
Published as a conference paper at ICLR 2026

HILBERT-GUIDED SPARSE LOCAL ATTENTION

Yunge Li
Department of Computer Science
Oakland University
Rochester Hill, MI, USA
yungeli@oakland.edu

Lanyu Xu
Department of Computer Science
Oakland University
Rochester Hill, MI, USA
lxu@oakland.edu

ABSTRACT

The quadratic compute and memory costs of global self-attention severely limit its
use in high-resolution images. Local attention reduces complexity by restricting
attention to neighborhoods. Block-sparse kernels can further improve the effi-
ciency of local attention, but conventional local attention patterns often fail to
deliver significant speedups because tokens within a window are not contiguous
in the 1D sequence. This work proposes a novel method for constructing windows
and neighborhoods based on the Hilbert curve. Image tokens are first reordered
along a Hilbert curve, and windows and neighborhoods are then formed on the re-
ordered 1D sequence. From a block-sparse perspective, this strategy significantly
increases block sparsity and can be combined with existing block-sparse kernels to
improve the efficiency of 2D local attention. Experiments show that the proposed
Hilbert Window Attention and Hilbert Slide Attention can accelerate window at-
tention and slide attention by about 4× and 18×, respectively. To assess prac-
ticality, the strategy is instantiated as the Hilbert Window Transformer and the
Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups
with minimal accuracy loss. Overall, combining Hilbert-guided local attention
with block-sparse kernels offers a general and practical approach to enhancing the
efficiency of 2D local attention for images.

1 INTRODUCTION

Figure 1: Speedup from block sparsity.
When the sequence length is fixed, a higher
empty blocks ratio leads to faster computa-
tion, with the effect especially pronounced at
high sparsity (> 80%). Additionally, longer
sequences yield greater speedups.

In recent years, models based on self-attention
mechanisms, especially the Transformer architec-
ture, have achieved significant success in computer
vision. However, the computational and memory re-
quirements of global self-attention increase quadrat-
ically with sequence length, which severely limits its
use in processing high-resolution images (Vaswani
et al., 2017). To address this problem, local attention
restricts each token’s receptive field to its neighbor-
hood and thereby reduces complexity.

Some typical works, such as Swin Transformer (Liu
et al., 2021) and Neighborhood Attention Trans-
former (NAT) (Hassani et al., 2023) has shown that
local attention can maintain the expressiveness of
the model while considerably improving computa-
tional efficiency, making it a core focus in current
research on efficient models. However, existing lo-
cal attention methods still focus primarily on algo-
rithm and structure design, while optimization at the
kernel level remains limited. This is especially true
for widely used 2D attention patterns in vision, such
as window, sliding window, and neighborhood attention. Current kernel optimization techniques,

The code is available at: https://github.com/Yunge6666/Hilbert-Local-Attention

1

https://github.com/Yunge6666/Hilbert-Local-Attention


Published as a conference paper at ICLR 2026

for example, FlashAttention (Dao et al., 2022), are often designed for 1D sequences (e.g., text) or
regularly structured sparse patterns and are not well adapted to 2D image local attention.

FlexAttention (Dong et al., 2024) introduces a more flexible approach to optimizing sparse atten-
tion, including local attention on 2D images. As a block-sparse attention framework, FlexAttention
breaks down the attention operation into different types of blocks: full blocks, partial blocks, and
empty blocks. Empty blocks are skipped in computation, which enables the efficient use of spar-
sity. Analysis of empty block ratio in FlexAttention (Figure 1) reveals that, for fixed sequence
lengths such as 1024, 2048, and 4096, the speedup of attention computation is positively correlated
with block sparsity, specifically the percentage of empty blocks. Therefore, a higher ratio of empty
blocks reduces both computational and memory costs, leading to higher efficiency. This observation
suggests that increasing the proportion of empty blocks is an effective way to accelerate attention
computation.

However, the ratio of empty blocks is restricted in conventional local attention patterns. Window
self-attention (WSA), sliding attention (SA), or neighborhood attention (NA) typically constructs
windows/neighborhoods as regular squares in row-major order for 2D images. As shown in Fig-
ure 2, such row-major sequence misaligns with 2D neighborhoods, making tokens within a window
discontinuous in the 1D sequence. This restricts the empty block ratio and produces many partial
blocks, along with element-wise masking overhead (explained in Sec 3.1).

Figure 2: Row-major sequence vs. Hilbert-curve sequence

Motivated by these observations, this work proposes a novel method, Hilbert-guided construction of
windows and neighborhoods, to enable more efficient use of sparsity by increasing the empty blocks
ratio. Specifically, the Hilbert curve (Hilbert, 1935) is adopted due to its strong locality-preserving
property (Jagadish, 1997): when mapping 2D image tokens to a 1D sequence, it maintains neigh-
borhood relations. This reordering greatly increases the ratio of empty blocks in the local attention
pattern and reduces the ratio of partial blocks. Within block-sparse kernel execution, empty blocks
are skipped, directly reducing computational and memory overhead. Moreover, the programmable
interface of the FlexAttention framework enables deployment without modifying the model or train-
ing pipeline and without hand-written kernels. In short, although local attention is inherently sparse,
regular square windows in row-major order still produce many partial blocks that require computa-
tion. By remapping 2D local attention patterns into contiguous 1D blocks via the Hilbert reordering,
the empty block ratio is greatly increased, leading to a significant acceleration of local attention.

The main contributions of this work are as follows: 1) A novel Hilbert-guided construction of local
windows/neighborhoods is proposed, enabling highly sparse attention computation through Hilbert
Window Attention (HWA), Hilbert Slide Attention (HSA), and Hilbert Neighborhood Attention
(HNA); 2) These new attention patterns leverage block-sparse kernel to achieve significant efficiency
gains; 3) HWA and HNA are instantiated into two end-to-end trainable models, Hilbert Window
Transformer (HWT) and Hilbert Neighborhood Transformer (HNT), both of which achieve end-to-
end speedups with minimal accuracy loss.

2 RELATED WORK

2.1 LOCAL ATTENTION FOR IMAGES

In Vision Transformer (Dosovitskiy et al., 2020), while globally computed full attention mecha-
nisms are effective, they come with high computational costs. For high-dimensional data, such as
images, their quadratic complexity becomes a significant bottleneck. Local attention mechanisms
are based on a reasonable inductive bias: a visual token typically only needs to interact with tokens

2



Published as a conference paper at ICLR 2026

in its surrounding neighborhood. This assumption significantly reduces computational complexity,
making it a mainstream approach for building efficient vision transformer (Vaswani et al., 2021),
(Yang et al., 2021), (Dong et al., 2022), (Tu et al., 2022),(Chen et al., 2021),(Liu et al., 2022), (Li
et al., 2022).

Stand-Alone Self-Attention (SASA) (Ramachandran et al., 2019) was an early pioneering attempt
to entirely replace convolutional layers with local self-attention layers in visual tasks. Swin Trans-
former (Liu et al., 2021) introduced a local attention mechanism based on regular windows and a
shifted window strategy, cleverly enabling cross-window information exchange. It has become a
milestone work in the field of vision transformers. The Slide Transformer (Pan et al., 2023) revisits
sliding window attention by replacing the inefficient Im2Col function with depthwise convolution
and equipping it with a learned shift module, thereby achieving efficient local attention. NAT pro-
posed neighborhood attention, which differs from previous sliding window attention in its boundary
handling: instead of padding zeros, NAT repeats the same “window” at the boundaries.

Although local attention theoretically significantly reduces computational complexity, its practical
efficiency highly depends on the quality of the underlying implementation. Many early implementa-
tions of local attention still required materializing large intermediate matrices in memory or handling
complex masking logic, leading to significant memory overhead and low parallelization efficiency.
As a result, they failed to realize the theoretical performance advantages fully. This bottleneck also
underscores the need for fundamental optimization research at the kernel level.

2.2 ATTENTION KERNEL OPTIMIZATION

The goal of efficient attention computation techniques is to directly address the memory and com-
putational bottlenecks of attention mechanisms at the system level. In recent years, breakthroughs
in this field have primarily stemmed from the design of hardware-aware kernels (Zhang et al.,
2024), (Kwon et al., 2023), (Liu et al., 2023), (Yuan et al., 2025), (Xu et al., 2025).

FlashAttention (Dao et al., 2022) is a foundational work. It was the first to restructure attention com-
putation from the perspective of memory access cost, proposing an I/O-aware algorithm. Its core
innovation lies in a tiling strategy that decomposes the computation to be performed in the GPU’s
high-speed SRAM, avoiding the materialization of large intermediate attention matrices in memory.
This reduces the memory complexity and achieves a several-fold speedup. FlashAttentionv2 (Dao,
2023) further exploits hardware potential by restructuring parallelization strategies and refining task
scheduling, significantly reducing kernel synchronization overhead and achieving higher through-
put. The latest FlashAttentionv3 (Shah et al., 2024) begins to leverage features of newer-generation
GPUs (e.g., NVIDIA H100) to further improve computational efficiency NATTEN also specifi-
cally conducted extreme kernel-level optimizations for Neighborhood Attention (Hassani et al.,
2024), (Hassani et al., 2025). They eliminated the inherent O(N2) intermediate memory cost in
neighborhood attention, providing a highly efficient implementation for this specific local attention
pattern. XFormers (Lefaudeux et al., 2022) provides a library integrating multiple efficient attention
implementations. XFormers includes not only memory-efficient attention implementations but also
various predefined patterns.

However, the high-performance kernels of FlashAttention, NATTEN, and XFormers are all hand-
optimized for predefined, fixed sparsity patterns. This introduces a key limitation: when research
requires experimenting with a completely new, unimplemented attention pattern, significant effort
is still needed to redesign and reimplement the underlying kernel, creating a high barrier to entry
and a lack of flexibility. To address the flexibility issue that FlexAttention (Dong et al., 2024) was
proposed to solve, a shift in programming paradigm is represented. FlexAttention builds a general
compilation framework that allows developers to define arbitrary block-sparse attention patterns
directly using high-level Python code. The compiler then automatically generates highly optimized
GPU kernel code at compile time. This approach decouples algorithm innovation from low-level
optimization. This work leverages the generality of FlexAttention to explore and further optimize
efficiency bottlenecks of local attention in vision.

3



Published as a conference paper at ICLR 2026

3 METHOD

3.1 HILBERT LOCAL ATTENTION

The proposed Hilbert-guided local attention is illustrated in Figure 3. Given N tokens, attention is
viewed as computation on an N×N matrix: rows correspond to each query (q) token, and columns
correspond to all key (k) tokens. The attention pattern of 16 tokens is visualized into the 16 × 16
matrix.

Figure 3: Local attention patterns. (1) In this case, the feature map is assumed to 4× 4, therefore
there are 16 tokens. The window size is 2 × 2, and bq = bk = 4. (2) Hilbert reordering not only
preserves spatial locality but also increases the proportion of empty blocks in Hilbert local attention
patterns, thereby reducing computational and memory access overhead. This further unleashes the
potential of block-sparse attention and accelerates local attention computation.

Block-sparse attention (e.g., FlexAttention) tiles the N × N matrix into fixed-size blocks, each
with a shape of bq × bk (outlined in red). Here bq = bk = 4. If all elements within a block
participate in the computation, it is called a full block; if some elements are masked, it is a partial
block; and if all elements in the block are masked, it is an empty block, which is skipped. Partial
blocks cannot be skipped during computation and require element-wise masking, which introduces
overhead and reduces efficiency, whereas dense computation in full blocks is generally faster. In
terms of efficiency, empty blocks are preferable to full blocks, which are preferable to partial blocks.
This mechanism transforms traditional dense self-attention into block-sparse attention based on the
number of non-empty blocks.

In local attention, each query only attends to keys/values within a fixed window. Conventional local
attention patterns typically partition the 2D space into regular square windows in row-major order.
Given 16 tokens, with 2 × 2 window size, the first window takes (1,2,5,6) tokens to compute local
attention, and the second takes (3,4,7,8) tokens. In the window attention pattern, attention (marked
in blue) of these eight tokens forms four partial blocks, each of which is half full. For tokens not in
the same window, the attention weight is masked as 0 (marked in white).

To increase the empty block ratio and reduce partial blocks, this paper introduces the Hilbert curve
to replace row-major. By reordering the token sequence according to the Hilbert curve, windows
or neighborhoods can be generated contiguously in the 1D sequence while preserving 2D spatial
locality. With 2× 2 window size, the first window takes (1,2,3,4) tokens to compute local attention,
and the second takes (5,6,7,8) tokens. The tokens in each window are continuous in the 1D sequence,
resulting in a more compact attention pattern. For the first eight tokens, HWA forms two full blocks
and two empty blocks, increasing the empty block ratio from 0% to 50% and thereby accelerating
attention computation. The same principle applies to the slide attention pattern. In this example,
although the empty blocks ratio remains unchanged, the partial blocks ratio decreases (from 100%
to 50%), further improving efficiency. In general, HWA and HSA produce more empty blocks and
fewer partial blocks than WSA and SA.

On GPUs, the overall runtime of block-sparse attention is jointly determined by the total workload
and the effective parallel throughput (Blog, 2020). It can be approximated as follows:

4



Published as a conference paper at ICLR 2026

T ≈

M∑
i=1

(
α+ β · ri

)
Peff

(1)

where α represents the overhead per CTA (compute thread array), covering kernel/CTA launch, q
block loading, and initialization (Corporation, 2025a); β denotes the unit cost of processing a single
non-empty block, which includes loading q block and k/v block, computing qk⊤ within the block,
score modification (e.g., relative position bias or Alibi (Press et al., 2021)), online softmax (Dao
et al., 2022), and aggregation with value (v); ri is the number of non-empty blocks contained in
the ith CTA; and Peff is the effective parallelism, determined by the number of streaming multipro-
cessors (SMs) and some memory factors (Corporation, 2025b). By skipping empty blocks, block-
sparse attention avoids launching corresponding CTA and loading key/value data, thereby reducing
computation and memory access. The proposed Hilbert reordering further accelerates block-sparse
attention by increasing the ratio of empty blocks.

According to the Equation 1, more empty blocks reduce the value of
∑M

i=1

(
α + β · ri

)
, thereby

shortening the total runtime. It should be emphasized that the combination of block size and window
size directly affects the distribution of full, partial, and empty blocks, which in turn impacts overall
performance. A reasonable block-window configuration can help increase the empty block ratio. A
systematic evaluation is provided in Section 4.

3.2 HILBERT WINDOW TRANSFORMER

Figure 4: The architecture of Hilbert Window Transformer. After the token sequence is reordered
according to the Hilbert curve, windows are constructed on the 1D sequence for window attention.
Cross-window interaction is achieved by shifting these windows along the 1D sequence. Although
the windows formed in the Hilbert-ordered sequence may correspond to irregular shapes in the
original 2D space, the tokens within each window remain spatially adjacent in the 2D image.

WSA is applied in Swin Transformer, and it does not leverage block sparsity; instead, Swin Trans-
former performs dense WSA within each window. Although this approach implicitly partitions the
sequence into windows, it does not further optimize the underlying computation. Block-sparse ker-
nel can accelerate WSA; however, it may sometimes suffer from efficiency loss due to generating
more partial blocks. By applying HWA, the number of empty blocks increases and the number of
partial blocks decreases, thereby better leveraging the potential of block-sparse attention. Based
on this idea, this work introduces the Hilbert Window Transformer (HWT). HWT shares a similar
architecture with Swin Transformer, with the main differences lying in the window construction,
the shift window operation, and the use of RPB. As shown in Figure 4, the image is first divided
into tokens (or patches), which are then reordered according to the Hilbert curve path. Since feature
maps with the same size produce the same Hilbert-curve path, a feature map of size (H,W ) corre-
sponds to a unique path P(H,W ). The path P(H,W ) is computed and cached at model initialization,
and whenever a feature map with the same size (H,W ) is processed, the cached path P(H,W ) can
be reused.

HWT blocks are also used in pairs: the first block performs HWA, and the second performs Hilbert
Shifted Window Attention (HSWA). Thanks to the spatial locality-preserving property of the Hilbert

5



Published as a conference paper at ICLR 2026

curve, Hilbert windows can be constructed directly on the 1D sequence, ensuring that tokens within
each window remain adjacent in the original 2D space. Applying the shifted window strategy of
Swin Transformer directly to HWT would make the attention mask overly complex, so HWT per-
forms the window shift along the 1D sequence by moving each window forward by a fixed offset.
This facilitates interaction between tokens from different windows and enhances the model’s ability
to capture global features. It should be noted that window shift may introduce tokens at the beginning
and end of the sequence that are not adjacent in 2D space. Even if they fall into the same window,
irrelevant attention connections must be masked out. In addition, since Hilbert windows and Hilbert
shifted windows may exhibit irregular shapes, the window-based RPB used in Swin Transformer is
no longer suitable. Instead, HWT enlarges the window to the full feature map, enabling a global
relative position bias (global RPB).

Both HWA and HSWA can be implemented with the FlexAttention by configuring its mask mod
and the score mod function, which expresses the block-sparse pattern induced by Hilbert reorder-
ing. As shown in Figure 3, this approach reduces memory access and computational overhead in
invalid regions, better leverages block-sparse acceleration, and thus further improves the overall
computational efficiency of the HWT model.

3.3 HILBERT NEIGHBORHOOD TRANSFORMER

Figure 5: The architecture of Hilbert Neighborhood Transformer. Hilbert reordering enables
the extraction of neighborhoods on the 1D token sequence while preserving spatial proximity. As a
result, the 2D neighborhood attention can be converted into a 1D neighborhood attention.

Slide attention and neighborhood attention are mechanistically similar, differing primarily in their
handling of boundary conditions. Both mechanisms suffer from high intermediate storage over-
head, as each token must gather others within its neighborhood, typically requiring an N2 tensor.
This leads to memory and bandwidth constraints that impair training and inference efficiency, a key
bottleneck observed in models like SASA and Slide Transformer. While methods such as FlashAt-
tention and Xformer offer kernel-level optimizations for 1D slide attention, adapting these to images
requires nontrivial kernel modifications due to their 2D nature. In contrast, NATTEN optimizes 2D
neighborhood attention kernels by avoiding the explicit materialization of intermediates, and Flex-
Attention offers a flexible framework that supports both attention types. However, as shown in
Figure 3, implementing SA/SASA with FlexAttention still produces many partial blocks, whereas
HSA reduces the ratio of partial blocks and increases the number of empty blocks. Similarly, HNA
attains a higher empty block ratio compared to NA.

Building on these advances, this work proposes the Hilbert Neighborhood Transformer (HNT),
whose overall architecture is similar to the NAT, as shown in Figure 5. In HNT, after the image
is converted into a token sequence, the tokens are reordered according to the Hilbert curve path.
As with HWT, the Hilbert curve path can be cached and reused to reduce computational overhead.
Similar to Slide Transformer and NAT, each token in HNT only attends to its surrounding tokens, a
process carried out within the HNT block. Thanks to the ability of Hilbert reordering to preserve 2D
spatial locality while mapping to a 1D sequence, each token only needs to attend to its neighboring
tokens in the 1D sequence to effectively express 2D neighborhood relationships. Thus, the original
2D neighborhood attention is transformed into a 1D neighborhood attention. Specifically, 1D neigh-
borhood attention can be implemented using the na1d provided by NATTEN, or flexibly defined

6



Published as a conference paper at ICLR 2026

using the mask mod and score mod functions in FlexAttention. These different implementations
maintain consistency in attention patterns and computational logic, differing only in the underlying
kernel optimization strategies. Therefore, they do not affect model accuracy but primarily differ in
computational efficiency. Hilbert reordering increases the ratio of empty blocks while maintaining
good spatial proximity, which further accelerates HNT.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model throughput and runtime depend on the hardware platform and software stack. Different GPU
models, CUDA versions, or PyTorch versions can result in varying speedups. All experiments here
are conducted on RTX 3080 GPU using CUDA 12.6 and PyTorch 2.7.0. For reference, the Appendix
also reports results on an A100. The goal is to verify that Hilbert reordering increases the empty
block ratio and thereby improves the efficiency of image local attention. Because the empty block ra-
tio is mainly affected by input size, window/kernel size, and block size, we evaluate across different
inputs, window sizes, and block sizes, comparing HWA with WSA and HSA/HNA with SA and NA.
In addition, the implementation of WSA/SA/NA in FlexAttention is also evaluated and compared.
We further include evaluations that combine input processing steps, such as window partitioning,
Hilbert reordering, and QKV projection, with the attention computation. Finally, to assess feasi-
bility in full models, we report the accuracy and efficiency of HWT and HNT on ImageNet (Deng
et al., 2009). To show that HWA/HSA/HNA can be adapted to different optimized kernels without
hand-written kernels, we further evaluate and compare them by applying FlashAttentionv2, xForm-
ers, and NAT to them. Due to variability in CUDA timing, all evaluations are averages over 10 runs,
each run consisting of 100 iterations with 25% warm-up and 75% measurement.

4.2 RESULTS AND ANALYSIS

Table 1: Efficiency evaluation of window attention variants. I represents the input size, and W
represents the window size. All results in the table are obtained with batch size=16, head num=2,
head dim=64, and block size=128. A complete evaluation is presented in the Appendix A.1.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (xFormers) 1.74 ms 192 MB 4.43 ms 288 MB –
HWA (xFormers) 0.24 ms 17 MB 1.12 ms 163 MB –
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%I = 64× 64,W = 8× 8

HWA (Flex) 0.12 ms (2.3×) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (xFormers) 3.98 ms 432 MB 9.96 ms 648 MB –
HWA (xFormers) 0.46 ms 37 MB 2.16 ms 366 MB –
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%I = 96× 96,W = 8× 8

HWA (Flex) 0.24 ms (2.6×) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (xFormers) 9.24 ms 612 MB 19.76 ms 918 MB –
HWA (xFormers) 0.78 ms 37 MB 3.41 ms 284 MB –
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%I = 96× 96,W = 12× 12

HWA (Flex) 0.59 ms (1.8×) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (xFormers) 12.17 ms 864 MB 33.22 ms 1296 MB –
HWA (xFormers) 0.44 ms 37 MB 2.40 ms 256 MB –
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%I = 96× 96,W = 16× 16

HWA (Flex) 0.40 ms (3.9×) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (xFormers) 24.46 ms 1536 MB 60.79 ms 2304 MB –
HWA (xFormers) 0.79 ms 66 MB 4.74 ms 455 MB –
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%I = 128× 128,W = 16× 16

HWA (Flex) 0.68 ms (4.0×) 66 MB 3.87 ms 260 MB 98.44%

7



Published as a conference paper at ICLR 2026

Window Attention Result. Table 1 reports the efficiency of WSA and HWA with different opti-
mized kernels under different input feature-map sizes and window sizes. WSA uses a dense kernel
as the baseline. WSA (Flex) calls the block-sparse kernel in FlexAttention, but because it contains
many partial blocks that require element-wise masking, it runs slower than WSA in all settings. The
sparsity metric denotes the ratio of empty blocks, and HWA (Flex) shows higher sparsity than WSA
(Flex) in every configuration. As a result, HWA (Flex) is faster than WSA (Flex) for both inference
and training, and achieves up to 4.0× speedup over the dense WSA. Benefiting from FlexAtten-
tion’s integration of FlashAttentionv2, both WSA (Flex) and HWA (Flex) use much less memory
than WSA in forward and backward. Memory consumption is dominated by the size of the QKV
tensors and is only weakly affected by block size and window size. Thus, for the same input, WSA
(Flex) and HWA (Flex) have the same memory usage. For example, when the input size is I=96,
their memory stays unchanged across different window sizes. In contrast, WSA’s memory grows
with input and window size because dense computation materializes intermediate attention results
within each window, whereas FlexAttention stores only lightweight block mask metadata and does
not keep the full attention matrix. Overall, WSA (Flex) and HWA (Flex) reduce training and infer-
ence memory compared with WSA, and HWA (Flex) further improves computation speed. Since
FlashAttentionv2 does not support arbitrary masks, WSA and HWA cannot be directly accelerated
by it without manually modifying the kernel. Although xFormers supports more attention patterns,
its implementation of WSA still uses an element-wise sparse path that stores many individual non-
zero elements, which leads to high memory usage and is usually slower. In contrast, HWA can use
block-diagonal fused dense kernels, so HWA (xFormers) in Table 1 is significantly faster than WSA
(xFormers).

Table 2: Evaluation of different block sizes. All results
in the table are obtained with batch size=16, head num=2,
head dim=64, input size=128 and window size =16.

Attention Block
Size

Forward Sparsity
Time Memory

WSA - 2.74 ms 520 MB 0%

WSA (Flex)

128 5.68 ms 66 MB 87.50%
256 5.68 ms 66 MB 87.50%
512 5.68 ms 66 MB 87.50%
1024 5.68 ms 66 MB 87.50%

HWA (Flex)

128 0.68 ms (4.0x) 66 MB 98.44%
256 0.68 ms (4.0x) 66 MB 98.44%
512 1.43 ms (1.9x) 66 MB 96.88%
1024 2.78 ms (1.0x) 66 MB 93.75%

In Table 1, when the block size
is fixed to 128 and the input size
is the same (I=96), different win-
dow sizes change the sparsity and
thus the runtime. Table 2 also re-
ports how sparsity and speedups vary
when the block size changes while
input and window sizes are fixed.
Therefore, for a given input size, an
appropriate block-window configura-
tion helps block-sparse local atten-
tion achieve better speedups. Ap-
pendix A.3 includes additional eval-
uations on the number of heads, head
dimension, and batch size. These set-
tings may produce different speedups
on different hardware, but they do not
affect block sparsity. Before comput-
ing attention, the input is processed with two steps: a reshape and linear projections to Q, K, and V.
In WSA, the reshape is window partitioning. In HWA, the reshape is Hilbert reordering. WSA (Flex)
does not require a reshape because FlexAttention operates directly on QKV obtained from the linear
projection of the features. Figure 6a reports results of window attention variants for input 128× 128
with a window 16×16. The attention time here differs from Table 1 because this evaluation includes
RPB, but HWA (Flex) remains faster than WSA. In the QKV projection stage, HWA (Flex) is also
faster than WSA. WSA first partitions windows, producing many small matrices and incurring more
kernel launches and memory traffic, whereas HWA (Flex) processes fewer, larger matrices, which
improves throughput. WSA (Flex) and HWA (Flex) both project the full input feature map, so their
QKV projection times are essentially the same. Overall, HWA (Flex) takes 1.63 ms, which is 2.6×
faster than WSA’s 4.22 ms and 3.9× faster than WSA (Flex).

Slide/Neighborhood Attention Results. Table 3 reports results for SA and NA under different in-
put sizes and kernel sizes. SA is an unoptimized baseline, and its runtime and memory usage are
much higher than those of attention variants with an optimized kernel. SA can use the optimized
kernels from xFormers and FlexAttention, while HSA can additionally be accelerated by FlashAt-
tentionv2, because FlashAttentionv2 natively supports sliding-window (banded) patterns that match
the HSA pattern. NA2D and HNA can be implemented with either FlexAttention or NATTEN. For
SA(xFormers), it follows the same element-wise sparse path as WSA (xFormers) and is therefore

8



Published as a conference paper at ICLR 2026

relatively slow, whereas HSA can directly use the optimized kernel in xFormers that is specifically
designed for banded (sliding-window) attention, so it is much faster than SA (xFormers). Simi-
larly, FlashAttentionv2 also provides a specialized optimized kernel for banded patterns, so HSA
(FA2) achieves a very significant improvement in efficiency as well. Under the same settings, HSA
(Flex) shows higher sparsity and larger speedups than SA (Flex), and HNA (Flex) shows higher
sparsity and better speed than NA2D (Flex). With the NATTEN kernel, HNA (NAT) is also faster
than NA2D. Concretely, at input 56 × 56 with kernel size 7 × 7, HNA (NAT) is 48.8× faster than
SA and 1.8× faster than NA2D. At input 96 × 96 with kernel size 7 × 7, SA runs out of memory
(OOM), and HSA (Flex) and HNA (NAT) are about 1.8–2.1× faster than NA2D (NAT). Figure 6b

Table 3: Efficiency evaluation of slide/neighborhood attention variants. All results in the table
are obtained with batch size=16, head num=2, head dim=64, and block size=128. A complete eval-
uation is presented in Appendix A.2.

Forward Backward
Attention Time Memory Time Memory Sparsity

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
HSA (FA2) 0.25 ms 13 MB 0.75 ms 76 MB –
SA (xFormers) 1.31 ms 141 MB 3.56 ms 208 MB –
HSA (xFormers) 0.28 ms 13 MB 0.79 ms 76 MB –
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA (Flex) 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB –

I = 56× 56,K = 7× 7

HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB –

SA OOM OOM OOM OOM 0%
HSA (FA2) 0.69 ms 37 MB 2.08 ms 218 MB –
SA (xFormers) 6.58 ms 545 MB 18.71 ms 818 MB –
HSA (xFormers) 0.81 ms 37 MB 2.22 ms 219 MB –
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA (Flex) 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61 ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB –

I = 96× 96,K = 11× 11

HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB –

presents an evaluation that combines attention with input processing. HSA and HNA require a re-

(a) Window attention with input pro-
cessing (b) Slide/neighborhood attention with input processing

Figure 6: Comprehensive evaluation of combining attention computation with input process-
ing. (a) Combined overhead of different window attentions and their corresponding reshaping and
QKV projection for a 128 × 128 input and a 16 × 16 window. (b) Combined overhead of different
slide/neighborhood attentions and their corresponding reshaping and QKV projection for a 56× 56
input and a 7× 7 kernel size. Full results are provided in Appendix A.1 A.2.

9



Published as a conference paper at ICLR 2026

Table 5: Accuracy on CIFAR datasets. Due to the low resolution of the CIFAR dataset, all models
in the table are configured with only three layers, with depth=[2,6,4], head number=[3,6,12], and
head dimention of 96. The patch size is 2, while the window size for SWIN and HWT is set to 4*4,
and the kernel size for NAT is 7*7. The training epoch is 300 for all models.

Model Configuration Window CIFAR10 (32x32) CIFAR100 (32x32)

SWIN D=[2,6,4], H=[3,6,12] 4x4 92.3% 76.6%
HWT D=[2,6,4], H=[3,6,12] 16 92.2% 76.4%

NAT D=[2,6,4], H=[3,6,12] 7x7 94.2% 79.9%
HNT D=[2,6,4], H=[3,6,12] 49 94.1% 79.9%

shape step, specifically Hilbert reordering, whereas the other methods project the input directly to
QKV and then compute attention. SA’s neighborhood construction is both memory-intensive and
time-consuming, making it non-competitive. Under the I = 56× 56 and K = 7× 7, NA2D (NAT)
and HNA (NAT) have similar runtimes. At higher resolutions and larger kernel sizes, HNA (NAT)
and HSA (Flex) are faster than the corresponding NA2D.

Table 4: Accuracy on ImageNet-1K.

ImageNet-1K Top-1 Acc %

Swin-T HWT-T NAT-mini HNT-mini

224× 224 81.2 81.0 81.8 81.6
256× 256 81.6 81.5 - -

Figure 7: Throughput comparison.

HWT and HNT Results. Training was conducted on 8 V100 GPUs for HWT-T and HNT-mini,
with training settings and other hyperparameters matched to Swin-Tiny and NAT-mini. Because
V100 does not support FlexAttention well, HWT used a dense kernel during training. Additional
correctness tests verified that HWA with the dense kernel produces the same outputs as HWA with
FlexAttention. Specifically, the correctness tests ensured that mask mod and score mod were
designed so that the same attention pattern has identical outputs for the FlexAttention block-sparse
kernel and for the dense implementation. Similar correctness checks were performed for HSA vs.
SA and for HNA vs. NAT. Table 4 reports ImageNet-1K accuracy. At image resolutions of 224 ×
224 and 256 × 256, applying the proposed HWA and HNA in HWT and HNT results in at most
a 0.2% drop in accuracy, whereas Figure 7 shows that both models deliver substantial efficiency
gains, especially at high resolution. Table 5 shows the performance of HWT and HNT on CIFAR10
and CIFAR100. Compared with Swin and NAT, the accuracy of HWT and HNT is comparable,
with performance differences within 0.2%. These results confirm the feasibility of the proposed
HWA and HNA. Since HWT and HNT retain standard hierarchical backbone structures that are
commonly used in object detection, semantic segmentation, and image or video generation pipelines,
the same Hilbert local attention modules can, in principle, be reused in these settings as well. A
comprehensive investigation into these downstream tasks will be conducted in future work.

5 CONCLUSION

This work proposes a Hilbert-guided construction of local windows and neighborhoods, from which
HWA, HSA, and HNA are designed. Compared with conventional local attention, these variants
increase block sparsity and, when combined with FlexAttention’s programmable block-sparse ker-
nel, significantly improve computational efficiency. Under the evaluation, HWA and HNA achieve
several times inference speedups over WSA and SA, respectively. Building on this, the instantiated
HWT and HNT deliver end-to-end speedups with minimal accuracy loss, confirming the feasibility
and effectiveness of the approach. The combined Hilbert-guided local attention + block-sparse ker-
nel approach is general and extensible, allowing it to interface with various block-sparse backends
and model backbones. Overall, it provides a simple, practical path to system-level acceleration of
2D local attention for images and lays the groundwork for deployment across tasks and hardware.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGMENT

This work was supported in part by the NSF under award #2245729.

REFERENCES

NVIDIA Developer Blog. Accelerating hpc applications with nsight com-
pute roofline analysis. https://developer.nvidia.com/blog/
accelerating-hpc-applications-with-nsight-compute-roofline-analysis/,
2020. Accessed: 2025-09-22.

Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Regionvit: Regional-to-local attention for vision
transformers. arXiv preprint arXiv:2106.02689, 2021.

NVIDIA Corporation. Cuda runtime api: Occupancy functions. https://docs.nvidia.com/
cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html, 2025a. Accessed:
2025-09-22.

NVIDIA Corporation. Nsight compute profiling guide. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/, 2025b. Accessed: 2025-09-22.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6185–6194, 2023.

Ali Hassani, Wen-Mei Hwu, and Humphrey Shi. Faster neighborhood attention: Reducing the o(n2)
cost of self attention at the threadblock level. In Advances in Neural Information Processing
Systems, 2024.

Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min Shi, Steven Wal-
ton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, et al. Generalized neighborhood atten-
tion: Multi-dimensional sparse attention at the speed of light. arXiv preprint arXiv:2504.16922,
2025.

David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. In Dritter Band: Analy-
sis· Grundlagen der Mathematik· Physik Verschiedenes: Nebst Einer Lebensgeschichte, pp. 1–2.
Springer, 1935.

11

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/


Published as a conference paper at ICLR 2026

Hosagrahar V Jagadish. Analysis of the hilbert curve for representing two-dimensional space. In-
formation Processing Letters, 62(1):17–22, 1997.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable trans-
former modelling library. https://github.com/facebookresearch/xformers,
2022.

Gang Li, Di Xu, Xing Cheng, Lingyu Si, and Changwen Zheng. Simvit: Exploring a simple vision
transformer with sliding windows. In 2022 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6. IEEE, 2022.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.

Xuran Pan, Tianzhu Ye, Zhuofan Xia, Shiji Song, and Gao Huang. Slide-transformer: Hierarchi-
cal vision transformer with local self-attention. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2082–2091, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. Advances in neural information processing systems,
32, 2019.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658–68685, 2024.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp. 459–
479. Springer, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint
arXiv:2107.00641, 2021.

12

https://github.com/facebookresearch/xformers


Published as a conference paper at ICLR 2026

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageat-
tention: Accurate 8-bit attention for plug-and-play inference acceleration. arXiv preprint
arXiv:2410.02367, 2024.

13



Published as a conference paper at ICLR 2026

A APPENDIX

A.1 FULL WINDOW ATTENTION RESULTS

Table 6: Full results of the efficiency evaluation of different Window Attention on RTX3080.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.22 ms 22 MB 0.73 ms 70 MB 0%
WSA (xFormers) 1.21 ms 141 MB 3.15 ms 209 MB -
HWA (xFormers) 0.26 ms 13 MB 1.05 ms 140 MB -
WSA (Flex) 0.59 ms 13 MB 1.95 ms 50 MB 79.84%

I = 56× 56,W = 7× 7

HWA (Flex) 0.31 ms (0.7x) 13 MB 1.20 ms 50 MB 87.84%

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (xFormers) 1.74 ms 192 MB 4.43 ms 288 MB -
HWA (xFormers) 0.24 ms 17 MB 1.12 ms 163 MB -
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%

I = 64× 64,W = 8× 8

HWA (Flex) 0.12 ms (2.3x) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (xFormers) 3.98 ms 432 MB 9.96 ms 648 MB -
HWA (xFormers) 0.46 ms 37 MB 2.16 ms 366 MB -
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%

I = 96× 96,W = 8× 8

HWA (Flex) 0.24 ms (2.6x) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (xFormers) 9.24 ms 612 MB 19.76 ms 918 MB -
HWA (xFormers) 0.78 ms 37 MB 3.41 ms 284 MB -
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%

I = 96× 96,W = 12× 12

HWA (Flex) 0.59 ms (1.8x) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (xFormers) 12.17 ms 864 MB 33.22 ms 1296 MB -
HWA (xFormers) 0.44 ms 37 MB 2.40 ms 256 MB -
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%

I = 96× 96,W = 16× 16

HWA (Flex) 0.40 ms (3.9x) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (xFormers) 24.46 ms 1536 MB 60.79 ms 2304 MB -
HWA (xFormers) 0.79 ms 66 MB 4.74 ms 455 MB -
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%

I = 128× 128,W = 16× 16

HWA (Flex) 0.68 ms (4.0x) 66MB 3.87 ms 260 MB 98.44%

WSA 5.46 ms 1024 MB 14.02 ms 2312 MB 0%
WSA (xFormers) OOM OOM OOM OOM -
HWA (xFormers) 1.52 ms 132 MB 8.03 ms 910 MB -
WSA (Flex) 11.79 ms 132 MB 43.32 ms 520 MB 93.75%

I = 128× 256,W = 16× 16

HWA (Flex) 1.36 ms (4.0x) 132 MB 7.71ms 520 MB 99.22%

WSA 6.75 ms 1252 MB 15.25 ms 2712 MB 0%
WSA (xFormers) 55.16 ms 3300 MB 150.68 ms 4950 MB -
HWA (xFormers) 2.65 ms 103 MB 10.50 ms 674 MB -
WSA (Flex) 15.28 ms 103 MB 57.32 ms 406 MB 87.50%

I = 160× 160,W = 20× 20

HWA (Flex) 2.63 ms (2.6x) 103 MB 12.15 ms 406 MB 97.58%

At low resolutions such as 56×56 with a window size of 7×7, HWA (Flex) fails to outperform
WSA, primarily due to the limited sparsity under this configuration, which is insufficient to yield
meaningful acceleration. This observation indicates that surpassing the performance of a kernel
operating solely on full blocks requires a certain degree of sparsity—that is, a sufficiently high
proportion of empty blocks must be skipped. Moreover, even at high resolutions, achieving ideal
acceleration still depends on selecting appropriate window and block sizes.

Table 7 reports results on an A100. The A100 setup also uses CUDA 12.6 and PyTorch 2.7.0, and the
test parameters are identical to those on the RTX 3080. Compared with the 3080 results, memory
usage and sparsity remain unchanged because the attention pattern does not change. Runtimes
differ and are faster on the A100, as expected. The A100 also supports higher resolutions such as
256× 256, where HWA (Flex) shows a more pronounced speedup.

14



Published as a conference paper at ICLR 2026

Table 7: Full results of the efficiency evaluation of different Window Attention on A100. All results
in the table are obtained with batch size=16, head num=2, head dim=64, and block size=128.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.16 ms 22 MB 0.44 ms 70 MB 0%
WSA (Flex) 0.30 ms 13 MB 1.03 ms 50 MB 79.84%I = 56× 56,W = 7× 7
HWA (Flex) 0.18 ms 13 MB 0.66 ms 50 MB 87.84%

WSA 0.17 ms 32 MB 0.57 ms 104 MB 0%
WSA (Flex) 0.20 ms 17 MB 0.80 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA (Flex) 0.19 ms 17 MB 0.39 ms 65 MB 96.88%

WSA 0.35 ms 72 MB 1.21 ms 224 MB 0%
WSA (Flex) 0.63 ms 37 MB 2.39 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA (Flex) 0.19 ms 37 MB 0.84 ms 146 MB 98.61%

WSA 0.77 ms 164 MB 1.69 ms 408 MB 0%
WSA (Flex) 0.98 ms 37 MB 3.45 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA (Flex) 0.33 ms 37 MB 1.24 ms 146 MB 96.14%

WSA 0.90 ms 288 MB 2.21 ms 656 MB 0%
WSA (Flex) 1.29 ms 37 MB 4.31 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA (Flex) 0.21 ms 37 MB 0.97 ms 146 MB 97.22%

WSA 1.55 ms 520 MB 3.85 ms 1160 MB 0%
WSA (Flex) 2.45 ms 66 MB 9.30 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA (Flex) 0.35 ms 66MB 1.65 ms 260 MB 98.44%

WSA 21.06 ms 1024 MB 44.19 ms 2312 MB 0%
WSA (Flex) 23.48 ms 132 MB 70.30 ms 520 MB 93.75%I = 256× 256,W = 32× 32
HWA (Flex) 3.44 ms 132 MB 16.73 ms 520 MB 99.22%

WSA 3.71 ms 1252 MB 8.20 ms 2712 MB 0%
WSA (Flex) 9.17 ms 103 MB 24.10 ms 406 MB 87.50%I = 160× 160,W = 20× 20
HWA (Flex) 1.33 ms 103 MB 4.87 ms 406 MB 97.58%

Table 8: Full results of the comprehensive evaluation of Window Attention combined with additional
input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
W=7x7

WSA 0.23 ms 0.05 ms 0.24 ms 0.52 ms 0.16 ms 0.05 ms 0.17 ms 0.38 ms
WSA (Flex) 0.72 ms 0 ms 0.11 ms 0.83 ms 0.33 ms 0 ms 0.08 ms 0.41 ms
HWA (Flex) 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms

I=64x64
W=8x8

WSA 0.29 ms 0.06 ms 0.31 ms 0.66 ms 0.18 ms 0.06 ms 0.21 ms 0.45 ms
WSA (Flex) 0.41 ms 0 ms 0.14 ms 0.55 ms 0.26 ms 0 ms 0.09 ms 0.35 ms
HWA (Flex) 0.12 ms 0.10 ms 0.14 ms 0.36 ms 0.21 ms 0.11 ms 0.09 ms 0.41 ms

I=96x96
W=8x8

WSA 0.66 ms 0.13 ms 0.65 ms 1.44 ms 0.38 ms 0.11 ms 0.45 ms 0.94 ms
WSA (Flex) 1.39 ms 0 ms 0.29 ms 1.68 ms 0.79 ms 0 ms 0.19 ms 0.98 ms
HWA (Flex) 0.25 ms 0.22 ms 0.29 ms 0.76 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms

I=96x96
W=12x12

WSA 1.11 ms 0.13 ms 0.65 ms 1.89 ms 0.82 ms 0.11 ms 0.47 ms 1.40 ms
WSA (Flex) 2.07 ms 0 ms 0.29 ms 2.36 ms 1.14 ms 0 ms 0.19 ms 1.33 ms
HWA (Flex) 0.61 ms 0.22 ms 0.29 ms 1.12 ms 0.28 ms 0.24 ms 0.19 ms 0.71 ms

I=96x96
W=16x16

WSA 1.59 ms 0.13 ms 0.65 ms 2.37 ms 1.04 ms 0.11 ms 0.53 ms 1.68 ms
WSA (Flex) 2.72 ms 0 ms 0.29 ms 3.01 ms 1.44 ms 0 ms 0.19 ms 1.63 ms
HWA (Flex) 0.41 ms 0.22 ms 0.29 ms 0.92 ms 0.22 ms 0.24 ms 0.19 ms 0.65 ms

I=128x128
W=16x16

WSA 2.81 ms 0.22 ms 1.19 ms 4.22 ms 1.81 ms 0.20 ms 0.92 ms 2.93 ms
WSA (Flex) 5.89 ms 0 ms 0.50 ms 6.39 ms 3.47 ms 0 ms 0.32 ms 3.79 ms
HWA (Flex) 0.73 ms 0.4 ms 0.50 ms 1.63 ms 0.30 ms 0.42 ms 0.32 ms 1.04 ms

I=160x160
W=20x20

WSA 6.92 ms 0.34 ms 1.85 ms 9.11 ms 4.54 ms 0.30 ms 1.18 ms 6.02 ms
WSA (Flex) 16.09 ms 0 ms 0.78 ms 16.87 ms 10.7 ms 0 ms 0.39 ms 11.09 ms
HWA (Flex) 2.72 ms 0.62 ms 0.78 ms 4.12 ms 1.14 ms 0.62 ms 0.39 ms 2.15 ms

Table 8 presents end-to-end results on RTX 3080 and A100 for window-attention variants, combin-
ing the corresponding reshape and QKV projection under different input and window configurations.
At 56 × 56 resolution, HWA (Flex) does not achieve good speedups, mainly because the sparsity

15



Published as a conference paper at ICLR 2026

is low and the attention part is not significantly accelerated. As the resolution increases and the
window size is chosen appropriately, the speedup becomes substantial, especially on A100, where
at I=128, W=16, the acceleration approaches 3×.

A.2 FULL SLIDE/NEIGHBORHOOD ATTENTION RESULTS

Table 9: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on A100.
All results in the table are obtained with batch size=16, head num=2, head dim=64, and block
size=128.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 3.84 ms 622 MB 16.06 ms 1835 MB 0%
SA (Flex) 0.28 ms 13 MB 0.98 ms 50 MB 80.17%
HSA (Flex) 0.21 ms 13 MB 0.74 ms 50 MB 87.84%
NA2D (Flex) 0.28 ms 13 MB 0.97 ms 50 MB 79.84%
HNA (Flex) 0.21 ms 13 MB 0.73 ms 50 MB 87.84%

I = 64× 64,W = 9× 9

SA 8.26 ms 1332 MB 34.05 ms 3940 MB 0%
SA (Flex) 0.34 ms 17 MB 0.96 ms 65 MB 84.96%
HSA (Flex) 0.20 ms 17 MB 0.60 ms 65 MB 90.82%
NA2D (Flex) 0.34 ms 17 MB 0.99 ms 65 MB 84.38%
HNA (Flex) 0.20 ms 17 MB 0.59 ms 65 MB 90.82%

I = 96× 96,W = 9× 9

SA 18.57 ms 3070 MB 84.14 ms 8938 MB 0%
SA (Flex) 0.98 ms 37 MB 3.05 ms 146 MB 88.73%
HSA (Flex) 0.35 ms 37 MB 1.38 ms 146 MB 95.87%
NA2D (Flex) 0.99 ms 37 MB 3.43 ms 146 MB 88.58%
HNA (Flex) 0.35 ms 37 MB 1.42 ms 146 MB 95.87%

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
SA (Flex) 1.04 ms 37 MB 3.83 ms 146 MB 87.89%
HSA (Flex) 0.35 ms 37 MB 1.39 ms 146 MB 95.87%
NA2D (Flex) 1.04 ms 37 MB 3.50 ms 146 MB 87.50%
HNA (Flex) 0.35 ms 37 MB 1.41 ms 146 MB 95.87%

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 1.62 ms 37 MB 4.76 ms 146 MB 81.06%
HSA (Flex) 0.52 ms 37 MB 2.22 ms 146 MB 93.17%
NA2D (Flex) 1.66 ms 37 MB 5.57 ms 146 MB 80.40%
HNA (Flex) 0.52 ms 37 MB 2.20 ms 146 MB 93.17%

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 3.82 ms 66 MB 9.86 ms 260 MB 87.16%
HSA (Flex) 0.89 ms 66 MB 3.20 ms 260 MB 96.13%
NA2D (Flex) 3.88 ms 66 MB 10.27 ms 260 MB 86.72%
HNA (Flex) 0.88 ms 66 MB 3.17 ms 260 MB 96.13%

Table 9 reports all results for the Slide/Neighborhood Attention variants on A100. The same library
versions and parameter settings used on the RTX 3080 are employed. The A100 can handle com-
putations at 96 × 96 resolution, but OOM occurs when the kernel size is further increased. Even
so, HSA (Flex) and HNA (Flex) still show strong speedups. Due to hardware resource constraints,
the NATTEN library could not be installed on the A100 machine, so NAT-related attention variants
were not evaluated.

16



Published as a conference paper at ICLR 2026

Table 10: Full results of the comprehensive evaluation of Slide/Neighborhood Attention combined
with additional input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
K=7x7

SA 5.85 ms 0 ms 106.51 ms 112.36 ms 3.84 ms 0 ms 77.2 ms 81.04 ms
SA (Flex) 0.66 ms 0 ms 0.11 ms 0.77 ms 0.35 ms 0 ms 0.08 ms 0.43 ms
HSA (Flex) 0.46 ms 0.08 ms 0.11 ms 0.65 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (Flex) 0.65 ms 0 ms 0.11 ms 0.77 ms 0.34 ms 0 ms 0.08 ms 0.42 ms
HNA (Flex) 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (NAT) 0.21 ms 0 ms 0.24 ms 0.45 ms - - - -
HNA (NAT) 0.13 ms 0.08 ms 0.24 ms 0.45 ms - - - -

I=64x64
K=9x9

SA 12.65 ms 0 ms 446.85 ms 459.5 ms 8.26 ms 0 ms 307.51 ms 315.77 ms
SA (Flex) 0.52 ms 0 ms 0.14 ms 0.66 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HSA (Flex) 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (Flex) 0.51 ms 0 ms 0.14 ms 0.65 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HNA (Flex) 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (NAT) 0.28 ms 0 ms 0.30 ms 0.58 ms - - - -
HNA (NAT) 0.20 ms 0.1 ms 0.30 ms 0.60 ms - - - -

I=96x96
K=9x9

SA OOM OOM OOM OOM 18.57 ms 0 ms 647.88 ms 666.45 ms
SA (Flex) 1.78 ms 0 ms 0.29 ms 2.07 ms 1.1 ms 0 ms 0.19 ms 1.29 ms
HSA (Flex) 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.79 ms 0 ms 0.29 ms 2.08 ms 1.11 ms 0 ms 0.19 ms 1.30 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (NAT) 0.59 ms 0 ms 0.65 ms 1.24 ms - - - -
HNA (NAT) 0.44 ms 0.22 ms 0.65 ms 1.31 ms - - - -

I=96x96
K=11x11

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 1.90 ms 0 ms 0.29 ms 2.19 ms 1.18 ms 0 ms 0.19 ms 1.37 ms
HSA (Flex) 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.95 ms 0 ms 0.29 ms 2.24 ms 0.31 ms 0 ms 0.19 ms 0.50 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.64 ms 0.24 ms 0.19 ms 1.07 ms
NA2D (NAT) 1.07 ms 0 ms 0.65 ms 1.72 ms - - - -
HNA (NAT) 0.51 ms 0.22 ms 0.65 ms 1.38 ms - - - -

I=96x96
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 2.93 ms 0 ms 0.29 ms 3.22 ms 1.80 ms 0 ms 0.19 ms 1.99 ms
HSA (Flex) 1.01 ms 0.22 ms 0.29 ms 1.52 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (Flex) 3.00 ms 0 ms 0.29 ms 3.29 ms 1.81 ms 0 ms 0.19 ms 2.00 ms
HNA (Flex) 1.03 ms 0.22 ms 0.29 ms 1.54 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (NAT) 1.27 ms 0 ms 0.65 ms 1.92 ms - - - -
HNA (NAT) 0.77 ms 0.22 ms 0.65 ms 1.64 ms - - - -

I=128x128
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 6.47 ms 0 ms 0.50 ms 6.97 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HSA (Flex) 1.78 ms 0.40 ms 0.50 ms 2.68 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (Flex) 6.71 ms 0 ms 0.50 ms 7.21 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HNA (Flex) 1.80 ms 0.40 ms 0.50 ms 2.70 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (NAT) 2.25 ms 0 ms 1.14 ms 3.39 ms - - - -
HNA (NAT) 1.37 ms 0.40 ms 1.14 ms 2.91 ms - - - -

Table 10 presents the full results for RTX 3080 and A100, including slide/neighborhood attention
variants, which combine the corresponding reshape and QKV projection under various input and
window configurations. At higher resolutions and larger kernel sizes, HNA and HSA perform better
than the other attentions.

Table 11 reports all results for the Slide/Neighborhood Attention variants on RTX 3080. Due to
memory and bandwidth limits, SA runs out of memory once the resolution reaches 96 × 96. At
higher resolutions such as 128 × 128, HNA and HSA are more than 3× faster than SA (Flex) and
NA2D (Flex), and they are also faster than NA2D (NAT).

17



Published as a conference paper at ICLR 2026

Table 11: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on RTX
3080.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
HSA (FA2) 0.25 ms 13 MB 0.75 ms 76 MB -
SA (xFormers) 1.31 ms 141 MB 3.56 ms 208 MB -
HSA (xFormers) 0.28 ms 13 MB 0.79 ms 76 MB -
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA (Flex) 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB -
HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB -

I = 64× 64,W = 9× 9

SA 12.65 ms 1332 MB OOM OOM 0%
HSA (FA2) 0.31 ms 17 MB 0.95 ms 97 MB -
SA (xFormers) 2.47 ms 204 MB 6.00 ms 306 MB -
HSA (xFormers) 0.37 ms 17 MB 1.02 ms 98 MB -
SA (Flex) 0.49 ms 17 MB 2.21 ms 65 MB 84.96%
HSA (Flex) 0.28 ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (Flex) 0.49 ms 17 MB 2.16 ms 65 MB 84.38%
HNA (Flex) 0.28ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (NAT) 0.28 ms 17 MB 3.52 ms 98 MB -
HNA (NAT) 0.20 ms 17 MB 1.37 ms 98 MB -

I = 96× 96,W = 9× 9

SA OOM OOM OOM OOM 0%
HSA (FA2) 0.69 ms 37 MB 2.08 ms 218 MB -
SA (xFormers) 4.79 ms 462 MB 13.49 ms 693 MB -
HSA (xFormers) 0.79 ms 37 MB 2.22 ms 219 MB -
SA (Flex) 1.68 ms 37 MB 7.32 ms 146 MB 88.73%
HSA (Flex) 0.61 ms 37 MB 3.32 ms 146 MB 95.87%
NA2D (Flex) 1.71 ms 37 MB 7.53 ms 146 MB 88.58%
HNA (Flex) 0.61 ms 37 MB 3.10 ms 146 MB 95.87%
NA2D (NAT) 0.59 ms 37 MB 7.87 ms 219 MB -
HNA (NAT) 0.44 ms 37 MB 2.98 ms 219 MB -

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
HSA (FA2) 0.69 ms 37 MB 2.08 ms 218 MB -
SA (xFormers) 6.58 ms 545 MB 18.71 ms 818 MB -
HSA (xFormers) 0.81 ms 37 MB 2.22 ms 219 MB -
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA (Flex) 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB -
HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB -

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
HSA (FA2) 1.04 ms 37 MB 3.21 ms 218 MB -
SA (xFormers) 14.65 ms 884 MB 43 ms 1326 MB -
HSA (xFormers) 1.11 ms 37 MB 3.36 ms 219 MB -
SA (Flex) 2.79 ms 37 MB 11.79 ms 146 MB 81.06%
HSA (Flex) 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (Flex) 2.87 ms 37 MB 12.45 ms 146 MB 80.40%
HNA (Flex) 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (NAT) 1.22 ms 37 MB 9.08 ms 219 MB -
HNA (NAT) 0.77 ms 37 MB 4.87 ms 219 MB -

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
HSA (FA2) 1.86 ms 66 MB 5.68 ms 388 MB -
SA (xFormers) OOM OOM OOM OOM -
HSA (xFormers) 1.99 ms 66 MB 5.91 ms 390 MB -
SA (Flex) 6.12 ms 66 MB 23.91 ms 260 MB 87.16%
HSA (Flex) 1.72 ms 66 MB 8.15 ms 260 MB 96.13%
NA2D (Flex) 6.41 ms 66 MB 26.06 ms 260 MB 86.72%
HNA (Flex) 1.72 ms 66 MB 8.17 ms 260 MB 96.13%
NA2D (NAT) 2.18 ms 66 MB 16.05 ms 390 MB -
HNA (NAT) 1.38 ms 66 MB 8.60 ms 390 MB -

18



Published as a conference paper at ICLR 2026

A.3 THE INFLUENCE OF OTHER PARAMETERS

(a) Vary the batch size while keep-
ing head num=2, head dim=64, in-
put size =64x64, window size = 8x8
unchanged.

(b) Vary the head number
while keeping batch size=16,
head dim=64, input size =64x64,
window size = 8x8 unchanged.

(c) Vary the head dimension
while keeping batch size=16,
head num=2, input size =64x64,
window size = 8x8 unchanged.

Figure 8: Evaluation of speedups by other parameters.

Figure 8 illustrates the impact of batch size, number of heads, and head dimension on speed. These
factors do not alter sparsity, but they do impact runtime, and the optimal settings are hardware-
dependent. On RTX 3080, when the batch size is 1, WSA and HSA (Flex) run at nearly the same
speed. As the batch size increases, the speedup grows, but it stops improving beyond 32, likely
due to memory and bandwidth limits. The number of heads has little impact on speedup, whereas
increasing the head dimension slows computation because it is more bandwidth-bound.

A.4 SDPA COMPARISON

Figure 9: SDPA vs. HWA (Flex) on RTX 3080.

Figure 9 compares HWA (Flex) in FlexAttention with SDPA (F.scaled dot product attention)
across different resolutions and window sizes. SDPA can automatically dispatch to FlashAttention
or memory-efficient kernels, accelerating dense attention such as WSA. When sparsity in FlexAt-
tention is high enough, HWA (Flex) remains faster than SDPA. At high resolutions, SDPA benefits
from larger windows and can reach speeds comparable to HWA (Flex). For SA/NA, SDPA still ma-
terializes intermediates and remains bandwidth and memory-limited, so HSA/HNA perform better.

A.5 CODE

The code is open-sourced and available at https://github.com/Yunge6666/Hilbert-Local-
Attention.

19



Published as a conference paper at ICLR 2026

A.6 THE USE OF LARGE LANGUAGE MODELS

This paper uses LLM for grammar correction and polishing.

20


	Introduction
	Related Work
	Local Attention for Images
	Attention Kernel Optimization

	Method
	Hilbert Local Attention
	Hilbert Window Transformer
	Hilbert Neighborhood Transformer

	Experiment
	Implementation Details
	Results and Analysis

	Conclusion
	Appendix
	Full Window Attention Results
	Full Slide/Neighborhood Attention Results
	The Influence of Other Parameters
	SDPA Comparison
	Code
	The Use of Large Language Models


