), see Section 3. All trained NOs show good generalization with slightly differing
performance, see Section 4, and offer significant speed-ups over traditional methods.

2 Background and related work

Acoustics is the science that describes the behavior of sound in media, and the Helmholtz equation

∆p(x) + k2p(x) = 0, (1)

is the standard modeling approach for the complex-valued sound pressure p, where k = 2πf/c is
a given wave number depending on a frequency f and the speed of sound c [27]. The Helmholtz
equation allows for the analysis of how sound behaves under steady-state conditions, essential for
understanding resonance, transmission, and the acoustic properties of materials [19].

Sonic crystals are acoustic metamaterials consisting of identical unit cells arranged in a lattice [9]. A
common parameterization of sonic crystals is given by C-shapes [10], where the parameters are outer
radius R1, inner radius R2, and opening width b of the C-shaped inclusion, cf. Figure 1 (left). A
typical design objective is to prevent specific frequency ranges from propagating through the material,
a phenomenon seen as band-gaps in the graph of the transmission loss [9].

The transmission loss [19] describes the decrease from the power Wi of the wave incident on
one side of the material to the power Wt of the transmitted wave as it reaches the opposite side,
TL = 10 log10 (Wi/Wt). As the transmission loss depends on the frequency f of the wave, the
transmission loss graph TL(f) is the function that maps frequency to transmission loss, and is a
key characteristic of sonic crystals, cf. Figure 1 (right) [9, 10].

Conventional methods like the Finite Element Method (FEM) in frequency-domain, or the Boundary
Element Method (BEM) [27] are typically used to compute transmission losses. Both require a mesh
of the domain for each C-shape geometry, and compute the complex-valued pressure field by solving
(1) for a range of frequencies. Afterward, the resulting pressure fields can be integrated to compute
the transmission loss graph [19, 28, 10].

Operator learning uses neural networks (NNs) to approximate maps between infinite dimensional
function spaces, in contrast with the usual approximation of functions between Euclidean spaces.
Expressing physical quantities as functions in spaces A and U , operator learning approximates a
physical process described by an operator G† : A → U with a parametric map Gθ, such that

G† ≈ Gθ : A → U , θ ∈ Rl, (2)

for some number of parameters l ∈ N. NOs are a flexible framework well-suited for many real-world
problems. Because they are discretization-invariant, they can train and predict at different resolutions,
while being much faster than traditional solvers [20].
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Figure 2: DNO concatenates the input
function evaluations a and the evalu-
ation location y before passing them
through a single feedforward NN.
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Figure 3: DCO passes the input function evaluations a and
the evaluation location y through a branch and a trunk net-
work, respectively, before passing the concatenated outputs
into a third feedforward cat network.

DeepONet (DON, [22]) is an NO architecture motivated by the universal approximation theorem for
operators. It consists of a trunk network T that learns a set of basis functions, and a branch network B
that learns the corresponding basis coefficients. Given a vector a of evaluations of the input function
and a coordinate y where the output function will be evaluated, a dot product linearly combines the
trunk network’s basis functions with the branch network’s coefficients:

GDON(a)(y) = B(a) · T (y). (3)

The Fourier Neural Operator (FNO, [21]) has been successfully applied to various PDE-based
problems with significant speedups [25]. It is a generic NO:

GFNO(a) = Q ◦ (WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P (a), (4)
where P and Q are pointwise lifting and projection operators, and the intermediate layers consist of
pointwise operators Wl, integral kernel operators Kl, and an activation function σ [20]. The integral
kernel operators of the FNO are linear transformations in Fourier space, Kl(v) = F−1(Rl · F(v)),
where Rl are complex-valued matrices, and F (resp., F−1) denotes the (inverse) Fourier transform.

3 Methodology

We consider parameterized sonic crystals and use NOs to predict their transmission loss graphs.
Figure 1 shows the C-shaped unit cell we consider, and the transmission loss for a specific parameter-
ization a = [R1, R2, b] of the cell. We want to approximate the operator

G†(a)(f) = P2

(
P1(a, f)

)
: a 7→ TLa(f), a ∈ A, f ∈ R, (5)

where TLa is the transmission loss graph, evaluated at a frequency f , and a is understood as
a constant input function. The intermediate maps P1 and P2 are the two parts of conventional
techniques, where P1 solves the Helmholtz equation for a given geometry and frequency, and P2

computes the transmission loss from the resulting pressure field by integration. When training an NO,
we can skip P1 and P2 and learn the mapping from the geometry parameters to the transmission loss
graph directly.

We train a total of four different architectures: DON, FNO and our new DNO, DCO.

Deep Neural Operator (DNO) is inspired by the DeepONet architecture, although branch and trunk
are replaced by a single (fully connected) neural network N processing both the input function and
the evaluation coordinate simultaneously, cf. Figure 2. Using the same notation as in (3), the DNO is:

GDNO(a)(y) = N
(
[a, y]

)
, (6)

where [·] denotes the concatenation of vectors. The motivation for DNO is to integrate operator
information early by connecting all layers of the branch and trunk networks, maximizing flexibility in
learning latent representations at the cost of increased computational complexity. Additionally, when
the size of the concatenated tensors differ significantly, the model may disproportionately emphasize
one over the other, leading to inefficiencies.

Deep Cat Operator (DCO) follows a similar motivation, but first passes the input function and the
evaluation locations through branch and trunk networks, B and T , and concatenates those outputs in
latent space before passing the result through a third cat network C, cf. Figure 3:

GDCO(a)(y) = C
(
[B(a), T (y)]

)
. (7)

Essentially, DCO replaces the dot product in DeepONet by an NN, offering more flexibility for
non-linear combinations of the trunk network’s outputs while being more robust to disparate input
tensor sizes than DNO.
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Figure 4: Mean learned transmission loss graph of four neural operators for a sample from the test set
with the parameters a = [5.7mm, 4.5mm, 3.2mm]. The darker line is the mean performance, the
lighter area shows the bootstrapped 95% confidence interval with mean statistic. The dashed line is
the ground truth (FEM) solution.

4 Experiments

For our experiments, we employ FEniCS [29] to produce the data set and train the NO architectures
implemented in continuiti2. The setup matches the implementation in the COMSOL application
gallery [28], and our dataset consists of C-shaped sonic crystals with outer radius RO ≤ 8.5mm,
inner radius RI ≤ 8.5mm, and gap width b ≤ 8.5mm embedded in a unit cell with dimensions
d = 22mm, while ensuring the configurations are geometrically valid. The meshes employ at least
15 elements per wavelength at 20 kHz, and we provide 673 different parameterizations with 256 TL
evaluations each for training. We train the NOs for 500 epochs using Adam to minimize the MSE,
and compare the final solution to a test set with 128 parameterizations, again with 256 TL evaluations.
The reported results are averaged over 10 seeds, where the runtime baseline is computed using the
COMSOL implementation [28]. More details on the implementation and some additional plots can
be found in Appendix A.

The plot in Figure 4 shows the transmission loss for a representative sample from the test set for all
four architectures. All models show good approximation properties, with DNO and DCO yielding
the best generalization properties, see Table 1.

Table 1: Performance metrics of the DON, FNO, DNO, and DCO on the test dataset obtained from
n = 10 different initial seeds. The relative mean squared error (RMSE), the bootstrapped 95%
confidence interval (CI) for the model RMSE with mean statistic, number of parameters and speedup
of all reported neural operators in comparison to our baselines.

Method RMSE 95% CI Num. Param. Speedup
DON 0.469% [0.450%, 0.492%] 101 152 6.0× 105

FNO 2.18% [1.99%, 2.39%] 99 553 5.7× 106

DNO 0.199% [0.196%, 0.202%] 102 929 5.1× 105

DCO 0.208% [0.203%, 0.212%] 100 773 1.4× 105

5 Conclusion and future work

Our work demonstrates that neural operators can effectively learn complex relationships that require
extensive computation with classical methods. The results emphasize the significance of selecting the
appropriate architecture, with our new DNO and DCO models outperforming standard methods. We
acknowledge the limited scope of this paper, as we focus on a single problem with a specific dataset
and do not compare our approach to classical surrogate models. Thus, further experimentation is
warranted, particularly to evaluate the performance of our new architectures, DNO and DCO, across a
broader range of operator learning tasks. Additionally, future research could focus on directly learning
the inverse problem, proposing metamaterials that achieve specific transmission loss profiles.

2Available on https://github.com/aai-institute/continuiti.
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A Implementation details

For the ground truth (FEM) solution, we simulate a domain consisting of 10 C-shaped structures
aligned longitudinally in the x-direction, with a setup that matches the implementation in the
COMSOL application gallery [28]. The domain is truncated in the x-direction using adiabatic
layers [30] to ensure anechoic transmission for the crystal. It is truncated in the y-direction using hard
sound boundaries, which is identical to periodic boundary conditions, due to the symmetry of the
sonic crystal along the x-axis. We model the C-shapes with hard reflection properties, and choose the
length of 10 unit cells in order to fully observe band gaps. All C-shapes have their opening pointing
in the negative x-direction. We use a scattered field formulation [27] for the sound pressure to model
a plane wave field incident normal to the crystal (traveling in x-direction).

For both the training and the test dataset, we uniformly sample the parameter space spanned by
interval limits RO ≤ 8.5mm, RI ≤ 8.5mm, b = 8.5mm, and a tolerance δ = 0.1mm. The unit
cell has a constant width and height d = 22mm. We use the tolerance to ensure that all sampled
sonic crystals are valid, requiring RO ≥ RI + δ and RI ≥ b+ δ. The parameter space is sampled
673 times for the training (90% train, 10% validation) and the test dataset 128 times.

We use Gmsh [31] to build meshes from the parameterizations. The meshes have at least 15 elements
per wavelength at 20 kHz. We compute the FEM solution for each observation on 256 equidistant
frequencies f ∈ [2 kHz, 20 kHz] using the DOLFINx computational environment of the FEniCSx
framework [29]. Details for this procedure can be found on Github3.

Our neural operators are implemented in our framework continuiti4. We aim to fix the numbers of
all neural operators to approximately 105 parameters, and optimize the most important hyperparameter
for our experiments, the batch size, using Optuna [32]. The internal structure of all our neural
operators are fully connected NNs with residual connections, layer normalization, and hyperbolic
tangent activation functions.

In order to allow the FNO to handle the parameter inputs, we use random Fourier features [33, 34]
where we use Gaussian encoding with an embedding size 256 to encode the parameters of the sonic
crystal. The FNO has a width of 8, depth 6, and we train it using a batch size of 4. The DON has a
branch and trunk network with a width of 44, and a depth of 24 each. We use 64 basis functions, and
a batch size of 4. The DNO has a width of 56, depth of 32 layers, and we train it using a batch size of
20. The DCO has a branch and trunk network with a with of 42, and a depth of 8 layers each, and the
cat network is 32 layers deep with a width of 46. We train the DCO with a batch size of 20.

Each architecture is trained 10 times for the best parameters using different random seeds (but
identical across different architectures). We employ Adam optimizer to minimize the mean squared
error between prediction and ground truth values for 500 epochs. We reduce the learning rate from
η0 = 1×10−3 to ηN = 1×10−5 over the entire training process using cosine annealing. All samples
undergo low-pass-filtering and normalization prior to being processed by the operators. The final
operator is the best performing model with respect to the validation dataset. For greater detail, refer
to Neural-Operator-TL5 on Github. Training for 500 epochs on our machine takes on average
526 s for the DCO, 420 s for the DNO, 1130 s for the FNO, and 1934 s for the DON.

To evaluate the error metrics, we calculate the relative mean squared error across all models, using 10
different seeds. From this we employ bootstrapped statistics to get the 95% confidence intervals for
the model performance.

In terms of hardware, we use an RTX 3060 Ti, an AMD Ryzen 7 2700x CPU and 16GB of memory.
To compare the speed of our approach to conventional methods, we use a COMSOL implementa-
tion [28], which takes t = 21.6 s for 256 samples of the domain for one specific parameterization. The
COMSOL implementation is faster than our FEniCSx code providing a reasonable state-of-the-art
baseline, but in its current form it is not capable of solving many different parameterized geometries.

Figure 6 and Figure 7 show the transmission loss graph of two different configurations with both
unfiltered and low-pass-filtered graphs. Figure 5 and Figure 8 display four frequency samples each for

3https://github.com/JakobEliasWagner/Helmholtz-Sonic-Crystals
4https://github.com/aai-institute/continuiti
5https://github.com/JakobEliasWagner/Neural-Operator-TL
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Figure 5: Real-valued pressure field for frequencies f = {4964Hz, 7505Hz, 11 105Hz, 17 600Hz}
(top to bottom) for the configuration a = [8.5mm, 8mm, 1mm].
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Figure 6: Unprocessed (light gray) and prepro-
cessed (black, low-pass-filter) transmission loss
graph for a = [8.5mm, 8mm, 1mm].
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Figure 7: Unprocessed (light gray) and prepro-
cessed (black, low-pass-filter) transmission loss
graph for a = [4mm, 3.7mm, 3mm].

both configurations. The band gaps in C-shaped sonic crystals stem from two different phenomena:
Bragg-scattering (crystalline structure) and local resonance of the inner chamber of the C-shapes [9].

Figure 8: Real-valued pressure field for frequencies f = {5105Hz, 7505Hz, 15 058Hz, 20 000Hz}
(top to bottom) for the configuration a = [4mm, 3.7mm, 3mm].
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paper’s contributions and scope?

Answer: [Yes]
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details, and the paper provides extensive empirical data that supports the claims made in the
abstract and introduction.
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made in the paper.
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limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental results can be recreated using the provided code and is
described in detail in the appendix of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Access to our framework, data generation, and the specific implementations
for this paper are available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Dataset size, data splits, hyperparameters, the type of optimizer and the training
process itself is described in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Both for plots and in the table confidence intervals are available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of the experiment include information on the compute resources
and training and inference time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact of the work was performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

12

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code, data and models are labeled properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We use artificially created data using an open source framework (FEniCSx).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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