S2S-Arena, Evaluating Speech2Speech Protocols
on Instruction Following with Paralinguistic Information

Anonymous ACL submission

Abstract

The rapid development of large language mod-
els (LLMs) has brought significant attention
to speech models, particularly recent progress
in speech2speech protocols supporting speech
input and output. However, The existing bench-
marks adopt automatic text-based evaluators
for evaluating the instruction following abil-
ity of these models lack consideration for par-
alinguistic information in both speech under-
standing and generation. To address these is-
sues, we introduce S2S-Arena, a novel arena-
style S2S benchmark that evaluates instruction-
following capabilities with paralinguistic infor-
mation in both speech-in and speech-out across
real-world tasks. We design 154 samples that
fused TTS and live recordings in four domains
with 21 tasks and manually evaluate existing
popular speech models in an arena-style man-
ner. The experimental results show that: (1) in
addition to the superior performance of GPT-4o0,
the speech model of cascaded ASR, LLM, and
TTS outperforms the jointly trained model after
text-speech alignment in speech2speech proto-
cols; (2) considering paralinguistic informa-
tion, the knowledgeability of the speech model
mainly depends on the LLM backbone, and
the multilingual support of that is limited by
the speech module; (3) excellent speech mod-
els can already understand the paralinguistic
information in speech input, but generating ap-
propriate audio with paralinguistic information
is still a challenge.

1 Introduction

Voice-based human-computer interaction is one of
the most natural forms of communication (Card
et al., 1983; Allen et al., 2001). The machine is
expected to possess instruction following ability
in the speech-to-speech (S2S) protocol—not only
understand voice commands issued by users (Chu
et al., 2023, 2024; Tang et al., 2024; Ghosh et al.,
2024; Hu et al., 2024) but also generate appropriate
responses in voice and executing the corresponding
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Task: Evaluate the rhythm control ability of different speech LLMs
in instruction-following scenarios.
Say the following sentence at my speed first, then
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Figure 1: An Example of Evaluating Instruction Follow-
ing with Rhythm Controlling in Speech-in and Speech-
out for Speech Models.

tasks (Wang et al., 2024c; Chen et al., 2024c; Liao
et al., 2024).

Recent work (Zhang et al., 2023; SpeechTeam,
2024; Fang et al., 2024; Xie and Wu, 2024) has
made significant progress by leveraging the pow-
erful semantic understanding capabilities of large-
scale language models (LLMs) (Dubey et al., 2024)
and shifted to paralinguistic information above the
basic semantic information, as illustrated in Fig-
ure 1. As a crucial aspect of the more vivid and
natural conversation in S28S scenario (Trager, 1958),
paralinguistic information encompasses biological
characteristics (Schuller et al., 2010), emotion (Bat-
liner et al., 2011), speaking style (Nose et al., 2007),
and social roles (Ipgrave, 2009), which can be in-
ferred from pitch, tone, speech rate, and voice qual-
ity (Schuller et al., 2013).



Types Benchmarks for Speech Models Understanding Generation Evaluation
Sem. Par. Sem. Par. Modality Evaluator
Dynamic-SUPERB (Huang et al., 2024) v v v - * Auto
SGAI (Bu et al., 2024) v v Text Auto
Foundation AudioBench (Wang et al., 2024a) v v Text Auto
MMAU (Sakshi et al., 2024) v v Text Auto
AV-Odyssey Bench (Gong et al., 2024) v v Text Auto
Chat SD-Eval (Ao et al., 2024) vV v Text Auto
VoiceBench (Chen et al., 2024b) v v Text Auto
. AIR-Bench (Yang et al., 2024) v v v Text Auto
Chat and Foundation S2S-Arena (Oursé)I v v v v Speech Human

Table 1: Comparison of Benchmarks for Speech Models. The star* means that the evaluation modality of the
Dynamic-Superb is decided by the tested task. Sem. means the semantics of speech, and Par. means the paralinguistic

information of speech.

However, existing benchmarks for these models
are struggling to keep up with the rapid develop-
ment of the speech models, as shown in Table 1.
Although some benchmarks (Huang et al., 2024;
Wang et al., 2024a; Ao et al., 2024; Bu et al., 2024)
akin to FLAN (Wei et al., 2022) in text models,
designed for speech models, they primarily focus
on assessing models with speech understanding ca-
pabilities (Lyu et al., 2023; Chu et al., 2023; Shu
etal., 2023; Chu et al., 2024; Liu et al., 2024; Tang
et al., 2024), overlooking models’ speech genera-
tion abilities, particularly in chat scenarios. Recent
works (Chen et al., 2024b; Yang et al., 2024) take
evaluating model’s speech generation capabilities
into consideration, but the evaluation are still con-
ducted in the text modality, failing to account for
whether models are capable of generating speech
with paralinguistic information (Ji et al., 2024).

To fill this gap, we propose the S2S-Arena,
a novel benchmark assessing the instruction-
following capabilities of speech models in
speech2speech protocols incorporating paralinguis-
tic information, and an example shown in Figure 1.
It requires speech models to not only understand
paralinguistic cues (such as rhythm) in speech input
but also to follow semantic instructions for gener-
ating speech output that preserves paralinguistic
features.

Specifically, we adopt a three-stage construction
process to build this benchmark: task definition,
instruction design, and sample recording (detailed
in Section 3). We select the most popular four
practical domains with 21 tasks of speech models
and carefully design the testing samples at four
different levels by considering paralinguistics in-
formation in speech understanding and generation.
We then collect 94 Text-to-Speech (TTS) synthe-
sis samples and 60 human recordings. Since the

speech model as the judge is unreliable (see Sec-
tion 5.4), we implement a manual arena-style pair-
wise comparison among the popular four classes
of S2S models (see Section 4). We obtain initial
comparative results for the current models after 400
evaluations across 22 individuals. Additionally, we
provide an in-depth analysis of key aspects, includ-
ing semantic inconsistency between speech and
text, language consistency, reasons for instruction-
following failures, and position and length bias (see
Section 5). Our contributions are as follows:

We introduce S2S-Arena, a novel arena-style
benchmark to evaluate the instruction-following
capabilities of speech models within speech-to-
speech protocols, incorporating paralinguistic in-
formation.

We design 154 TTS and manual recording sam-
ples across four popular domains, with 21 tasks,
and perform an arena-style manual comprehensive
comparison of four different types of speech mod-
els based on their speech out .

Our findings suggest that the design of future
speech models should give more consideration to
multimodal and multilingual support, particularly
in the context of speech generation involving par-
alinguistic information. Additionally, we discuss
the unique biases in speech model evaluations in
contrast to those observed in LLMs.

2 Related Work

2.1 Speech Models in Speech2Speech
Protocols

Commercial speech models represented by GPT-
4o-real-time 2 can naturally interact with humans in

'We release the dataset and comparison result at <Anony-
mous URL>.
2gpt-4o-realtime-preview-2024-10-01.



Model Type Model Name Input Form Backbone Output Form

Unknown GPT-4o0-realtime Unknown Unknown Unknown

Cascade FunAudioLLM (SpeechTeam, 2024) Text /o Special Tokens Qwen-2 72B Text /o Special Tokens
SpeechGPT (Zhang et al., 2023) Speech Tokens LLaMA 7B Speech Tokens
AnyGPT (Zhan et al., 2024) Speech Tokens LLaMA-2 7B Speech Tokens

Speech-token. LSLM (Ma et al., 2024) Speech Tokens Transformers Speech Tokens
Westlake-Omni Speech Tokens Qwen-2 0.5B Speech Tokens
GLM-4-Voice (Zeng et al., 2024) Speech Tokens GLM-4 9B Speech Tokens
Mini-Omni (Xie and Wu, 2024) Speech Embeddings Qwen-2 0.5B Speech Tokens

Speech-embed. LLaMA-Omni (Fang et al., 2024) Speech Embeddings LLaMA-3.1 8B  Speech Tokens
Moshi (Défossez et al., 2024) Speech Embeddings Transformers Speech Embeddings
Freeze-Omni (Wang et al., 2024b) Speech Embeddings Qwen-2 7B Speech Tokens

Table 2: Comparison of Speech2Speech Models. Speech-token. means Speech-token-based model and Speech-
embed. means Speech-embedding-based model. Note that we do not compare LSLM and Moshi for a fair

comparison because they do not use LLMs as backbones.

the form of speech-in and speech-out with paralin-
guistic information such as emotion and speaking-
style, but the model architecture and training details
have not been publicly disclosed.

As one of the representatives of open-source
models, FunaudioLLM (SpeechTeam, 2024)
adopts the most straightforward and traditional ap-
proach, implementing Speech2Speech through a
cascade of Automatic Speech Recognition (ASR),
LLM, and TTS, while incorporating special tokens
to encode and represent the paralinguistic informa-
tion contained in the speech, as shown in Table 2.

To better capture the paralinguistic information
contained in speech, some works integrate it into
the LLM process by adopting speech tokenization
or embedding via speech-text alignment training.

Speech-token-based  models  such  as
SpeechGPT (Zhang et al., 2023), AnyGPT (Zhan
et al., 2024), Westlake-Omni®, and GLM-4-
Voice (Zeng et al., 2024) use discrete speech
tokens as the input by speech encoders like Whis-
per (Radford et al., 2023) or Hubert (Hsu et al.,
2021). After multi-stage speech-text alignment
training based on LLM, these models generate
speech tokens for the voice decoder, preserving
rich paralinguistic information such as tone and
emotion.

Besides, speech-embedding-based models like
Mini-Omni (Xie and Wu, 2024), LLaMA-
Omni (Fang et al., 2024), and Freeze-Omni (Wang
et al., 2024b) convert speech inputs into embed-
dings instead of discrete tokens, which are then
fed into LLM for speech-text alignment training.
Once trained, these models enable real-time speech
interaction and consider the information contained
in the speech.

3https://github.com/xinchen-ai/Westlake-Omni

2.2 Benchmarks for Speech Models

The evaluation of speech models is also advancing
rapidly, as shown in Table 1. Based on the form
of evaluation samples, existing benchmarks can be
categorized into three types:

Prior works ( (Bu et al., 2024; Wang et al., 2024a;
Sakshi et al., 2024; Gong et al., 2024)) focus on
evaluating the models on foundation task comple-
tion with speech understanding, but with output pre-
sented in text. For example, MMAU (Sakshi et al.,
2024) emphasizes advanced perception and rea-
soning with domain-specific knowledge in speech,
challenging models to tackle tasks akin to those
faced by experts. In Dynamic-SUPERB (Huang
et al., 2024), due to the crowdsourcing of tasks, the
evaluation modalities are mixed.

Other works focus on evaluating the speech-
based chat ability of the speech model. SD-
Eval (Ao et al., 2024) evaluates whether the model
perceives paralinguistic information such as age,
emotion, and surrounding sounds contained in
speech, but the output is still presented in text form.
VocieBench (Chen et al., 2024b) uses TTS to build
the speech-based Alpaca-Eval (Li et al., 2023) for
evaluating instruction following ability but lacks
consideration for paralinguistic information.

AIR-Bench (Yang et al., 2024) considers the
paralinguistic information in the speech input in
both chat and foundation task completion but lacks
considering paralinguistic information in speech
output.

Therefore, existing benchmarks mainly suffer
from lacking consideration of paralinguistic infor-
mation in speech output, inconsistent evaluation
modalities (Chen et al., 2024a; Ye et al., 2024,
Zhang et al., 2023), and unreliable automatic met-
rics (Streijl et al., 2016)(see Section 5.4).
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Figure 2: The Three-Stage Process of S2S-Arena Construction: Task Determination, Instruction Design and

Instruction Recording.

3 S2S-Arena

To evaluate the ability of speech models to interact
with humans in real-world speech-to-speech pro-
tocols, we introduce S2S-Arena, a benchmark that
includes samples of varying difficulty levels to as-
sess the instruction-following capabilities of speech
models, considering paralinguistic information dur-
ing both speech understanding and generation.

Unlike previous works, our benchmark incorpo-
rates two data sources—TTS and human-recorded
speech—across two scenarios: foundation task
completion and chat conversation. Additionally,
we include a manual arena-style comparison of the
speech modality instead of auto text-based evalua-
tion to provide a more comprehensive and realistic
evaluation. The three-stage process of S2S-Arena
construction is shown in Figure 2.

3.1 Task Determination

Considering the widespread usage scenarios of the
speech model in speech2speech protocols (Ao et al.,
2024; Yang et al., 2024), we choose Education, So-
cial Interaction, Entertainment, and Medical Con-
sultation as evaluation domains. In each domain,
we further design multiple fine-grained tasks, such
as pronunciation correction and rhythm control in
education, implication understanding, and sarcasm
detection in social interaction, as shown in Table 3.

3.2 Instruction Design

For the sample design in each task, we consider
a combination of TTS (Chen et al., 2024b) and
human recording in both task completion and chat
scenarios. Moreover, we divided each sample into
four difficulty levels based on whether or not to
consider the paralinguistic information in speech
understanding and generation processes.

L0: Considering Instruction Following. It
assesses only the model’s ability to follow instruc-
tions without considering the paralinguistic infor-
mation in speech-in and speech-out. For example,
in the Querying symptoms task, the model receives
the instruction, "I have a headache. What could
be the cause?" The model is expected to provide
possible causes of headaches by simply following
instructions without any paralinguistic information.

L1: Considering Speech-in Paraglinguistic in-
formation. It further evaluates whether the model
produces corresponding speech output by under-
standing paralinguistic information embedded in
speech-in. For example, in the Identity-based re-
sponse task, the model is given a spoken input from
a child asking, "If it rains tomorrow, how should
I plan my day?" The model is expected to discern
the speaker’s age using paralinguistic information
and respond with suggestions suitable for children
rather than adults.

L2: Considering Speech-out Paralinguistic
Information. It evaluates whether the model
generates the speech with paralinguistic informa-
tion following speech instruction-following require-
ments. It is similar to TTS evaluation (such as TTS-
Arena *) but uses speech-based instruction input
without paralinguistic information. For example,
one of the instructions in the Tongue twisters task
is "Recite a tongue twister at three different speeds:
fast, medium, and slow." The model’s speech re-
sponse should not only recite a tongue twister but
also demonstrate each recitation at three different
speeds.

L3: Considering Both Speech-in and Speech-
out Paralinguistic Information. It assesses
whether the model understands the speech-in par-

*https://huggingface.co/spaces/TTS-AGI/TTS-Arena



Domain

Task

Evaluation Target

Education

Pronunciation correction
Emphasis control

Rhythm control

Polyphonic word comprehension
Pause and segmentation
Cross-lingual emotional translation
Language consistency

Can the model correct inaccurate pronunciations?

Can the model understand stress emphasis and emphasize specific content
with the right stress?

Can the model adjust the output pace, speaking faster or slower as re-
quired?

Can the model accurately understand polyphonic word?

Can the model accurately pause and segment in ambiguous cases?

Can the model accurately convey emotions during translation?

Does the model respond in the same language as the query when asked
in different languages?

Social Companionship

Implication understanding
Sarcasm detection
Identity-based response

Emotion recognition and expression

Can the model respond humorously, understanding implied meanings?
Can the model detect sarcasm in phrases like “You’re amazing!”?

Can the model adapt responses based on the user’s age (child, adult,
elderly) and handle identity-based queries?

Can the model recognize emotions and provide appropriate responses
based on different emotions?

Entertainment

Singing capability
Natural sound simulation
Poetry recitation
Role-playing

Storytelling
Tongue twisters
Stand-up comedy/skit performance

Can the model sing a song upon request?

Can the model simulate certain natural sounds?

Can the model recite poems?

Can the model simulate a character with specific age, gender, accent, and
voice tone?

Can the model narrate a story with emotional depth?

Can the model correctly pronounce a given tongue twister?

Can the model perform a skit, playing both roles in a comedic dialogue?

Medical Consultation

Querying symptoms
Health consultation
Psychological comfort

Can the model answer questions related to symptoms?
Can the model provide general health advice?
Can the model provide comforting psychological support?

Table 3: Task Description Across Four Domains.

alinguistic information and generates speech with
paralinguistic information properly. This high-
est level closely approximates real-world speech-
to-speech scenarios. For example, in the Cross-
lingual emotional translation task, one prompt with
a happy emotion is "Help me tell him in Chinese
that Mike is coming to my house tomorrow for a
week." The model should fully recognize the ex-
pressed happiness and translate the message into
Chinese with an equivalent emotional tone.

3.3 Instruction Recording

We design the instruction text and use Seed-
TTS (Anastassiou et al., 2024) to synthetic the
speech in some easier tasks such as the Natural
sound simulation task. Additionally, we sample
other normal samples, such as the emotion recogni-
tion and expression task from the existing popular
speech datasets (Livingstone and Russo, 2018). Fi-
nally, we manually record the samples for other
more difficult tasks such as the sarcasm detection
and singing capability tasks that the TTS model
cannot handle. To enhance the robustness of the
benchmark, we use different vocal tones and add
eight background noises, such as airport back-
ground sounds, to simulate diverse acoustic en-
vironments.

To ensure the quality of the samples, four native

Mandarin speakers (two males and two females)
with IELTS scores above 6.5 were recruited to as-
sess data quality due to the samples being mainly
English and Chinese. If any participants identified
an issue with a particular sample, that would be dis-
carded. In the end, we collected 154 independent
speech instruction samples in 21 tasks, and more
details can be seen in Appendix A .

4 Experiments

4.1 Experimental Settings

Most existing benchmarks automatically evaluate
the speech model’s output in the text modality by
LLM (Zheng et al., 2023), but this method will
lose valuable information in the speech modal-
ity (Chen et al., 2024a; Ye et al., 2024; Zhang
et al., 2023), particularly paralinguistic information.
Moreover, different from text-based automatic eval-
uation, speech-based automatic evaluation (Streijl
et al., 2016; Saeki et al., 2022) is usually unreliable
with bias, as demonstrated by our experiments (see
Section 5.4).

Therefore, we adopt a manual arena-style ap-
proach with ELO ranking (Elo and Sloan, 1978)
to more directly and comprehensively evaluate the
performance of various speech models. More De-
tails of ELO ranking calculation can be seen in the
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Figure 3: The Evaluation Process of S2S-Arena.

Appendix C.

Followed by Chat-Arena (Chiang et al., 2024) >,
we build a S2S-Arena web-based evaluation tool
for evaluators to perform a reference-free compari-
son. Given a speech as the input, we invite human
evaluators to rank two speech outputs generated by
different speech models, considering both seman-
tics and speech quality, as shown in Figure 3.

4.2 Benchmarked models

We select the following four categories of represen-
tative models for evaluation. GPT-4o-realtime®:
We utilize the speech-enabled API version of GPT-
4o instead of the app version. Cascade Model:
We select the FunAudioLLM (SpeechTeam, 2024)
as the strong Cascade model. For the best per-
formance, we utilized the GPT-40 to replace the
Qwen2 72B for the LLM module, which is named
FunAudioLLM (40). Besides, we also construct a
vanilla Pipeline (40) with Whisper, GPT-40, and
cosyVoice’ for comparison. Speech-Token-Based
Model: We select SpeechGPT 8, an Open-source
LLM-based speech model as the representative
Speech-Token-Based Model. Speech-Embedding-
Based Model: We select recent two Omini se-
ries models (Mini-Omni (Xie and Wu, 2024) and
LLaMA-Omini (Fang et al., 2024)) to represent
Speech-Embedding-Based Model.

4.3 Results

We conducted a preliminary experimental investiga-
tion in S2S-Arena and received about 400 pair-wise
comparison results with over 22 individuals, all of

>https://huggingface.co/spaces/Imsys/chatbot-arena-
leaderboard

8gpt-4o-realtime-preview-2024-10-01.

"whisper-large-v3 for ASR, gpt-40-2024-08-06 for LLM
and Cosy Voice-300M-Instruct for TTS.

8https://github.com/Onutation/SpeechGPT

whom are native Mandarin speakers with IELTS
scores above 6.5. To verify the evaluation qual-
ity, we select 10% of the samples annotated by
two different annotators simultaneously, and the
agreement between annotators is 83.7%.

4.3.1 Overal ELO Ranking

Table 4 presents the overall ELO rankings of each
model based on their performance across all tasks
in the four evaluation domains. It can be seen that
GPT-40 real-time achieved the best ranking due to
its excellent performance in the Education and med-
ical consultation domains that require more knowl-
edge. It also ranks high in social companionship
due to its excellent ability to capture paralinguistic
information. Surprisingly, it performs poorly in en-
tertainment. After checking the samples, we found
it refuses to do the task it does not have the ability
to do.

Due to the decoupling of ASR, LLM, and TTS
in the Cascade model, it performed better than
the Speech-Token-Based and Speech-Embedding-
Based models with its excellent LLM core (GPT-
40) without considering other factors such as la-
tency and full duplex.

However, although other non-GPT-40 models
perform well in the social companionship and enter-
tainment domain, their performance in knowledge-
intensive scenarios is significantly reduced due to
the limitations of the LLM backbone. It is noted
that we did not find a significant difference in per-
formance between the Specch-Token-Based mod-
els and the Speech-Embedding models, which can
be illustrated in Figure 4.

4.3.2 Pair-wise Comparison

To compare various models directly, we further an-
alyze the win rate between the pairwise speech



Model Type Model Overall Edu. Social Comp. Enter. Med.
Unknown GPT-40-realtime 1365 1185 1064 970 1146
Cascade Pipeline (40) 1207 1065 995 1069 1077
FunAudioLLM (40) 1025 1105 1077 850 993
Speech-Token-Based SpeechGPT 849 906 919 1095 929
: Mini-Omni 841 857 1000 1041 943
Speech-Embedding-Based ;-\ 1A Omni 714 882 945 975 911

Table 4: ELO Rank across Various S2S Models.
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Figure 4: Pair-wise comparison of various models.

models, as shown in Figure 4. It can be seen
that the first three GPT-40-based models (GPT-4o0-
realtime, Pipeline (40), and FunAudioLLM (40))
are significantly better than the last three models
(SpeechGPT, Mini-OMini, LLaMA-omni). More-
over, although FunAudioLLM (40) has the opti-
mal threat power for GPT-4o-realtime, it can be
seen that Pipeline (40) outperforms the other three
open-source models with a popular speech encoder
(whisper). Besides, although speech-token-based
models and speech-embedding-based models take
different technology roadmaps, each has their own
strengths, making it difficult to determine which
one is more outstanding and significant.

4.4 The Causes of Model Failures

We statics the samples where the model failed and
summarized the following three reasons: (1) The
model follows the instructions but performs worse
than other models (37.5%); (2) The model attempts
to execute the instructions but fails to complete

them (15.4%). (3) The model fails to recognize or
understand the given instructions (47.1%).

Notably, higher-performing models (with higher
ELO scores) were more prone to Case 1 failures,
while lower-performing models (with lower ELO
scores) struggled more with Case 3 failures. This
suggests that models with stronger speech under-
standing capabilities still face challenges in speech
generation, while weaker models have greater diffi-
culty understanding speech in the first place.

5 Analysis

In this section, we first explore the performance
of speech models with support for multimodal and
multilingual capabilities. Then, we investigate the
position and length biases present in the evaluation
and the potential of automated assessment.

5.1 Does Semantic or Paralinguistic
Information Dominate?

To analyze which one dominates the model’s re-
sponse, we explore the performance of advanced
models (GPT-4o0-realtime, Pipeline (40), and Fu-
nAudioLLM (40)) in Chinese sarcasm detection
tasks where the model needs to simultaneously
consider paralinguistic and semantic information
in speech.

Among the three tested samples, all of the mod-
els understood the sarcasm reflected by the incon-
sistency between the paralinguistic information and
semantic information in speech in 67% of the cases,
while in the remaining 33% of the scenarios, they
responded with the original semantics. Given this
interesting discovery, we added eight additional
L2 and L3 samples for sarcasm detection to eval-
uate whether the model has the ability to express
sarcasm. The experimental results show that the
success rates of the three models drop to 37.5%,
62.5%, and 37.5%. Therefore, balancing paralin-
guistic information with inconsistent semantics in
speech is a challenge for future research.



5.2 Is the Speech Module or LLM more
Important for Multilingual Support?

We further analyze the speech models’ multi-
language support ability, which is a crucial factor
for their practical deployment. Table 5 shows the
results of language support tests on the four lan-
guages of Chinese, English, Japanese, and Thai
selected from the same sample.

It can be seen that GPT-4o-realtime, with its ad-
vanced speech encoder/decoder, supports a wide
range of languages. However, other GPT-40-based
model cascade models cannot support Thai as their
speech codecs cannot process Thai. Interestingly,
LLaMA-Omni, which uses Whisper as its encoder,
can understand Chinese but only respond in En-
glish due to its LLaMA 3.1 backbone. Therefore,
integrating multilingual speech encoders/decoders
with multilingual LLM backbones to achieve seam-
less language support is necessary.

Model Speech-In Speech-Out
GPT-40-realtime EN,CN,JP, TH EN,CN,JP, TH
Pipeline (40) EN, CN, JP EN, CN, JP
FunAudioLLM (40) EN, CN, JP EN, CN, JP
LLaMA-Omni EN, CN EN
Mini-Omni EN EN
SpeechGPT EN EN

Table 5: Language Support by Models for Input and
Output in Four Languages: English (EN), Chinese (CN),
Japanese (JP), and Thai (TH).

5.3 Do Positional and Length Biases Exist in
Speech Evaluation?

We then analyze the positional and length biases in
speech evaluation to determine whether they exist
in the same way as they do in text-based evaluation.

For the positional bias, we found 5 samples with
different preferences in 22 samples with manually
annotated swapping option positions, accounting
for 22.7%. Interestingly, unlike text-based evalua-
tions, where the first candidate is typically favored,
80% of the samples in this case had higher win
rates when placed later in the sequence. This could
be due to humans’ tendency to better remember
more recent sounds.

Regarding length bias, we found that longer out-
puts were often preferred, mirroring trends seen in
text-based evaluations. In 63.02% of the total 400
comparisons, the longer output was favored. The
average length of the winning output was 16.75
seconds, compared to 12.01 seconds for the losing
output.

5.4 Is it Possible to use the Speech Model as
the Judge Directly?

To verify its feasibility, we select existing speech
models (such as GPT-4o-realtime and Qwen2-
Audio) as the judge and convert the evaluation
prompt into speech using TTS combined with the
test sample as the input for judgment (detailed in
Appendix D).

The experimental results are shown in Table 6.
The most significant finding is that speech models
do not achieve the same level of agreement with
human evaluations as LLMs, with scores of 30.2%
for GPT-4o-realtime and 25.6% for Qwen2-Audio.
Additionally, the consistency across multiple eval-
uations of the same model is also low, with GPT-
4o-realtime achieving the highest consistency at
only 58.1%. Furthermore, there are significant po-
sitional (over 40%) and length biases (55.8% for
GPT-4o0-realtime) when evaluated by the speech
models. Therefore, different from the existing re-
search on text-based evaluation, directly taking the
speech model as the judge is not ready for speech-
based evaluation.

Model Agreement Bias

Inter Human Positional Length
GPT-4o-realtime 58.1%  30.2% 40.9% 55.8%
Qwen2-Audio 48.1%  25.6% 86.4% 48.8%

Table 6: Automatic Evaluation Results of Speech Mod-
els.

6 Conclusion

In this paper, we introduce S2S-Arena, a novel
benchmark designed to evaluate the instruction-
following abilities of Speech2Speech models con-
cerning paralinguistic information. We present
a comparative performance analysis of existing
speech models across 21 tasks in four domains us-
ing a carefully crafted benchmark and arena-style
evaluation methodology. Additionally, we examine
the challenges and limitations of current speech
models in the context of multimodal and multilin-
gual capabilities and discuss positional and length
biases in both manual and automatic speech-based
evaluations. In future work, we aim to broaden
the scope of our evaluation and develop an auto-
matic evaluation framework for speech models in
Speech2Speech protocols, offering guidance for
the development of large-scale speech models that
incorporate paralinguistic information for practical
applications.



Limitations

We acknowledge that the current sample data size
of S2S Arena is relatively small due to the diffi-
culty in obtaining manual speech instructions in
real-world scenarios. We also acknowledge that
our model selection scope is limited due to some
recent speech models’ close sources and limited ac-
cess. We have started building a more widely open
arena website and accepting submissions of sam-
ples and models from other researchers to obtain
more comprehensive and updated evaluations.
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A Distribution of Samples

A total of 154 samples were designed across
four domains, with tasks categorized into four lev-
els of complexity (LO to L3), as shown in Table 7.
In the Education domain, tasks are predominantly
distributed across L1 and L2, with "Cross-lingual
Emotional Translation" showing a higher concen-
tration of L3 samples. The Social Companion-
ship domain is primarily focused on L1 and L3
tasks, particularly with a notable number of sam-
ples in "Emotion Recognition and Expression" and
"Identity-based Response.” In the Entertainment
domain, tasks are largely concentrated in L2 and
L3, while the Medical Consultation domain ex-
hibits a more balanced distribution across LO to
L2, with samples fairly evenly spread across these
levels. Overall, the distribution of samples across
L1, L2, and L3 is relatively even, with LO samples
being comparatively fewer.

B Experimental Details

We standardize the samples to a 24,000 Hz sample
rate to ensure fairness in testing. However, due
to some models’ limited support for certain input
formats, we are required to use alternative formats.
Specifically, for SpeechGPT, we convert the input
audio to a 22,500 Hz sample rate.

C ELO Rank Details

Specifically, In our evaluation framework, all
models start with an initial ELO rating of 1000.
Each comparison round is conducted in a no-tie for-
mat, with the winning model’s ELO score updated
based on its relative performance to the compet-
ing model. Specifically, we calculate the expected
score F/ 4 for model A against model B using the

Eq. (1):
1

Rp

_
1+ 10~ 400 4
where R4 and Rp are the current ratings of mod-

els A and B, respectively. The updated rating R/,
for model A is then computed as Eq. (2):

Ey

ey

Ry=Rs+ K x (Sq4—Ex) )

where S 4 represents the actual outcome for model
A (1 for awin, 0 for aloss), and K is the adjustment
factor, set to 32.11



Domain Task LO L1 L2 L3 Total

Education Pronunciation correction 0 5 0 0 5
Education Emphasis control 0 4 0 1 5
Education Rhythm control 0O 0 6 1 7
Education Polyphonic word comprehension 0 6 0 O 6
Education Pause and segmentation 0 2 0o 2 4
Education Cross-lingual emotional translation 0 0 2 12 14
Education Language consistency 4 2 0O O 6
Social Companionship Implication understanding 4 0 0 O 4
Social Companionship Sarcasm detection 0 3 0 O 3
Social Companionship Identity-based response 0 12 0 4 16
Social Companionship Emotion recognition and expression 0 0 0 24 24
Entertainment Singing capability 0o 0 5 2 7
Entertainment Natural sound simulation 0O 0 5 0 5
Entertainment Poetry recitation 3 0 1 0 4
Entertainment Role-playing O 0 0 4 4
Entertainment Storytelling 0 0 5 0 5
Entertainment Tongue twisters 0o 0 9 0 9
Entertainment Stand-up comedy/skit performance 0 O 8 0 8
Medical Consultation  Querying symptoms 0O 5 0 1 6
Medical Consultation  Health consultation 7 0 0 O 7
Medical Consultation  Psychological comfort 0O 0 5 0 5

Total

—
oo
W
O
N
(@)}
W
—

154

Table 7: Distribution of Samples.

D Automatic Evaluation Prompt

"I will provide an input audio and two correspond-
ing response audios. Please evaluate which re-
sponse is better. You only need to reply with "First
one wins’ or ’Second one wins.” Here is the input
audio: [input audio], the first response: [output
audio 1], and the second response: [output audio
2]."
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