
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HILBERT-GUIDED SPARSE LOCAL ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The quadratic compute and memory costs of global self-attention severely limit its
use in high-resolution images. Local attention reduces complexity by restricting
attention to neighborhoods. Block-sparse kernels can further improve the effi-
ciency of local attention, but conventional local attention patterns often fail to
deliver significant speedups because tokens within a window are not contiguous
in the 1D sequence. This work proposes a novel method for constructing windows
and neighborhoods based on the Hilbert curve. Image tokens are first reordered
along a Hilbert curve, and windows and neighborhoods are then formed on the re-
ordered 1D sequence. From a block-sparse perspective, this strategy significantly
increases block sparsity and can be combined with existing block-sparse kernels to
improve the efficiency of 2D local attention. Experiments show that the proposed
Hilbert Window Attention and Hilbert Slide Attention can accelerate window at-
tention and slide attention by about 4× and 18×, respectively. To assess prac-
ticality, the strategy is instantiated as the Hilbert Window Transformer and the
Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups
with minimal accuracy loss. Overall, combining Hilbert-guided local attention
with block-sparse kernels offers a general and practical approach to enhancing the
efficiency of 2D local attention for images.

1 INTRODUCTION

In recent years, models based on self-attention mechanisms, especially the Transformer architecture,
have achieved significant success in computer vision. However, the computational and memory re-
quirements of global self-attention increase quadratically with sequence length, which severely lim-
its its use in processing high-resolution images Vaswani et al. (2017). To address this problem, local
attention restricts each token’s receptive field to its neighborhood and thereby reduces complexity.

Figure 1: Speedup from block sparsity.
When the sequence length is fixed, a higher
empty blocks ratio leads to faster computa-
tion in FlexAttention, with the effect espe-
cially pronounced at high sparsity (> 80%).
Additionally, longer sequences yield greater
speedups.

Some typical works, such as Swin Transformer Liu
et al. (2021) and Neighborhood Attention Trans-
former (NAT) Hassani et al. (2023) has shown that
local attention can maintain the expressiveness of
the model while considerably improving computa-
tional efficiency, making it a core focus in current
research on efficient models. However, existing lo-
cal attention methods still focus primarily on algo-
rithm and structure design, while optimization at the
kernel level remains limited. This is especially true
for widely used 2D attention patterns in vision, such
as window, sliding window, and neighborhood atten-
tion. Current kernel optimization techniques, for ex-
ample, FlashAttention Dao et al. (2022), are often
designed for 1D sequences (e.g., text) or regularly
structured sparse patterns and are not well adapted
to 2D image local attention.

FlexAttention Dong et al. (2024) introduces a more
flexible approach to optimizing sparse attention, in-
cluding local attention on 2D images. As a block-
sparse attention framework, FlexAttention breaks

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

down the attention operation into different types of blocks: full blocks, partial blocks, and empty
blocks. Empty blocks are skipped in computation, which enables the efficient use of sparsity. Anal-
ysis of empty block ratio in FlexAttention (Figure 1) reveals that, for fixed sequence lengths such as
1024, 2048, and 4096, the speedup of attention computation is positively correlated with block spar-
sity, specifically the percentage of empty blocks. Therefore, a higher ratio of empty blocks reduces
both computational and memory costs, leading to higher efficiency. This observation suggests that
increasing the proportion of empty blocks is an effective way to accelerate attention computation.

However, the ratio of empty blocks is restricted in conventional local attention patterns. Window
self-attention (WSA), sliding attention (SA), or neighborhood attention (NA) typically constructs
windows/neighborhoods as regular squares in row-major order for 2D images. As shown in Fig-
ure 2, such row-major sequence misaligns with 2D neighborhoods, making tokens within a window
discontinuous in the 1D sequence. This restricts the empty block ratio and produces many partial
blocks, along with element-wise masking overhead (explained in Sec 3.1).

Figure 2: Row-major sequence vs. Hilbert-curve sequence

Motivated by these observations, this work proposes a novel method, Hilbert-guided construction of
windows and neighborhoods, to enable more efficient use of sparsity by increasing the empty blocks
ratio. Specifically, the Hilbert curve Hilbert (1935) is adopted due to its strong locality-preserving
property Jagadish (1997): when mapping 2D image tokens to a 1D sequence, it maintains neigh-
borhood relations. This reordering greatly increases the ratio of empty blocks in the local attention
pattern and reduces the ratio of partial blocks. Within block-sparse kernel execution, empty blocks
are skipped, directly reducing computational and memory overhead. Moreover, the programmable
interface of the FlexAttention framework enables deployment without modifying the model or train-
ing pipeline and without hand-written kernels. In short, although local attention is inherently sparse,
regular square windows in row-major order still produce many partial blocks that require computa-
tion. By remapping 2D local attention patterns into contiguous 1D blocks via the Hilbert reordering,
the empty block ratio is greatly increased, leading to a significant acceleration of local attention.

The main contributions of this work are as follows: 1) A novel Hilbert-guided construction of local
windows/neighborhoods is proposed, enabling highly sparse attention computation through Hilbert
Window Attention (HWA), Hilbert Slide Attention (HSA), and Hilbert Neighborhood Attention
(HNA); 2) These new attention patterns leverage block-sparse kernel to achieve significant efficiency
gains; 3) HWA and HNA are instantiated into two end-to-end trainable models, Hilbert Window
Transformer (HWT) and Hilbert Neighborhood Transformer (HNT), both of which achieve end-to-
end speedups with minimal accuracy loss.

2 RELATED WORK

2.1 LOCAL ATTENTION FOR IMAGES

In Vision Transformer Dosovitskiy et al. (2020), while globally computed full attention mechanisms
are effective, they come with high computational costs. For high-dimensional data, such as images,
their quadratic complexity becomes a significant bottleneck. Local attention mechanisms are based
on a reasonable inductive bias: a visual token typically only needs to interact with tokens in its sur-
rounding neighborhood. This assumption significantly reduces computational complexity, making
it a mainstream approach for building efficient vision transformer Vaswani et al. (2021), Yang et al.
(2021), Dong et al. (2022), Tu et al. (2022),Chen et al. (2021),Liu et al. (2022), Li et al. (2022).

Stand-Alone Self-Attention (SASA) Ramachandran et al. (2019) was an early pioneering attempt
to entirely replace convolutional layers with local self-attention layers in visual tasks. Swin Trans-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

former Liu et al. (2021) introduced a local attention mechanism based on regular windows and a
shifted window strategy, cleverly enabling cross-window information exchange. It has become a
milestone work in the field of vision transformers. The Slide Transformer Pan et al. (2023) revisits
sliding window attention by replacing the inefficient Im2Col function with depthwise convolution
and equipping it with a learned shift module, thereby achieving efficient local attention. NAT pro-
posed neighborhood attention, which differs from previous sliding window attention in its boundary
handling: instead of padding zeros, NAT repeats the same “window” at the boundaries.

Although local attention theoretically significantly reduces computational complexity, its practical
efficiency highly depends on the quality of the underlying implementation. Many early implementa-
tions of local attention still required materializing large intermediate matrices in memory or handling
complex masking logic, leading to significant memory overhead and low parallelization efficiency.
As a result, they failed to realize the theoretical performance advantages fully. This bottleneck also
underscores the need for fundamental optimization research at the kernel level.

2.2 ATTENTION KERNEL OPTIMIZATION

The goal of efficient attention computation techniques is to directly address the memory and com-
putational bottlenecks of attention mechanisms at the system level. In recent years, breakthroughs
in this field have primarily stemmed from the design of hardware-aware kernels Zhang et al.
(2024), Kwon et al. (2023), Liu et al. (2023), Yuan et al. (2025), Xu et al. (2025).

FlashAttention Dao et al. (2022) is a foundational work. It was the first to restructure attention
computation from the perspective of memory access cost, proposing an I/O-aware algorithm. Its
core innovation lies in a tiling strategy that decomposes the computation to be performed in the
GPU’s high-speed SRAM, avoiding the materialization of large intermediate attention matrices in
memory. This reduces the memory complexity and achieves a several-fold speedup. FlashAtten-
tionv2 Dao (2023) further exploits hardware potential by restructuring parallelization strategies
and refining task scheduling, significantly reducing kernel synchronization overhead and achiev-
ing higher throughput. The latest FlashAttentionv3 Shah et al. (2024) begins to leverage features of
newer-generation GPUs (e.g., NVIDIA H100) to further improve computational efficiency NATTEN
also specifically conducted extreme kernel-level optimizations for Neighborhood Attention Hassani
et al. (2024), Hassani et al. (2025). They eliminated the inherent O(N2) intermediate memory
cost in neighborhood attention, providing a highly efficient implementation for this specific local
attention pattern. XFormers Lefaudeux et al. (2022) provides a library integrating multiple efficient
attention implementations. XFormers includes not only memory-efficient attention implementations
but also various predefined patterns.

However, the high-performance kernels of FlashAttention, NATTEN, and XFormers are all hand-
optimized for predefined, fixed sparsity patterns. This introduces a key limitation: when research
requires experimenting with a completely new, unimplemented attention pattern, significant effort
is still needed to redesign and reimplement the underlying kernel, creating a high barrier to entry
and a lack of flexibility. To address the flexibility issue that FlexAttention Dong et al. (2024) was
proposed to solve, a shift in programming paradigm is represented. FlexAttention builds a general
compilation framework that allows developers to define arbitrary block-sparse attention patterns
directly using high-level Python code. The compiler then automatically generates highly optimized
GPU kernel code at compile time. This approach decouples algorithm innovation from low-level
optimization. This work leverages the generality of FlexAttention to explore and further optimize
efficiency bottlenecks of local attention in vision.

3 METHOD

3.1 HILBERT LOCAL ATTENTION

The proposed Hilbert-guided local attention is illustrated in Figure 3. Given N tokens, attention is
viewed as computation on an N×N matrix: rows correspond to each query (q) token, and columns
correspond to all key (k) tokens. The attention pattern of 16 tokens is visualized into the 16 × 16
matrix. Block-sparse attention (e.g., FlexAttention) tiles the N × N matrix into fixed-size blocks,
each with a shape of bq × bk (outlined in red). Here bq = bk = 4. If all elements within a block
participate in the computation, it is called a full block; if some elements are masked, it is a partial

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Local attention patterns. (1) In this case, the feature map is assumed to 4× 4, therefore
there are 16 tokens. The window size is 2 × 2, and bq = bk = 4. (2) Hilbert reordering not only
preserves spatial locality but also increases the proportion of empty blocks in Hilbert local attention
patterns, thereby reducing computational and memory access overhead. This further unleashes the
potential of block-sparse attention and accelerates local attention computation.

block; and if all elements in the block are masked, it is an empty block, which is skipped. Partial
blocks cannot be skipped during computation and require element-wise masking, which introduces
overhead and reduces efficiency, whereas dense computation in full blocks is generally faster. In
terms of efficiency, empty blocks are preferable to full blocks, which are preferable to partial blocks.
This mechanism transforms traditional dense self-attention into block-sparse attention based on the
number of non-empty blocks.

In local attention, each query only attends to keys/values within a fixed window. Conventional local
attention patterns typically partition the 2D space into regular square windows in row-major order.
Given 16 tokens, with 2 × 2 window size, the first window takes (1,2,5,6) tokens to compute local
attention, and the second takes (3,4,7,8) tokens. In the window attention pattern, attention (marked
in blue) of these eight tokens forms four partial blocks, each of which is half full. For tokens not in
the same window, the attention weight is masked as 0 (marked in white).

To increase the empty block ratio and reduce partial blocks, this paper introduces the Hilbert curve
to replace row-major. By reordering the token sequence according to the Hilbert curve, windows
or neighborhoods can be generated contiguously in the 1D sequence while preserving 2D spatial
locality. With 2× 2 window size, the first window takes (1,2,3,4) tokens to compute local attention,
and the second takes (5,6,7,8) tokens. The tokens in each window are continuous in the 1D sequence,
resulting in a more compact attention pattern. For the first eight tokens, HWA forms two full blocks
and two empty blocks, increasing the empty block ratio from 0% to 50% and thereby accelerating
attention computation. The same principle applies to the slide attention pattern. In this example,
although the empty blocks ratio remains unchanged, the partial blocks ratio decreases (from 100%
to 50%), further improving efficiency. In general, HWA and HSA produce more empty blocks and
fewer partial blocks than WSA and SA.

On GPUs, the overall runtime of block-sparse attention is jointly determined by the total workload
and the effective parallel throughput (Blog, 2020). It can be approximated as follows:

T ≈

M∑
i=1

(
α+ β · ri

)
Peff

(1)

where α represents the overhead per CTA (compute thread array), covering kernel/CTA launch, q
block loading, and initialization (Corporation, 2025a); β denotes the unit cost of processing a single
non-empty block, which includes loading q block and k/v block, computing qk⊤ within the block,
score modification (e.g., relative position bias or Alibi Press et al. (2021)), online softmax Dao et al.
(2022), and aggregation with value (v); ri is the number of non-empty blocks contained in the ith
CTA; and Peff is the effective parallelism, determined by the number of streaming multiprocessors
(SMs) and some memory factors (Corporation, 2025b). By skipping empty blocks, block-sparse at-
tention avoids launching corresponding CTA and loading key/value data, thereby reducing computa-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tion and memory access. The proposed Hilbert reordering further accelerates block-sparse attention
by increasing the ratio of empty blocks.

According to the Equation 1, more empty blocks reduce the value of
∑M

i=1

(
α + β · ri

)
, thereby

shortening the total runtime. It should be emphasized that the combination of block size and window
size directly affects the distribution of full, partial, and empty blocks, which in turn impacts overall
performance. A reasonable block-window configuration can help increase the empty block ratio. A
systematic evaluation is provided in Section 4.

3.2 HILBERT WINDOW TRANSFORMER

Figure 4: The architecture of Hilbert Window Transformer. After the token sequence is reordered
according to the Hilbert curve, windows are constructed on the 1D sequence for window attention.
Cross-window interaction is achieved by shifting these windows along the 1D sequence. Although
the windows formed in the Hilbert-ordered sequence may correspond to irregular shapes in the
original 2D space, the tokens within each window remain spatially adjacent in the 2D image.

WSA is applied in Swin Transformer, and it does not leverage block sparsity; instead, Swin Trans-
former performs dense WSA within each window. Although this approach implicitly partitions the
sequence into windows, it does not further optimize the underlying computation. Block-sparse ker-
nel can accelerate WSA; however, it may sometimes suffer from efficiency loss due to generating
more partial blocks. By applying HWA, the number of empty blocks increases and the number of
partial blocks decreases, thereby better leveraging the potential of block-sparse attention. Based
on this idea, this work introduces the Hilbert Window Transformer (HWT). HWT shares a similar
architecture with Swin Transformer, with the main differences lying in the window construction, the
shift window operation, and the use of RPB. As shown in Figure 4, the image is first divided into to-
kens (or patches), which are then reordered according to the Hilbert curve path. Since feature maps
of the same size generate the same Hilbert curve path, the path can be precomputed and cached for
reuse in subsequent feature maps of identical dimensions.

HWT blocks are also used in pairs: the first block performs HWA, and the second performs Hilbert
Shifted Window Attention (HSWA). Thanks to the spatial locality-preserving property of the Hilbert
curve, Hilbert windows can be constructed directly on the 1D sequence, ensuring that tokens within
each window remain adjacent in the original 2D space. Applying the shifted window strategy of
Swin Transformer directly to HWT would make the attention mask overly complex, so HWT per-
forms the window shift along the 1D sequence by moving each window forward by a fixed offset.
This facilitates interaction between tokens from different windows and enhances the model’s ability
to capture global features. It should be noted that window shift may introduce tokens at the beginning
and end of the sequence that are not adjacent in 2D space. Even if they fall into the same window,
irrelevant attention connections must be masked out. In addition, since Hilbert windows and Hilbert
shifted windows may exhibit irregular shapes, the window-based RPB used in Swin Transformer is
no longer suitable. Instead, HWT enlarges the window to the full feature map, enabling a global
relative position bias (global RPB).

Both HWA and HSWA can be implemented with the FlexAttention by configuring its mask mod
and the score mod function, which expresses the block-sparse pattern induced by Hilbert reorder-
ing. As shown in Figure 3, this approach reduces memory access and computational overhead in

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

invalid regions, better leverages block-sparse acceleration, and thus further improves the overall
computational efficiency of the HWT model.

3.3 HILBERT NEIGHBORHOOD TRANSFORMER

Figure 5: The architecture of Hilbert Neighborhood Transformer. Hilbert reordering enables
the extraction of neighborhoods on the 1D token sequence while preserving spatial proximity. As a
result, the 2D neighborhood attention can be converted into a 1D neighborhood attention.

Slide attention and neighborhood attention are mechanistically similar, differing primarily in their
handling of boundary conditions. Both mechanisms suffer from high intermediate storage over-
head, as each token must gather others within its neighborhood, typically requiring an N2 tensor.
This leads to memory and bandwidth constraints that impair training and inference efficiency, a key
bottleneck observed in models like SASA and Slide Transformer. While methods such as FlashAt-
tention and Xformer offer kernel-level optimizations for 1D slide attention, adapting these to images
requires nontrivial kernel modifications due to their 2D nature. In contrast, NATTEN optimizes 2D
neighborhood attention kernels by avoiding the explicit materialization of intermediates, and Flex-
Attention offers a flexible framework that supports both attention types. However, as shown in
Figure 3, implementing SA/SASA with FlexAttention still produces many partial blocks, whereas
HSA reduces the ratio of partial blocks and increases the number of empty blocks. Similarly, HNA
attains a higher empty block ratio compared to NA.

Building on these advances, this work proposes the Hilbert Neighborhood Transformer (HNT),
whose overall architecture is similar to the NAT, as shown in Figure 5. In HNT, after the image
is converted into a token sequence, the tokens are reordered according to the Hilbert curve path.
As with HWT, the Hilbert curve path can be cached and reused to reduce computational overhead.
Similar to Slide Transformer and NAT, each token in HNT only attends to its surrounding tokens, a
process carried out within the HNT block. Thanks to the ability of Hilbert reordering to preserve 2D
spatial locality while mapping to a 1D sequence, each token only needs to attend to its neighboring
tokens in the 1D sequence to effectively express 2D neighborhood relationships. Thus, the original
2D neighborhood attention is transformed into a 1D neighborhood attention. Specifically, 1D neigh-
borhood attention can be implemented using the na1d provided by NATTEN, or flexibly defined
using the mask mod and score mod functions in FlexAttention. These different implementations
maintain consistency in attention patterns and computational logic, differing only in the underlying
kernel optimization strategies. Therefore, they do not affect model accuracy but primarily differ in
computational efficiency. Hilbert reordering increases the ratio of empty blocks while maintaining
good spatial proximity, which further accelerates HNT.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model throughput and runtime depend on the hardware platform and software stack. Different GPU
models, CUDA versions, or PyTorch versions can result in varying speedups. All experiments here
are conducted on RTX 3080 GPU using CUDA 12.6 and PyTorch 2.7.0. For reference, the Ap-
pendix also reports results on an A100. The goal is to verify that Hilbert reordering increases the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

empty block ratio and thereby improves the efficiency of image local attention. Because the empty
block ratio is mainly affected by input size, window/kernel size, and block size, we evaluate across
different inputs, window sizes, and block sizes, comparing HWA with WSA and HSA/HNA with
SA and NA. In addition, the implementation of WSA/SA/NA in FlexAttention is also evaluated and
compared. We further include evaluations that combine input processing steps, such as window
partitioning, Hilbert reordering, and QKV projection, with the attention computation. Finally, to
assess feasibility in full models, we report the accuracy and efficiency of HWT and HNT on Ima-
geNet Deng et al. (2009). Due to variability in CUDA timing, all evaluations are averages over 10
runs, each run consisting of 100 iterations with 25% warm-up and 75% measurement.

4.2 RESULTS AND ANALYSIS

Table 1: Efficiency evaluation of window attention variants. I represents the input size, and W
represents the window size. All results in the table are obtained with batch size=16, head num=2,
head dim=64, and block size=128. A complete evaluation is presented in the Appendix A.1.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.12 ms (2.3×) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.24 ms (2.6×) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.59 ms (1.8×) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.40 ms (3.9×) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.68 ms (4.0×) 66 MB 3.87 ms 260 MB 98.44%

Window Attention Result. Table 1 reports the efficiency of WSA, WSA (Flex), and HWA under
different input feature-map sizes and window sizes. WSA uses a dense kernel as the baseline. WSA
(Flex) calls the block-sparse kernel in FlexAttention, but because it contains many partial blocks that
require element-wise masking, it runs slower than WSA in all settings. The sparsity metric denotes
the ratio of empty blocks, and HWA shows higher sparsity than WSA (Flex) in every configuration.
As a result, HWA is faster than WSA (Flex) for both inference and training, and achieves up to
4.0× speedup over the dense WSA. Benefiting from FlexAttention’s integration of FlashAttention,
both WSA (Flex) and HWA use much less memory than WSA in forward and backward. Memory
consumption is dominated by the size of the QKV tensors and is only weakly affected by block size
and window size. Thus, for the same input, WSA (Flex) and HWA have the same memory usage.
For example, when the input size is I=96, their memory stays unchanged across different window
sizes. In contrast, WSA’s memory grows with input and window size because dense computation
materializes intermediate attention results within each window, whereas FlexAttention stores only
lightweight block mask metadata and does not keep the full attention matrix. Overall, WSA (Flex)
and HWA reduce training and inference memory compared with WSA, and HWA further improves
computation speed.

In Table 1, when the block size is fixed to 128 and the input size is the same (I=96), different window
sizes change the sparsity and thus the runtime. Table 2 also reports how sparsity and speedups vary
when the block size changes while input and window sizes are fixed. Therefore, for a given input
size, an appropriate block-window configuration helps block-sparse local attention achieve better
speedups. Appendix A.3 includes additional evaluations on the number of heads, head dimension,
and batch size. These settings may produce different speedups on different hardware, but they do
not affect block sparsity.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Window attention with input pro-
cessing (b) Slide/neighborhood attention with input processing

Figure 6: Comprehensive evaluation of combining attention computation with input process-
ing. (a) Combined overhead of different window attentions and their corresponding reshaping and
QKV projection for a 128 × 128 input and a 16 × 16 window. (b) Combined overhead of different
slide/neighborhood attentions and their corresponding reshaping and QKV projection for a 56× 56
input and a 7× 7 kernel size. Full results are provided in Appendix A.1 A.2.

Table 2: Evaluation of different block sizes. All results
in the table are obtained with batch size=16, head num=2,
head dim=64, input size=128 and window size =16.

Attention Block
Size

Forward Sparsity
Time Memory

WSA - 2.74 ms 520 MB 0%

WSA (Flex)

128 5.68 ms 66 MB 87.50%
256 5.68 ms 66 MB 87.50%
512 5.68 ms 66 MB 87.50%

1024 5.68 ms 66 MB 87.50%

HWA

128 0.68 ms (4.0x) 66 MB 98.44%
256 0.68 ms (4.0x) 66 MB 98.44%
512 1.43 ms (1.9x) 66 MB 96.88%

1024 2.78 ms (1.0x) 66 MB 93.75%

Before computing attention, the input
is preprocessed with two steps: a re-
shape and linear projections to Q, K,
and V. In WSA, the reshape is win-
dow partitioning. In HWA, the re-
shape is Hilbert reordering. WSA
(Flex) does not require a reshape be-
cause FlexAttention operates directly
on QKV obtained from the linear pro-
jection of the features. Figure 6a
reports results of window attention
variants for input 128 × 128 with
a window 16 × 16. The attention
time here differs from Table 1 be-
cause this evaluation includes RPB,
but HWA remains faster than WSA.
In the QKV projection stage, HWA
is also faster than WSA. WSA first
partitions windows, producing many
small matrices and incurring more kernel launches and memory traffic, whereas HWA processes
fewer, larger matrices, which improves throughput. WSA (Flex) and HWA both project the full
input feature map, so their QKV times are essentially the same. Overall, HWA takes 1.63 ms, which
is 2.6× faster than WSA’s 4.22 ms and 3.9× faster than WSA (Flex).

Slide/Neighborhood Attention Results. Table 3 reports results for SA and NA under different
input sizes and kernel sizes. SA is an unoptimized baseline, and its runtime and memory usage
are much higher than those of attention variants with an optimized kernel. NA2D and HNA can be
implemented with either FlexAttention or NATTEN. Under the same settings, HSA shows higher
sparsity and larger speedups than SA (Flex), and HNA (Flex) shows higher sparsity and better speed
than NA2D (Flex). With the NATTEN kernel, HNA (NAT) is also faster than NA2D. Concretely, at
input 56×56 with kernel size 7×7, HNA (NAT) is 48.8× faster than SA and 1.8× faster than NA2D.
At input 96×96 with kernel size 7×7, SA runs out of memory (OOM), and HSA and HNA are about
1.8–2.1× faster than NA2D (NAT). Figure 6b presents an evaluation that combines attention with
input processing. HSA and HNA require a reshape step, specifically Hilbert reordering, whereas the
other methods project the input directly to QKV and then compute attention. SA’s neighborhood
construction is both memory-intensive and time-consuming, making it non-competitive. Under the
I = 56 × 56 and K = 7 × 7, NA2D (NAT) and HNA (NAT) have similar runtimes. At higher
resolutions and larger kernel sizes, HNA and HSA are faster than NA2D.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Efficiency evaluation of slide/neighborhood attention variants. All results in the table
are obtained with batch size=16, head num=2, head dim=64, and block size=128. A complete eval-
uation is presented in Appendix A.2.

Forward Backward
Attention Time Memory Time Memory Sparsity

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB -

I = 56× 56,K = 7× 7

HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB -

SA OOM OOM OOM OOM 0%
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61 ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB -

I = 96× 96,K = 11× 11

HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB -

Table 4: Accuracy on ImageNet-1K.

ImageNet-1K Top-1 Acc %

Swin-T HWT-T NAT-mini HNT-mini

224× 224 81.2 81.0 81.8 81.6
256× 256 81.6 81.5 - -

Figure 7: Throughput comparison.

HWT and HNT Results. Training was conducted on 8 V100 GPUs for HWT-T and HNT-mini,
with training settings and other hyperparameters matched to Swin-Tiny and NAT-mini. Because
V100 does not support FlexAttention well, HWT used a dense kernel during training. Additional
correctness tests verified that HWA with the dense kernel produces the same outputs as HWA with
FlexAttention. Specifically, the correctness tests ensured that mask mod and score mod were
designed so that the same attention pattern has identical outputs for the FlexAttention block-sparse
kernel and for the dense implementation. Similar correctness checks were performed for HSA vs.
SA and for HNA vs. NAT. Table 4 reports ImageNet-1K accuracy. At image resolutions of 224×224
and 256× 256, applying the proposed HWA and HNA in HWT and HNT results in at most a 0.2%
drop in accuracy, whereas Figure 7 shows that both models deliver substantial efficiency gains,
especially at high resolution. These results confirm the feasibility of the proposed HWA and HNA.

5 CONCLUSION

This work proposes a Hilbert-guided construction of local windows and neighborhoods, from which
HWA, HSA, and HNA are designed. Compared with conventional local attention, these variants
increase block sparsity and, when combined with FlexAttention’s programmable block-sparse ker-
nel, significantly improve computational efficiency. Under the evaluation, HWA and HNA achieve
several times inference speedups over WSA and SA, respectively. Building on this, the instantiated
HWT and HNT deliver end-to-end speedups with minimal accuracy loss, confirming the feasibility
and effectiveness of the approach. The combined Hilbert-guided local attention + block-sparse ker-
nel approach is general and extensible, allowing it to interface with various block-sparse backends
and model backbones. Overall, it provides a simple, practical path to system-level acceleration of
2D local attention for images and lays the groundwork for deployment across tasks and hardware.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

NVIDIA Developer Blog. Accelerating hpc applications with nsight com-
pute roofline analysis. https://developer.nvidia.com/blog/
accelerating-hpc-applications-with-nsight-compute-roofline-analysis/,
2020. Accessed: 2025-09-22.

Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Regionvit: Regional-to-local attention for vision
transformers. arXiv preprint arXiv:2106.02689, 2021.

NVIDIA Corporation. Cuda runtime api: Occupancy functions. https://docs.nvidia.com/
cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html, 2025a. Accessed:
2025-09-22.

NVIDIA Corporation. Nsight compute profiling guide. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/, 2025b. Accessed: 2025-09-22.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6185–6194, 2023.

Ali Hassani, Wen-Mei Hwu, and Humphrey Shi. Faster neighborhood attention: Reducing the o(n2)
cost of self attention at the threadblock level. In Advances in Neural Information Processing
Systems, 2024.

Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min Shi, Steven Wal-
ton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, et al. Generalized neighborhood atten-
tion: Multi-dimensional sparse attention at the speed of light. arXiv preprint arXiv:2504.16922,
2025.

David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. In Dritter Band: Analy-
sis· Grundlagen der Mathematik· Physik Verschiedenes: Nebst Einer Lebensgeschichte, pp. 1–2.
Springer, 1935.

Hosagrahar V Jagadish. Analysis of the hilbert curve for representing two-dimensional space. In-
formation Processing Letters, 62(1):17–22, 1997.

10

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OCCUPANCY.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable trans-
former modelling library. https://github.com/facebookresearch/xformers,
2022.

Gang Li, Di Xu, Xing Cheng, Lingyu Si, and Changwen Zheng. Simvit: Exploring a simple vision
transformer with sliding windows. In 2022 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6. IEEE, 2022.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.

Xuran Pan, Tianzhu Ye, Zhuofan Xia, Shiji Song, and Gao Huang. Slide-transformer: Hierarchi-
cal vision transformer with local self-attention. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2082–2091, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. Advances in neural information processing systems,
32, 2019.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658–68685, 2024.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp. 459–
479. Springer, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint
arXiv:2107.00641, 2021.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

11

https://github.com/facebookresearch/xformers


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageat-
tention: Accurate 8-bit attention for plug-and-play inference acceleration. arXiv preprint
arXiv:2410.02367, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FULL WINDOW ATTENTION RESULTS

Table 5: Full results of the efficiency evaluation of different Window Attention on RTX3080.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.22 ms 22 MB 0.73 ms 70 MB 0%
WSA (Flex) 0.59 ms 13 MB 1.95 ms 50 MB 79.84%I = 56× 56,W = 7× 7
HWA 0.31 ms (0.7x) 13 MB 1.20 ms 50 MB 87.84%

WSA 0.28 ms 32 MB 1.06 ms 104 MB 0%
WSA (Flex) 0.40 ms 17 MB 1.79 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.12 ms (2.3x) 17 MB 0.69 ms 65 MB 96.88%

WSA 0.63 ms 72 MB 2.10 ms 224 MB 0%
WSA (Flex) 1.30 ms 37 MB 5.62 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.24 ms (2.6x) 37 MB 1.58 ms 146 MB 98.61%

WSA 1.03 ms 164 MB 2.85 ms 408 MB 0%
WSA (Flex) 2.02 ms 37 MB 8.23 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.59 ms (1.8x) 37 MB 2.87 ms 146 MB 96.14%

WSA 1.56 ms 288 MB 4.01 ms 656 MB 0%
WSA (Flex) 2.63 ms 37 MB 10.47 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.40 ms (3.9x) 37 MB 2.16 ms 146 MB 97.22%

WSA 2.74 ms 520 MB 7.05 ms 1160 MB 0%
WSA (Flex) 5.68 ms 66 MB 22.60 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.68 ms (4.0x) 66MB 3.87 ms 260 MB 98.44%

WSA 5.46 ms 1024 MB 14.02 ms 2312 MB 0%
WSA (Flex) 11.79 ms 132 MB 43.32 ms 520 MB 93.75%I = 128× 256,W = 16× 16
HWA 1.36 ms (4.0x) 132 MB 7.71ms 520 MB 99.22%

WSA 6.75 ms 1252 MB 15.25 ms 2712 MB 0%
WSA (Flex) 15.28 ms 103 MB 57.32 ms 406 MB 87.50%I = 160× 160,W = 20× 20
HWA 2.63 ms (2.6x) 103 MB 12.15 ms 406 MB 97.58%

At low resolutions such as 56×56 with a window size of 7×7, HWA fails to outperform WSA, pri-
marily due to the limited sparsity under this configuration, which is insufficient to yield meaningful
acceleration. This observation indicates that surpassing the performance of a kernel operating solely
on full blocks requires a certain degree of sparsity—that is, a sufficiently high proportion of empty
blocks must be skipped. Moreover, even at high resolutions, achieving ideal acceleration still de-
pends on selecting appropriate window and block sizes.

Table 6: Full results of the efficiency evaluation of different Window Attention on A100. All results
in the table are obtained with batch size=16, head num=2, head dim=64, and block size=128.

Forward Backward
Attention Time Memory Time Memory Sparsity

WSA 0.16 ms 22 MB 0.44 ms 70 MB 0%
WSA (Flex) 0.30 ms 13 MB 1.03 ms 50 MB 79.84%I = 56× 56,W = 7× 7
HWA 0.18 ms 13 MB 0.66 ms 50 MB 87.84%

WSA 0.17 ms 32 MB 0.57 ms 104 MB 0%
WSA (Flex) 0.20 ms 17 MB 0.80 ms 65 MB 87.50%I = 64× 64,W = 8× 8
HWA 0.19 ms 17 MB 0.39 ms 65 MB 96.88%

WSA 0.35 ms 72 MB 1.21 ms 224 MB 0%
WSA (Flex) 0.63 ms 37 MB 2.39 ms 146 MB 91.67%I = 96× 96,W = 8× 8
HWA 0.19 ms 37 MB 0.84 ms 146 MB 98.61%

WSA 0.77 ms 164 MB 1.69 ms 408 MB 0%

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

WSA (Flex) 0.98 ms 37 MB 3.45 ms 146 MB 87.50%I = 96× 96,W = 12× 12
HWA 0.33 ms 37 MB 1.24 ms 146 MB 96.14%

WSA 0.90 ms 288 MB 2.21 ms 656 MB 0%
WSA (Flex) 1.29 ms 37 MB 4.31 ms 146 MB 83.33%I = 96× 96,W = 16× 16
HWA 0.21 ms 37 MB 0.97 ms 146 MB 97.22%

WSA 1.55 ms 520 MB 3.85 ms 1160 MB 0%
WSA (Flex) 2.45 ms 66 MB 9.30 ms 260 MB 87.50%I = 128× 128,W = 16× 16
HWA 0.35 ms 66MB 1.65 ms 260 MB 98.44%

WSA 21.06 ms 1024 MB 44.19 ms 2312 MB 0%
WSA (Flex) 23.48 ms 132 MB 70.30 ms 520 MB 93.75%I = 256× 256,W = 32× 32
HWA 3.44 ms 132 MB 16.73 ms 520 MB 99.22%

WSA 3.71 ms 1252 MB 8.20 ms 2712 MB 0%
WSA (Flex) 9.17 ms 103 MB 24.10 ms 406 MB 87.50%I = 160× 160,W = 20× 20
HWA 1.33 ms 103 MB 4.87 ms 406 MB 97.58%

Table 6 reports results on an A100. The A100 setup also uses CUDA 12.6 and PyTorch 2.7.0, and the
test parameters are identical to those on the RTX 3080. Compared with the 3080 results, memory
usage and sparsity remain unchanged because the attention pattern does not change. Runtimes
differ and are faster on the A100, as expected. The A100 also supports higher resolutions such as
256× 256, where HWA shows a more pronounced speedup.

Table 7: Full results of the comprehensive evaluation of Window Attention combined with additional
input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
W=7x7

WSA 0.23 ms 0.05 ms 0.24 ms 0.52 ms 0.16 ms 0.05 ms 0.17 ms 0.38 ms
WSA (Flex) 0.72 ms 0 ms 0.11 ms 0.83 ms 0.33 ms 0 ms 0.08 ms 0.41 ms
HWA 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms

I=64x64
W=8x8

WSA 0.29 ms 0.06 ms 0.31 ms 0.66 ms 0.18 ms 0.06 ms 0.21 ms 0.45 ms
WSA (Flex) 0.41 ms 0 ms 0.14 ms 0.55 ms 0.26 ms 0 ms 0.09 ms 0.35 ms
HWA 0.12 ms 0.10 ms 0.14 ms 0.36 ms 0.21 ms 0.11 ms 0.09 ms 0.41 ms

I=96x96
W=8x8

WSA 0.66 ms 0.13 ms 0.65 ms 1.44 ms 0.38 ms 0.11 ms 0.45 ms 0.94 ms
WSA (Flex) 1.39 ms 0 ms 0.29 ms 1.68 ms 0.79 ms 0 ms 0.19 ms 0.98 ms
HWA 0.25 ms 0.22 ms 0.29 ms 0.76 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms

I=96x96
W=12x12

WSA 1.11 ms 0.13 ms 0.65 ms 1.89 ms 0.82 ms 0.11 ms 0.47 ms 1.40 ms
WSA (Flex) 2.07 ms 0 ms 0.29 ms 2.36 ms 1.14 ms 0 ms 0.19 ms 1.33 ms
HWA 0.61 ms 0.22 ms 0.29 ms 1.12 ms 0.28 ms 0.24 ms 0.19 ms 0.71 ms

I=96x96
W=16x16

WSA 1.59 ms 0.13 ms 0.65 ms 2.37 ms 1.04 ms 0.11 ms 0.53 ms 1.68 ms
WSA (Flex) 2.72 ms 0 ms 0.29 ms 3.01 ms 1.44 ms 0 ms 0.19 ms 1.63 ms
HWA 0.41 ms 0.22 ms 0.29 ms 0.92 ms 0.22 ms 0.24 ms 0.19 ms 0.65 ms

I=128x128
W=16x16

WSA 2.81 ms 0.22 ms 1.19 ms 4.22 ms 1.81 ms 0.20 ms 0.92 ms 2.93 ms
WSA (Flex) 5.89 ms 0 ms 0.50 ms 6.39 ms 3.47 ms 0 ms 0.32 ms 3.79 ms
HWA 0.73 ms 0.4 ms 0.50 ms 1.63 ms 0.30 ms 0.42 ms 0.32 ms 1.04 ms

I=160x160
W=20x20

WSA 6.92 ms 0.34 ms 1.85 ms 9.11 ms 4.54 ms 0.30 ms 1.18 ms 6.02 ms
WSA (Flex) 16.09 ms 0 ms 0.78 ms 16.87 ms 10.7 ms 0 ms 0.39 ms 11.09 ms
HWA 2.72 ms 0.62 ms 0.78 ms 4.12 ms 1.14 ms 0.62 ms 0.39 ms 2.15 ms

Table 7 presents end-to-end results on RTX 3080 and A100 for window-attention variants, combin-
ing the corresponding reshape and QKV projection under different input and window configurations.
At 56×56 resolution, HWA does not achieve good speedups, mainly because the sparsity is low and
the attention part is not significantly accelerated. As the resolution increases and the window size is
chosen appropriately, the speedup becomes substantial, especially on A100, where at I=128, W=16,
the acceleration approaches 3×.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 FULL SLIDE/NEIGHBORHOOD ATTENTION RESULTS

Table 8: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on RTX
3080.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 5.85 ms 622 MB 22.92 ms 1835 MB 0%
SA (Flex) 0.56 ms 13 MB 1.89 ms 50 MB 80.17%
HSA 0.32 ms 13 MB 1.32 ms 50 MB 87.84%
NA2D (Flex) 0.56 ms 13 MB 1.96 ms 50 MB 79.84%
HNA (Flex) 0.31 ms 13 MB 1.28 ms 50 MB 87.84%
NA2D (NAT) 0.21 ms 13 MB 2.65 ms 75 MB -
HNA (NAT) 0.12 ms 13 MB 1.03 ms 75 MB -

I = 64× 64,W = 9× 9

SA 12.65 ms 1332 MB OOM OOM 0%
SA (Flex) 0.49 ms 17 MB 2.21 ms 65 MB 84.96%
HSA 0.28 ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (Flex) 0.49 ms 17 MB 2.16 ms 65 MB 84.38%
HNA (Flex) 0.28ms 17 MB 1.39 ms 65 MB 90.82%
NA2D (NAT) 0.28 ms 17 MB 3.52 ms 98 MB -
HNA (NAT) 0.20 ms 17 MB 1.37 ms 98 MB -

I = 96× 96,W = 9× 9

SA OOM OOM OOM OOM 0%
SA (Flex) 1.68 ms 37 MB 7.32 ms 146 MB 88.73%
HSA 0.61 ms 37 MB 3.32 ms 146 MB 95.87%
NA2D (Flex) 1.71 ms 37 MB 7.53 ms 146 MB 88.58%
HNA (Flex) 0.61 ms 37 MB 3.10 ms 146 MB 95.87%
NA2D (NAT) 0.59 ms 37 MB 7.87 ms 219 MB -
HNA (NAT) 0.44 ms 37 MB 2.98 ms 219 MB -

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
SA (Flex) 1.83 ms 37 MB 7.82 ms 146 MB 87.89%
HSA 0.61 ms 37 MB 3.23 ms 146 MB 95.87%
NA2D (Flex) 1.86 ms 37 MB 8.25 ms 146 MB 87.50%
HNA (Flex) 0.61ms 37 MB 3.19 ms 146 MB 95.87%
NA2D (NAT) 1.07 ms 37 MB 8.38 ms 219 MB -
HNA (NAT) 0.51 ms 37 MB 3.06 ms 219 MB -

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 2.79 ms 37 MB 11.79 ms 146 MB 81.06%
HSA 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (Flex) 2.87 ms 37 MB 12.45 ms 146 MB 80.40%
HNA (Flex) 0.98 ms 37 MB 4.50 ms 146 MB 93.17%
NA2D (NAT) 1.22 ms 37 MB 9.08 ms 219 MB -
HNA (NAT) 0.77 ms 37 MB 4.87 ms 219 MB -

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 6.12 ms 66 MB 23.91 ms 260 MB 87.16%
HSA 1.72 ms 66 MB 8.15 ms 260 MB 96.13%
NA2D (Flex) 6.41 ms 66 MB 26.06 ms 260 MB 86.72%
HNA (Flex) 1.72 ms 66 MB 8.17 ms 260 MB 96.13%
NA2D (NAT) 2.18 ms 66 MB 16.05 ms 390 MB -
HNA (NAT) 1.38 ms 66 MB 8.60 ms 390 MB -

Table 8 reports all results for the Slide/Neighborhood Attention variants on RTX 3080. Due to
memory and bandwidth limits, SA runs out of memory once the resolution reaches 96 × 96. At
higher resolutions such as 128 × 128, HNA and HSA are more than 3× faster than SA (Flex) and
NA2D (Flex), and they are also faster than NA2D (NAT).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Full results of the efficiency evaluation of different Slide/Neighborhood Attention on A100.
All results in the table are obtained with batch size=16, head num=2, head dim=64, and block
size=128.

Attention Forward Backward Sparsity
Time Memory Time Memory

I = 56× 56,W = 7× 7

SA 3.84 ms 622 MB 16.06 ms 1835 MB 0%
SA (Flex) 0.28 ms 13 MB 0.98 ms 50 MB 80.17%
HSA 0.21 ms 13 MB 0.74 ms 50 MB 87.84%
NA2D (Flex) 0.28 ms 13 MB 0.97 ms 50 MB 79.84%
HNA (Flex) 0.21 ms 13 MB 0.73 ms 50 MB 87.84%

I = 64× 64,W = 9× 9

SA 8.26 ms 1332 MB 34.05 ms 3940 MB 0%
SA (Flex) 0.34 ms 17 MB 0.96 ms 65 MB 84.96%
HSA 0.20 ms 17 MB 0.60 ms 65 MB 90.82%
NA2D (Flex) 0.34 ms 17 MB 0.99 ms 65 MB 84.38%
HNA (Flex) 0.20 ms 17 MB 0.59 ms 65 MB 90.82%

I = 96× 96,W = 9× 9

SA 18.57 ms 3070 MB 84.14 ms 8938 MB 0%
SA (Flex) 0.98 ms 37 MB 3.05 ms 146 MB 88.73%
HSA 0.35 ms 37 MB 1.38 ms 146 MB 95.87%
NA2D (Flex) 0.99 ms 37 MB 3.43 ms 146 MB 88.58%
HNA (Flex) 0.35 ms 37 MB 1.42 ms 146 MB 95.87%

I = 96× 96,W = 11× 11

SA OOM OOM OOM OOM 0%
SA (Flex) 1.04 ms 37 MB 3.83 ms 146 MB 87.89%
HSA 0.35 ms 37 MB 1.39 ms 146 MB 95.87%
NA2D (Flex) 1.04 ms 37 MB 3.50 ms 146 MB 87.50%
HNA (Flex) 0.35 ms 37 MB 1.41 ms 146 MB 95.87%

I = 96× 96,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 1.62 ms 37 MB 4.76 ms 146 MB 81.06%
HSA 0.52 ms 37 MB 2.22 ms 146 MB 93.17%
NA2D (Flex) 1.66 ms 37 MB 5.57 ms 146 MB 80.40%
HNA (Flex) 0.52 ms 37 MB 2.20 ms 146 MB 93.17%

I = 128× 128,W = 17× 17

SA OOM OOM OOM OOM 0%
SA (Flex) 3.82 ms 66 MB 9.86 ms 260 MB 87.16%
HSA 0.89 ms 66 MB 3.20 ms 260 MB 96.13%
NA2D (Flex) 3.88 ms 66 MB 10.27 ms 260 MB 86.72%
HNA (Flex) 0.88 ms 66 MB 3.17 ms 260 MB 96.13%

Table 9 reports all results for the Slide/Neighborhood Attention variants on A100. The same library
versions and parameter settings used on the RTX 3080 are employed. The A100 can handle com-
putations at 96× 96 resolution, but OOM occurs when the kernel size is further increased. Even so,
HSA and HNA (Flex) still show strong speedups. Due to hardware resource constraints, the NAT-
TEN library could not be installed on the A100 machine, so NAT-related attention variants were not
evaluated.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Full results of the comprehensive evaluation of Slide/Neighborhood Attention combined
with additional input processing.

Attention RTX3080 A100
Attention Reshape QKV Foward Attention Reshape QKV Foward

I=56x56
K=7x7

SA 5.85 ms 0 ms 106.51 ms 112.36 ms 3.84 ms 0 ms 77.2 ms 81.04 ms
SA (Flex) 0.66 ms 0 ms 0.11 ms 0.77 ms 0.35 ms 0 ms 0.08 ms 0.43 ms
HSA 0.46 ms 0.08 ms 0.11 ms 0.65 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (Flex) 0.65 ms 0 ms 0.11 ms 0.77 ms 0.34 ms 0 ms 0.08 ms 0.42 ms
HNA (Flex) 0.44 ms 0.08 ms 0.11 ms 0.63 ms 0.22 ms 0.09 ms 0.08 ms 0.39 ms
NA2D (NAT) 0.21 ms 0 ms 0.24 ms 0.45 ms - - - -
HNA (NAT) 0.13 ms 0.08 ms 0.24 ms 0.45 ms - - - -

I=64x64
K=9x9

SA 12.65 ms 0 ms 446.85 ms 459.5 ms 8.26 ms 0 ms 307.51 ms 315.77 ms
SA (Flex) 0.52 ms 0 ms 0.14 ms 0.66 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HSA 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (Flex) 0.51 ms 0 ms 0.14 ms 0.65 ms 0.38 ms 0 ms 0.09 ms 0.47 ms
HNA (Flex) 0.29 ms 0.1 ms 0.14 ms 0.53 ms 0.21 ms 0.24 ms 0.19 ms 0.64 ms
NA2D (NAT) 0.28 ms 0 ms 0.30 ms 0.58 ms - - - -
HNA (NAT) 0.20 ms 0.1 ms 0.30 ms 0.60 ms - - - -

I=96x96
K=9x9

SA OOM OOM OOM OOM 18.57 ms 0 ms 647.88 ms 666.45 ms
SA (Flex) 1.78 ms 0 ms 0.29 ms 2.07 ms 1.1 ms 0 ms 0.19 ms 1.29 ms
HSA 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.79 ms 0 ms 0.29 ms 2.08 ms 1.11 ms 0 ms 0.19 ms 1.30 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (NAT) 0.59 ms 0 ms 0.65 ms 1.24 ms - - - -
HNA (NAT) 0.44 ms 0.22 ms 0.65 ms 1.31 ms - - - -

I=96x96
K=11x11

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 1.90 ms 0 ms 0.29 ms 2.19 ms 1.18 ms 0 ms 0.19 ms 1.37 ms
HSA 0.63 ms 0.22 ms 0.29 ms 1.14 ms 0.31 ms 0.24 ms 0.19 ms 0.74 ms
NA2D (Flex) 1.95 ms 0 ms 0.29 ms 2.24 ms 0.31 ms 0 ms 0.19 ms 0.50 ms
HNA (Flex) 0.64 ms 0.22 ms 0.29 ms 1.15 ms 0.64 ms 0.24 ms 0.19 ms 1.07 ms
NA2D (NAT) 1.07 ms 0 ms 0.65 ms 1.72 ms - - - -
HNA (NAT) 0.51 ms 0.22 ms 0.65 ms 1.38 ms - - - -

I=96x96
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 2.93 ms 0 ms 0.29 ms 3.22 ms 1.80 ms 0 ms 0.19 ms 1.99 ms
HSA 1.01 ms 0.22 ms 0.29 ms 1.52 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (Flex) 3.00 ms 0 ms 0.29 ms 3.29 ms 1.81 ms 0 ms 0.19 ms 2.00 ms
HNA (Flex) 1.03 ms 0.22 ms 0.29 ms 1.54 ms 0.57 ms 0.24 ms 0.19 ms 1.00 ms
NA2D (NAT) 1.27 ms 0 ms 0.65 ms 1.92 ms - - - -
HNA (NAT) 0.77 ms 0.22 ms 0.65 ms 1.64 ms - - - -

I=128x128
K=17x17

SA OOM OOM OOM OOM OOM OOM OOM OOM
SA (Flex) 6.47 ms 0 ms 0.50 ms 6.97 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HSA 1.78 ms 0.40 ms 0.50 ms 2.68 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (Flex) 6.71 ms 0 ms 0.50 ms 7.21 ms 4.10 ms 0 ms 0.32 ms 4.42 ms
HNA (Flex) 1.80 ms 0.40 ms 0.50 ms 2.70 ms 0.94 ms 0.42 ms 0.32 ms 1.68 ms
NA2D (NAT) 2.25 ms 0 ms 1.14 ms 3.39 ms - - - -
HNA (NAT) 1.37 ms 0.40 ms 1.14 ms 2.91 ms - - - -

Table 10 presents the full results for RTX 3080 and A100, including slide/neighborhood attention
variants, which combine the corresponding reshape and QKV projection under various input and
window configurations. At higher resolutions and larger kernel sizes, HNA and HSA perform better
than the other attentions.

A.3 THE INFLUENCE OF OTHER PARAMETERS

(a) Vary the batch size while keep-
ing head num=2, head dim=64, in-
put size =64x64, window size = 8x8
unchanged.

(b) Vary the head number
while keeping batch size=16,
head dim=64, input size =64x64,
window size = 8x8 unchanged.

(c) Vary the head dimension
while keeping batch size=16,
head num=2, input size =64x64,
window size = 8x8 unchanged.

Figure 8: Evaluation of speedups by other parameters.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8 illustrates the impact of batch size, number of heads, and head dimension on speed. These
factors do not alter sparsity, but they do impact runtime, and the optimal settings are hardware-
dependent. On RTX 3080, when the batch size is 1, WSA and HSA run at nearly the same speed. As
the batch size increases, the speedup grows, but it stops improving beyond 32, likely due to memory
and bandwidth limits. The number of heads has little impact on speedup, whereas increasing the
head dimension slows computation because it is more bandwidth-bound.

A.4 SDPA COMPARISON

Figure 9: SDPA vs. HWA on RTX 3080.

Figure 9 compares SDPA (F.scaled dot product attention) in FlexAttention with HWA across
different resolutions and window sizes. SDPA can automatically dispatch to FlashAttention or
memory-efficient kernels, accelerating dense attention such as WSA. When sparsity in FlexAtten-
tion is high enough, HWA remains faster than SDPA. At high resolutions, SDPA benefits from larger
windows and can reach speeds comparable to HWA. For SA/NA, SDPA still materializes interme-
diates and remains bandwidth and memory-limited, so HSA/HNA perform better.

A.5 CODE

The code is open-sourced and available at https://anonymous.4open.science/r/Hilbert-guided-
Local-Attention-3181/.

A.6 THE USE OF LARGE LANGUAGE MODELS

This paper uses LLM for grammar correction and polishing.

18


	Introduction
	Related Work
	Local Attention for Images
	Attention Kernel Optimization

	Method
	Hilbert Local Attention
	Hilbert Window Transformer
	Hilbert Neighborhood Transformer

	Experiment
	Implementation Details
	Results and Analysis

	Conclusion
	Appendix
	Full Window Attention Results
	Full Slide/Neighborhood Attention Results
	The Influence of Other Parameters
	SDPA Comparison
	Code
	The Use of Large Language Models


