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ABSTRACT

Time series forecasting is an important and forefront task in many real-world ap-
plications. However, most of time series forecasting techniques assume that the
training data is clean without anomalies. This assumption is unrealistic since the col-
lected time series data can be contaminated in practice. The forecasting model will
be inferior if it is directly trained by time series with anomalies. Thus it is essential
to develop methods to automatically learn a robust forecasting model from the con-
taminated data. In this paper, we first statistically define three types of anomalies,
then theoretically and experimentally analyze the loss robustness and sample robust-
ness when these anomalies exist. Based on our analyses, we propose a simple and
efficient algorithm to learn a robust forecasting model. Extensive experiments show
that our method is highly robust and outperforms all existing approaches. The code
is available at https://github.com/haochenglouis/RobustTSF.

1 INTRODUCTION

As the development of Internet of Things, the monitoring of cloud computing, and the increase of
connected sensors, the applications of time series data increase significantly (Lai et al., 2021; Wen
et al., 2022; Lim & Zohren, 2021). However, many time series data collected are contaminated by
noises and anomalies. In time series forecasting with anomalies (TSFA), we study how to make robust
and accurate forecasting on contaminated time series data. The earliest work of TSFA can date back to
(Connor et al., 1994), where the classic detection-imputation-retraining pipeline is proposed. In the
pipeline, a forecasting model is first trained using the data with outliers and noises. Then the trained
model is used to predict values for each time step (detection). If the predicted value is far from the
observed value, we will regard this time step as anomaly time step and then use the predicted value to
replace the observed value on this time step (imputation). After imputation, the imputed (filtered)
data are utilized to retrain a new forecasting model. The detection-imputation-retraining pipeline
can work with any forecasting algorithm and improves performance in many TSFA tasks. However,
it is very sensitive to the training threshold and anomaly types. Note that TSFA is also related to time
series anomaly detection (TSAD) (Blázquez-Garcı́a et al., 2021), especially a forecasting model is
learned to compute the reconstruction error, which is then used to determine anomaly.

”TSFA shares similarities with learning with noisy labels (LNL) (e.g., see (Natarajan et al., 2013;
Song et al., 2022)), but their settings differ significantly. LNL typically involves datasets with clean
input samples X and noisy labels Ỹ , such as mislabeled images in image classification tasks. In time
series forecasting, we typically use past history, sometimes aided by external factors, to predict future
targets. In this context, we denote all covariates as X and the target we are predicting as Y . Notably,
TSFA faces the challenge of handling anomalies in both covariates and targets simultaneously. This
characteristic makes applying LNL methods directly to TSFA challenging. Moreover, the diverse
nature of time series data in real-world scenarios leads to various types of anomalies. Existing
algorithms struggle to handle these diverse anomalies effectively. For instance, (Li et al., 2022)
addresses a similar problem to TSFA, emphasizing anomaly detection and drawing from LNL ideas.
However, the small loss criterion in LNL does not universally apply to common anomaly types in
TSFA, resulting in inconsistent improvements across TSFA anomaly types.”
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In this paper, we introduce a unified framework for TSFA, bridging the gap between TSFA and
LNL. We address various anomaly types commonly found in real-world applications. Within this
framework, we present RobustTSF, an efficient algorithm that outperforms state-of-the-art methods in
both single-step and multi-step forecasting. In contrast to the detection-imputation-retraining pipeline,
RobustTSF identifies informative samples by assessing the variance between the original input time
series and its trend. Subsequently, it employs a robust loss function to improve the forecasting process.
This distinctive approach is substantiated by our analyses comparing TSFA and LNL. Contributions
can be summarized as follows:
• We analyze the impact of three formally defined anomalies on model performance, exploring loss

robustness with target anomalies and sample robustness with covariate anomalies.
• We propose RobustTSF, an efficient algorithm for TSFA, which is both theoretically grounded and

empirically superior to existing TSFA approaches.
• We conduct extensive experiments, including single-step and multi-step time series forecasting

with different model structures, to validate our method’s performance.
• To the best of our knowledge, this is the first study to extend the theory of LNL to time series

forecasting, which builds a bridge between LNL and TSFA tasks.

2 RELATED WORKS

Robust Time Series Forecasting: There is a line of works to learn a robust forecasting model in
different data bias settings: (Yoon et al., 2022) proposes to make forecasting model robust to input
perturbations, motivated by adversarial examples in classification (Goodfellow et al., 2015). (Arik
et al., 2022; Woo et al., 2022; Wang et al., 2021a) propose to make the forecasting model robust to
non-stationary time series under concept drift or distribution shift assumption (Ditzler et al., 2015;
Lu et al., 2018). Different from these settings, our paper considers learning a robust time series
forecasting model under the existence of anomalies (TSFA). Some existing approaches (Connor et al.,
1994; Bohlke-Schneider et al., 2020; Li et al., 2022) deploy detection-imputation-retraining pipeline,
or use small loss criterion to TSFA tasks which lack a deep understanding of how these anomalies
affect model performance which makes their methods less explainable.

Robust Regression Our setting is also similar to robust regression (Pensia et al., 2020; Kong et al.,
2022), which has some rigorous guarantees when the input and the label have anomalies. However,
the theoretical guarantees are based on (generalized) linear regression. The alternating minimization
(Pensia et al., 2020) also needs to calculate the inverse of XTX . For time series forecasting with
deep neural networks (DNNs), it is not practical to calculate the inverse of the source data since the
model of DNNs is not the simple linear layer. Thus it is hard to generalize the algorithm and analyses
in robust linear regression into robust time series forecasting with DNNs.

Learning with Noisy Labels: The goal of LNL is to mitigate the noisy label effect in classification
and learn a robust model from the noisy dataset (Natarajan et al., 2013; Liu, 2021). The problem of
LNL has been researched for a long time in the machine learning community, and many methods
have been proposed in recent years, such as sample selection (Jiang et al., 2018; Han et al., 2018),
robust loss design (Zhang & Sabuncu, 2018; Liu & Guo, 2020; Cheng et al., 2021a;b; Zhu et al.,
2021a), transition matrix estimation (Patrini et al., 2017; Zhu et al., 2021b), etc. Among all these
methods, arguably the most efficient treatment is to adopt robust losses, since sample selection and
noise transition matrix estimation always involve training multiple networks or need multi-stage
training. We say a loss ℓ is noise-robust in LNL if it satisfies the following equation (Ghosh et al.,
2017; Xu et al., 2019; Ma et al., 2020; Liu & Guo, 2020):

argmin
f∈F

E(X,Ỹ )[ℓ(f(X), Ỹ )] = argmin
f∈F

E(X,Y )[ℓ(f(X), Y )], (1)

where f is the classifier, X is the input, Y and Ỹ are clean labels and noisy labels, respectively.
Equation (1) implies that minimizing ℓ over a clean dataset with respect to f is equivalent to
minimizing ℓ over a noisy dataset, demonstrating ℓ’s robustness to label noise. However, applying
robust losses from LNL directly to TSFA faces two challenges: 1) TSFA deals with regression
problems rather than classification problems where label noise is typically modeled. The effectiveness
of robust losses from LNL in TSFA is uncertain without proper anomaly modeling. 2) In LNL,
noise is limited to Y , while TSFA involves anomalies in both X and Y . We address these issues by
analyzing loss and sample robustness in Sections 4 and 5 of this paper.
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3 PRELIMINARY AND FORMULATION

Problem Formulation: Let (z1, z2, · · · , zT ) be a time series (without anomalies) of length T .
Assume that the time series is partitioned into a set of time windows with size α (1 < α < T ),
where each window is a sequence of predictors xn = (zn, · · · , zn+α−1) and its corresponding
label is yxn

= zn+α, where n ∈ {1, 2, · · · , T − α}. This partition gives the training set D =
{(x1, yx1

), · · · , (xN , yxN
)} where N = T − α, which can be assumed to be drawn according to an

unknown distribution, D, over X × Y . In real-world applications, time series may have anomalies
(anomaly types are defined later), and we can only observe time series with anomaly signals. The
observed training set is denoted by D̃ = {(x̃1, ỹx1

), · · · , (x̃N , ỹxN
)}, where˜denotes the observed

value. The robust forecasting task aims to identify a model f that maps X to Y accurately using the
observed training set D̃ with anomalies.

Anomaly types: In the paper, we mainly consider point-wise anomalies (we also provide preliminary
studies for subsequence anomaly in Section 7.3). Define the noise (anomaly) rate as η where
0 < η < 1. The observed value z̃t in the time series can be represented as:

z̃t =

{
zt with probability 1− η

zA
t , with probability η

,

where zt is the ground-true value and zA
t is the value of anomaly. We consider three types of zA

t as
• Constant type anomaly: zA

t = zt + ϵ, ϵ is constant.
• Missing type anomaly: zA

t = ϵ, ϵ is constant.
• Gaussian type anomaly: zA

t = zt + ϵ, ϵ ∼ N (0, σ2).
The N denotes Gaussian distribution, and the ϵ is noise scale. Note that ϵ in Constant type anomaly
and σ2 in Gaussian type anomaly should be large so that they can represent anomalies instead of
small random noise (e.g., white noise). Generally, the noise scale is within the range of (−∞,+∞).

Constant anomalies exhibit a fixed difference between the anomaly value and the ground-truth value,
Missing anomalies are independent of the ground-truth value, and Gaussian anomalies follow a
Gaussian distribution. While (Connor et al., 1994) used Constant and Gaussian anomaly types for
experiments without explicit definitions, they effectively simulate real-world anomalies. For instance,
Missing anomalies represent missing sensor data (ϵ = 0), Constant and Gaussian anomalies model
sensor functionality affected by external factors like temperature or humidity. We provide theoretical
and experimental analyses of these anomaly types in this paper, with illustrations in Appendix B.

4 LOSS ROBUSTNESS: ANOMALY EFFECT IN Y

Understanding how anomalies affect model performance is hard when anomalies exist in both X
and Y . Thus we first assume the input X is clean and anomalies only exist in Y . In this case,
D̃ = {(x1, ỹx1

), · · · , (xN , ỹxN
)} (we can assume these data are non-overlapping segments of the

time series). ỹxn
can be represented as:

ỹxn =

{
yxn

with probability 1− η

yAxn
, with probability η

.

Thus this setting is similar to the vanilla LNL setting except that for time series forecasting, the
problem is regression instead of classification. Next, we examine the robustness of loss functions for
different anomaly types defined earlier.
Theorem 1. Let ℓ be the loss function and f be the forecasting model. Under Constant and Missing
type anomalies with anomaly rate η < 0.5, if for each x, ℓ(f(x), yx) + ℓ(f(x), yAx ) = Cx, where
Cx is constant respect to the choice of f . Then we have:

ED̃[ℓ(f(X), Ỹ )] = γ1ED[ℓ(f(X), Y )] + γ2, (2)

where γ1 > 0 and γ2 are constants respect to f .
Our proposed Theorem 1 suggests that if a loss function satisfies ℓ(f(x), yx) + ℓ(f(x), yAx ) = Cx,
then it is robust to constant and missing type anomalies. Equation (2) implies that minimizing ℓ under
D̃ with respect to f is identical to minimizing ℓ under D (Equation (1)).
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Figure 1: Visualization of time series with Gaussian anomalies in different positions. (a): Clean input
time series which is the sine function of time steps. We normalize the time series to 0 mean and 1 std.
(b) (c) (d): Time series (sine) with Gaussian anomalies located in front, middle and back of the input
time series, respectively.

Proposition 1. From Theorem 1, MAE is robust to Constant and Missing type anomalies while MSE
is not robust.
Proposition 2. Assume Cx can be estimated correctly. Let ℓ be any possible loss function operated
on f(x) and ỹx. Define ℓnorm = ℓ

Cx
. Then ℓnorm is robust to Constant and Missing type anomalies.

Proposition 1 analyzes the robustness of common MAE and MSE loss functions. Interestingly,
MAE has been found to be robust to symmetric label noise in classification as well (Ghosh et al.,
2017). However, the robustness conditions in (Ghosh et al., 2017) and our work differ. In their work,
robustness requires Cx ≡ C, whereas our approach does not necessitate such a strong condition.
While Theorem 1 addresses the scenario in which Cx remains constant with respect to the forecasting
model, Proposition 2 explores the case where Cx is not constant. In this situation, any loss function
can be made robust to Constant and Missing type anomalies, provided that accurate estimation
of Cx is achievable. However, practical estimation of Cx may be challenging, particularly when
we lack prior knowledge of the anomaly generation process. In summary, Theorem 1 represents a
generalization from noisy labels in classification to anomalies in regression.
Theorem 2. Let ℓ be MAE or MSE loss function and f be the forecasting model. Under Gaussian
type anomaly, let f∗ = argminf∈F ED̃[ℓ(f(X), Ỹ )]. Then we have f∗(X) = Y .
Theorem 2 implies that MAE and MSE are both robust to Gaussian anomalies in Y . Intuitively, this
is understandable since the mean of yAxn

is the ground truth yxn . It is also worth noting that these
conclusions are made statistically. If the size of the training set is relatively small or the anomaly rate
is high, the performance may still drop. However, in our experiments, we find that MAE can be very
robust in some real-world datasets.

Detailed proofs for the above Theorems and Propositions can be found in Appendix A. It may appear
straightforward that MAE is more robust than MSE, but the extent and conditions of MAE’s robustness
are not well understood. For instance, prior research in label noise (LNL) (Ghosh et al., 2017) has
demonstrated MAE’s inherent robustness to symmetric label noise and, under certain conditions, to
asymmetric label noise in classification tasks. However, these analyses are classification-focused.
To our knowledge, no study has explored how MAE performs in regression when dealing with
various types of anomalies in time series forecasting. Notably, previous works (Connor et al., 1994;
Bohlke-Schneider et al., 2020; Li et al., 2022) predominantly use MSE in TSFA tasks. Our analysis
indicates that MAE is inherently robust to Constant and Missing type anomalies, while both MAE
and MSE exhibit robustness to Gaussian type anomalies. Experimental evidence supporting these
theoretical findings is presented in Appendix C.

5 SAMPLE ROBUSTNESS: ANOMALY EFFECT IN X

In this section, we analyze how anomalies in X impact performance while keeping the labels clean.
It’s worth noting that a related study (Li et al., 2021) also investigates the influence of input time
series outliers on prediction performance, using a point-wise anomaly model (Equation (1) in (Li
et al., 2021)). In particular, (Li et al., 2021) introduces a metric called SIF to quantify outlier effects
on predictions. However, calculating SIF necessitates knowledge of the outlier generation process
and does not propose an efficient algorithm for mitigating outlier effects. In our context, we lack
information about outlier (anomaly) generation, mirroring real-world scenarios where only observed
time series are available. Our goal is to leverage an understanding of anomaly effects in X to develop
an efficient performance improvement algorithm. We begin by assuming that not all input samples
equally contribute to performance, even if they statistically exhibit the same number of anomalies.

Our assumption highlights the significance of anomaly position. To validate this, we conducted
simulations involving time series with anomalies placed at various positions. For instance, Figure 1
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Table 1: Evaluating how different positions of anomalies in the input time series affect prediction
performance. For each dataset, we simulate different types of anomalies with anomaly rates 0.1 and
0.2. The loss is MAE and the network structure is LSTM. Detailed setting is left in Appendix E.

Anomaly Type Electricity with Anomaly Position Traffic with Anomaly Position
front middle back front middle back

Clean 0.182/0.070 0.182/0.070 0.182/0.070 0.194/0.105 0.194/0.105 0.194/0.105
Const. (η = 0.1) 0.182/0.070 0.183/0.071 0.195/0.078 0.196/0.105 0.200/0.115 0.215/0.131
Const. (η = 0.2) 0.182/0.069 0.183/0.071 0.219/0.094 0.194/0.109 0.195/0.106 0.236/0.153

Missing. (η = 0.1) 0.182/0/070 0.186/0.073 0.204/0.083 0.203/0.118 0.203/0.120 0.221/0.127
Missing. (η = 0.2) 0.182/0.070 0.183/0.071 0.223/0.105 0.204/0.116 0.205/0.116 0.251/0.160
Gaussian. (η = 0.1) 0.184/0.071 0.187/0.071 0.196/0.075 0.204/0.120 0.206/0.114 0.211/0.133
Gaussian. (η = 0.2) 0.184/0.171 0.186/0.072 0.213/0.087 0.206/0.121 0.212/0.127 0.226/0.147

(b), (c), and (d) depict a simple example involving Gaussian type anomalies, where the number of
anomalies remains consistent. Our experiments, conducted on the Electricity and Traffic datasets,
demonstrate the impact of anomaly position on model performance, as summarized in Table 1.
Notably, when anomalies are located at the front or middle of input time series, performance remains
close to that of clean data training, with minimal performance degradation. Conversely, when
anomalies are positioned at the end of time series, performance significantly declines as the anomaly
rate increases. This is understandable since the label is situated towards the end of the input time series.
Further evidence on various time series datasets can be found in Appendix D. Interestingly, similar
findings have been reported in temporal graph learning (Wang et al., 2021b), which emphasizes the
informativeness of more recent edges for target predictions.”

6 INSIGHTS AND OUR ALGORITHM

In this part, based on the analyses in Section 4 and Section 5, we show how to achieve loss robustness
in TSFA as Equation (1) in LNL when anomalies exist in both inputs and labels.

6.1 CONNECTION BETWEEN LNL AND TSFA

Our design proceeds as follows:

• Denote the original observed inputs and labels as X̃ and Ỹ . We first select X
′

from X̃ where the
anomalies of X

′
are sparse in the time series points located near the label. Denote the ground-truth

label and observed label of X
′

as Y
′

and Ỹ ′ , respectively. From our analyses of sample robustness
in Section 5, training on (X

′
,Y

′
) has very similar prediction performance compared to training on

(X ,Y ). I.e., X
′

acts like clean input time series. Mathematically, we have

argmin
f

EX,Y [l(f(X), Y )]≈argmin
f

EX′ ,Y ′ [l(f(X
′
), Y

′
)].

• Since the selection process does not involve the labels, the distribution of Ỹ ′ with respect to X
′

is
unchanged. Let ℓ be the robust loss (MAE) in the setting of anomalies. From our analyses of loss
robustness in Section 4, we have:

argmin
f

E
X

′
,Ỹ

′ [l(f(X
′
), Ỹ ′)] ≈ argmin

f
EX

′
,Y

′ [l(f(X
′
), Y

′
)].

• Combining the above two equations, we have:
argmin

f
E
X

′
,Ỹ

′ [l(f(X
′
), Ỹ ′)]≈argmin

f
EX

′
,Y

′ [l(f(X
′
), Y

′
)] ≈ argmin

f
EX,Y [l(f(X), Y )]. (3)

Equation (3) implies that by using selective samples to train the model, the performance can be
close to the clean samples training without anomalies in both inputs and labels. Equation (3) can be
viewed as a generalization of Equation (1) which considers the noise in the inputs in TSFA tasks.

We use ≈ instead of = because our input time series contain anomalies. In the absence of anomalies
in the input, as guaranteed by Section 4, strict equality in Equation (3) can be achieved. Unlike
LNL, which assumes clean inputs, time series data can be contaminated. Fortunately, our analysis in
Section 5 shows that by selecting input time series with minimal anomalies near the label, we can
make them comparable to clean series, as shown in Table 1. The use of ≈ reflects this observation. In
summary, while LNL relies on strict robustness, our approach incorporates a selection procedure to
ensure robustness in the presence of potential anomalies.
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Algorithm 1 RobustTSF Algorithm
Input: Initialized DNN, Time series z̃ = {z̃1, · · · , z̃T }, Robust loss ℓ, Number of epochs E, Batch size M .
Iteration:

1. Input the time series z̃ into Equation (4) to get the trend of time series s.
2. Segment z̃ and s to build the dataset D̃ = {(x̃1, s1, ỹx1), · · · , (x̃N , sN , ỹxN )}
for e = 1 to E do

for m = 1 to N
M

do
3. Randomly select M triplets from D̃
4. Calculate anomaly score for each triplet from Equation (5).
5. Train DNN on triplets using robust loss ℓ from Equation (6).

end for
end for

Output: DNN model

6.2 ROBUSTTSF ALGORITHM

From Section 6.1, to achieve robustness in TSFA (Equation (3)), it suffices to show how to select X
′

from X . We derive an efficient algorithm as follows:

Given a time series z̃ = {z̃1, · · · , z̃T }, we first calculate its trend s = {s1, · · · , sT } by solving:

min
s

T∑
t=1

|z̃t − st|+ λ ·
T−1∑
t=2

|st−1 − 2 · st + st+1|, (4)

where λ > 0 is the hyper-parameter, st is the t-th value in s. It is worth noting that Equation (4)
is a variation of the original trend filtering algorithm (Kim et al., 2009). We change (z̃t − st)

2 to
|z̃t − st| to improve robustness. After trend filtering, we can segment z and s to get the training set
D̃ = {(x̃1, s1, ỹx1

), · · · , (x̃N , sN , ỹxN
)} which consists of N triplets. Note that sn is the trend of

x̃n. Let A(x̃n) denote the anomaly score of (x̃n, sn, ỹxn
), which is defined as follows:

A(x̃n) =

K∑
k=1

w(k) · |x̃k
n − skn|, (5)

where K is the length of the input x̃n, x̃k
n and skn are the k-th value in x̃n and sn, respectively.

|x̃k
n − skn| denotes the extent of anomaly at time step k. w(k) is a weighting function that is designed

non-decreasing, and we consider the following two functions for w(k):

• Exponential: w(k) = e−(k−K)2 ; Dirac: w(k) = 0 if k < K
′
, w(k) = 1 if K

′ ≤ k < K.

The reason for designing w(k) as a non-decreasing function is because the position of anomalies
matters for the prediction performance, as we analyzed in Section 5. we enlarge the weights when
anomalies are close to the labels. In practice, we find Dirac function performs slightly better than
exponential functions. We design the final loss in RobustTSF as:

L =

N∑
n=1

1(A(x̃n) < τ) · l(x̃n, ỹxn
), (6)

where 1() represents the indicator function, equaling 1 when the condition is met and 0 otherwise.
τ > 0 serves as the threshold and l is selected as the MAE loss function. It is worth noting that
our primary focus is on discerning the extent of anomalies within time series points situated in
proximity to the label, followed by appropriate filtering, rather than merely determining whether a
given time series point qualifies as an anomaly. This focus steers our use of the hyper-parameter τ in
Equation (6), streamlining and simplifying the anomaly detection within our method. Experiments in
the Appendix F.6 demonstrate that setting τ to 0.3 yields favorable results across diverse datasets
and settings. We term our approach RobustTSF, summarized in Algorithm 1. There are two major
differences between our approach and previous detection-imputation-retraining pipeline (Connor
et al., 1994; Bohlke-Schneider et al., 2020):

• Our method does not need a pre-trained forecasting DNN to detect anomalies. Instead, our method
only needs to calculate anomaly score (see Equation (4) and (5)), which is more time efficient.
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• In the detection-imputation-retraining pipeline, removing anomalies post-detection is a viable
approach but can introduce time series discontinuities, posing a crucial challenge in TSFA. (Connor
et al., 1994) employs offline value imputation, while (Bohlke-Schneider et al., 2020) opts for online
imputation. However, these imputations can be noisy and lack robust theoretical foundations, which
RobusTSF mitigates by eliminating the need for imputation. Implicit detection in our approach serves
efficient sample selection. With sample selection and robust loss, we achieve the desired robustness,
as expressed in Equation (3).

While there are potential alternatives to replace Equation (4) for trend calculation and selective
approaches to replace Equation (5), our primary focus in this paper is to establish a connection
between LNL and TSFA. Our aim is to demonstrate that we can leverage insights from LNL to
significantly enhance TSFA performance. Therefore, we’ve opted to keep our method simple and
effective, leaving room for future improvements and exploration of alternative approaches.

7 EXPERIMENTS

Here we demonstrate the effects of RobustTSF on TSFA tasks. We simply introduce experiment
setting here, leaving the detailed description of experiment setup, hyper-parameter configurations,
model structure, etc, to Appendix E.

Model and Datasets Most recent papers on robust time series forecasting use LSTM-based structures
in their experiments Yoon et al. (2022); Wang et al. (2021a); Wu et al. (2021). Similarly, related
works on TSFA tasks also employ LSTM models. Consequently, we primarily use LSTM in our
main paper’s experiments. However, since our framework is model-agnostic, it can be adapted to
other structures like Transformers and TCN, as demonstrated in Appendix F.12. To ensure fairness in
comparisons, all methods utilize the same model structure.

We evaluate our methods on the Electricity1 and Traffic2 datasets, splitting each dataset into training
and test sets with a 7:3 ratio and introducing anomalies into the training set. Notably, we do not
create a validation set from the training set for TSFA tasks due to two reasons: 1) Training sets in
TSFA are noisy, making validation set selection unreliable for model tuning (as demonstrated in the
Appendix F.4); 2) The common practice in LNL suggests that DNN models tend to fit clean samples
first and then noisy ones, leading to an initial increase and then decrease in performance, making
it insufficient to evaluate TSFA methods solely based on the validation set. Hence, we follow the
evaluation protocol from a prominent benchmark method in LNL Li et al. (2020). This protocol
records DNN performance on the clean test set at the end of each training epoch, and we report both
the best and last epoch test set performances for each method after training concludes. The datasets
are normalized to 0 mean and 1 std before adding anomalies and training.

In the Appendix, we extend our evaluation to more datasets, including real-world time series with
intrinsic anomalies (Appendix F.11), and also address the scenario where the test set contains
anomalies (Appendix F.1).”

Comparing methods and evaluation criterion: We compare our method to the following approaches:
Vanilla training, which directly trains the model on time series using MSE or MAE loss functions,
Offline imputation (Connor et al., 1994), Online imputation (Bohlke-Schneider et al., 2020),
and Loss-based sample selection (Li et al., 2022). We use MSE and MAE (see Appendix E
for details) on the test set to evaluate each method. It’s worth noting that some methods, such as
(de Bézenac et al., 2020) and ARIMA (Ho & Xie, 1998), while not designed for TSFA tasks, have
shown good performance in scenarios with skewed time series. We provide additional comparisons
in the Appendix F.9.

Training setup: Each method is trained for 30 epochs using the ADAM optimizer. The learning rate
is set to 0.01 for the first 10 epochs and 0.001 for the subsequent 20 epochs. For RobustTSF, we
maintain fixed hyperparameters: λ = 0.3 (Equation (4)), τ = 0.3 (Equation (6)), and K

′
= K − 1

(Dirac weighting) throughout all experiments presented in the paper. It’s important to note that our
paper primarily focuses on experiments with varying anomaly rates while keeping the anomaly scale
constant, in line with conventions in the literature of LNL and related TSFA works. However, we
also conduct experiments exploring different anomaly scales, as detailed in Appendix F.7.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
2http://pems.dot.ca.gov
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Table 2: Comparison of different methods on Electricity and Traffic dataset for single-step forecasting.
We report the best and last epoch test performance for all methods, represented as MAE/MSE. We
also report ∆ = |best − last|, which is the average of |best − last| for all anomaly settings of each
method, to reflect the stableness of each method. The best results are highlighted in bold font. We
also establish the statistical consistency of our results, as demonstrated in Appendix F.17

Dataset Method Clean Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0 η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3 ∆

Electricity

Vanilla
(MSE)

best 0.187/0.071 0.199/0.078 0.239/0.099 0.228/0.097 0.305/0.157 0.192/0.076 0.227/0.096 0.019last 0.205/0.082 0.219/0.091 0.258/0.117 0.229/0.098 0.354/0.197 0.213/0.087 0.255/0.124
Vanilla
(MAE)

best 0.182/0.070 0.191/0.077 0.206/0.086 0.205/0.086 0.225/0.092 0.199/0.080 0.210/0.086 0.015last 0.198/0.081 0.223/0.096 0.245/0.109 0.215/0.090 0.245/0.107 0.203/0.082 0.219/0.096

Offline best 0.184/0.071 0.187/0.071 0.214/0.087 0.190/0.074 0.212/0.084 0.184/0.070 0.193/0.075 0.009last 0.187/0.072 0.191/0.073 0.232/0.098 0.203/0.082 0.237/0.100 0.186/0.071 0.207/0.083

Online best 0.183/0.070 0.199/0.077 0.225/0.091 0.195/0.075 0.227/0.093 0.194/0.074 0.209/0.084 0.01last 0.201/0.077 0.212/0.084 0.250/0.104 0.215/0.084 0.234/0.097 0.204/0.078 0.215/0.087

Loss sel best 0.180/0.068 0.204/0.081 0.209/0.081 0.198/0.078 0.214/0.089 0.196/0.077 0.204/0.083 0.004last 0.182/0.069 0.208/0.085 0.217/0.089 0.205/0.083 0.217/0.090 0.205/0.083 0.210/0.086

RobustTSF best 0.177/0.065 0.177/0.066 0.183/0.070 0.181/0.068 0.194/0.074 0.176/0.067 0.177/0.067 0.004last 0.177/0.066 0.182/0.068 0.190/0.071 0.187/0.071 0.204/0.079 0.182/0.069 0.177/0.068

Traffic

Vanilla
(MSE)

best 0.196/0.112 0.210/0.119 0.233/0.129 0.268/0.171 0.446/0.353 0.219/0.132 0.292/0.205 0.007last 0.199/0.116 0.220/0.126 0.235/0.130 0.275/0.173 0.451/0.357 0.233/0.144 0.304/0.226
Vanilla
(MAE)

best 0.194/0.105 0.209/0.123 0.231/0.136 0.266/0.170 0.295/0.208 0.216/0.140 0.233/0.158 0.008last 0.202/0.114 0.210/0.123 0.245/0.151 0.272/0.186 0.307/0.220 0.224/0.148 0.234/0.159

Offline best 0.189/0.104 0.208/0.123 0.222/0.133 0.221/0.135 0.280/0.186 0.205/0.120 0.218/0.125 0.005last 0.193/0.110 0.220/0.133 0.230/0.142 0.221/0.135 0.281/0.187 0.209/0.123 0.223/0.131

Online best 0.206/0.118 0.216/0.113 0.239/0.126 0.220/0.116 0.233/0.127 0.224/0.127 0.244/0.141 0.016last 0.208/0.120 0.229/0.136 0.248/0.133 0.230/0.126 0.285/0.177 0.234/0.142 0.256/0.160

Loss sel best 0.196/0.115 0.226/0.144 0.257/0.160 0.241/0.153 0.325/0.235 0.211/0.133 0.260/0.179 0.004last 0.199/0.120 0.232/0.151 0.260/0.170 0.241/0.153 0.329/0.238 0.220/0.138 0.260/0.179

RobustTSF best 0.185/0.100 0.198/0.113 0.203/0.111 0.200/0.113 0.243/0.140 0.185/0.101 0.202/0.116 0.003last 0.185/0.100 0.200/0.112 0.209/0.116 0.203/0.114 0.250/0.152 0.185/0.101 0.205/0.119

Table 3: Comparison of different methods on Electricity dataset for multi-step forecasting. We report
the best epoch performance for all the methods by MAE/MSE. The anomaly ratio for each anomaly
type is 0.2. The prediction length is 4 and 8. The best results are highlighted in bold font.

Method Clean Constant (η = 0.2) Missing (η = 0.2) Gaussian (η = 0.2)
O = 4 O = 4 O = 8 O = 4 O = 8 O = 4 O = 8

Vanilla (MSE) 0.302/0.175 0.321/0.191 0.384/0.262 0.367/0.229 0.423/0.298 0.324/0.191 0.369/0.241
Vanilla (MAE) 0.292/0.165 0.302/0.174 0.382/0.264 0.327/0.192 0.394/0.283 0.310/0.181 0.371/0.247

Offline 0.302/0.179 0.314/0.184 0.399/0.286 0.334/0.216 0.432/0.358 0.312/0.188 0.407/0.306
Online 0.308/0.188 0.306/0.176 0.413/0.308 0.337/0.213 0.477/0.412 0.346/0.216 0.471/0.391

Loss sel 0.304/0.184 0.319/0.197 0.383/0.284 0.342/0.217 0.412/0.318 0.319/0.195 0.381/0.275
RobustTSF 0.280/0.158 0.292/0.163 0.371/0.252 0.314/0.185 0.371/0.249 0.284/0.156 0.353/0.234

7.1 SINGLE-STEP TIME SERIES FORECASTING

We first perform experiments on single-step forecasting following exact problem formulation in
Section 3. The length of input sequence is 16 for Electricity and Traffic. The overall results are
reported in Table 2 from which we can observe some interesting phenomenons:

1) Among all anomaly types, missing anomalies have the most significant negative impact on
model performance 2) Offline imputation, online imputation, and loss selection approaches do not
consistently improve performance across all anomaly types within each dataset. For instance, the
online imputation method improves performance for the missing anomaly type in the Traffic dataset
but decreases it for constant and Gaussian anomalies. This phenomenon also occurs with loss-based
sample selection. The difference arises because, unlike LNL, TSFA involves noise (anomalies) in
both X and Y , making the small loss criterion in LNL less suitable for TSFA tasks. 3) Loss selection
and RobustTSF are the most stable methods (with small ∆ values). Both approaches select reliable
training samples, but RobustTSF outperforms the loss selection approach. 4) RobustTSF consistently
improves performance compared to vanilla training across all anomaly types and datasets. This
suggests the effectiveness of our selection module. Notably, even without manually adding anomalies
(clean), RobustTSF still exhibits clear improvements. This is because sensor-recorded data inevitably
contain anomalies. Thus, our method serves as a general approach for time series forecasting tasks.

7.2 GENERALIZATION TO MULTI-STEP FORECASTING

Our approach can be easily generalized to multi-forecasting tasks, i.e.,. predicting multi-step values
given input time series. For this part of experiment, we evaluate RobustTSF on Electricity dataset. The
input length is fixed to be 96 and the prediction length O ∈ {4, 8}. The best epoch performance for
each method is reported in Table 3. We can observe that RobustTSF still has consistent improvement
compared to the other baseline methods, including the setting of clean time series.
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7.3 GENERALIZATION TO OTHER ANOMALIES

Even though our theories in Section 3 are based on three common point-level anomalies, i.e., Constant,
Missing and Gaussian Anomalies, RobustTSF works well when anomalies follow other heavy-tailed
distributions like student-t distribution and Generalized Pareto distribution. The corresponding
evaluations are left in Appendix F.10. Furthermore, RobustTSF can also be adopted in case of
subsequence anomaly. Considering a simple subsequence anomaly modeled by Markov process:

If z̃t−1 is clean, z̃t =

{
zt, with probability 1− η

zA
t , with probability η

(7)

If z̃t−1 is anomaly, z̃t =
{
zt, with probability 1− ϕ

z̃t−1 + ϵ, ϵ ∼ N (0, 0.1), with probability ϕ
(8)

Equation (7) behaves like a point-level anomaly if the previous time step is clean. However, when the
previous time step is an anomaly, the property of subsequence anomaly suggests that the current time
step is likely to also be an anomaly, with a value close to the previous anomaly (Equation (8)). We
find that RobustTSF performs well in this scenario. This is because our filtering scheme (Equation
(6)) primarily selects samples with clean time steps near the label, allowing anomalies to be modeled
by Equation (7) after sample selection. Empirical experiments in Table 4 confirm this observation,
as RobustTSF outperforms other methods in the subsequence anomaly setting. It’s worth noting
that for more complex anomaly types that may not satisfy P(Ỹ |Y ) ̸= P(Ỹ |Y,X), MAE may not be
theoretically robust. Analyzing and developing loss functions for these anomaly types presents an
interesting avenue for future research.

Table 4: Comparison of different methods on Electricity dataset for single-step forecasting with
subsequence anomaly. We report the best epoch performance for all methods by MAE/MSE. We fix
η = 0.3 in Equation (7) and vary ϕ in Equation (8). The best results are highlighted in bold font.

Method Gaussian (η = 0.3)
ϕ = 0.1 ϕ = 0.3 ϕ = 0.5 ϕ = 0.7 ϕ = 0.9

Vanilla (MSE) 0.206/0.083 0.214/0.089 0.253/0.111 0.337/0.209 0.479/0.388
Vanilla (MAE) 0.201/0.080 0.193/0.076 0.194/0.076 0.202/0.081 0.206/0.084

Offline 0.194/0.075 0.194/0.075 0.191/0.074 0.198/0.078 0.203/0.083
Online 0.196/0.075 0.197/0.077 0.197/0.075 0.197/0.077 0.200/0.079

Loss sel 0.198/0.075 0.199/0.079 0.199/0.079 0.202/0.082 0.203/0.081
RobustTSF 0.179/0.067 0.180/0.068 0.185/0.072 0.187/0.073 0.198/0.079

7.4 HYPER-PARAMETER TUNING AND DISCUSSIONS

To further study the effect of each component of RobustTSF, we conduct Hyper-parameter Tuning
towards the loss, weighting strategy and anomaly detection method shown in Table 5, showing the
advantage of each component of our design. More discussions (including test set with anomalies,
forecasting visualization, sensitivity of detection-imputation-retraining pipeline, parameter sensitivity,
efficiency analyses, RobustTSF on more datasets, RobustTSF on Transformer and TCN models,
comparing RobustTSF with more methods, more discussion on RobustTSF such as significance and
future work, etc) are summarized in Appendix F.

Table 5: Hyper-parameterTuning of RobustTSF on Electricity dataset. We report the best epoch
performance (MAE) for all methods. The best results are highlighted in bold font.

Method Const Missing Gaussian
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

RobustTSF (MAE, Dirac weighting, trend filter detection) 0.177 0.183 0.181 0.194 0.176 0.177
RobustTSF (MSE, Dirac weighting, trend filter detection) 0.180 0.193 0.182 0.249 0.177 0.181

RobustTSF (MAE, exponential weighting, trend filter detection) 0.178 0.183 0.182 0.199 0.179 0.180
RobustTSF (MAE, Dirac weighting, prediction based detection) 0.191 0.217 0.195 0.206 0.180 0.184

8 CONCLUSIONS

This paper aims to deal with TSFA (time series forecasting with anomaly) tasks. We first define
common types of anomalies and analyze the loss robustness and sample robustness on these anomaly
types. Then based on our analyses, we develop an efficient algorithm to improve model performance
on TSFA tasks and achieve SOTA performance. Furthermore, this is the first study to form a bridge
between LNL task and TSFA task and may potentially inspire future research on this topic.
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APPENDIX ARRANGEMENT

The appendix is arranged as follows:

• Section A: proving the theorems in the main paper;
• Section B: illustrating the common anomaly types by visualization;
• Section C: experiments on Loss robustness;
• Section D: more experiments on Sample robustness;
• Section E: detailing the experimental settings in the paper;
• Section F: More experiments and discussions:

– Section F.1: applying RobustTSF when test set also has anomalies;
– Section F.2: visualizing forecasting results;
– Section F.3: more experiments on subsequent anomalies and multi-step forecasting;
– Section F.4: showing the unreliability of model selection via noisy validation set;
– Section F.5: showing the sensitivity of Detection-imputation-retraining Pipeline;
– Section F.6: expriments for parameter sensitivity analyses;
– Section F.7: experiments with respect to anomaly scales;
– Section F.8: efficiency analyses for each method;
– Section F.9: comparing RobustTSF with more methods;
– Section F.10: applying RobustTSF on other anomaly distributions;
– Section F.11: applying RobustTSF on more datasets;
– Section F.12: evaluating RobustTSF on Transformer and TCN Models;
– Section F.13: discussing the originality, significance and future work of RobustTSF.
– Section F.14: evaluating RobustTSF for low noise ratios.
– Section F.15: additional elucidation for Equation (4)
– Section F.16: additional ablation studies for RobustTSF
– Section F.17: proof of statistically consistent results for RobustTSF

A PROOF FOR THEOREMS

A.1 PROOF FOR THEOREM 1

Let Rℓ(f) = EDℓ(f(X), Y ) = Ex,yxℓ(f(x), yx) and Rη
ℓ (f) = ED̃ℓ(f(X), Ỹ ) =

Ex,ỹx
ℓ(f(x), ỹx), respectively. Then

Rη
ℓ (f)

=Ex,ỹx
ℓ(f(x), ỹx)

=ExEyx|xEỹx|x,yx
ℓ(f(x), ỹx)

=ExEyx|x[(1− η) · ℓ(f(x), yx) + η · ℓ(f(x), yA
x)]

=ExEyx|x[(1− η) · ℓ(f(x), yx) + η · (Cx − ℓ(f(x), yx))]

=(1− 2 · η) ·Rℓ(f) + η · Ex,yxCx

where γ1 = 1− 2 · η > 0 and γ2 = η · Ex,yxCx, which are constants respect to f .

A.2 PROOF FOR PROPOSITION 1

Let q = f(x), then we are validating the value of ℓ(q, yx) + ℓ(q, yA
x). For MAE loss, the value is

represented as |q − yx| + |q − yA
x|. From the property of absolute function, |q − yx| + |q − yA

x|
achieves minimum when q lies in the range between yx and yA

x. Thus when min {yx, yA
x} < q <

max {yx, yA
x}, we have |q − yx|+ |q − yA

x| = Cx = |yx − yA
x|.

This conclusion can not be fit for MSE loss, since (q − yx)
2 + (q − yA

x)
2 is not constant when

min {yx, yA
x} < q < max {yx, yA

x}.
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A.3 PROOF FOR PROPOSITION 2

Following the notation in Section A.2, it is easy to verify that ℓnorm(q, yx) + ℓnorm(q, y
A
x) = 1, which

is constant respect to f .

A.4 PROOF FOR THEOREM 2

Following the notation in the proof for Theorem 1, we aim to show that ExEyx|x[(1−η)·ℓ(f(x), yx)+
η · ℓ(f(x), yA

x)], y
A
x ∼ N (yx, σ

2) achieves minimum when f(x) = yx.

• For MSE loss, let q = f(x), then we are to show that (1 − η) · (q − yx)
2 + η · (q − yA

x)
2

achieves minimum when q = yx. Since (1 − η) · (q − yx)
2 achieves minimum when q = yx, we

only need to prove
∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x achieves minimum when q = yx where g(yA
x) =

1√
2πσ

exp(− (yA
x−yx)

2

2σ2 ) is the pdf of the distribution of yA
x .

Let s(q) = EyA
x
(yA

x − q)2 =
∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x , then

∂s(q)

∂q
= 0

=⇒2 · q − 2 · EyA
x
g(yA

x) = 0

=⇒q = EyA
x
g(yA

x) = yx

Thus
∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x achieves minimum when q = yx.

• MAE loss can also be proved with a similar procedure as follows.

Let s(q) = EyA
x
|yA

x − q| =
∫ +∞
−∞ g(yA

x) · |yA
x − q|dyA

x , then

∂s(q)

∂q
= 0

=⇒EyA
x
(
−1 · (yA

x − q)

|yA
x − q|

) = 0

=⇒EyA
x
(1{yA

x < q} − 1{yA
x > q}) = 0

=⇒P(yA
x < q) = P(yA

x > q)

=⇒q = yx

Thus
∫ +∞
−∞ g(yA

x) · |yA
x − q|dyA

x achieves minimum when q = yx.

B VISUALIZATION FOR COMMON ANOMALY TYPES

As discussed in Section 3, three types of anomalies are considered in this paper. Figure 2 shows
visualization examples for these anomaly types.

C EXPERIMENTS ON LOSS ROBUSTNESS

In Section 4, we provided our Theorems on loss robustness when there are anomalies in Y . Here, we
examine our Theorems in two real-world time series datasets: Electricity and Traffic, which are used
by many time series forecasting papers (Yoon et al., 2022; Wang et al., 2021a; Wu et al., 2021). Since
many works (Connor et al., 1994; Bohlke-Schneider et al., 2020; Li et al., 2022) dealing with TSFA
problems deploy RNN-based structure to conduct experiments, we choose to use LSTM to validate
our Theorems. Experiments are shown in Table 6. It can be observed that for Constant and Missing
type anomalies, MAE is very robust whose performance does not vary too much when anomalies
exist while MSE degrades the performance with the increase of the anomaly rate. For Gaussian-type
anomalies, MAE and MSE can both be robust. These results support our theoretical analyses for loss
robustness when anomalies only exist in the label.
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Figure 2: Visualization of time series with different types of anomalies. (a): Clean time series which
is the sine function of time steps. We normalize the time series to 0 mean and 1 std. (b) (c) (d): Time
series (sine) with Constant, Missing, and Gaussian type anomalies. The noise rate for these types
of anomalies is 0.2. The noise scale is 1.0 for Constant and Gaussian anomaly and 0 for Missing
anomaly.

Table 6: Comparison of loss functions on different anomaly types with anomaly rate 0.1 and 0.2.
For each setting, we report the best performance on test set, presented as MAE/MSE. The model
structure is LSTM. Detailed experimental setting is left in Appendix E.

Dataset Loss Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.1 η = 0.2 η = 0.1 η = 0.2 η = 0.1 η = 0.2

Electricity MAE 0.185/0.070 0.187/0.071 0.189/0.071 0.195/0.078 0.184/0.070 0.186/0.073
MSE 0.190/0.071 0.205/0.081 0.209/0.082 0.217/0.089 0.187/0.071 0.188/0.074

Traffic MAE 0.194/0.108 0.199/0.112 0.206/0.119 0.210/0.123 0.198/0.112 0.206/0.117
MSE 0.208/0.119 0.222/0.124 0.249/0.148 0.302/0.191 0.204/0.121 0.214/0.131

Table 7: Evaluating how different positions of anomalies in the input time series affect prediction
performance. For each dataset, we simulate different types of anomalies with anomaly rates 0.1 and
0.2. The loss is MAE and the network structure is LSTM. we report best epoch MAE for each setting

Anomaly Type ETT-h1 with Anomaly Position Exchange with Anomaly Position
front middle back front middle back

Clean 0.051 0.051 0.051 0.047 0.047 0.047
Const. (η = 0.1) 0.051 0.051 0.052 0.047 0.049 0.052
Const. (η = 0.2) 0.052 0.051 0.055 0.049 0.050 0.060

Missing. (η = 0.1) 0.052 0.052 0.054 0.049 0.054 0.173
Missing. (η = 0.2) 0.052 0.052 0.058 0.050 0.050 0.214
Gaussian. (η = 0.1) 0.051 0.051 0.053 0.048 0.049 0.057
Gaussian. (η = 0.2) 0.052 0.052 0.058 0.050 0.051 0.062

D MORE EXPERIMENTS ON SAMPLE ROBUSTNESS

We show more experiments regarding to Sample Robustness to support our hypothesis in Section
5. The datasets used are ETT-h1 (Zhou et al., 2021) and Exchange (Lai et al., 2018). The results in
Table 7 demonstrates minimal performance drop for distant anomalies, consistent with Section 5.

E DETAILED EXPERIMENTAL SETTING

Model structure: We use the same LSTM model structure to implement all the methods for fair
comparison. Note that all the methods in Table 2 are model agnostic, except for online imputation
which needs a specific auto-regressive RNN-based model. The LSTM we use in the paper (Table 6,
Table 1, Table 2, Table 3, Table 4, Table 12) consists of two recurrent layers with the hidden size 10
and a fully connected layer.

The Transformer model we use in the paper (Table 24) consists of a Positional Encoding layer with
feature size 250, a vanilla transformer encoding layer with 10 heads, and a fully connected layer.

Dataset preprocessing: We first normalize the clean training set to 0 mean and 1 std and add
anomalies. When adding constant type anomaly, the noise scale is ϵ = 0.5 · std = 0.5; when adding
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missing type anomaly, the noise scale is ϵ = 0; when adding Gaussian type anomaly, the noise scale
is ϵ = 2 · std = 2; The clean test set is also scaled using the scaling parameter of training set when
evaluating each method, i.e.,, ztest =

ztest−µ
δ , where µ and δ are the mean and std of the training set,

respectively.

Evaluation: We use MAE and MSE on the test set to evaluate each method:

MAE =
1

n

n∑
i=1

|y − ŷ| , MSE =
1

n

n∑
i=1

(y − ŷ)2

Shared hyper-parameter for all the methods We train each method for 30 epochs and report the
best epoch test performance and last epoch test performance. The learning rate is 0.1 for the first 10
epochs and 0.01 for the last 20 epochs. The optimizer is Adam and the batch size is 128.

Specific hyper-parameter for offline and online imputation Since detection-imputation-retraining
pipeline requires a threshold to determine whether each time step is an anomaly step and this pipeline
can be sensitive to anomaly types (Section F.5). When training detection-imputation-retraining
pipeline on different anomaly types, we choose the threshold from {0.5,0.6,0.7,0.8} to get the best
result.

Specific hyper-parameter for loss-based sample selection: For each anomaly type, we pretrain
the model for 3 epochs and record the loss of all the samples after each training epoch ends. Then
we calculate the mean and std of the loss for all the samples and select the samples with small loss
and small loss std. Note (Li et al., 2022) assumes the anomaly ratio is known. Thus we select (1 -
anomaly ratio)· Num. of Samples.

Specific hyper-parameter for RobustTSF: We fix λ = 0.3 (Equation (4)), τ = 0.3 (Equation (6)),
K

′
= K − 1 (Dirac weighting scheme, where K is the length of the input time series) for all the

experiments in the paper.

F MORE EXPERIMENTS AND DISCUSSIONS ON ROBUSTTSF

F.1 APPLYING ROBUSTTSF WHEN TEST SET ALSO HAS ANOMALIES

In the main paper, we assume the test set is clean without anomalies by following the setting of
learning with noisy labels and related works on TSFA tasks (Connor et al., 1994). However, the test
set may also have anomalies in the real-world scenario. Here we show how to apply RobustTSF when
the test set is noisy.

Assume anomalies exist in X in the test set. Since Y is used to justify the performance of each
method, noisy Y cannot determine if the method is learning towards the right target. When performing
testing, we first use a modified trend filter (Equation (5) in the main paper) to calculate the trend of
each input x. If the amount of anomaly in the last time step is smaller than τ , then we do not modify
x . Otherwise, we use the last value of the trend to replace the value of the last time step in x. Then
we use the trained model to evaluate the test set. We report the performance (best epoch MAE) on the
Electricity dataset shown in Table 8. It can be observed that RobustTSF outperforms other methods
on test sets with anomalies, providing valuable insights for practical applications.

Table 8: Comparing RobustTSF with other methods on noisy test set anomalies

Method Constant Missing Gaussian
η = 0.01 η = 0.05 η = 0.01 η = 0.05 η = 0.01 η = 0.05

MAE 0.192 0.253 0.201 0.313 0.200 0.258
MSE 0.211 0.281 0.237 0.387 0.212 0.275

Offline 0.190 0.232 0.198 0.324 0.191 0.255
Online 0.197 0.270 0.202 0.362 0.212 0.250

Loss sel 0.207 0.235 0.208 0.311 0.199 0.236
RobustTSF 0.174 0.219 0.183 0.302 0.178 0.190
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F.2 VISUALIZING FORECASTING RESULTS OF EACH METHOD

In this part, we visualize the forecasting results of each method to see if RobustTSF can learn intrinsic
patterns within the data. Each method is trained on the Electricity dataset with Gaussian noise
(η = 0.3) and tested on the clean test set. The results are shown in Figure 3. It can be observed that
only RobustTSF can learn underlying patterns within the time series.
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Figure 3: (a) The forecasting result of offline imputation. (b) The forecasting result of loss-based
sample selction. (c) The forecasting result of RobustTSF. The length of input time series is 16 and
the forecasting horizon is 4.

F.3 MORE SUBSEQUENCE ANOMALY EXPERIMENT AND MULTI-STEP FORECASTING
EXPERIMENT

In the main paper, we show the result of Gaussian-based subsequence anomaly. We provide experi-
ments of constant and missing type-based subsequence anomalies in this section. Results are shown
in Table 9. It can be observed that RobustSTF is still superior to the other methods.

Table 9: Comparison of different methods on Electricity dataset for single-step forecasting with
subsequence anomaly. We report the best epoch performance for all methods, represented as
MAE/MSE. We fix η = 0.3 in Equation (7) and vary ϕ in Equation (8). The best results are
highlighted in bold font.

Method Constant (η = 0.3) Missing (η = 0.3)
ϕ = 0.5 ϕ = 0.7 ϕ = 0.9 ϕ = 0.5 ϕ = 0.7 ϕ = 0.9

Vanilla (MAE) 0.207/0.082 0.210/0.083 0.210/0.085 0.213/0.090 0.212/0.085 0.202/0.081
Offline 0.202/0.079 0.208/0.083 0.210/0.085 0.206/0.084 0.209/0.084 0.202/0.082
Online 0.216/0.087 0.215/0.084 0.208/0.082 0.285/0.149 0.295/0.156 0334/0.220

Loss sel 0.204/0.081 0.208/0.084 0.209/0.085 0.213/0.088 0.210/0.086 0.237/0.104
RobustTSF 0.188/0.072 0.194/0.077 0.200/0.081 0.192/0.074 0.192/0.074 0.193/0.075

For the multi-step forecasting, we use another setting to perform experiments with input length of 12
and prediction length of 12. The experiments on Electricity dataset are presented in Table 10. The
results affirm that RobustTSF maintains good performance with input and output length of 12.

F.4 MODEL SELECTION VIA NOISY VALIDATION SET

In this section, we aim to show that the noisy validation is not reliable for selecting models. We split
the Electricity data into separate training, validation, and testing sets with a ratio of 6:2:2 and add the
anomalies in the training set and validation set. The best epoch test accuracy and the test accuracy
using the model selected by the validation set are reported. The results are shown in Table 11. It can
be observed that ∆ is relatively large whose value is even similar to |best − last| in Table 2. Thus
using the noisy validation set to select the model is not reliable.
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Table 10: Comparing RobustTSF with other methods for multi-step forecasting with input and output
length of 12. Best epoch MAE is reported.

Method Constant Missing Gaussian
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

MAE 0.550 0.575 0.544 0.572 0.541 0.565
MSE 0.551 0.578 0.545 0.595 0.545 0.568

Offline 0.539 0.552 0.527 0.616 0.531 0.546
Online 0.623 0.627 0.617 0.680 0.605 0.654

Loss sel 0.560 0.564 0.535 0.623 0.549 0.563
RobustTSF 0.512 0.543 0.525 0.547 0.516 0.523

Table 11: Validating the reliability of noisy validation on Electricity dataset. best represents the best
epoch test accuracy, val best represents the test accuracy using the model selected by the validation
set. The performance is represented as MAE/MSE. We also report ∆ = |best − val best| to reflect
the reliability of using the noisy validation set to select the models.

Method Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.2 η = 0.3 η = 0.2 η = 0.3 η = 0.2 η = 0.3 ∆

Vanilla
(MAE)

best 0.217/0.086 0.222/0.097 0.234/0.094 0.240/0.104 0.205/0.083 0.203/0.078 0.014val best 0.238/0.101 0.252/0.112 0.247/0.107 0.251/0.111 0.218/0.090 0.221/0.092
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Figure 4: Sensitivity of δ with Gaussian and Missing anomaly for offline detection-imputation-
retraining pipeline.

F.5 SENSITIVITY OF DETECTION-IMPUTATION-RETRAINING PIPELINE

The most important hyper-parameter for detection-imputation-retraining pipeline (Connor et al.,
1994; Bohlke-Schneider et al., 2020; Li et al., 2022) is the threshold for determining whether each
time step is an anomaly, i.e., if ẑi − z̃i > δ, where ẑi is the model prediction at time step i, z̃i is the
original observed value at time step i and δ is the threshold. We conduct an experiment on Electricity
dataset shown in Figure 4. It can be observed that for Gaussian anomaly, different values of δ result
in similar performances and δ = 0.7 performs slightly better than others. However, for Missing type
anomaly, values of δ can make performance vary very much and δ = 0.9 performs better than others.
This part of experiment shows that the hyper-parameter of detection-imputation-retraining pipeline
is sensitive to anomaly type. Recall that for RobustTSF, we fix all the hyper-parameters for all the
settings. Thus RobustTSF is more robust to hyper-parameters.
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Figure 5: The figure illustrates experiments concerning the hyperparameters τ and λ for RobustTSF
on both the Electricity and Traffic datasets, each containing different types of anomalies. The first
row of subfigures corresponds to the Electricity dataset, while the second row corresponds to the
Traffic dataset. Notably, the results indicate that RobustTSF remains robust across various settings of
hyperparameters. We reiterate that we maintain consistent hyperparameters across all settings when
comparing with other methods.

F.6 PARAMETER SENSITIVITY ANALYSES

To further study the influence of the hyper-parameters of RobustTSF, we conduct the parameter
sensitivity analyses on the Electricity and Traffic dataset. The results can be observed in Figure 5. It
can be seen that RobustTSF is quite robust to these hyper-parameters. Each setting can outperform
other baseline methods.

We also perform an experiment to show the influence of different sample selection metric shown
in Table 12. It can be observed that random selection makes performance worse while all the
weighting schemes, which are all non-decreasing function with respect to the time step, have similar
performance on TSFA tasks.

F.7 EXPERIMENTS WITH RESPECT TO ANOMALY SCALES

There exists three hyper-parameters, namely η, ϵ and γ characterizing three anomaly types we defined
in the paper. In our main paper, we have concentrated our experiments on the η hyper-parameter,
which aligns with the conventions found in the literature of LNL and related TSFA works. This
choice is rooted in the fact that even the original TSFA paper Connor et al. (1994) employed a fixed
γ2 value throughout their experiments.

For both ϵ and γ, we have extended our experimentation efforts, as reflected in Figure 6. Specifically,
Figure 6 (a) and (c) delineate the ϵ experimentation for the Constant anomaly, while Figure 6 (b)
and (d) illustrate the ϵ experiment for the Gaussian anomaly. It’s worth noting that in the context
of Gaussian anomaly, the value of γ2 characterizes the distribution of ϵ. In Figure 6 (b) and (d),
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Table 12: Comparison of different sample selection metric for RobustTSF. ‘Random’ means we
randomly select N ∗ (1− anomaly ratio) samples for training. We report the best epoch performance
for all the methods, represented as MAE/MSE.

Method Constant Missing Gaussian
η = 0.3 η = 0.3 η = 0.3

Random 0.222/0.089 0.211/0.086 0.201/0.079
Exponential weighting 0.183/0.070 0.196/0.075 0.179/0.067

Dirac weighting K ′=K − 1 0.183/0.070 0.194/0.074 0.177/0.067
Dirac weighting K ′=K − 2 0.187/0.072 0.188/0.073 0.180/0.066
Dirac weighting K ′=K − 4 0.189/0.073 0.200/0.079 0.186/0.073
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Figure 6: The figure depicts experiments on various anomaly scales, with a fixed anomaly ratio of
0.3 across all settings. The x-axis represents the anomaly scale and the y-axis represents the Best
epoch MAE for each method. Notably, RobustTSF demonstrates robustness to different anomaly
scales across diverse anomaly types. While the baseline also maintains robustness against Gaussian
anomaly scales, its performance is impacted by Constant anomaly scales. It’s worth mentioning
that an anomaly scale experiment isn’t feasible for the Missing type anomaly, as the anomaly scale
remains consistently 0 due to the presence of missing values.

the x-axis corresponds to γ2. Notably, the findings unveil that while the baseline (MAE) retains its
robustness in the face of varying γ2 (i.e., the variance of anomaly does not affect the methods very
much), its performance does exhibit sensitivity to Constant anomaly scales.

F.8 EFFICIENCY ANALYSES

We report training time for each method with LSTM structure on Electricity dataset with constant
anomaly (η = 0.3) to compare the efficiency. The running hardware is MacBook with an Apple M1
chip.

The results are shown in Table 13. The small increased time of RobustTSF compared to Vanilla
training is due to trend computation (Equation (4)). However, compared to detection-imputation-
retraining pipeline, RobustTSF is much more efficient.

Table 13: Training time comparison of each method.

Method Vanilla Training Offline imputation Online imputation RobustTSF
Time (s) 27.41 68.09 89.33 36.84

F.9 COMPARING ROBUSTTSF WITH MORE METHODS

There exist some methods, such as the recently proposed normalized Kalman filter (NKF) (de Bézenac
et al., 2020), even not specifically designed for TSFA tasks, showing good performance when time
series has missing data. Since NKF has better forecasting performance than DeepAR (Salinas et al.,
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2020), KVAE (Krishnan et al., 2017), and GP-Copula (Salinas et al., 2019) on missing data settings,
in this section, we mainly compare RobustTSF with the NKF method 3. The results are shown in
Figure 7, which shows that RobustTSF still exhibits better performance than NKF under different
ratios of missing data.

We also compare RobustTSF with ARIMA, a popular non-DNN approach for time series forecasting.
Specifically, we employed a rolling ARIMA model to suit one-step forward TSFA. Essentially, at each
time step, we extended the noisy training time series by one step and used ARIMA to fit the new noisy
training sequence, subsequently predicting the next step. However, ARIMA differs from DNN-based
methods and cannot split time series. Comparing ARIMA and DNNs might introduce bias due to
ARIMA’s increased anomaly exposure. To mitigate this, we assume anomalies exist in both training
and test. Appendix E1 provides details on applying RobustTSF to noisy test set. For ARIMA, we
utilized the statsmodels package and finetuned (p,d,q) parameters (Due to ARIMA’s characteristics,
the validation time is long). Table 16 illustrates its performance falls short of RobustTSF due to its
non-specialization for TSFA.

Another approach we compare is Dlinear (Zeng et al., 2023) which exhibits better performance than
transformer-based models. The results are summarized in Table 14 (reporting best epoch MAE). The
results demonstrate that, while DLinear may have a slight advantage in specific anomaly scenarios,
RobustTSF consistently outperforms DLinear, particularly in Gaussian-type anomalies.

Table 14: Comparing RobustTSF with Dlinear. Reporting best epoch MAE for each method.

Dataset Method Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

Electricity Dlinear 0.176 0.189 0.179 0.198 0.195 0.347
RobustTSF 0.177 0.183 0.181 0.194 0.176 0.177

Traffic Dlinear 0.219 0.238 0.232 0.318 0.277 0.472
RobustTSF 0.198 0.203 0.200 0.243 0.185 0.202

There also exists some potential approaches to deal with anomalies. For examples, after detecting
anomalies, we can impute the values using interpolations or using the calculated trend as new time
series to train the model. Table 15 shows the comparison with these methods on the Electricity dataset.
The results show the superiority of RobustTSF over other methods.

Table 15: Comparing RobustTSF with interpolation-based and trend-only methods. The anomaly
ratio for each anomaly type is 0.1 and 0.3, respectively. We report best epoch MAE for each method

Method Constant Missing Gaussian
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

zero-imputation 0.191 0.212 0.200 0.224 0.190 0.232
interpolate-imputation 0.185 0.200 0.191 0.209 0.186 0.187

Trend-only 0.214 0.216 0.213 0.215 0.215 0.217
RobustTSF 0.182 0.190 0.187 0.204 0.182 0.177

Table 16: Comparing RobustTSF with non-DNN approach ARIMA. We report best epoch MAE for
each method on Electricity dataset.

Method Gaussian Anomaly (η = 0.1) Gaussian Anomaly (η = 0.2) Gaussian Anomaly (η = 0.3)
ARIMA (1,0,0) 0.213 0.294 0.419
ARIMA (1,1,1) 0.232 0.329 0.363
ARIMA (5,1,0) 0.230 0.327 0.405

RobustTSF 0.178 0.182 0.190

F.10 APPLYING ROBUSTTSF ON OTHER ANOMALY DISTRIBUTIONS

In the main paper, we consider three types of anomalies, i.e., Constant, Missing and Gaussian
Anomaly. In this section, we consider more possible distributions for modeling anomalies, i.e.,
zA
t = zt + ϵ, where ϵ follows heavy-tailed distributions as

3https://github.com/johannaSommer/KF irreg TS
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Figure 7: MAE and MSE comparison between RobustTSF and NKF (de Bézenac et al., 2020) on
Electricity dataset with different ratios of missing data.

• Student-t distribution: f(ϵ, ν) = Γ( ν+1
2 )√

νπΓ( ν
2 )
(1 + ϵ2

ν )
− (ν+1)

2

• Generalized Pareto distribution: f(ϵ, c) = (1 + c · ϵ)−1− 1
c

In the above, f denotes pdf of the distributions and ν, c are hyper-parameters determining the shape
of the distributions. We perform RobustTSF on these distributions and the results are shown in Table
17 and Table 18.

Table 17: Comparison of different methods on Electricity dataset for single-step forecasting with
anomaly followed by student-t distribution. We report the best epoch performance for all methods,
represented as MAE/MSE. The best results are highlighted in bold font.

Method Student-T (ν = 3) Student-T (ν = 6)
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

Vanilla (MAE) 0.187/0.071 0.205/0.084 0.224/0.098 0.184/0.068 0.210/0.086 0.216/0.092
Offline 0.187/0.070 0.189/0.073 0.190/0.074 0.179/0.067 0.198/0.078 0.195/0.077
Online 0.196/0.075 0.196/0.074 0.217/0.089 0.197/0.075 0.200/0.081 0.219/0.091

Loss sel 0.190/0.073 0.198/0.078 0.208/0.087 0.194/0.076 0.203/0.083 0.203/0.084
RobustTSF 0.177/0.066 0.178/0.067 0.178/0.067 0.178/0.067 0.182/0.069 0.182/0.070

Table 18: Comparison of different methods on Electricity dataset for single-step forecasting with
anomaly followed by generalized Pareto distribution. We report the best epoch performance for all
methods, represented as MAE/MSE. The best results are highlighted in bold font.

Method Generalized-Pareto (c = 1) Generalized-Pareto (c = 0.5)
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

Vanilla (MAE) 0.195/0.078 0.209/0.087 0.223/0.097 0.203/0.080 0.207/0.081 0.220/0.094
Offline 0.181/0.069 0.193/0.075 0.195/0.078 0.187/0.071 0.197/0.079 0.193/0.076
Online 0.192/0.073 0.201/0.078 0.209/0.086 0.193/0.074 0.207/0.083 0.212/0.086

Loss sel 0.195/0.076 0.204/0.084 0.205/0.085 0.191/0.074 0.194/0.076 0.208/0.086
RobustTSF 0.176/0.066 0.181/0.069 0.181/0.069 0.179/0.067 0.184/0.068 0.184/0.069

F.11 APPLYING ROBUSTTSF ON MORE DATASETS

In this section, we evaluate RobustTSF on more datasets, including ETT (Zhou et al., 2021) and
Exchange (Lai et al., 2018). The results are shown in Table 19, Table 20 and Table 21. Overall,
RobustTSF still achieves better performance than other existing algorithms.
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Table 19: Comparison of different methods on ETT and Exchange dataset. The model structure is
LSTM. We report the best performance on test set, presented as MAE/MSE.

Dataset Method Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

ETT-h1

Vanilla (MAE) 0.054/0.006 0.061/0.007 0.053/0.005 0.070/0.008 0.053/0.006 0.055/0.006
Offline 0.055/0.006 0.06/0.006 0.053/0.006 0.057/0.006 0.052/0.005 0.055/0.006
Online 0.057/0.006 0.074/0.009 0.054/0.006 0.057/0.006 0.055/0.006 0.069/0.009

Loss sel 0.055/0.006 0.062/0.007 0.055/0.006 0.065/0.009 0.052/0.006 0.060/0.007
RobustTSF 0.052/0.005 0.054/0.005 0.052/0.005 0.055/0.006 0.052/0.005 0.055/0.006

ETT-h2

Vanilla (MAE) 0.054/0.007 0.075/0.011 0.046/0.004 0.062/0.009 0.041/0.004 0.050/0.006
Offline 0.041/0.003 0.074/0.012 0.045/0.005 0.060/0.009 0.042/0.004 0.048/0.004
Online 0.057/0.005 0.115/0.019 0.053/0.006 0.079/0.012 0.050/0.005 0.090/0.014

Loss sel 0.042/0.003 0.080/0.014 0.047/0.005 0.061/0.009 0.044/0.004 0.057/0.007
RobustTSF 0.040/0.003 0.058/0.007 0.041/0.003 0.061/0.008 0.041/0.004 0.049/0.005

ETT-m1

Vanilla (MAE) 0.026/0.001 0.029/0.002 0.026/0.001 0.028/0.002 0.026/0.001 0.027/0.002
Offline 0.026/0.001 0.031/0.001 0.026/0.001 0.027/0.002 0.026/0.002 0.026/0.002
Online 0.038/0.002 0.048/0.004 0.030/0.002 0.034/0.002 0.026/0.002 0.027/0.002

Loss sel 0.026/0.001 0.038/0.003 0.026/0.001 0.031/0.002 0.026/0.002 0.027/0.002
RobustTSF 0.025/0.001 0.026/0.001 0.026/0.001 0.026/0.001 0.025/0.001 0.026/0.001

Exchange

Vanilla (MAE) 0.123/0.029 0.131/0.029 0.160/0.050 0.140/0.039 0.124/0.032 0.208/0.085
Offline 0.094/0.016 0.098/0.016 0.052/0.004 0.110/0.023 0.064/0.008 0.128/0.031
Online 0.070/0.008 0.063/0.006 0.053/0.005 0.074/0.010 0.054/0.005 0.333/0.200

Loss sel 0.121/0.027 0.228/0.095 0.130/0.030 0.229/0.101 0.141/0.043 0.253/0.124
RobustTSF 0.072/0.010 0.076/0.011 0.052/0.004 0.057/0.006 0.053/0.005 0.065/0.008

Table 20: Comparison of different methods on ETT and Exchange dataset. The model structure is
LSTM. We report the best performance on test set, presented as MAE/MSE.

Dataset Method Student-T (ν = 3) Student-T (ν = 6)
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

ETT-h1

Vanilla (MAE) 0.053/0.006 0.054/0.006 0.061/0.008 0.052/0.006 0.054/0.006 0.056/0.009
Offline 0.053/0.005 0.055/0.006 0.062/0.007 0.053/0.005 0.054/0.006 0.058/0.007
Online 0.056/0.006 0.062/0.007 0.065/0.008 0.058/0.007 0.060/0.007 0.065/0.008

Loss sel 0.054/0.006 0.062/0.009 0.083/0.017 0.058/0.007 0.063/0.009 0.077/0.015
RobustTSF 0.052/0.005 0.052/0.005 0.053/0.005 0.051/0.005 0.052/0.005 0.053/0.006

ETT-h2

Vanilla (MAE) 0.042/0.004 0.048/0.005 0.052/0.006 0.045/0.004 0.046/0.005 0.057/0.007
Offline 0.045/0.004 0.046/0.005 0.053/0.006 0.042/0.004 0.055/0.007 0.071/0.011
Online 0.056/0.005 0.079/0.012 0.096/0.018 0.054/0.007 0.071/0.009 0.098/0.018

Loss sel 0.042/0.004 0.055/0.006 0.061/0.009 0.042/0.004 0.052/0.006 0.058/0.008
RobustTSF 0.042/0.004 0.048/0.004 0.052/0.005 0.043/0.004 0.045/0.005 0.050/0.005

ETT-m1

Vanilla (MAE) 0.026/0.002 0.026/0.002 0.027/0.002 0.026/0.002 0.026/0.002 0.027/0.002
Offline 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002
Online 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002

Loss sel 0.026/0.002 0.027/0.002 0.034/0.003 0.026/0.002 0.027/0.002 0.030/0.002
RobustTSF 0.025/0.001 0.025/0.001 0.026/0.002 0.025/0.001 0.025/0.001 0.025/0.001

Exchange

Vanilla (MAE) 0.085/0.015 0.182/0.066 0.160/0.049 0.147/0.042 0.172/0.059 0.218/0.087
Offline 0.082/0.013 0.102/0.019 0.137/0.036 0.087/0.014 0.106/0.021 0.133/0.033
Online 0.053/0.004 0.104/0.021 0.203/0.075 0.058/0.005 0.095/0.016 0.092/0.013

Loss sel 0.174/0.063 0.198/0.082 0.254/0.125 0.146/0.042 0.153/0.046 0.321/0.091
RobustTSF 0.046/0.003 0.051/0.004 0.081/0.012 0.060/0.006 0.061/0.007 0.083/0.014

We also conduct experiments on time series datasets with real-world anomalies. The NAB bench-
mark dataset is from http://odds.cs.stonybrook.edu/#table1.. Table 23 shows the
performace of RobustTSF is superior than other methods.

We provide a full description of the datasets we use in the paper in Table 22.
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Table 21: Comparison of different methods on ETT and Exchange dataset. The model structure is
LSTM. We report the best performance on test set, presented as MAE/MSE.

Dataset Method Generalized-Pareto (c = 1) Generalized-Pareto (c = 0.5)
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

ETT-h1

Vanilla (MAE) 0.052/0.006 0.054/0.006 0.057/0.006 0.053/0.005 0.053/0.006 0.064/0.008
Offline 0.052/0.006 0.053/0.006 0.053/0.006 0.052/0.005 0.053/0.005 0.056/0.006
Online 0.054/0.006 0.055/0.006 0.061/0.006 0.055/0.006 0.058/0.006 0.064/0.007

Loss sel 0.052/0.006 0.058/0.006 0.065/0.008 0.054/0.006 0.058/0.006 0.059/0.007
RobustTSF 0.052/0.005 0.053/0.005 0.055/0.006 0.052/0.005 0.052/0.005 0.056/0.006

ETT-h2

Vanilla (MAE) 0.040/0.004 0.046/0.005 0.054/0.006 0.043/0.004 0.049/0.006 0.060/0.007
Offline 0.041/0.004 0.044/0.005 0.049/0.005 0.046/0.004 0.046/0.004 0.051/0.005
Online 0.049/0.005 0.055/0.007 0.075/0.010 0.049/0.004 0.062/0.006 0.075/0.009

Loss sel 0.042/0.004 0.046/0.005 0.060/0.008 0.042/0.004 0.047/0.005 0.058/0.008
RobustTSF 0.040/0.003 0.043/0.004 0.051/0.005 0.041/0.003 0.045/0.004 0.050/0.005

ETT-m1

Vanilla (MAE) 0.025/0.002 0.026/0.002 0.028/0.002 0.026/0.002 0.026/0.002 0.027/0.002
Offline 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002
Online 0.028/0.002 0.028/0.002 0.032/0.002 0.026/0.002 0.028/0.002 0.045/0.003

Loss sel 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.026/0.002 0.029/0.002
RobustTSF 0.026/0.001 0.026/0.002 0.026/0.002 0.026/0.001 0.026/0.001 0.026/0.002

Exchange

Vanilla (MAE) 0.090/0.019 0.104/0.023 0.077/0.012 0.070/0.007 0.112/0.024 0.091/0.015
Offline 0.060/0.006 0.084/0.013 0.074/0.009 0.070/0.010 0.087/0.014 0.093/0.016
Online 0.384/0.247 0.482/0.371 0.533/0.434 0.568/0.517 0.396/0.258 0.438/0.320

Loss sel 0.100/0.024 0.144/0.040 0.141/0.038 0.105/0.020 0.137/0.037 0.175/0.054
RobustTSF 0.060/0.007 0.064/0.008 0.071/0.009 0.044/0.003 0.064/0.008 0.078/0.012

Table 22: Description of the datasets used in the paper

Dataset LEN FREQ Manullay adding anomalies Train Test ratio
Electricity 26304 1h Yes 7:3

Traffic 17544 1h Yes 7:3
ETT-h1 17420 1h Yes 7:3
ETT-h2 17420 1h Yes 7:3
ETT-m1 69680 15 min Yes 7:3

Exchange 7588 1 day Yes 7:3
NAB (real-cloud) 4032 15 min Yes 7:3

M4-monthly 1871 monthly Yes 7:3

Table 23: Performance of each method on NAB benchmark (cloud dataset) and M4 forecasting
dataset. Best epoch MAE is reported for each method. It can be observed that RobustTSF also
performs well on real-world anomaly dataset and large forecasting dataset.

Vanilla MAE Offline Online Loss sel RobustTSF
NAB (real-cloud) 1.28 1.20 1.14 2.11 0.87

M4-monthly 2.66 2.63 2.61 2.61 2.58
M4-monthly (Const ano ratio 0.2) 2.95 2.85 2.76 3.21 2.61

F.12 EVALUATING ROBUSTTSF ON TRANSFORMER AND TCN MODELS

We use the transformer (Vaswani et al., 2017)4 and temporal convolutional networks (TCN) (Bai et al.,
2018)5 to evaluate RobustTSF in single-step forecasting with different anomaly types on Electricity
dataset. Results are shown in Table 24 and Table 25, respectively. It can be observed that RobustTSF
also improves model performance on Transformer and TCN architectures.

4https://github.com/oliverguhr/transformer-time-series-prediction
5https://github.com/hyliush/deep-time-series/blob/master/models/TCN.py
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Table 24: Evaluating RobustTSF on Transformer model for time series forecasting. We report the
best epoch performance for the methods, represented as MAE/MSE. The anomaly ratio for each
anomaly type is 0.1 and 0.3, respectively. The best results are highlighted in bold font.

Method Clean Constant Missing Gaussian
η = 0 η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

Vanilla (MAE) 0.266/0.139 0.271/0.139 0.304/0.184 0.287/0.152 0.385/0.352 0.263/0.141 0.302/0.188
RobustTSF 0.264/0.137 0.269/0.137 0.277/0.152 0.271/0.141 0.287/0.162 0.266/0.133 0.286/0.155

Table 25: Evaluating RobustTSF on TCN model for time series forecasting. We report the best epoch
performance for the methods, represented as MAE/MSE. The anomaly ratio for each anomaly type is
0.1 and 0.3, respectively. The best results are highlighted in bold font.

Method Clean Constant Missing Gaussian
η = 0 η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

Vanilla (MAE) 0.186/0.083 0.199/0.083 0.218/0.093 0.205/0.088 0.232/0.103 0.190/0.073 0.211/0.085
RobustTSF 0.185/0.078 0.189/0.080 0.192/0.081 0.186/0.078 0.206/0.087 0.185/0.075 0.186/0.075

F.13 DISCUSSING THE ORIGINALITY, SIGNIFICANCE AND FUTURE WORK OF ROBUSTTSF

In this section, we discuss the originality, significance, and future work of RobustTSF, which
collectively serve as a comprehensive conclusion to our paper.

originality: Our paper delves into the realm of Time Series Forecasting with Anomalies (TSFA), a
relatively underexplored area within the time series domain. Traditional approaches to TSFA often
employ the Detection-Imputation-Retraining (DIR) pipeline, which, while intuitive, lacks robust
theoretical analyses and guarantees. In contrast, we draw inspiration from the advancements in
Learning with Noisy Labels (LNL) and approach the TSFA task from a more principled perspective.
We begin by providing a rigorous statistical definition of the TSFA problem. Leveraging our analyses
on loss and sample robustness, we introduce an efficient filtering method called RobustTSF. This
method stands in stark contrast to the DIR pipeline, delivering consistent and compelling empirical
results across extensive experiments.

significance: Our analytical journey leads us to establish a notable connection between TSFA and
Learning with Noisy Labels (LNL), a vibrant research direction in machine learning. Although
applying LNL methods directly to TSFA is infeasible due to the regression nature of TSFA tasks
and the presence of anomalies in the inputs of time series, our work demonstrates how to achieve
robustness in TSFA tasks, aligning with the goals of LNL. This positions our proposed method,
RobustTSF, with theoretical and empirical foundations. More significantly, it underscores the potential
for drawing lessons from LNL to tackle TSFA tasks in the future.

Much like the evolution of LNL over recent years, progressing from modeling asymmetric/symmetric
label noise to instance-dependent label noise, our modeling of time series anomalies and theoretical
analyses can serve as a catalyst for future research. This can inspire the development of methods
tailored to handle more intricate anomaly patterns in TSFA tasks.

Future work: Our primary focus centers on point-wise anomalies, with limited exploration of
sequence-wise anomalies through specific experiments. The theoretical analysis of sequence-wise
anomalies remains somewhat elusive. Real-world sequence anomalies can be intricate, and establish-
ing statistical models and theoretical robustness against these anomalies poses a challenging aspect in
our current work. While this topic falls outside the scope of this paper, it holds promise for future
research endeavors.

Limitation: We present the limitation of the work below:

• Our method focuses on point-wise anomalies, with limited exploration of sequence-wise
anomalies. The theoretical analysis of sequence-wise anomalies remains somewhat un-
clear, as real-world sequence anomalies can be complicated. The statistical modeling and
theoretical robustness against these anomalies present a challenging and unexplored aspect.
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• Our theoretical analysis is grounded in a statistical perspective, aligned with robust learning
theory in the Learning with Noisy Labels (LNL) domain. However, in cases of limited
training size, a potential disparity might arise between theoretical analyses and empirical
findings.

From the limitation, the training size may impact the performance of RobustTSF, given that the
theoretical analyses of losses are from a statistical perspective. Therefore, an implicit assumption of
RobustTSF is that the training size should not be very small; otherwise, applying RobustTSF may
not surpass baselines. While the datasets used in the paper suggest that training size may not be a
significant issue, we conducted additional experiments to explore the gap between the baseline and
RobustTSF on the Electricity dataset (reporting best epoch MAE for each setting) concerning the
training size under a Gaussian anomaly setting (anomaly rate = 0.3). The results are presented in
Table 26 which demonstrates that RobustTSF outperforms baselines when the training size of the
dataset is not very small.

Table 26: Description of the datasets used in the paper

fraction of original dataset 0.5% 1% 2% 10% 50% 100%
MAE 1.08 0.901 0.713 0.578 0.240 0.210

RobustTSF 1.08 0.913 0.606 0.418 0.181 0.177

F.14 EVALUATING ROBUSTTSF FOR LOW NOISE RATIOS

We conduct experiments of RobustTSF on Electricity dataset with low noise ratios and report the best
epoch MAE for each setting. The results are reported in Table 27.

F.15 ADDITIONAL ELUCIDATION FOR EQUATION (4)

To show that substitution of squared terms with absolute values in Equation (4) lead to an improvement
in robustness. we use a simple time series function (sine function) to visualize the result of different
options. Figure 8 shows that absolute term makes the trend more smooth and stable which would
facilitate our anomaly score calculation in Equation (5).

F.16 ADDITIONAL ABLATION STUDIES FOR ROBUSTTSF

We consider the effect of LNL and sample selection separately and conduct the ablation studies of
RobustTSF on Electricity and Traffic datasets in Table 28

F.17 PROOF OF STATISTICALLY CONSISTENT RESULTS FOR ROBUSTTSF

We reran the pivotal experiments outlined in Table 2 of our main paper, focusing on the Electricity
dataset. We present the best epoch MAE as the mean (standard deviation) for the three runs of each
configuration in Table 29. These results demonstrate the statistical consistency of our findings.
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Figure 8: Illustration of the impact of square term and absolute term in trend filter.

Table 27: Comparing RobustTSF with other methods for low noise ratios. We report best epoch MAE
for each method

Method Constant Missing Gaussian
η = 0.01 η = 0.05 η = 0.01 η = 0.05 η = 0.01 η = 0.05

MAE 0.187 0.190 0.187 0.193 0.185 0.192
MSE 0.187 0.197 0.192 0.215 0.191 0.192

Offline 0.180 0.185 0.183 0.187 0.182 0.184
Online 0.187 0.193 0.188 0.190 0.188 0.190

Loss sel 0.192 0.195 0.192 0.196 0.187 0.190
RobustTSF 0.177 0.177 0.178 0.179 0.177 0.177

Table 28: Ablation studies of RobustTSF. Reporting best epoch MAE for each method.

Dataset Method Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

Electricity
Only LNL loss 0.191 0.206 0.205 0.225 0.199 0.210

Only sample selection 0.183 0.186 0.184 0.237 0.180 0.182
RobustTSF 0.177 0.183 0.181 0.194 0.176 0.177

Traffic
Only LNL loss 0.209 0.231 0.266 0.295 0.216 0.233

Only sample selection 0.199 0.220 0.224 0.310 0.196 0.210
RobustTSF 0.198 0.203 0.200 0.243 0.185 0.202

Table 29: Comparing RobustTSF with other methods. We present the best epoch MAE as the mean
(standard deviation) for the three runs of each configuration.

Method Clean Constant Missing Gaussian
η = 0 η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3

MSE 0.187(0.002) 0.200 (0.003) 0.234 (0.003) 0.227 (0.005) 0.309 (0.015) 0.185 0.192 (0.003)
MAE 0.183(0.002) 0.191(0.004) 0.209 (0.004) 0.207(0.003) 0.223 (0.006) 0.198 (0.003) 0.210 (0.004)

Offline 0.184(0.003) 0.188 (0.003) 0.217 (0.004) 0.192 (0.003) 0.213 (0.004) 0.184 (0.002) 0.191 (0.003)
Online 0.184(0.002) 0.199 (0.003) 0.225 (0.003) 0.194 (0.003) 0.230 (0.003) 0.195 (0.003) 0.209 (0.002)

Loss sel 0.180 (0.005) 0.205(0.003) 0.209 (0.004) 0.201 (0.002) 0.215(0.003) 0.196 (0.002) 0.201 (0.003)
RobustTSF 0.177(0.002) 0.177 (0.002) 0.184 (0.002) 0.180(0.002) 0.195(0.001) 0.175(0.001) 0.177 (0.001)
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