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ABSTRACT

The quadratic compute and memory costs of global self-attention severely limit its
use in high-resolution images. Local attention reduces complexity by restricting
attention to neighborhoods. Block-sparse kernels can further improve the effi-
ciency of local attention, but conventional local attention patterns often fail to
deliver significant speedups because tokens within a window are not contiguous
in the 1D sequence. This work proposes a novel method for constructing windows
and neighborhoods based on the Hilbert curve. Image tokens are first reordered
along a Hilbert curve, and windows and neighborhoods are then formed on the re-
ordered 1D sequence. From a block-sparse perspective, this strategy significantly
increases block sparsity and can be combined with existing block-sparse kernels to
improve the efficiency of 2D local attention. Experiments show that the proposed
Hilbert Window Attention and Hilbert Slide Attention can accelerate window at-
tention and slide attention by about 4× and 18×, respectively. To assess prac-
ticality, the strategy is instantiated as the Hilbert Window Transformer and the
Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups
with minimal accuracy loss. Overall, combining Hilbert-guided local attention
with block-sparse kernels offers a general and practical approach to enhancing the
efficiency of 2D local attention for images.

1 INTRODUCTION

In recent years, models based on self-attention mechanisms, especially the Transformer architecture,
have achieved significant success in computer vision. However, the computational and memory re-
quirements of global self-attention increase quadratically with sequence length, which severely lim-
its its use in processing high-resolution images Vaswani et al. (2017). To address this problem, local
attention restricts each token’s receptive field to its neighborhood and thereby reduces complexity.

Figure 1: Speedup from block sparsity.
When the sequence length is fixed, a higher
empty blocks ratio leads to faster computa-
tion in FlexAttention, with the effect espe-
cially pronounced at high sparsity (> 80%).
Additionally, longer sequences yield greater
speedups.

Some typical works, such as Swin Transformer Liu
et al. (2021) and Neighborhood Attention Trans-
former (NAT) Hassani et al. (2023) has shown that
local attention can maintain the expressiveness of
the model while considerably improving computa-
tional efficiency, making it a core focus in current
research on efficient models. However, existing lo-
cal attention methods still focus primarily on algo-
rithm and structure design, while optimization at the
kernel level remains limited. This is especially true
for widely used 2D attention patterns in vision, such
as window, sliding window, and neighborhood atten-
tion. Current kernel optimization techniques, for ex-
ample, FlashAttention Dao et al. (2022), are often
designed for 1D sequences (e.g., text) or regularly
structured sparse patterns and are not well adapted
to 2D image local attention.

FlexAttention Dong et al. (2024) introduces a more
flexible approach to optimizing sparse attention, in-
cluding local attention on 2D images. As a block-
sparse attention framework, FlexAttention breaks
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down the attention operation into different types of blocks: full blocks, partial blocks, and empty
blocks. Empty blocks are skipped in computation, which enables the efficient use of sparsity. Anal-
ysis of empty block ratio in FlexAttention (Figure 1) reveals that, for fixed sequence lengths such as
1024, 2048, and 4096, the speedup of attention computation is positively correlated with block spar-
sity, specifically the percentage of empty blocks. Therefore, a higher ratio of empty blocks reduces
both computational and memory costs, leading to higher efficiency. This observation suggests that
increasing the proportion of empty blocks is an effective way to accelerate attention computation.

However, the ratio of empty blocks is restricted in conventional local attention patterns. Window
self-attention (WSA), sliding attention (SA), or neighborhood attention (NA) typically constructs
windows/neighborhoods as regular squares in row-major order for 2D images. As shown in Fig-
ure 2, such row-major sequence misaligns with 2D neighborhoods, making tokens within a window
discontinuous in the 1D sequence. This restricts the empty block ratio and produces many partial
blocks, along with element-wise masking overhead (explained in Sec 3.1).

Figure 2: Row-major sequence vs. Hilbert-curve sequence

Motivated by these observations, this work proposes a novel method, Hilbert-guided construction of
windows and neighborhoods, to enable more efficient use of sparsity by increasing the empty blocks
ratio. Specifically, the Hilbert curve Hilbert (1935) is adopted due to its strong locality-preserving
property Jagadish (1997): when mapping 2D image tokens to a 1D sequence, it maintains neigh-
borhood relations. This reordering greatly increases the ratio of empty blocks in the local attention
pattern and reduces the ratio of partial blocks. Within block-sparse kernel execution, empty blocks
are skipped, directly reducing computational and memory overhead. Moreover, the programmable
interface of the FlexAttention framework enables deployment without modifying the model or train-
ing pipeline and without hand-written kernels. In short, although local attention is inherently sparse,
regular square windows in row-major order still produce many partial blocks that require computa-
tion. By remapping 2D local attention patterns into contiguous 1D blocks via the Hilbert reordering,
the empty block ratio is greatly increased, leading to a significant acceleration of local attention.

The main contributions of this work are as follows: 1) A novel Hilbert-guided construction of local
windows/neighborhoods is proposed, enabling highly sparse attention computation through Hilbert
Window Attention (HWA), Hilbert Slide Attention (HSA), and Hilbert Neighborhood Attention
(HNA); 2) These new attention patterns leverage block-sparse kernel to achieve significant efficiency
gains; 3) HWA and HNA are instantiated into two end-to-end trainable models, Hilbert Window
Transformer (HWT) and Hilbert Neighborhood Transformer (HNT), both of which achieve end-to-
end speedups with minimal accuracy loss.

2 RELATED WORK

2.1 LOCAL ATTENTION FOR IMAGES

In Vision Transformer Dosovitskiy et al. (2020), while globally computed full attention mechanisms
are effective, they come with high computational costs. For high-dimensional data, such as images,
their quadratic complexity becomes a significant bottleneck. Local attention mechanisms are based
on a reasonable inductive bias: a visual token typically only needs to interact with tokens in its sur-
rounding neighborhood. This assumption significantly reduces computational complexity, making
it a mainstream approach for building efficient vision transformer Vaswani et al. (2021), Yang et al.
(2021), Dong et al. (2022), Tu et al. (2022),Chen et al. (2021),Liu et al. (2022), Li et al. (2022).

Stand-Alone Self-Attention (SASA) Ramachandran et al. (2019) was an early pioneering attempt
to entirely replace convolutional layers with local self-attention layers in visual tasks. Swin Trans-
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former Liu et al. (2021) introduced a local attention mechanism based on regular windows and a
shifted window strategy, cleverly enabling cross-window information exchange. It has become a
milestone work in the field of vision transformers. The Slide Transformer Pan et al. (2023) revisits
sliding window attention by replacing the inefficient Im2Col function with depthwise convolution
and equipping it with a learned shift module, thereby achieving efficient local attention. NAT pro-
posed neighborhood attention, which differs from previous sliding window attention in its boundary
handling: instead of padding zeros, NAT repeats the same “window” at the boundaries.

Although local attention theoretically significantly reduces computational complexity, its practical
efficiency highly depends on the quality of the underlying implementation. Many early implementa-
tions of local attention still required materializing large intermediate matrices in memory or handling
complex masking logic, leading to significant memory overhead and low parallelization efficiency.
As a result, they failed to realize the theoretical performance advantages fully. This bottleneck also
underscores the need for fundamental optimization research at the kernel level.

2.2 ATTENTION KERNEL OPTIMIZATION

The goal of efficient attention computation techniques is to directly address the memory and com-
putational bottlenecks of attention mechanisms at the system level. In recent years, breakthroughs
in this field have primarily stemmed from the design of hardware-aware kernels Zhang et al.
(2024), Kwon et al. (2023), Liu et al. (2023), Yuan et al. (2025), Xu et al. (2025).

FlashAttention Dao et al. (2022) is a foundational work. It was the first to restructure attention
computation from the perspective of memory access cost, proposing an I/O-aware algorithm. Its
core innovation lies in a tiling strategy that decomposes the computation to be performed in the
GPU’s high-speed SRAM, avoiding the materialization of large intermediate attention matrices in
memory. This reduces the memory complexity and achieves a several-fold speedup. FlashAtten-
tionv2 Dao (2023) further exploits hardware potential by restructuring parallelization strategies
and refining task scheduling, significantly reducing kernel synchronization overhead and achiev-
ing higher throughput. The latest FlashAttentionv3 Shah et al. (2024) begins to leverage features of
newer-generation GPUs (e.g., NVIDIA H100) to further improve computational efficiency NATTEN
also specifically conducted extreme kernel-level optimizations for Neighborhood Attention Hassani
et al. (2024), Hassani et al. (2025). They eliminated the inherent O(N2) intermediate memory
cost in neighborhood attention, providing a highly efficient implementation for this specific local
attention pattern. XFormers Lefaudeux et al. (2022) provides a library integrating multiple efficient
attention implementations. XFormers includes not only memory-efficient attention implementations
but also various predefined patterns.

However, the high-performance kernels of FlashAttention, NATTEN, and XFormers are all hand-
optimized for predefined, fixed sparsity patterns. This introduces a key limitation: when research
requires experimenting with a completely new, unimplemented attention pattern, significant effort
is still needed to redesign and reimplement the underlying kernel, creating a high barrier to entry
and a lack of flexibility. To address the flexibility issue that FlexAttention Dong et al. (2024) was
proposed to solve, a shift in programming paradigm is represented. FlexAttention builds a general
compilation framework that allows developers to define arbitrary block-sparse attention patterns
directly using high-level Python code. The compiler then automatically generates highly optimized
GPU kernel code at compile time. This approach decouples algorithm innovation from low-level
optimization. This work leverages the generality of FlexAttention to explore and further optimize
efficiency bottlenecks of local attention in vision.

3 METHOD

3.1 HILBERT LOCAL ATTENTION

The proposed Hilbert-guided local attention is illustrated in Figure 3. Given N tokens, attention is
viewed as computation on an N×N matrix: rows correspond to each query (q) token, and columns
correspond to all key (k) tokens. The attention pattern of 16 tokens is visualized into the 16 × 16
matrix. Block-sparse attention (e.g., FlexAttention) tiles the N × N matrix into fixed-size blocks,
each with a shape of bq × bk (outlined in red). Here bq = bk = 4. If all elements within a block
participate in the computation, it is called a full block; if some elements are masked, it is a partial
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Figure 3: Local attention patterns. (1) In this case, the feature map is assumed to 4× 4, therefore
there are 16 tokens. The window size is 2 × 2, and bq = bk = 4. (2) Hilbert reordering not only
preserves spatial locality but also increases the proportion of empty blocks in Hilbert local attention
patterns, thereby reducing computational and memory access overhead. This further unleashes the
potential of block-sparse attention and accelerates local attention computation.

block; and if all elements in the block are masked, it is an empty block, which is skipped. Partial
blocks cannot be skipped during computation and require element-wise masking, which introduces
overhead and reduces efficiency, whereas dense computation in full blocks is generally faster. In
terms of efficiency, empty blocks are preferable to full blocks, which are preferable to partial blocks.
This mechanism transforms traditional dense self-attention into block-sparse attention based on the
number of non-empty blocks.

In local attention, each query only attends to keys/values within a fixed window. Conventional local
attention patterns typically partition the 2D space into regular square windows in row-major order.
Given 16 tokens, with 2 × 2 window size, the first window takes (1,2,5,6) tokens to compute local
attention, and the second takes (3,4,7,8) tokens. In the window attention pattern, attention (marked
in blue) of these eight tokens forms four partial blocks, each of which is half full. For tokens not in
the same window, the attention weight is masked as 0 (marked in white).

To increase the empty block ratio and reduce partial blocks, this paper introduces the Hilbert curve
to replace row-major. By reordering the token sequence according to the Hilbert curve, windows
or neighborhoods can be generated contiguously in the 1D sequence while preserving 2D spatial
locality. With 2× 2 window size, the first window takes (1,2,3,4) tokens to compute local attention,
and the second takes (5,6,7,8) tokens. The tokens in each window are continuous in the 1D sequence,
resulting in a more compact attention pattern. For the first eight tokens, HWA forms two full blocks
and two empty blocks, increasing the empty block ratio from 0% to 50% and thereby accelerating
attention computation. The same principle applies to the slide attention pattern. In this example,
although the empty blocks ratio remains unchanged, the partial blocks ratio decreases (from 100%
to 50%), further improving efficiency. In general, HWA and HSA produce more empty blocks and
fewer partial blocks than WSA and SA.

On GPUs, the overall runtime of block-sparse attention is jointly determined by the total workload
and the effective parallel throughput (Blog, 2020). It can be approximated as follows:

T ≈

M∑
i=1

(
α+ β · ri

)
Peff

(1)

where α represents the overhead per CTA (compute thread array), covering kernel/CTA launch, q
block loading, and initialization (Corporation, 2025a); β denotes the unit cost of processing a single
non-empty block, which includes loading q block and k/v block, computing qk⊤ within the block,
score modification (e.g., relative position bias or Alibi Press et al. (2021)), online softmax Dao et al.
(2022), and aggregation with value (v); ri is the number of non-empty blocks contained in the ith
CTA; and Peff is the effective parallelism, determined by the number of streaming multiprocessors
(SMs) and some memory factors (Corporation, 2025b). By skipping empty blocks, block-sparse at-
tention avoids launching corresponding CTA and loading key/value data, thereby reducing computa-
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tion and memory access. The proposed Hilbert reordering further accelerates block-sparse attention
by increasing the ratio of empty blocks.

According to the Equation 1, more empty blocks reduce the value of
∑M

i=1

(
α + β · ri

)
, thereby

shortening the total runtime. It should be emphasized that the combination of block size and window
size directly affects the distribution of full, partial, and empty blocks, which in turn impacts overall
performance. A reasonable block-window configuration can help increase the empty block ratio. A
systematic evaluation is provided in Section 4.

3.2 HILBERT WINDOW TRANSFORMER

Figure 4: The architecture of Hilbert Window Transformer. After the token sequence is reordered
according to the Hilbert curve, windows are constructed on the 1D sequence for window attention.
Cross-window interaction is achieved by shifting these windows along the 1D sequence. Although
the windows formed in the Hilbert-ordered sequence may correspond to irregular shapes in the
original 2D space, the tokens within each window remain spatially adjacent in the 2D image.

WSA is applied in Swin Transformer, and it does not leverage block sparsity; instead, Swin Trans-
former performs dense WSA within each window. Although this approach implicitly partitions the
sequence into windows, it does not further optimize the underlying computation. Block-sparse ker-
nel can accelerate WSA; however, it may sometimes suffer from efficiency loss due to generating
more partial blocks. By applying HWA, the number of empty blocks increases and the number of
partial blocks decreases, thereby better leveraging the potential of block-sparse attention. Based
on this idea, this work introduces the Hilbert Window Transformer (HWT). HWT shares a similar
architecture with Swin Transformer, with the main differences lying in the window construction, the
shift window operation, and the use of RPB. As shown in Figure 4, the image is first divided into to-
kens (or patches), which are then reordered according to the Hilbert curve path. Since feature maps
of the same size generate the same Hilbert curve path, the path can be precomputed and cached for
reuse in subsequent feature maps of identical dimensions.

HWT blocks are also used in pairs: the first block performs HWA, and the second performs Hilbert
Shifted Window Attention (HSWA). Thanks to the spatial locality-preserving property of the Hilbert
curve, Hilbert windows can be constructed directly on the 1D sequence, ensuring that tokens within
each window remain adjacent in the original 2D space. Applying the shifted window strategy of
Swin Transformer directly to HWT would make the attention mask overly complex, so HWT per-
forms the window shift along the 1D sequence by moving each window forward by a fixed offset.
This facilitates interaction between tokens from different windows and enhances the model’s ability
to capture global features. It should be noted that window shift may introduce tokens at the beginning
and end of the sequence that are not adjacent in 2D space. Even if they fall into the same window,
irrelevant attention connections must be masked out. In addition, since Hilbert windows and Hilbert
shifted windows may exhibit irregular shapes, the window-based RPB used in Swin Transformer is
no longer suitable. Instead, HWT enlarges the window to the full feature map, enabling a global
relative position bias (global RPB).

Both HWA and HSWA can be implemented with the FlexAttention by configuring its mask mod
and the score mod function, which expresses the block-sparse pattern induced by Hilbert reorder-
ing. As shown in Figure 3, this approach reduces memory access and computational overhead in
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invalid regions, better leverages block-sparse acceleration, and thus further improves the overall
computational efficiency of the HWT model.

3.3 HILBERT NEIGHBORHOOD TRANSFORMER

Figure 5: The architecture of Hilbert Neighborhood Transformer. Hilbert reordering enables
the extraction of neighborhoods on the 1D token sequence while preserving spatial proximity. As a
result, the 2D neighborhood attention can be converted into a 1D neighborhood attention.

Slide attention and neighborhood attention are mechanistically similar, differing primarily in their
handling of boundary conditions. Both mechanisms suffer from high intermediate storage over-
head, as each token must gather others within its neighborhood, typically requiring an N2 tensor.
This leads to memory and bandwidth constraints that impair training and inference efficiency, a key
bottleneck observed in models like SASA and Slide Transformer. While methods such as FlashAt-
tention and Xformer offer kernel-level optimizations for 1D slide attention, adapting these to images
requires nontrivial kernel modifications due to their 2D nature. In contrast, NATTEN optimizes 2D
neighborhood attention kernels by avoiding the explicit materialization of intermediates, and Flex-
Attention offers a flexible framework that supports both attention types. However, as shown in
Figure 3, implementing SA/SASA with FlexAttention still produces many partial blocks, whereas
HSA reduces the ratio of partial blocks and increases the number of empty blocks. Similarly, HNA
attains a higher empty block ratio compared to NA.

Building on these advances, this work proposes the Hilbert Neighborhood Transformer (HNT),
whose overall architecture is similar to the NAT, as shown in Figure 5. In HNT, after the image
is converted into a token sequence, the tokens are reordered according to the Hilbert curve path.
As with HWT, the Hilbert curve path can be cached and reused to reduce computational overhead.
Similar to Slide Transformer and NAT, each token in HNT only attends to its surrounding tokens, a
process carried out within the HNT block. Thanks to the ability of Hilbert reordering to preserve 2D
spatial locality while mapping to a 1D sequence, each token only needs to attend to its neighboring
tokens in the 1D sequence to effectively express 2D neighborhood relationships. Thus, the original
2D neighborhood attention is transformed into a 1D neighborhood attention. Specifically, 1D neigh-
borhood attention can be implemented using the na1d provided by NATTEN, or flexibly defined
using the mask mod and score mod functions in FlexAttention. These different implementations
maintain consistency in attention patterns and computational logic, differing only in the underlying
kernel optimization strategies. Therefore, they do not affect model accuracy but primarily differ in
computational efficiency. Hilbert reordering increases the ratio of empty blocks while maintaining
good spatial proximity, which further accelerates HNT.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model throughput and runtime depend on the hardware platform and software stack. Different GPU
models, CUDA versions, or PyTorch versions can result in varying speedups. All experiments here
are conducted on RTX 3080 GPU using CUDA 12.6 and PyTorch 2.7.0. For reference, the Ap-
pendix also reports results on an A100. The goal is to verify that Hilbert reordering increases the
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empty block ratio and thereby improves the efficiency of image local attention. Because the empty
block ratio is mainly affected by input size, window/kernel size, and block size, we evaluate across
different inputs, window sizes, and block sizes, comparing HWA with WSA and HSA/HNA with
SA and NA. In addition, the implementation of WSA/SA/NA in FlexAttention is also evaluated and
compared. We further include evaluations that combine input processing steps, such as window
partitioning, Hilbert reordering, and QKV projection, with the attention computation. Finally, to
assess feasibility in full models, we report the accuracy and efficiency of HWT and HNT on Ima-
geNet Deng et al. (2009). Due to variability in CUDA timing, all evaluations are averages over 10
runs, each run consisting of 100 iterations with 25% warm-up and 75% measurement.

4.2 RESULTS AND ANALYSIS

Table 1: Efficiency evaluation of window attention variants. I represents the input size, and W
represents the window size. All results in the table are obtained with batch size=16, head num=2,
head dim=64, and block size=128. A complete evaluation is presented in the Appendix A.1.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.12 ms (2.3×) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.24 ms (2.6×) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.59 ms (1.8×) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.40 ms (3.9×) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.68 ms (4.0×) 66 MB 3.87 ms 260 MB 98.44%

Window Attention Result. Table 1 reports the efficiency of WSA, WSA (Flex), and HWA under
different input feature-map sizes and window sizes. WSA uses a dense kernel as the baseline. WSA
(Flex) calls the block-sparse kernel in FlexAttention, but because it contains many partial blocks that
require element-wise masking, it runs slower than WSA in all settings. The sparsity metric denotes
the ratio of empty blocks, and HWA shows higher sparsity than WSA (Flex) in every configuration.
As a result, HWA is faster than WSA (Flex) for both inference and training, and achieves up to
4.0× speedup over the dense WSA. Benefiting from FlexAttention’s integration of FlashAttention,
both WSA (Flex) and HWA use much less memory than WSA in forward and backward. Memory
consumption is dominated by the size of the QKV tensors and is only weakly affected by block size
and window size. Thus, for the same input, WSA (Flex) and HWA have the same memory usage.
For example, when the input size is I=96, their memory stays unchanged across different window
sizes. In contrast, WSA’s memory grows with input and window size because dense computation
materializes intermediate attention results within each window, whereas FlexAttention stores only
lightweight block mask metadata and does not keep the full attention matrix. Overall, WSA (Flex)
and HWA reduce training and inference memory compared with WSA, and HWA further improves
computation speed.

In Table 1, when the block size is fixed to 128 and the input size is the same (I=96), different window
sizes change the sparsity and thus the runtime. Table 2 also reports how sparsity and speedups vary
when the block size changes while input and window sizes are fixed. Therefore, for a given input
size, an appropriate block-window configuration helps block-sparse local attention achieve better
speedups. Appendix A.3 includes additional evaluations on the number of heads, head dimension,
and batch size. These settings may produce different speedups on different hardware, but they do
not affect block sparsity.
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(a) Window attention with input pro-
cessing (b) Slide/neighborhood attention with input processing

Figure 6: Comprehensive evaluation of combining attention computation with input process-
ing. (a) Combined overhead of different window attentions and their corresponding reshaping and
QKV projection for a 128 × 128 input and a 16 × 16 window. (b) Combined overhead of different
slide/neighborhood attentions and their corresponding reshaping and QKV projection for a 56× 56
input and a 7× 7 kernel size. Full results are provided in Appendix A.1 A.2.

Table 2: Evaluation of different block sizes. All results
in the table are obtained with batch size=16, head num=2,
head dim=64, input size=128 and window size =16.

Attention Block
Size

Forward Sparsity
Time Memory

WSA - 2.74 ms 520 MB 0%

WSA (Flex)

128 5.68 ms 66 MB 87.50%
256 5.68 ms 66 MB 87.50%
512 5.68 ms 66 MB 87.50%

1024 5.68 ms 66 MB 87.50%

HWA

128 0.68 ms (4.0x) 66 MB 98.44%
256 0.68 ms (4.0x) 66 MB 98.44%
512 1.43 ms (1.9x) 66 MB 96.88%

1024 2.78 ms (1.0x) 66 MB 93.75%

Before computing attention, the input
is preprocessed with two steps: a re-
shape and linear projections to Q, K,
and V. In WSA, the reshape is win-
dow partitioning. In HWA, the re-
shape is Hilbert reordering. WSA
(Flex) does not require a reshape be-
cause FlexAttention operates directly
on QKV obtained from the linear pro-
jection of the features. Figure 6a
reports results of window attention
variants for input 128 × 128 with
a window 16 × 16. The attention
time here differs from Table 1 be-
cause this evaluation includes RPB,
but HWA remains faster than WSA.
In the QKV projection stage, HWA
is also faster than WSA. WSA first
partitions windows, producing many
small matrices and incurring more kernel launches and memory traffic, whereas HWA processes
fewer, larger matrices, which improves throughput. WSA (Flex) and HWA both project the full
input feature map, so their QKV times are essentially the same. Overall, HWA takes 1.63 ms, which
is 2.6× faster than WSA’s 4.22 ms and 3.9× faster than WSA (Flex).

Slide/Neighborhood Attention Results. Table 3 reports results for SA and NA under different
input sizes and kernel sizes. SA is an unoptimized baseline, and its runtime and memory usage
are much higher than those of attention variants with an optimized kernel. NA2D and HNA can be
implemented with either FlexAttention or NATTEN. Under the same settings, HSA shows higher
sparsity and larger speedups than SA (Flex), and HNA (Flex) shows higher sparsity and better speed
than NA2D (Flex). With the NATTEN kernel, HNA (NAT) is also faster than NA2D. Concretely, at
input 56×56 with kernel size 7×7, HNA (NAT) is 48.8× faster than SA and 1.8× faster than NA2D.
At input 96×96 with kernel size 7×7, SA runs out of memory (OOM), and HSA and HNA are about
1.8–2.1× faster than NA2D (NAT). Figure 6b presents an evaluation that combines attention with
input processing. HSA and HNA require a reshape step, specifically Hilbert reordering, whereas the
other methods project the input directly to QKV and then compute attention. SA’s neighborhood
construction is both memory-intensive and time-consuming, making it non-competitive. Under the
I = 56 × 56 and K = 7 × 7, NA2D (NAT) and HNA (NAT) have similar runtimes. At higher
resolutions and larger kernel sizes, HNA and HSA are faster than NA2D.

8
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Table 3: Efficiency evaluation of slide/neighborhood attention variants. All results in the table
are obtained with batch size=16, head num=2, head dim=64, and block size=128. A complete eval-
uation is presented in Appendix A.2.

Forward Backward
Attention Time Memory Time Memory Sparsity

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB -

I = 56× 56,K = 7× 7

HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB -

SA OOM OOM OOM OOM 0%
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61 ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB -

I = 96× 96,K = 11× 11

HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB -

Table 4: Accuracy on ImageNet-1K.

ImageNet-1K Top-1 Acc %

Swin-T HWT-T NAT-mini HNT-mini

224× 224 81.2 81.0 81.8 81.6
256× 256 81.6 81.5 - -

Figure 7: Throughput comparison.

HWT and HNT Results. Training was conducted on 8 V100 GPUs for HWT-T and HNT-mini,
with training settings and other hyperparameters matched to Swin-Tiny and NAT-mini. Because
V100 does not support FlexAttention well, HWT used a dense kernel during training. Additional
correctness tests verified that HWA with the dense kernel produces the same outputs as HWA with
FlexAttention. Specifically, the correctness tests ensured that mask mod and score mod were
designed so that the same attention pattern has identical outputs for the FlexAttention block-sparse
kernel and for the dense implementation. Similar correctness checks were performed for HSA vs.
SA and for HNA vs. NAT. Table 4 reports ImageNet-1K accuracy. At image resolutions of 224×224
and 256× 256, applying the proposed HWA and HNA in HWT and HNT results in at most a 0.2%
drop in accuracy, whereas Figure 7 shows that both models deliver substantial efficiency gains,
especially at high resolution. These results confirm the feasibility of the proposed HWA and HNA.

5 CONCLUSION

This work proposes a Hilbert-guided construction of local windows and neighborhoods, from which
HWA, HSA, and HNA are designed. Compared with conventional local attention, these variants
increase block sparsity and, when combined with FlexAttention’s programmable block-sparse ker-
nel, significantly improve computational efficiency. Under the evaluation, HWA and HNA achieve
several times inference speedups over WSA and SA, respectively. Building on this, the instantiated
HWT and HNT deliver end-to-end speedups with minimal accuracy loss, confirming the feasibility
and effectiveness of the approach. The combined Hilbert-guided local attention + block-sparse ker-
nel approach is general and extensible, allowing it to interface with various block-sparse backends
and model backbones. Overall, it provides a simple, practical path to system-level acceleration of
2D local attention for images and lays the groundwork for deployment across tasks and hardware.

9
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A APPENDIX

A.1 FULL WINDOW ATTENTION RESULTS

Table 5: Full results of the efficiency evaluation of different Window Attention on RTX3080.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.22 ms 22 MB 0.73 ms 70 MB 0%
WSA (Flex) 0.59 ms 13 MB 1.95 ms 50 MB 79.84%I = 56× 56,W = 7× 7
HWA 0.31 ms (0.7x) 13 MB 1.20 ms 50 MB 87.84%

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.12 ms (2.3x) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.24 ms (2.6x) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.59 ms (1.8x) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.40 ms (3.9x) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.68 ms (4.0x) 66MB 3.87 ms 260 MB 98.44%

WSA 5.46 ms 1024 MB 14.02 ms 2312 MB 0%
WSA (Flex) 11.79 ms 132 MB 43.32 ms 520 MB 93.75%I = 128× 256,W = 16× 16
HWA 1.36 ms (4.0x) 132 MB 7.71ms 520 MB 99.22%

WSA 6.75 ms 1252 MB 15.25 ms 2712 MB 0%
WSA (Flex) 15.28 ms 103 MB 57.32 ms 406 MB 87.50%I = 160× 160,W = 20× 20
HWA 2.63 ms (2.6x) 103 MB 12.15 ms 406 MB 97.58%

At low resolutions such as 56×56 with a window size of 7×7, HWA fails to outperform WSA, pri-
marily due to the limited sparsity under this configuration, which is insufficient to yield meaningful
acceleration. This observation indicates that surpassing the performance of a kernel operating solely
on full blocks requires a certain degree of sparsity—that is, a sufficiently high proportion of empty
blocks must be skipped. Moreover, even at high resolutions, achieving ideal acceleration still de-
pends on selecting appropriate window and block sizes.

Table 6: Full results of the efficiency evaluation of different Window Attention on A100. All results
in the table are obtained with batch size=16, head num=2, head dim=64, and block size=128.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.16 ms 22 MB 0.44 ms 70 MB 0%
WSA (Flex) 0.30 ms 13 MB 1.03 ms 50 MB 79.84%I = 56× 56,W = 7× 7
HWA 0.18 ms 13 MB 0.66 ms 50 MB 87.84%

WSA 0.17 ms 32 MB 0.57 ms 104 MB 0%
WSA (Flex) 0.20 ms 17 MB 0.80 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.19 ms 17 MB 0.39 ms 65 MB 96.88%

WSA 0.35 ms 72 MB 1.21 ms 224 MB 0%
WSA (Flex) 0.63 ms 37 MB 2.39 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.19 ms 37 MB 0.84 ms 146 MB 98.61%

WSA 0.77 ms 164 MB 1.69 ms 408 MB 0%
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WSA (Flex) 0.98 ms 37 MB 3.45 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.33 ms 37 MB 1.24 ms 146 MB 96.14%

WSA 0.90 ms 288 MB 2.21 ms 656 MB 0%
WSA (Flex) 1.29 ms 37 MB 4.31 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.21 ms 37 MB 0.97 ms 146 MB 97.22%

WSA 1.55 ms 520 MB 3.85 ms 1160 MB 0%
WSA (Flex) 2.45 ms 66 MB 9.30 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.35 ms 66MB 1.65 ms 260 MB 98.44%

WSA 21.06 ms 1024 MB 44.19 ms 2312 MB 0%
WSA (Flex) 23.48 ms 132 MB 70.30 ms 520 MB 93.75%I = 256× 256,W = 32× 32
HWA 3.44 ms 132 MB 16.73 ms 520 MB 99.22%

WSA 3.71 ms 1252 MB 8.20 ms 2712 MB 0%
WSA (Flex) 9.17 ms 103 MB 24.10 ms 406 MB 87.50%I = 160× 160,W = 20× 20
HWA 1.33 ms 103 MB 4.87 ms 406 MB 97.58%

Table 6 reports results on an A100. The A100 setup also uses CUDA 12.6 and PyTorch 2.7.0, and the
test parameters are identical to those on the RTX 3080. Compared with the 3080 results, memory
usage and sparsity remain unchanged because the attention pattern does not change. Runtimes
differ and are faster on the A100, as expected. The A100 also supports higher resolutions such as
256× 256, where HWA shows a more pronounced speedup.

Table 7: Full results of the comprehensive evaluation of Window Attention combined with additional
input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
W=7x7

WSA 0.23 ms 0.05 ms 0.24 ms 0.52 ms 0.16 ms 0.05 ms 0.17 ms 0.38 ms
WSA (Flex) 0.72 ms 0 ms 0.11 ms 0.83 ms 0.33 ms 0 ms 0.08 ms 0.41 ms
HWA 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms

I=64x64
W=8x8

WSA 0.29 ms 0.06 ms 0.31 ms 0.66 ms 0.18 ms 0.06 ms 0.21 ms 0.45 ms
WSA (Flex) 0.41 ms 0 ms 0.14 ms 0.55 ms 0.26 ms 0 ms 0.09 ms 0.35 ms
HWA 0.12 ms 0.10 ms 0.14 ms 0.36 ms 0.21 ms 0.11 ms 0.09 ms 0.41 ms

I=96x96
W=8x8

WSA 0.66 ms 0.13 ms 0.65 ms 1.44 ms 0.38 ms 0.11 ms 0.45 ms 0.94 ms
WSA (Flex) 1.39 ms 0 ms 0.29 ms 1.68 ms 0.79 ms 0 ms 0.19 ms 0.98 ms
HWA 0.25 ms 0.22 ms 0.29 ms 0.76 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms

I=96x96
W=12x12

WSA 1.11 ms 0.13 ms 0.65 ms 1.89 ms 0.82 ms 0.11 ms 0.47 ms 1.40 ms
WSA (Flex) 2.07 ms 0 ms 0.29 ms 2.36 ms 1.14 ms 0 ms 0.19 ms 1.33 ms
HWA 0.61 ms 0.22 ms 0.29 ms 1.12 ms 0.28 ms 0.24 ms 0.19 ms 0.71 ms

I=96x96
W=16x16

WSA 1.59 ms 0.13 ms 0.65 ms 2.37 ms 1.04 ms 0.11 ms 0.53 ms 1.68 ms
WSA (Flex) 2.72 ms 0 ms 0.29 ms 3.01 ms 1.44 ms 0 ms 0.19 ms 1.63 ms
HWA 0.41 ms 0.22 ms 0.29 ms 0.92 ms 0.22 ms 0.24 ms 0.19 ms 0.65 ms

I=128x128
W=16x16

WSA 2.81 ms 0.22 ms 1.19 ms 4.22 ms 1.81 ms 0.20 ms 0.92 ms 2.93 ms
WSA (Flex) 5.89 ms 0 ms 0.50 ms 6.39 ms 3.47 ms 0 ms 0.32 ms 3.79 ms
HWA 0.73 ms 0.4 ms 0.50 ms 1.63 ms 0.30 ms 0.42 ms 0.32 ms 1.04 ms

I=160x160
W=20x20

WSA 6.92 ms 0.34 ms 1.85 ms 9.11 ms 4.54 ms 0.30 ms 1.18 ms 6.02 ms
WSA (Flex) 16.09 ms 0 ms 0.78 ms 16.87 ms 10.7 ms 0 ms 0.39 ms 11.09 ms
HWA 2.72 ms 0.62 ms 0.78 ms 4.12 ms 1.14 ms 0.62 ms 0.39 ms 2.15 ms

Table 7 presents end-to-end results on RTX 3080 and A100 for window-attention variants, combin-
ing the corresponding reshape and QKV projection under different input and window configurations.
At 56×56 resolution, HWA does not achieve good speedups, mainly because the sparsity is low and
the attention part is not significantly accelerated. As the resolution increases and the window size is
chosen appropriately, the speedup becomes substantial, especially on A100, where at I=128, W=16,
the acceleration approaches 3×.
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A.2 FULL SLIDE/NEIGHBORHOOD ATTENTION RESULTS

Table 8: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on RTX
3080.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB -
HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB -

I = 64× 64,W = 9× 9

SA 12.65 ms 1332 MB OOM OOM 0%
SA (Flex) 0.49 ms 17 MB 2.21 ms 65 MB 84.96%
HSA 0.28 ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (Flex) 0.49 ms 17 MB 2.16 ms 65 MB 84.38%
HNA (Flex) 0.28ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (NAT) 0.28 ms 17 MB 3.52 ms 98 MB -
HNA (NAT) 0.20 ms 17 MB 1.37 ms 98 MB -

I = 96× 96,W = 9× 9

SA OOM OOM OOM OOM 0%
SA (Flex) 1.68 ms 37 MB 7.32 ms 146 MB 88.73%
HSA 0.61 ms 37 MB 3.32 ms 146 MB 95.87%
NA2D (Flex) 1.71 ms 37 MB 7.53 ms 146 MB 88.58%
HNA (Flex) 0.61 ms 37 MB 3.10 ms 146 MB 95.87%
NA2D (NAT) 0.59 ms 37 MB 7.87 ms 219 MB -
HNA (NAT) 0.44 ms 37 MB 2.98 ms 219 MB -

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB -
HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB -

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 2.79 ms 37 MB 11.79 ms 146 MB 81.06%
HSA 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (Flex) 2.87 ms 37 MB 12.45 ms 146 MB 80.40%
HNA (Flex) 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (NAT) 1.22 ms 37 MB 9.08 ms 219 MB -
HNA (NAT) 0.77 ms 37 MB 4.87 ms 219 MB -

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 6.12 ms 66 MB 23.91 ms 260 MB 87.16%
HSA 1.72 ms 66 MB 8.15 ms 260 MB 96.13%
NA2D (Flex) 6.41 ms 66 MB 26.06 ms 260 MB 86.72%
HNA (Flex) 1.72 ms 66 MB 8.17 ms 260 MB 96.13%
NA2D (NAT) 2.18 ms 66 MB 16.05 ms 390 MB -
HNA (NAT) 1.38 ms 66 MB 8.60 ms 390 MB -

Table 8 reports all results for the Slide/Neighborhood Attention variants on RTX 3080. Due to
memory and bandwidth limits, SA runs out of memory once the resolution reaches 96 × 96. At
higher resolutions such as 128 × 128, HNA and HSA are more than 3× faster than SA (Flex) and
NA2D (Flex), and they are also faster than NA2D (NAT).
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Table 9: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on A100.
All results in the table are obtained with batch size=16, head num=2, head dim=64, and block
size=128.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 3.84 ms 622 MB 16.06 ms 1835 MB 0%
SA (Flex) 0.28 ms 13 MB 0.98 ms 50 MB 80.17%
HSA 0.21 ms 13 MB 0.74 ms 50 MB 87.84%
NA2D (Flex) 0.28 ms 13 MB 0.97 ms 50 MB 79.84%
HNA (Flex) 0.21 ms 13 MB 0.73 ms 50 MB 87.84%

I = 64× 64,W = 9× 9

SA 8.26 ms 1332 MB 34.05 ms 3940 MB 0%
SA (Flex) 0.34 ms 17 MB 0.96 ms 65 MB 84.96%
HSA 0.20 ms 17 MB 0.60 ms 65 MB 90.82%
NA2D (Flex) 0.34 ms 17 MB 0.99 ms 65 MB 84.38%
HNA (Flex) 0.20 ms 17 MB 0.59 ms 65 MB 90.82%

I = 96× 96,W = 9× 9

SA 18.57 ms 3070 MB 84.14 ms 8938 MB 0%
SA (Flex) 0.98 ms 37 MB 3.05 ms 146 MB 88.73%
HSA 0.35 ms 37 MB 1.38 ms 146 MB 95.87%
NA2D (Flex) 0.99 ms 37 MB 3.43 ms 146 MB 88.58%
HNA (Flex) 0.35 ms 37 MB 1.42 ms 146 MB 95.87%

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
SA (Flex) 1.04 ms 37 MB 3.83 ms 146 MB 87.89%
HSA 0.35 ms 37 MB 1.39 ms 146 MB 95.87%
NA2D (Flex) 1.04 ms 37 MB 3.50 ms 146 MB 87.50%
HNA (Flex) 0.35 ms 37 MB 1.41 ms 146 MB 95.87%

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 1.62 ms 37 MB 4.76 ms 146 MB 81.06%
HSA 0.52 ms 37 MB 2.22 ms 146 MB 93.17%
NA2D (Flex) 1.66 ms 37 MB 5.57 ms 146 MB 80.40%
HNA (Flex) 0.52 ms 37 MB 2.20 ms 146 MB 93.17%

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 3.82 ms 66 MB 9.86 ms 260 MB 87.16%
HSA 0.89 ms 66 MB 3.20 ms 260 MB 96.13%
NA2D (Flex) 3.88 ms 66 MB 10.27 ms 260 MB 86.72%
HNA (Flex) 0.88 ms 66 MB 3.17 ms 260 MB 96.13%

Table 9 reports all results for the Slide/Neighborhood Attention variants on A100. The same library
versions and parameter settings used on the RTX 3080 are employed. The A100 can handle com-
putations at 96× 96 resolution, but OOM occurs when the kernel size is further increased. Even so,
HSA and HNA (Flex) still show strong speedups. Due to hardware resource constraints, the NAT-
TEN library could not be installed on the A100 machine, so NAT-related attention variants were not
evaluated.
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Table 10: Full results of the comprehensive evaluation of Slide/Neighborhood Attention combined
with additional input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
K=7x7

SA 5.85 ms 0 ms 106.51 ms 112.36 ms 3.84 ms 0 ms 77.2 ms 81.04 ms
SA (Flex) 0.66 ms 0 ms 0.11 ms 0.77 ms 0.35 ms 0 ms 0.08 ms 0.43 ms
HSA 0.46 ms 0.08 ms 0.11 ms 0.65 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (Flex) 0.65 ms 0 ms 0.11 ms 0.77 ms 0.34 ms 0 ms 0.08 ms 0.42 ms
HNA (Flex) 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (NAT) 0.21 ms 0 ms 0.24 ms 0.45 ms - - - -
HNA (NAT) 0.13 ms 0.08 ms 0.24 ms 0.45 ms - - - -

I=64x64
K=9x9

SA 12.65 ms 0 ms 446.85 ms 459.5 ms 8.26 ms 0 ms 307.51 ms 315.77 ms
SA (Flex) 0.52 ms 0 ms 0.14 ms 0.66 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HSA 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (Flex) 0.51 ms 0 ms 0.14 ms 0.65 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HNA (Flex) 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (NAT) 0.28 ms 0 ms 0.30 ms 0.58 ms - - - -
HNA (NAT) 0.20 ms 0.1 ms 0.30 ms 0.60 ms - - - -

I=96x96
K=9x9

SA OOM OOM OOM OOM 18.57 ms 0 ms 647.88 ms 666.45 ms
SA (Flex) 1.78 ms 0 ms 0.29 ms 2.07 ms 1.1 ms 0 ms 0.19 ms 1.29 ms
HSA 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.79 ms 0 ms 0.29 ms 2.08 ms 1.11 ms 0 ms 0.19 ms 1.30 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (NAT) 0.59 ms 0 ms 0.65 ms 1.24 ms - - - -
HNA (NAT) 0.44 ms 0.22 ms 0.65 ms 1.31 ms - - - -

I=96x96
K=11x11

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 1.90 ms 0 ms 0.29 ms 2.19 ms 1.18 ms 0 ms 0.19 ms 1.37 ms
HSA 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.95 ms 0 ms 0.29 ms 2.24 ms 0.31 ms 0 ms 0.19 ms 0.50 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.64 ms 0.24 ms 0.19 ms 1.07 ms
NA2D (NAT) 1.07 ms 0 ms 0.65 ms 1.72 ms - - - -
HNA (NAT) 0.51 ms 0.22 ms 0.65 ms 1.38 ms - - - -

I=96x96
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 2.93 ms 0 ms 0.29 ms 3.22 ms 1.80 ms 0 ms 0.19 ms 1.99 ms
HSA 1.01 ms 0.22 ms 0.29 ms 1.52 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (Flex) 3.00 ms 0 ms 0.29 ms 3.29 ms 1.81 ms 0 ms 0.19 ms 2.00 ms
HNA (Flex) 1.03 ms 0.22 ms 0.29 ms 1.54 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (NAT) 1.27 ms 0 ms 0.65 ms 1.92 ms - - - -
HNA (NAT) 0.77 ms 0.22 ms 0.65 ms 1.64 ms - - - -

I=128x128
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 6.47 ms 0 ms 0.50 ms 6.97 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HSA 1.78 ms 0.40 ms 0.50 ms 2.68 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (Flex) 6.71 ms 0 ms 0.50 ms 7.21 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HNA (Flex) 1.80 ms 0.40 ms 0.50 ms 2.70 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (NAT) 2.25 ms 0 ms 1.14 ms 3.39 ms - - - -
HNA (NAT) 1.37 ms 0.40 ms 1.14 ms 2.91 ms - - - -

Table 10 presents the full results for RTX 3080 and A100, including slide/neighborhood attention
variants, which combine the corresponding reshape and QKV projection under various input and
window configurations. At higher resolutions and larger kernel sizes, HNA and HSA perform better
than the other attentions.

A.3 THE INFLUENCE OF OTHER PARAMETERS

(a) Vary the batch size while keep-
ing head num=2, head dim=64, in-
put size =64x64, window size = 8x8
unchanged.

(b) Vary the head number
while keeping batch size=16,
head dim=64, input size =64x64,
window size = 8x8 unchanged.

(c) Vary the head dimension
while keeping batch size=16,
head num=2, input size =64x64,
window size = 8x8 unchanged.

Figure 8: Evaluation of speedups by other parameters.
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Figure 8 illustrates the impact of batch size, number of heads, and head dimension on speed. These
factors do not alter sparsity, but they do impact runtime, and the optimal settings are hardware-
dependent. On RTX 3080, when the batch size is 1, WSA and HSA run at nearly the same speed. As
the batch size increases, the speedup grows, but it stops improving beyond 32, likely due to memory
and bandwidth limits. The number of heads has little impact on speedup, whereas increasing the
head dimension slows computation because it is more bandwidth-bound.

A.4 SDPA COMPARISON

Figure 9: SDPA vs. HWA on RTX 3080.

Figure 9 compares SDPA (F.scaled dot product attention) in FlexAttention with HWA across
different resolutions and window sizes. SDPA can automatically dispatch to FlashAttention or
memory-efficient kernels, accelerating dense attention such as WSA. When sparsity in FlexAtten-
tion is high enough, HWA remains faster than SDPA. At high resolutions, SDPA benefits from larger
windows and can reach speeds comparable to HWA. For SA/NA, SDPA still materializes interme-
diates and remains bandwidth and memory-limited, so HSA/HNA perform better.

A.5 CODE

The code is open-sourced and available at https://anonymous.4open.science/r/Hilbert-guided-
Local-Attention-3181/.

A.6 THE USE OF LARGE LANGUAGE MODELS

This paper uses LLM for grammar correction and polishing.
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