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Abstract

The rapid development of large language mod-001
els (LLMs) has brought significant attention002
to speech models, particularly recent progress003
in speech2speech protocols supporting speech004
input and output. However, The existing bench-005
marks adopt automatic text-based evaluators006
for evaluating the instruction following abil-007
ity of these models lack consideration for par-008
alinguistic information in both speech under-009
standing and generation. To address these is-010
sues, we introduce S2S-Arena, a novel arena-011
style S2S benchmark that evaluates instruction-012
following capabilities with paralinguistic infor-013
mation in both speech-in and speech-out across014
real-world tasks. We design 154 samples that015
fused TTS and live recordings in four domains016
with 21 tasks and manually evaluate existing017
popular speech models in an arena-style man-018
ner. The experimental results show that: (1) in019
addition to the superior performance of GPT-4o,020
the speech model of cascaded ASR, LLM, and021
TTS outperforms the jointly trained model after022
text-speech alignment in speech2speech proto-023
cols; (2) considering paralinguistic informa-024
tion, the knowledgeability of the speech model025
mainly depends on the LLM backbone, and026
the multilingual support of that is limited by027
the speech module; (3) excellent speech mod-028
els can already understand the paralinguistic029
information in speech input, but generating ap-030
propriate audio with paralinguistic information031
is still a challenge.032

1 Introduction033

Voice-based human-computer interaction is one of034

the most natural forms of communication (Card035

et al., 1983; Allen et al., 2001). The machine is036

expected to possess instruction following ability037

in the speech-to-speech (S2S) protocol—not only038

understand voice commands issued by users (Chu039

et al., 2023, 2024; Tang et al., 2024; Ghosh et al.,040

2024; Hu et al., 2024) but also generate appropriate041

responses in voice and executing the corresponding042

Task: Evaluate the rhythm control ability of different speech LLMs        

in instruction-following scenarios.

Output

Say the following sentence at my speed first, then 

say it again very slowly: 

'Artificial intelligence is changing the world in 

many ways.’ --This sentence is at 1.5x speed.

It says the sentence twice at

different speeds, but the first is 

not the same fast as the input.

It says the sentence twice at 

different speeds, but the first 

is at normal speed.

It only says the sentence once 

time.

It does not follow the instruction.

Input

Paralinguistic 

Information

biological

characteristics

……

speaking 

style

……

emotion
social

roles

……

Figure 1: An Example of Evaluating Instruction Follow-
ing with Rhythm Controlling in Speech-in and Speech-
out for Speech Models.

tasks (Wang et al., 2024c; Chen et al., 2024c; Liao 043

et al., 2024). 044

Recent work (Zhang et al., 2023; SpeechTeam, 045

2024; Fang et al., 2024; Xie and Wu, 2024) has 046

made significant progress by leveraging the pow- 047

erful semantic understanding capabilities of large- 048

scale language models (LLMs) (Dubey et al., 2024) 049

and shifted to paralinguistic information above the 050

basic semantic information, as illustrated in Fig- 051

ure 1. As a crucial aspect of the more vivid and 052

natural conversation in S2S scenario (Trager, 1958), 053

paralinguistic information encompasses biological 054

characteristics (Schuller et al., 2010), emotion (Bat- 055

liner et al., 2011), speaking style (Nose et al., 2007), 056

and social roles (Ipgrave, 2009), which can be in- 057

ferred from pitch, tone, speech rate, and voice qual- 058

ity (Schuller et al., 2013). 059
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Types Benchmarks for Speech Models Understanding Generation Evaluation
Sem. Par. Sem. Par. Modality Evaluator

Foundation

Dynamic-SUPERB (Huang et al., 2024) ✓ ✓ ✓ - * Auto
SGAI (Bu et al., 2024) ✓ ✓ Text Auto
AudioBench (Wang et al., 2024a) ✓ ✓ Text Auto
MMAU (Sakshi et al., 2024) ✓ ✓ Text Auto
AV-Odyssey Bench (Gong et al., 2024) ✓ ✓ Text Auto

Chat
SD-Eval (Ao et al., 2024) ✓ ✓ Text Auto
VoiceBench (Chen et al., 2024b) ✓ ✓ Text Auto

Chat and Foundation
AIR-Bench (Yang et al., 2024) ✓ ✓ ✓ Text Auto
S2S-Arena (Ours) ✓ ✓ ✓ ✓ Speech Human

Table 1: Comparison of Benchmarks for Speech Models. The star* means that the evaluation modality of the
Dynamic-Superb is decided by the tested task. Sem. means the semantics of speech, and Par. means the paralinguistic
information of speech.

However, existing benchmarks for these models060

are struggling to keep up with the rapid develop-061

ment of the speech models, as shown in Table 1.062

Although some benchmarks (Huang et al., 2024;063

Wang et al., 2024a; Ao et al., 2024; Bu et al., 2024)064

akin to FLAN (Wei et al., 2022) in text models,065

designed for speech models, they primarily focus066

on assessing models with speech understanding ca-067

pabilities (Lyu et al., 2023; Chu et al., 2023; Shu068

et al., 2023; Chu et al., 2024; Liu et al., 2024; Tang069

et al., 2024), overlooking models’ speech genera-070

tion abilities, particularly in chat scenarios. Recent071

works (Chen et al., 2024b; Yang et al., 2024) take072

evaluating model’s speech generation capabilities073

into consideration, but the evaluation are still con-074

ducted in the text modality, failing to account for075

whether models are capable of generating speech076

with paralinguistic information (Ji et al., 2024).077

To fill this gap, we propose the S2S-Arena,078

a novel benchmark assessing the instruction-079

following capabilities of speech models in080

speech2speech protocols incorporating paralinguis-081

tic information, and an example shown in Figure 1.082

It requires speech models to not only understand083

paralinguistic cues (such as rhythm) in speech input084

but also to follow semantic instructions for gener-085

ating speech output that preserves paralinguistic086

features.087

Specifically, we adopt a three-stage construction088

process to build this benchmark: task definition,089

instruction design, and sample recording (detailed090

in Section 3). We select the most popular four091

practical domains with 21 tasks of speech models092

and carefully design the testing samples at four093

different levels by considering paralinguistics in-094

formation in speech understanding and generation.095

We then collect 94 Text-to-Speech (TTS) synthe-096

sis samples and 60 human recordings. Since the097

speech model as the judge is unreliable (see Sec- 098

tion 5.4), we implement a manual arena-style pair- 099

wise comparison among the popular four classes 100

of S2S models (see Section 4). We obtain initial 101

comparative results for the current models after 400 102

evaluations across 22 individuals. Additionally, we 103

provide an in-depth analysis of key aspects, includ- 104

ing semantic inconsistency between speech and 105

text, language consistency, reasons for instruction- 106

following failures, and position and length bias (see 107

Section 5). Our contributions are as follows: 108

We introduce S2S-Arena, a novel arena-style 109

benchmark to evaluate the instruction-following 110

capabilities of speech models within speech-to- 111

speech protocols, incorporating paralinguistic in- 112

formation. 113

We design 154 TTS and manual recording sam- 114

ples across four popular domains, with 21 tasks, 115

and perform an arena-style manual comprehensive 116

comparison of four different types of speech mod- 117

els based on their speech out 1. 118

Our findings suggest that the design of future 119

speech models should give more consideration to 120

multimodal and multilingual support, particularly 121

in the context of speech generation involving par- 122

alinguistic information. Additionally, we discuss 123

the unique biases in speech model evaluations in 124

contrast to those observed in LLMs. 125

2 Related Work 126

2.1 Speech Models in Speech2Speech 127

Protocols 128

Commercial speech models represented by GPT- 129

4o-real-time 2 can naturally interact with humans in 130

1We release the dataset and comparison result at <Anony-
mous URL>.

2gpt-4o-realtime-preview-2024-10-01.
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Model Type Model Name Input Form Backbone Output Form
Unknown GPT-4o-realtime Unknown Unknown Unknown
Cascade FunAudioLLM (SpeechTeam, 2024) Text /o Special Tokens Qwen-2 72B Text /o Special Tokens

Speech-token.

SpeechGPT (Zhang et al., 2023) Speech Tokens LLaMA 7B Speech Tokens
AnyGPT (Zhan et al., 2024) Speech Tokens LLaMA-2 7B Speech Tokens
LSLM (Ma et al., 2024) Speech Tokens Transformers Speech Tokens
Westlake-Omni Speech Tokens Qwen-2 0.5B Speech Tokens
GLM-4-Voice (Zeng et al., 2024) Speech Tokens GLM-4 9B Speech Tokens

Speech-embed.

Mini-Omni (Xie and Wu, 2024) Speech Embeddings Qwen-2 0.5B Speech Tokens
LLaMA-Omni (Fang et al., 2024) Speech Embeddings LLaMA-3.1 8B Speech Tokens
Moshi (Défossez et al., 2024) Speech Embeddings Transformers Speech Embeddings
Freeze-Omni (Wang et al., 2024b) Speech Embeddings Qwen-2 7B Speech Tokens

Table 2: Comparison of Speech2Speech Models. Speech-token. means Speech-token-based model and Speech-
embed. means Speech-embedding-based model. Note that we do not compare LSLM and Moshi for a fair
comparison because they do not use LLMs as backbones.

the form of speech-in and speech-out with paralin-131

guistic information such as emotion and speaking-132

style, but the model architecture and training details133

have not been publicly disclosed.134

As one of the representatives of open-source135

models, FunaudioLLM (SpeechTeam, 2024)136

adopts the most straightforward and traditional ap-137

proach, implementing Speech2Speech through a138

cascade of Automatic Speech Recognition (ASR),139

LLM, and TTS, while incorporating special tokens140

to encode and represent the paralinguistic informa-141

tion contained in the speech, as shown in Table 2.142

To better capture the paralinguistic information143

contained in speech, some works integrate it into144

the LLM process by adopting speech tokenization145

or embedding via speech-text alignment training.146

Speech-token-based models such as147

SpeechGPT (Zhang et al., 2023), AnyGPT (Zhan148

et al., 2024), Westlake-Omni3, and GLM-4-149

Voice (Zeng et al., 2024) use discrete speech150

tokens as the input by speech encoders like Whis-151

per (Radford et al., 2023) or Hubert (Hsu et al.,152

2021). After multi-stage speech-text alignment153

training based on LLM, these models generate154

speech tokens for the voice decoder, preserving155

rich paralinguistic information such as tone and156

emotion.157

Besides, speech-embedding-based models like158

Mini-Omni (Xie and Wu, 2024), LLaMA-159

Omni (Fang et al., 2024), and Freeze-Omni (Wang160

et al., 2024b) convert speech inputs into embed-161

dings instead of discrete tokens, which are then162

fed into LLM for speech-text alignment training.163

Once trained, these models enable real-time speech164

interaction and consider the information contained165

in the speech.166

3https://github.com/xinchen-ai/Westlake-Omni

2.2 Benchmarks for Speech Models 167

The evaluation of speech models is also advancing 168

rapidly, as shown in Table 1. Based on the form 169

of evaluation samples, existing benchmarks can be 170

categorized into three types: 171

Prior works ( (Bu et al., 2024; Wang et al., 2024a; 172

Sakshi et al., 2024; Gong et al., 2024)) focus on 173

evaluating the models on foundation task comple- 174

tion with speech understanding, but with output pre- 175

sented in text. For example, MMAU (Sakshi et al., 176

2024) emphasizes advanced perception and rea- 177

soning with domain-specific knowledge in speech, 178

challenging models to tackle tasks akin to those 179

faced by experts. In Dynamic-SUPERB (Huang 180

et al., 2024), due to the crowdsourcing of tasks, the 181

evaluation modalities are mixed. 182

Other works focus on evaluating the speech- 183

based chat ability of the speech model. SD- 184

Eval (Ao et al., 2024) evaluates whether the model 185

perceives paralinguistic information such as age, 186

emotion, and surrounding sounds contained in 187

speech, but the output is still presented in text form. 188

VocieBench (Chen et al., 2024b) uses TTS to build 189

the speech-based Alpaca-Eval (Li et al., 2023) for 190

evaluating instruction following ability but lacks 191

consideration for paralinguistic information. 192

AIR-Bench (Yang et al., 2024) considers the 193

paralinguistic information in the speech input in 194

both chat and foundation task completion but lacks 195

considering paralinguistic information in speech 196

output. 197

Therefore, existing benchmarks mainly suffer 198

from lacking consideration of paralinguistic infor- 199

mation in speech output, inconsistent evaluation 200

modalities (Chen et al., 2024a; Ye et al., 2024; 201

Zhang et al., 2023), and unreliable automatic met- 202

rics (Streijl et al., 2016)(see Section 5.4). 203
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Instruction Design

Difficulty Speech-In Speech-Out

L0 Semantic Semantic

L1 Semantic

w/ Para Ling

Semantic

L2 Semantic Semantic

w/ Para Ling

L3 Semantic

w/ Para Ling

Semantic

w/ Para Ling

Instruction Recording

TTS

Actor

Education

Social 

Interaction

Entertainment

Healthcare

Task Determination

Pronunciation correction

Rhythm control

……

Implication understanding

Sarcasm detection

……

Singing capability

Role-playing

……

Querying symptoms

Health consultation

……

Figure 2: The Three-Stage Process of S2S-Arena Construction: Task Determination, Instruction Design and
Instruction Recording.

3 S2S-Arena204

To evaluate the ability of speech models to interact205

with humans in real-world speech-to-speech pro-206

tocols, we introduce S2S-Arena, a benchmark that207

includes samples of varying difficulty levels to as-208

sess the instruction-following capabilities of speech209

models, considering paralinguistic information dur-210

ing both speech understanding and generation.211

Unlike previous works, our benchmark incorpo-212

rates two data sources—TTS and human-recorded213

speech—across two scenarios: foundation task214

completion and chat conversation. Additionally,215

we include a manual arena-style comparison of the216

speech modality instead of auto text-based evalua-217

tion to provide a more comprehensive and realistic218

evaluation. The three-stage process of S2S-Arena219

construction is shown in Figure 2.220

3.1 Task Determination221

Considering the widespread usage scenarios of the222

speech model in speech2speech protocols (Ao et al.,223

2024; Yang et al., 2024), we choose Education, So-224

cial Interaction, Entertainment, and Medical Con-225

sultation as evaluation domains. In each domain,226

we further design multiple fine-grained tasks, such227

as pronunciation correction and rhythm control in228

education, implication understanding, and sarcasm229

detection in social interaction, as shown in Table 3.230

3.2 Instruction Design231

For the sample design in each task, we consider232

a combination of TTS (Chen et al., 2024b) and233

human recording in both task completion and chat234

scenarios. Moreover, we divided each sample into235

four difficulty levels based on whether or not to236

consider the paralinguistic information in speech237

understanding and generation processes.238

L0: Considering Instruction Following. It 239

assesses only the model’s ability to follow instruc- 240

tions without considering the paralinguistic infor- 241

mation in speech-in and speech-out. For example, 242

in the Querying symptoms task, the model receives 243

the instruction, "I have a headache. What could 244

be the cause?" The model is expected to provide 245

possible causes of headaches by simply following 246

instructions without any paralinguistic information. 247

L1: Considering Speech-in Paraglinguistic in- 248

formation. It further evaluates whether the model 249

produces corresponding speech output by under- 250

standing paralinguistic information embedded in 251

speech-in. For example, in the Identity-based re- 252

sponse task, the model is given a spoken input from 253

a child asking, "If it rains tomorrow, how should 254

I plan my day?" The model is expected to discern 255

the speaker’s age using paralinguistic information 256

and respond with suggestions suitable for children 257

rather than adults. 258

L2: Considering Speech-out Paralinguistic 259

Information. It evaluates whether the model 260

generates the speech with paralinguistic informa- 261

tion following speech instruction-following require- 262

ments. It is similar to TTS evaluation (such as TTS- 263

Arena 4) but uses speech-based instruction input 264

without paralinguistic information. For example, 265

one of the instructions in the Tongue twisters task 266

is "Recite a tongue twister at three different speeds: 267

fast, medium, and slow." The model’s speech re- 268

sponse should not only recite a tongue twister but 269

also demonstrate each recitation at three different 270

speeds. 271

L3: Considering Both Speech-in and Speech- 272

out Paralinguistic Information. It assesses 273

whether the model understands the speech-in par- 274

4https://huggingface.co/spaces/TTS-AGI/TTS-Arena
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Domain Task Evaluation Target

Education

Pronunciation correction Can the model correct inaccurate pronunciations?
Emphasis control Can the model understand stress emphasis and emphasize specific content

with the right stress?
Rhythm control Can the model adjust the output pace, speaking faster or slower as re-

quired?
Polyphonic word comprehension Can the model accurately understand polyphonic word?
Pause and segmentation Can the model accurately pause and segment in ambiguous cases?
Cross-lingual emotional translation Can the model accurately convey emotions during translation?
Language consistency Does the model respond in the same language as the query when asked

in different languages?

Social Companionship

Implication understanding Can the model respond humorously, understanding implied meanings?
Sarcasm detection Can the model detect sarcasm in phrases like “You’re amazing!”?
Identity-based response Can the model adapt responses based on the user’s age (child, adult,

elderly) and handle identity-based queries?
Emotion recognition and expression Can the model recognize emotions and provide appropriate responses

based on different emotions?

Entertainment

Singing capability Can the model sing a song upon request?
Natural sound simulation Can the model simulate certain natural sounds?
Poetry recitation Can the model recite poems?
Role-playing Can the model simulate a character with specific age, gender, accent, and

voice tone?
Storytelling Can the model narrate a story with emotional depth?
Tongue twisters Can the model correctly pronounce a given tongue twister?
Stand-up comedy/skit performance Can the model perform a skit, playing both roles in a comedic dialogue?

Medical Consultation
Querying symptoms Can the model answer questions related to symptoms?
Health consultation Can the model provide general health advice?
Psychological comfort Can the model provide comforting psychological support?

Table 3: Task Description Across Four Domains.

alinguistic information and generates speech with275

paralinguistic information properly. This high-276

est level closely approximates real-world speech-277

to-speech scenarios. For example, in the Cross-278

lingual emotional translation task, one prompt with279

a happy emotion is "Help me tell him in Chinese280

that Mike is coming to my house tomorrow for a281

week." The model should fully recognize the ex-282

pressed happiness and translate the message into283

Chinese with an equivalent emotional tone.284

3.3 Instruction Recording285

We design the instruction text and use Seed-286

TTS (Anastassiou et al., 2024) to synthetic the287

speech in some easier tasks such as the Natural288

sound simulation task. Additionally, we sample289

other normal samples, such as the emotion recogni-290

tion and expression task from the existing popular291

speech datasets (Livingstone and Russo, 2018). Fi-292

nally, we manually record the samples for other293

more difficult tasks such as the sarcasm detection294

and singing capability tasks that the TTS model295

cannot handle. To enhance the robustness of the296

benchmark, we use different vocal tones and add297

eight background noises, such as airport back-298

ground sounds, to simulate diverse acoustic en-299

vironments.300

To ensure the quality of the samples, four native301

Mandarin speakers (two males and two females) 302

with IELTS scores above 6.5 were recruited to as- 303

sess data quality due to the samples being mainly 304

English and Chinese. If any participants identified 305

an issue with a particular sample, that would be dis- 306

carded. In the end, we collected 154 independent 307

speech instruction samples in 21 tasks, and more 308

details can be seen in Appendix A . 309

4 Experiments 310

4.1 Experimental Settings 311

Most existing benchmarks automatically evaluate 312

the speech model’s output in the text modality by 313

LLM (Zheng et al., 2023), but this method will 314

lose valuable information in the speech modal- 315

ity (Chen et al., 2024a; Ye et al., 2024; Zhang 316

et al., 2023), particularly paralinguistic information. 317

Moreover, different from text-based automatic eval- 318

uation, speech-based automatic evaluation (Streijl 319

et al., 2016; Saeki et al., 2022) is usually unreliable 320

with bias, as demonstrated by our experiments (see 321

Section 5.4). 322

Therefore, we adopt a manual arena-style ap- 323

proach with ELO ranking (Elo and Sloan, 1978) 324

to more directly and comprehensively evaluate the 325

performance of various speech models. More De- 326

tails of ELO ranking calculation can be seen in the 327
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Pair-wise Comparison

Model B  is Better!

ELO Ranking LeaderboardHuman Preference

Model ELO score

GPT-4o-realtime -

Pipeline (4o) -

FunAudioLLM (4o) -

…… -

Figure 3: The Evaluation Process of S2S-Arena.

Appendix C.328

Followed by Chat-Arena (Chiang et al., 2024) 5,329

we build a S2S-Arena web-based evaluation tool330

for evaluators to perform a reference-free compari-331

son. Given a speech as the input, we invite human332

evaluators to rank two speech outputs generated by333

different speech models, considering both seman-334

tics and speech quality, as shown in Figure 3.335

4.2 Benchmarked models336

We select the following four categories of represen-337

tative models for evaluation. GPT-4o-realtime6:338

We utilize the speech-enabled API version of GPT-339

4o instead of the app version. Cascade Model:340

We select the FunAudioLLM (SpeechTeam, 2024)341

as the strong Cascade model. For the best per-342

formance, we utilized the GPT-4o to replace the343

Qwen2 72B for the LLM module, which is named344

FunAudioLLM (4o). Besides, we also construct a345

vanilla Pipeline (4o) with Whisper, GPT-4o, and346

cosyVoice7 for comparison. Speech-Token-Based347

Model: We select SpeechGPT 8, an Open-source348

LLM-based speech model as the representative349

Speech-Token-Based Model. Speech-Embedding-350

Based Model: We select recent two Omini se-351

ries models (Mini-Omni (Xie and Wu, 2024) and352

LLaMA-Omini (Fang et al., 2024)) to represent353

Speech-Embedding-Based Model.354

4.3 Results355

We conducted a preliminary experimental investiga-356

tion in S2S-Arena and received about 400 pair-wise357

comparison results with over 22 individuals, all of358

5https://huggingface.co/spaces/lmsys/chatbot-arena-
leaderboard

6gpt-4o-realtime-preview-2024-10-01.
7whisper-large-v3 for ASR, gpt-4o-2024-08-06 for LLM

and CosyVoice-300M-Instruct for TTS.
8https://github.com/0nutation/SpeechGPT

whom are native Mandarin speakers with IELTS 359

scores above 6.5. To verify the evaluation qual- 360

ity, we select 10% of the samples annotated by 361

two different annotators simultaneously, and the 362

agreement between annotators is 83.7%. 363

4.3.1 Overal ELO Ranking 364

Table 4 presents the overall ELO rankings of each 365

model based on their performance across all tasks 366

in the four evaluation domains. It can be seen that 367

GPT-4o real-time achieved the best ranking due to 368

its excellent performance in the Education and med- 369

ical consultation domains that require more knowl- 370

edge. It also ranks high in social companionship 371

due to its excellent ability to capture paralinguistic 372

information. Surprisingly, it performs poorly in en- 373

tertainment. After checking the samples, we found 374

it refuses to do the task it does not have the ability 375

to do. 376

Due to the decoupling of ASR, LLM, and TTS 377

in the Cascade model, it performed better than 378

the Speech-Token-Based and Speech-Embedding- 379

Based models with its excellent LLM core (GPT- 380

4o) without considering other factors such as la- 381

tency and full duplex. 382

However, although other non-GPT-4o models 383

perform well in the social companionship and enter- 384

tainment domain, their performance in knowledge- 385

intensive scenarios is significantly reduced due to 386

the limitations of the LLM backbone. It is noted 387

that we did not find a significant difference in per- 388

formance between the Specch-Token-Based mod- 389

els and the Speech-Embedding models, which can 390

be illustrated in Figure 4. 391

4.3.2 Pair-wise Comparison 392

To compare various models directly, we further an- 393

alyze the win rate between the pairwise speech 394

6



Model Type Model Overall Edu. Social Comp. Enter. Med.
Unknown GPT-4o-realtime 1365 1185 1064 970 1146

Cascade
Pipeline (4o) 1207 1065 995 1069 1077
FunAudioLLM (4o) 1025 1105 1077 850 993

Speech-Token-Based SpeechGPT 849 906 919 1095 929

Speech-Embedding-Based
Mini-Omni 841 857 1000 1041 943
LLaMA-Omni 714 882 945 975 911

Table 4: ELO Rank across Various S2S Models.

GPT-4o-re
altim

e

Pipeli
ne (

4o)

FunAudioLLM (4
o)

Speec
hGPT

Mini-O
mni

LLaMA-O
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GPT-4o-re
altim
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Pipeli
ne (

4o)

FunAudioLLM (4
o)
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LLaMA-O
mini
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0.13 0.17 0.26 0.65 0 0.37
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0.0

0.2

0.4

0.6

0.8

Figure 4: Pair-wise comparison of various models.

models, as shown in Figure 4. It can be seen395

that the first three GPT-4o-based models (GPT-4o-396

realtime, Pipeline (4o), and FunAudioLLM (4o))397

are significantly better than the last three models398

(SpeechGPT, Mini-OMini, LLaMA-omni). More-399

over, although FunAudioLLM (4o) has the opti-400

mal threat power for GPT-4o-realtime, it can be401

seen that Pipeline (4o) outperforms the other three402

open-source models with a popular speech encoder403

(whisper). Besides, although speech-token-based404

models and speech-embedding-based models take405

different technology roadmaps, each has their own406

strengths, making it difficult to determine which407

one is more outstanding and significant.408

4.4 The Causes of Model Failures409

We statics the samples where the model failed and410

summarized the following three reasons: (1) The411

model follows the instructions but performs worse412

than other models (37.5%); (2) The model attempts413

to execute the instructions but fails to complete414

them (15.4%). (3) The model fails to recognize or 415

understand the given instructions (47.1%). 416

Notably, higher-performing models (with higher 417

ELO scores) were more prone to Case 1 failures, 418

while lower-performing models (with lower ELO 419

scores) struggled more with Case 3 failures. This 420

suggests that models with stronger speech under- 421

standing capabilities still face challenges in speech 422

generation, while weaker models have greater diffi- 423

culty understanding speech in the first place. 424

5 Analysis 425

In this section, we first explore the performance 426

of speech models with support for multimodal and 427

multilingual capabilities. Then, we investigate the 428

position and length biases present in the evaluation 429

and the potential of automated assessment. 430

5.1 Does Semantic or Paralinguistic 431

Information Dominate? 432

To analyze which one dominates the model’s re- 433

sponse, we explore the performance of advanced 434

models (GPT-4o-realtime, Pipeline (4o), and Fu- 435

nAudioLLM (4o)) in Chinese sarcasm detection 436

tasks where the model needs to simultaneously 437

consider paralinguistic and semantic information 438

in speech. 439

Among the three tested samples, all of the mod- 440

els understood the sarcasm reflected by the incon- 441

sistency between the paralinguistic information and 442

semantic information in speech in 67% of the cases, 443

while in the remaining 33% of the scenarios, they 444

responded with the original semantics. Given this 445

interesting discovery, we added eight additional 446

L2 and L3 samples for sarcasm detection to eval- 447

uate whether the model has the ability to express 448

sarcasm. The experimental results show that the 449

success rates of the three models drop to 37.5%, 450

62.5%, and 37.5%. Therefore, balancing paralin- 451

guistic information with inconsistent semantics in 452

speech is a challenge for future research. 453
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5.2 Is the Speech Module or LLM more454

Important for Multilingual Support?455

We further analyze the speech models’ multi-456

language support ability, which is a crucial factor457

for their practical deployment. Table 5 shows the458

results of language support tests on the four lan-459

guages of Chinese, English, Japanese, and Thai460

selected from the same sample.461

It can be seen that GPT-4o-realtime, with its ad-462

vanced speech encoder/decoder, supports a wide463

range of languages. However, other GPT-4o-based464

model cascade models cannot support Thai as their465

speech codecs cannot process Thai. Interestingly,466

LLaMA-Omni, which uses Whisper as its encoder,467

can understand Chinese but only respond in En-468

glish due to its LLaMA 3.1 backbone. Therefore,469

integrating multilingual speech encoders/decoders470

with multilingual LLM backbones to achieve seam-471

less language support is necessary.472

Model Speech-In Speech-Out
GPT-4o-realtime EN, CN, JP, TH EN, CN, JP, TH
Pipeline (4o) EN, CN, JP EN, CN, JP
FunAudioLLM (4o) EN, CN, JP EN, CN, JP
LLaMA-Omni EN, CN EN
Mini-Omni EN EN
SpeechGPT EN EN

Table 5: Language Support by Models for Input and
Output in Four Languages: English (EN), Chinese (CN),
Japanese (JP), and Thai (TH).

5.3 Do Positional and Length Biases Exist in473

Speech Evaluation?474

We then analyze the positional and length biases in475

speech evaluation to determine whether they exist476

in the same way as they do in text-based evaluation.477

For the positional bias, we found 5 samples with478

different preferences in 22 samples with manually479

annotated swapping option positions, accounting480

for 22.7%. Interestingly, unlike text-based evalua-481

tions, where the first candidate is typically favored,482

80% of the samples in this case had higher win483

rates when placed later in the sequence. This could484

be due to humans’ tendency to better remember485

more recent sounds.486

Regarding length bias, we found that longer out-487

puts were often preferred, mirroring trends seen in488

text-based evaluations. In 63.02% of the total 400489

comparisons, the longer output was favored. The490

average length of the winning output was 16.75491

seconds, compared to 12.01 seconds for the losing492

output.493

5.4 Is it Possible to use the Speech Model as 494

the Judge Directly? 495

To verify its feasibility, we select existing speech 496

models (such as GPT-4o-realtime and Qwen2- 497

Audio) as the judge and convert the evaluation 498

prompt into speech using TTS combined with the 499

test sample as the input for judgment (detailed in 500

Appendix D). 501

The experimental results are shown in Table 6. 502

The most significant finding is that speech models 503

do not achieve the same level of agreement with 504

human evaluations as LLMs, with scores of 30.2% 505

for GPT-4o-realtime and 25.6% for Qwen2-Audio. 506

Additionally, the consistency across multiple eval- 507

uations of the same model is also low, with GPT- 508

4o-realtime achieving the highest consistency at 509

only 58.1%. Furthermore, there are significant po- 510

sitional (over 40%) and length biases (55.8% for 511

GPT-4o-realtime) when evaluated by the speech 512

models. Therefore, different from the existing re- 513

search on text-based evaluation, directly taking the 514

speech model as the judge is not ready for speech- 515

based evaluation. 516

Model Agreement Bias
Inter Human Positional Length

GPT-4o-realtime 58.1% 30.2% 40.9% 55.8%
Qwen2-Audio 48.1% 25.6% 86.4% 48.8%

Table 6: Automatic Evaluation Results of Speech Mod-
els.

6 Conclusion 517

In this paper, we introduce S2S-Arena, a novel 518

benchmark designed to evaluate the instruction- 519

following abilities of Speech2Speech models con- 520

cerning paralinguistic information. We present 521

a comparative performance analysis of existing 522

speech models across 21 tasks in four domains us- 523

ing a carefully crafted benchmark and arena-style 524

evaluation methodology. Additionally, we examine 525

the challenges and limitations of current speech 526

models in the context of multimodal and multilin- 527

gual capabilities and discuss positional and length 528

biases in both manual and automatic speech-based 529

evaluations. In future work, we aim to broaden 530

the scope of our evaluation and develop an auto- 531

matic evaluation framework for speech models in 532

Speech2Speech protocols, offering guidance for 533

the development of large-scale speech models that 534

incorporate paralinguistic information for practical 535

applications. 536
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Limitations537

We acknowledge that the current sample data size538

of S2S Arena is relatively small due to the diffi-539

culty in obtaining manual speech instructions in540

real-world scenarios. We also acknowledge that541

our model selection scope is limited due to some542

recent speech models’ close sources and limited ac-543

cess. We have started building a more widely open544

arena website and accepting submissions of sam-545

ples and models from other researchers to obtain546

more comprehensive and updated evaluations.547
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A Distribution of Samples 799

800

A total of 154 samples were designed across 801

four domains, with tasks categorized into four lev- 802

els of complexity (L0 to L3), as shown in Table 7. 803

In the Education domain, tasks are predominantly 804

distributed across L1 and L2, with "Cross-lingual 805

Emotional Translation" showing a higher concen- 806

tration of L3 samples. The Social Companion- 807

ship domain is primarily focused on L1 and L3 808

tasks, particularly with a notable number of sam- 809

ples in "Emotion Recognition and Expression" and 810

"Identity-based Response." In the Entertainment 811

domain, tasks are largely concentrated in L2 and 812

L3, while the Medical Consultation domain ex- 813

hibits a more balanced distribution across L0 to 814

L2, with samples fairly evenly spread across these 815

levels. Overall, the distribution of samples across 816

L1, L2, and L3 is relatively even, with L0 samples 817

being comparatively fewer. 818

B Experimental Details 819

We standardize the samples to a 24,000 Hz sample 820

rate to ensure fairness in testing. However, due 821

to some models’ limited support for certain input 822

formats, we are required to use alternative formats. 823

Specifically, for SpeechGPT, we convert the input 824

audio to a 22,500 Hz sample rate. 825

C ELO Rank Details 826

827

Specifically, In our evaluation framework, all 828

models start with an initial ELO rating of 1000. 829

Each comparison round is conducted in a no-tie for- 830

mat, with the winning model’s ELO score updated 831

based on its relative performance to the compet- 832

ing model. Specifically, we calculate the expected 833

score EA for model A against model B using the 834

Eq. (1): 835

EA =
1

1 + 10
RB−RA

400

(1) 836

where RA and RB are the current ratings of mod- 837

els A and B, respectively. The updated rating R′
A 838

for model A is then computed as Eq. (2): 839

R′
A = RA +K × (SA − EA) (2) 840

where SA represents the actual outcome for model 841

A (1 for a win, 0 for a loss), and K is the adjustment 842

factor, set to 32.ll 843
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Domain Task L0 L1 L2 L3 Total
Education Pronunciation correction 0 5 0 0 5
Education Emphasis control 0 4 0 1 5
Education Rhythm control 0 0 6 1 7
Education Polyphonic word comprehension 0 6 0 0 6
Education Pause and segmentation 0 2 0 2 4
Education Cross-lingual emotional translation 0 0 2 12 14
Education Language consistency 4 2 0 0 6
Social Companionship Implication understanding 4 0 0 0 4
Social Companionship Sarcasm detection 0 3 0 0 3
Social Companionship Identity-based response 0 12 0 4 16
Social Companionship Emotion recognition and expression 0 0 0 24 24
Entertainment Singing capability 0 0 5 2 7
Entertainment Natural sound simulation 0 0 5 0 5
Entertainment Poetry recitation 3 0 1 0 4
Entertainment Role-playing 0 0 0 4 4
Entertainment Storytelling 0 0 5 0 5
Entertainment Tongue twisters 0 0 9 0 9
Entertainment Stand-up comedy/skit performance 0 0 8 0 8
Medical Consultation Querying symptoms 0 5 0 1 6
Medical Consultation Health consultation 7 0 0 0 7
Medical Consultation Psychological comfort 0 0 5 0 5

Total 18 39 46 51 154

Table 7: Distribution of Samples.

D Automatic Evaluation Prompt844

"I will provide an input audio and two correspond-845

ing response audios. Please evaluate which re-846

sponse is better. You only need to reply with ’First847

one wins’ or ’Second one wins.’ Here is the input848

audio: [input audio], the first response: [output849

audio 1], and the second response: [output audio850

2]."851
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