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Abstract

In this work, we analyze two of the most funda-
mental algorithms in geodesically convex opti-
mization: Riemannian gradient descent and (pos-
sibly inexact) Riemannian proximal point. We
quantify their rates of convergence and produce
different variants with several trade-offs. Cru-
cially, we show the iterates naturally stay in a ball
around an optimizer, of radius depending on the
initial distance and, in some cases, on the curva-
ture. Previous works simply assumed bounded
iterates, resulting in rates that were not fully quan-
tified. We also provide an implementable inexact
proximal point algorithm and prove several new
useful properties of Riemannian proximal meth-
ods: they work when positive curvature is present,
the proximal operator does not move points away
from any optimizer, and we quantify the smooth-
ness of its induced Moreau envelope. Further, we
explore beyond our theory with empirical tests.

1. Introduction

Riemannian optimization consists of the study of function
optimization defined over Riemannian manifolds. This
paradigm is used in cases that naturally present Rieman-
nian constraints, which allows for exploiting the geometric
structure of our problem, and for transforming it into an
unconstrained one by working in the manifold. In addition,
there are non-convex Euclidean problems, such as oper-
ator scaling (Allen-Zhu et al., 2018) that, when phrased
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Most of the notations in this work have a link to their defini-
tions, using this code, such as Exp,, (+), which links to where it is
defined as the exponential map of a Riemannian manifold.

over a Riemannian manifold with the right metric, become
convex when restricted to every geodesic, that is, they are
geodesically convex (g-convex) (Cruz Neto et al., 2006;
Carvalho Bento & Melo, 2012; Bento et al., 2015).

Some other applications in machine learning are Gaussian
mixture models (Hosseini & Sra, 2015), Karcher mean
(Zhang et al., 2016), dictionary learning (Cherian & Sra,
2017; Sun et al., 2017), low-rank matrix completion (Van-
dereycken, 2013; Mishra & Sepulchre, 2014; Tan et al.,
2014; Cambier & Absil, 2016; Heidel & Schulz, 2018), and
optimization under orthogonality constraints (Edelman et al.,
1998; Lezcano-Casado & Martinez-Rubio, 2019). Rieman-
nian optimization is a wide, active area of research, and
numerous methods, such as the following first-order algo-
rithms have been designed: projection-free (Weber & Sra,
2017; 2019), accelerated (Martinez-Rubio, 2020; Kim &
Yang, 2022; Martinez-Rubio & Pokutta, 2023), min-max
(Zhang et al., 2022; Jordan et al., 2022; Martinez-Rubio
et al., 2023; Cai et al., 2023), stochastic (Tripuraneni et al.,
2018; Khuzani & Li, 2017; Hosseini & Sra, 2017), and in
particular variance-reduced methods (Zhang et al., 2016;
Sato et al., 2017; 2019), among many others.

A recurrent problem in Riemannian optimization algorithms
is that geometric deformations appearing in their analyses
scale with the distance between the iterates and between
those and an optimizer. These distances are often bounded
and quantified only by assumption (Zhang & Sra, 2016;
Zhang et al., 2016; Zhang & Sra, 2018; Ahn & Sra, 2020;
Kim & Yang, 2022; Zhang et al., 2022; Jordan et al., 2022).
This assumption is the following: there is compact g-convex
set X, that the algorithm has a priori access to, in which
the iterates stay, i.e., x; € X.

On the other hand, some works obtain convergence rates
which are seemingly independent of the curvature, but they
make use of conditions like smoothness or strong convexity
without specifying where these have to hold, see (Smith,
1994; Udriste, 1994; Cai et al., 2023) among others. This
can be a problem, since unlike in the Euclidean space, where
we can have globally smooth and strongly g-convex func-
tions with constant condition number, in many Riemannian
manifolds the condition number is lower bounded by a value
that depends on the curvature and the diameter of the op-
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timization domain (Martinez-Rubio, 2020; Criscitiello &
Boumal, 2021). For this reason, in order to quantify conver-
gence rates, one has to assume problem parameters such as
smoothness or strong g-convexity hold in a specific region
where the iterates lie.

One way of tackling these two problems is showing that our
algorithms naturally stay in a bounded region that we can
quantify. Martinez-Rubio (2020) presents an algorithm with
this property, that reduces unconstrained g-convex problems
to a sequence of problems in Riemannian balls of constant
diameter. In the context of g-convex g-concave optimization,
(Martinez-Rubio et al., 2023) proved this property holds for
an extragradient algorithm and (Wang et al., 2023b; Hu
et al., 2023) showed it for other related algorithms. The lat-
ter work applies to the more general variational inequalities
setting. An alternative approach is to add in-manifold con-
straints to the problem and design methods that can enforce
those constraints. Projection-free algorithms like those of
(Weber & Sra, 2017; 2019), the Projected RGD algorithms
surveyed in Section 3, and the accelerated constrained first-
order methods in (Martinez-Rubio, 2020; Martinez-Rubio
& Pokutta, 2023; Martinez-Rubio et al., 2023) are designed
to work with constraints and therefore they do not present
the aforementioned problems.

Bounding the iterates of Riemannian algorithms has often
been overlooked in the literature. Because of this reason,
the convergence of two of the most fundamental classes of
first-order methods is not fully understood. One of them is
Riemannian gradient descent (RGD). Our first contribution
is removing this limitation and quantifying the convergence
rate and its dependence on geometric constants like the
curvature. Secondly, we study the Riemannian proximal
point algorithm (RPPA). We provide an inexact version
(RIPPA) of it and convergence rates in general manifolds.
Thirdly, for smooth functions we show how to implement
the criterion of RIPPA in different ways and provide some
variants of RGD. The iterate boundedness is the starting
point of our work and importantly, under this framework,
we obtain several algorithms with different convergence
rates, where we trade off some dependence on the curvature
for another or for optimizing in a larger set. The latter
entails, for instance, greater lower bounds on the minimum
possible condition number L/ for p-strongly g-convex L-
smooth functions in the set. Lastly, we prove several new
useful properties of Riemannian proximal methods. More
precisely, our contributions are summarized in the following
and in Table 1.

* RGD: Among other results, we show that for g-convex
L-smooth Riemannian functions with a minimizer
x*, RGD with step size n = 1/L stays in a closed
ball B(z*,O((xR)), where R = d(zo,2*) and (g
is a geometric constant. If instead we use a step

size n = 1/((gL), the RGD update rule is quasi-
nonexpansive. We quantify the rates of RGD in dif-
ferent settings as a result. A composite RGD, which
implies reduced gradient complexity of solving the
inexact prox in RIPPA.

* RPPA: A general analysis of RPPA. It was only known
in Hadamard manifolds before. An inexact RPPA
(RIPPA) and an implementation of it with first-order
methods for smooth g-convex functions with quantified
dependence on the curvature.

* Prox properties: The prox is quasi-nonexpansive,
and the Moreau envelope M () = min,ex{f(y) +
%d((b, y)2} is (Cdiam(X)/n)'SmOOth in X.

¢ Experiments: Numerical tests exploring beyond our
theory. We observe that RGD presents a monotonic
decrease in distance to an optimizer and show that
RIPPA is competitive.

A future direction of research is studying whether one effi-
cient algorithm can have the best rates and iterate bounds
of all our algorithms at the same time, without assuming
knowledge of the initial distance. Elucidating whether one
such algorithm exists is a fundamental open problem. For
the hyperbolic space, we do obtain such an algorithm. In
Hadamard manifolds our method RIPPA-CRGD already ob-
tains the best rate in terms of gradient complexity and iterate
bounds, at the expense of solving subproblems that could
be hard, and knowing the initial distance. The other meth-
ods can be implemented efficiently but have worse gradient
complexity or iterate bounds.

Outline We begin by introducing relevant definitions and
notation in Section 2. Then we provide a detailed review of
prior works on RGD and RPPA in Section 3. We present
our new results regarding RGD and Riemannian proximal
methods in Section 4. Then we present some empirical
results in Section 5 and a conclusion in Section 6.

2. Preliminaries and notation

The following definitions in Riemannian geometry cover
the concepts used in this work, cf. (Petersen, 2006; Bacak,
2014). A Riemannian manifold (M, g) is a real C* man-
ifold M equipped with a metric g, which is a smoothly
varying inner product. For x € M, denote by T, M the
tangent space of M at . For vectors v, w € T, M, we use
(v, W) and ||v]|; = \/(v,v), for the metric’s inner prod-
uct and norm, and omit x when it is clear from context. A
geodesic of length ¢ is a curve 7 : [0, ¢] — M of unit speed
that is locally distance minimizing. A space is uniquely
geodesic if every two points in that space are connected by
one and only one geodesic.
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The exponential map Exp, : T, M — M takes a point
x € M, and a vector v € T, M and returns the point y we
obtain from following the geodesic from z in the direction
v for length ||v||, if this is possible. We denote its inverse by
Log,(-). It is well defined for uniquely geodesic manifolds,
so we have Exp_(v) = y and Log, (y) = v. We denote the
distance between two points by d(z, y). The manifold M
comes with a natural parallel transport of vectors between
tangent spaces, that formally is defined from the Levi-Civita
connection V. In that case, we use I'Y (v) € T,,M to denote
the parallel transport of a vector v in T, M to T,,M along
the unique geodesic that connects x to y.

The sectional curvature of a manifold M at a point x € M
for a 2-dimensional space V' C T, M is the Gauss curvature
of Exp, (V) at . We denote by Ryp the set of uniquely
geodesic Riemannian manifolds of sectional curvature lower
bounded by ~;, and by Rr,up the set of uniquely geodesic
Riemannian manifolds of sectional curvature that is lower

and upper bounded in [K_; \, Kppax)-

min’
A set X is said to be g-convex if every two points are con-
nected by a geodesic that remains in X'. We note that if a
manifold M € Rpuyp has some positive sectional curvature,
it may not be allowed to have arbitrarily large diameter. For
example, since we work with uniquely geodesic manifolds,
if k,,;, > 0, it is necessary that the diameter of the man-
ifold is less than 7/ VFmin: Along these lines, take into
account that when we assume a ball of a certain radius is
in M, if K, > O the radius may be restricted. This is
not a limitation for instance in Hadamard manifolds, which
are complete simply-connected Riemannian manifold of
non-positive sectional curvature, and in particular are dif-
feomorphic to R™ and uniquely geodesic.

Let X be a uniquely geodesic g-convex set. A differentiable
function is p-strongly g-convex (resp., L-smooth) in X, if
we have (1) (resp. (2)) for any two points z,y € X:

2,1)2D @D rLa(a
P2 () ) (7 (@), Log, () < 2022

The function is said to be g-convex if p = 0. If we
parametrize a geodesic joining = and y as the constant
speed curve v : [0,1] — M such that v(0) = « and
~v(1) = y, we have that g-convexity can be written as
f(v(@®) < tf(z) + (1 —¢)f(y) and this also applies to
non-differentiable functions. A function f is L ,-Lipschitz
in X if |f(z) — f(y)| < Lyd(x,y) forall z,y € X.

Given a g-convex set X C M for M € Rpp, we denote
by F(X) the class of functions f : M — R U {+o0}
which are proper, lower semicontinuous and g-convex in X',
We denote by F(X) C F(X) the subclass of functions
which are also differentiable in an open subset N' C M
containing X, and are L-smooth and g-convex in X. We
denote by F), 1.(X) C Fr(X) the subset of those functions

that are p-strongly g-convex in X. Note the dependence on
X is important, since the possible condition numbers for
functions in F,, 1, (X) depends on X'

Given r > 0, and a manifold M € Rpyg, we define the

geometric constants ¢, = r\/|r, ;[ coth(ry/[r.]) =

O(1 + r/[k iy |) if Ky < 0 and ¢, = 1 otherwise, and
def

Sr = 7\ Fomax COL(r/Fmax) < Lif Koy > 0and 5, = 1
otherwise. Itis J, <1 < (,.. For a g-convex set ¥ C M
of diameter bounded by D and containing x € M, the
function ®,(y) = 3d(z,y)? is 0 p-strongly g-convex and
¢ p-smooth in X, cf. Lemma 21.

We define the indicator Iy (z) as 0 if z € X and +oo0 if
x ¢ X. A metric-projection operator Py : M — X onto a
closed g-convex set X is a map satisfying d(Px(x),y) <
d(x,y) for all y € X. B(x,r) is a closed Riemannian
ball of center # and radius 7. The big-O notation O(-)
omits log factors. We call a mapping 7' : M — M quasi-
nonexpansive, if d(T(z),z*) < d(x,z*), where z* is a
fixed-point of 7.

In this paper x¢ € M always represents an initial point of
the algorithm we consider in that context. We assume the
functions f : M — R we optimize contain at least one
minimizer denoted by =*, and we denote the initial distance
toit by R = d(zq,2*). A point z is an e-minimizer of f
if f(x) — f(z*) < e. For an algorithm which runs for T
iterations, we define R, = max;er d(z;, 2*). RGD is
defined by the recursive update:

L1 < Exp,, (—nV f(24)). (D
Uniform geodesic averaging of the iterates {x1,...,xr} is
defined recursively as
_ 1
T4l EXp:it mLOg?t (l‘t+1) (2)
fort € {1,...,7 — 1} where Z; < ;. The metric-
projected RGD (PRGD) update rule is
Tpy1 'PX(EXPzt(_va(xt)))-
And given an n > 0, the RPPA update rule is:
Tyy1 4 Prox, (z¢), 3)

where prox, () = argmin, e v {f(2) + %d(,@ x)?}ifit
exists, which is always the case in our setting.
3. Related work

3.1. Riemannian Gradient Descent

We limit this section to non-asymptotic analyses of RGD.
Unless we specify otherwise, RGD refers to (1) and for a
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g-convex compact X of diameter D, it assumes x; € X
fort = 0,...,T, while properties like L-smoothness are
assumed to hold in X. Previous works either take this
property as an assumption, rely on projections to enforce a
bound or incur slow converge rates. In contrast, we ensure
this property holds for X being a ball around a minimizer
without using projections to enforce it.

For }'H,L(X), Gabay (1982, Thm. 4.4) showed an analysis
2

of RGD with per-iteration descent factor ¢ = 1 — % i.e.,
satisfying f(zi11) — f(a*) < c(f(z¢) — f(2z*)), but only
in the limit. Smith (1994) presents an analysis of RGD
with rates O(ﬁ—z) and Udriste (1994, Theorem 4.2) obtained

the better rate 5(%) Zhang & Sra (2016) present several
results on stochastic or deterministic RGD, under a variety
of assumptions on the function. The rates depend on (

but R, = max,cr)d(z¢, z*) is not quantified. They
analyze PRGD for Lipschitz g-convex optimization, where
they can use D > R ... They claim a PRGD analysis
for smooth functions but the proof was found to be flawed
(Martinez-Rubio & Pokutta, 2023). (Bento et al., 2016b)
obtained a curvature-independent rate of RGD for Fr,(X)
when the manifold is of non-negative sectional curvature.
In this case, ¢, = 1 for every > 0 so this result is an
instance of the one in (Zhang & Sra, 2016). (Ferreira et al.,
2019) analyzed RGD for F7,(X’) but with some exponential
constants depending on the sectional curvature and the initial
gap. (Martinez-Rubio & Pokutta, 2023) achieve linear rates
of PRGD for F,, ,(X) assuming V f(z*) = 0 and (p <
2. For (X)) they obtain the curvature-independent rates

O(%ﬁmx) for RGD, but R, is not quantified. They also

provide an analysis of PRGD for F,, 1, (X') with a projection
oracle that is not a metric projection, obtaining 9] (%) rates.
(Martinez-Rubio et al., 2023) present a general convergence
analysis of PRGD for F,, 1, (X') for Hadamard manifolds
with rates depending on the Lipschitz constant of f in X,
namely 6(%CCCD), for D = diam(X) and C' = (L,/L+
2D)/Cp- EV f(z*) =0,itis (o = O(1).

In this work we show convergence rates of different vari-
ants of unconstrained RGD, providing different trade-offs.
Showing that the iterates stay naturally bounded in a set
whose diameter we quantify allowed us to bound R, in a
principled way instead resorting to assuming such a bound.

3.2. Riemannian Proximal Methods

To the best of our knowledge, the first work on the Rieman-
nian proximal point algorithm is due to (Ferreira & Oliveira,
2002), with an asymptotic convergence in Hadamard mani-
folds with an exact proximal operator. They also established
some properties of the algorithm in these manifolds.

There are numerous works on asymptotic convergence of

exact or inexact RPPA for g-convex optimization or more
in general for variational inequalities, but we focus on dis-
cussing works with convergence rates. (Bacdk, 2013) ob-
tained rates for RPPA in Hadamard manifolds, and more
generally for CAT(0) metric spaces, analogous to the clas-
sical Euclidean rates. Under a growth condition, (Tang &
Huang, 2014) present linear rates for an inexact RPPA for a
monotone operator F' in Hadamard manifolds. (Bento et al.,
2016b) rediscover the results of (Bac¢dk, 2013) regarding
the convergence rates for RPPA in Hadamard. Bento et al.
(2016a) obtains asymptotic convergence of RPPA under
the Kurdyka—ILojasiewicz inequality, without assuming the
manifold is Hadamard. Espinola & Nicolae (2016); Kimura
& Kohsaka (2017) also work in the general Riemannian
case and obtain non-asymptotic convergence of an RPPA,
but with a proximal operator not using the squared distance.
In this work, we provide non-asymptotic rates for inexact
RPPA in the general Riemannian case, which are the first
of their kind when allowing positive sectional curvature,
and we show how this framework can be implemented with
first-order methods in the g-convex smooth case. We present
empirical results in Section 5.

4. Convergence Results and Bounded Iterates

We summarize the convergence results for general manifolds
presented in this section in Table 1. Note that we obtain
better results for the hyperbolic space. The proofs can be
found in the appendix. Consider as an example a general
Hadamard manifold H. For a point x € H, for any » > 0,
and for the ball B(z,7), we have that ®,(y) = 1d(z,y)?
is O((,.)-smooth and 1-strongly convex, cf. Lemma 21.
Using this fact and (o (pe,) = O(¢%), we have that for
‘H, the expressions for the rates in Table 1 for strongly g-
convex smooth functions of RGD with both n = L' and
1= (LCor)) ™" are both O(¢%), despite of the seemingly
better rate of the former. We note that for RGD in the
hyperbolic space, we obtained better convergence rates than
for the general case, namely 6(L§2), 5(%), and D =
O(R), respectively, matching the Euclidean rates, up to log
factors.

4.1. Riemannian Gradient Descent

We start by showing that for g-convex L-smooth functions,
the iterates of RGD with the standard = 1/L step size
naturally stay in a Riemannian ball around the optimizer.
In the proof, we perform a careful analysis of the different
terms playing a role in the convergence in order to bound

def

the distances. Recall that R & d(xg,z*), and let p =

“This is the rate for Hadamard manifolds only, for the general
case see Remark 12.
"This result only applies to Hadamard manifolds.
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Table 1: Summary of the convergence results in this work
for g-convex functions in a ball X of diameter D centered at
2*. The column R? has a tick if the knowledge of the initial
distance to an optimizer R is not required. All iterates stay
in X. Note that 41, L and the Lipschitz constant L, depend
on the respective different sets X, so L in two rows need not
mean the same. The value n > 0 is a proximal parameter.

Method g-convex p-str. g-cvx D R?
L-SMOOTH

RGD, O(GR™E)  O(F)  O(Rg)

*Red. RGD, 1 O(G+EE) - O(ReG) X

RGDL—lc(;(lR) O(CRLf) 5(@1%%) O(R) X

RIPPA-CRGD  O(LE)  O(-L-)

02RE d2rp

'RIPPA-PRGD  O(GRLEY) O(GRL) O(R) X

O(R) X

NON-SMOOTH

RGD NSm 0GRy - om  «x
RIPPA o) o1+L) O(R) X

(1+5)/2.

Theorem 1. [|] Consider a manifold Mg € Ry, and
f € Fr(X) for X = B(x*, 9RCr) C Myp. The iterates
of RGD with ) = 1/ L satisfy xy € X. In addition, if Myp
is a hyperbolic space, and Xy = B(z*,oR), f € Fr(X),
then x; € Xy.

This result allows us to fully quantify the convergence rate of
RGD, without resorting to assumptions about the distances
of the iterates to the optimizers, as shown in the following.

Proposition 2. [|] Under the assumptions of Theorem I,

. e . 2 2\ . . .
we obtain an e-minimizer in O( R%) iterations, or in

O(Cr LR ) for the hyperbolic space. If f is also u-strongly

€
. . L LR? . .
g-convex in X, it takes O(+: log(==)) iterations.

We also note that RGD with any step size < 2/L never
increases the function value, and so in fact, we only need to
assume smoothness and g-convexity in the intersection of
X and the level set of f with respect to xy. We discuss the
size of the level set and convergence results which assume
these properties hold in the level set in Remark 11.

Interestingly, the general rate for f € F,(X') that we obtain
in Proposition 2 by using our iterate bounds coincides with
both the rate obtained from the curvature-dependent rate

O(Cr,. . LRZ) in (Zhang & Sra, 2016) and the seemingly

g
2
curvature-independent rate O( LR;"‘"‘) in (Martinez-Rubio

& Pokutta, 2023). This fact highlights the importance of
providing iterate bounds to fully quantify convergence rates.

We note that among all the algorithms in Table 1 apply-
ing to smooth functions, RGD with » = 1/L is the only
one that does not require knowing the initial distance to
a minimizer or a bound of it. If we know R or an upper
bound thereof, we can reduce the minimization of a function
f € Fr(X) to minimizing the strongly g-convex function
F(z) = f(z)+ y52d(z0, )% Indeed, applying RGD with
n = 1/L on F(x), we obtain rates O(C2 + LTRz) to find an
e-minimizer of f defined in a Hadamard manifold, where
L is the smoothness constant of f in B(xq, O(R(g)). For
the hyperbolic space we obtain 6(%{"2) with the smooth-
ness property required only in B(xg, O(R)). We can also
quantify the rate in the general case, see Remark 12.

Without some iterate boundedness like the one in Theorem 1
we do not know what rates this reduction would yield, or
what step size we should use, even though we have curvature
independent rates for strongly g-convex smooth problems.
This occurs because the smoothness and condition number
of the regularized function depend on the sets where the
iterates lie and they increase with the diameter of this set.

Alternatively, we can use RGD with a step size n =
1/(L¢g). As for the reduction described above, an upper
bound on R can be used instead of its value. Using this
step size, we show that the iterates do not move away from
the minimizer more than an amount of the same order as
the initial distance. Note that this step size is not in general
smaller than the one in Theorem 1, since L and ( are not
necessarily identical as they are taken with respect to sets
of different sizes. In fact, for the problem we implement in
Section 5, both step sizes coincide up to a small constant.

Theorem 3. [|] Consider a manifold Mg € Ryp. Let
f: M — R be g-convex in X = B(z*,R) C Mg and
L-smooth in B(z*,2R) C Myp. The iterates of RGD with
step size n = 1/(CxL) are quasi-nonexpansive. The con-
vergence rate is O(CpLR?/¢) and if f is also p-strongly
g-convex in X, then it takes O((Cp L/ ) log(LR? J€)) iter-
ations.

Note that even though RGD with n = 1/({zL) is quasi-
nonexpansive, we assume smoothness with respect to
B(z*,2R) for technical reasons. We can also extend our
techniques to show that for g-convex and Lipschitz func-
tions, the iterates of Riemannian subgradient descent move
away from an optimizer by at most a v/2 factor farther than
the initial distance.

Theorem 4 (Non-smooth RGD). [|] Consider a mani-
fold My € Ryus and f : My — R that is L,-
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Lipschitz and g-convex in X def B(x*, \/iR) C Miyg.
The iterates of Riemannian subgradient descent with n ]
R/(L,\/C z5T) lie in X and the geodesic average of the
iterates, cf. (2), is an e-minimizer of f after O(CRL§R2/52)
iterations.

Lastly, we present an analysis of a composite RGD (CRGD)
algorithm, of independent interest. This algorithm exploits
the ability to solve a structured problem for improved con-
vergence. Note that while the update rule of CRGD requires
just one call to the gradient oracle, its implementation could
be a hard computational problem. The interest of this re-
sult is that it can yield better information-theoretical upper
bounds on the gradient oracle complexity than other ap-
proaches. For instance, for the implementation of proximal
subroutines for the optimization of functions in Fr,(X), see
Proposition 8.

Proposition 5 (Composite RGD). [|] Let M € Ry and
let X C M be closed and g-convex. Given f € Fr(X),
and g € F(X), such that F = f + g is p-strongly g-convex
in X, and z* = arg ming, ¢ y F(x). Iterating the rule

. L
Tyy14-arg ganf(m), Logg, () +5d(xt, v)? +9(y),
ye

iter-

we get an e-minimizer of F in O(% log(w))

ations.

We note that in the proof of Proposition 5 we showed that
the method above is well defined, in particular, that the
argmin in the problem defining z;,; above exists.

4.2. Riemannian Proximal Methods

We present our results on proximal methods. For Hadamard
manifolds, it is known that the prox is a non-expansive
operator, cf. Appendix C.2. However, that is not the case in
general manifolds (Wang et al., 2023a, Section 6.1). Still,
we are able to show that the iterates of RPPA never move
farther from an optimizer than the initial distance in general
manifolds, which allows us to provide fully quantified rates
of convergence of it and its inexact version.

Proposition 6 (RPPA). [|] Consider a manifold M €
Ryus and a function f € F(M) with X = B(z*,R) C
M. Foranyn > 0 and all t > 0, the iterates of the exact
RPPA, ¢f. (3), satisfy d(x¢41,2*) < d(x¢, x*). In particular,
itisxy € X.

Further, we show that if the iterates are computed inexactly
as described in Algorithm 1, they only move away from an
optimizer by a small constant factor from the initial distance,
and we quantify the convergence rates. We note that we can
make the iterates stay in B(z*,r) forr > R as close as we
want to 2, by making the criterion in Line 2 more strict.

The convergence rates of RPPA can be derived from the one
of RIPPA when setting the error to 0, and in general they are
the same up to constant factors. This convergence result is
surprising, since RPPA is equivalent to RGD on the Moreau
envelope, cf. Lemma 9, which can be non g-convex when
positive curvature is present.

Theorem 7 (RIPPA). [|] Consider a manifold M € Ry
and a function f € F(M), and assume B(x*,3R) C M.
Using the notation in Algorithm 1, it holds that x; €
B(x*,v/2R) for every t > 0, and the output of Algorithm 1
after T = O(];—z) iterations is an e-minimizer of f. If f
is p-strongly convex in B(x*,\/2R), then d(x41,x*)? <

1 2 ; ; 2
Wd(xt, x*)? and in particular d(xr,x*)* < e4 after

T=0((1+ ﬁ) log(g—;)) iterations.

Algorithm 1 Riemannian Inexact Proximal Point Algorithm
(RIPPA)

Input: Manifold M € Rpus, initial point g € M, pu-
strongly g-convex function f : M — R, for p > 0,
and proximal parameter 1 > 0.

Definitions:
* Exact prox: zj,; = prox, ().
¢ Subgradient: vi11 € Of (x441)-
* Error 41 = nui+1 — Log,, | (24).

e Forp=0:A; = (t+1)"2 For > 0: A, = np/2.

1: fort =0toT — 1 do
1

Tyqq <approx. argmin{f(z) + —d(zy, 2)?}
n

2 zeM 2
* 2 1 * 2
st d(zegr, w7 )" < Zd(xt,x“_l) ,
[res1]l? < App105rd(Tes1, 24)2
3: end for

Output: x7 if © > 0, else uniform geodesic averaging of
x1, ...z, cf. Corollary 26

While Theorem 7 does not require smoothness, we can
exploit this condition to give an efficient implementation
via first-order methods. Note that we can guarantee the
condition in Algorithm 1 without knowing x}, ;, which is
what we are trying to approximate.

Proposition 8. [|] In the setting of Theorem 7, suppose
that in addition n = 1/L, B(z*,4R) C M, and f is g-
convex and L-smooth in B(z*,4R). The composite Rieman-
nian Gradient Descent of Proposition 5 in X = B(x,2R)
implements the criterion in Line 2 of Algorithm I at it-
eration t using O(1/04r) gradient oracle queries. If M
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is Hadamard, PRGD in X implements the criterion after
O(CR) iterations.

Recall that for a Hadamard manifolcj, itis 6, = 1, for all
r > 0, so in this case CRGD uses O(1) gradient queries,
while implementing each step of CRGD could be expensive.
On the other hand PRGD has a worse gradient complexity
but can be implemented easily, since projection onto a ball
can be done in closed form (Martinez-Rubio & Pokutta,
2023).

We note that the first iteration of CRGD with the squared-
distance regularization in Proposition 8 is equivalent to a
step of PRGD with a different step-size and thus it can be
easily implemented, see Appendix B.1.

We conclude this section studying the smoothness of the
Moreau envelope, tightly related to the proximal point al-
gorithm. In particular, this algorithm is equivalent to per-
forming RGD on this envelope. This is a very useful tool
in the design of optimization algorithms (Parikh & Boyd,
2014; Davis & Drusvyatskiy, 2019). First, we provide an
expression for the gradient of the Moreau envelope.

Lemma 9 (Gradient of Moreau envelope). []] Let M be a
uniquely geodesically Riemannian manifold, let X C M
be a g-convex closed set. For f € F(X), and the Moreau

envelope of g S f+ Ix withn > 0, define as

M) ™ min (£(2)+ Le(2) + 5,2,

we have VM (x) = f%Log:ﬂ (prox,, (7))

Now, we can provide a bound for the value of the Moreau
envelope smoothness.

Theorem 10 (Moreau envelope smoothness). []] Consider
Mg € Rip, and let X C Mg be a g-convex closed set.
For € F(M), we have that the Moreau envelope of g =
f + Lx with parameter n > 0, defined for all © € Myg as

def

M(z) = mingepm; 5 {f(z)—i—[;((z)—&—ﬁd(x, 2)2}, satisfies
forall x,y € M:

M(y) < M(z) + (VM (z), Log,(y))
Cd(m,proxng (z))

d 2,

In particular, if X is compact and its diameter is D, the
Moreau envelope M (x) is (Cp/n)-smooth in X.

We note that if x;, > 0, the Moreau envelope is (1/7)-
smooth. That is, in this case the smoothness is not degraded
by the curvature with respect to the Euclidean case, while
the g-convexity can be lost.

The intuition about the proof of Theorem 10 is the fol-
lowing. The epigraph of the Moreau envelope can be

seen as the union of the epigraphs {(z, f(y) + Ix(y) +
%d(x,y)z) | z € Myg} for all y € Myp. Conse-
quently, given the prox, ;(z), we have that the quadratic

Uly) = f(z) + 5d(z,y)? satisfies U(y) > M(y), for all
y € X. And in fact, in light of the definition of M (-) and of
Lemma 9 that shows VM (z) = —-Log, (prox,(z)), we
have U(z) = M (x) and VU (z) = VM (z). The quadratic
U (-) is itself smooth by the cosine inequality, cf. Remark 20,
so it has a quadratic in 7T, M1, whose induced function
in Mpp upper bounds M (-). In the supplementary mate-
rial we present a proof based on this intuition and then we
present another analysis, that although suboptimal, shows a
different point of view on the problem.
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Figure 1: Comparison of RIPPA and of RGD with = L™}
and n = (L(y) for solving (4) in terms of squared dis-
tance to the optimizer z* for the hyperbolic space H? with
n = 1000 centers and dimension d = 1000. We observe
monotonous decrease in distance in all of our experiments.

5. Experiments

We present experimental results for computing the Karcher
mean in the d-dimensional hyperbolic space H?, and the
d(d + 1)/2-dimensional manifold of symmetric positive
definite matrices S¢ = {M € R™*¢: M = MT, M = 0}
with the affine-invariant metric (Hosseini & Sra, 2015). H¢
has constant negative sectional curvature everywhere and
we scale it such that the curvature is —1. The sectional
curvature of Si equipped with the affine-invariant metric
lies in [—0.5, 0] (Criscitiello & Boumal, 2020, Prop I.1). We
implement RGD with step sizesn = 1/L and n = 1/(L()
as well as RIPPA performing a constant number of iterations
of PRGD to approximately solve the proximal problems.
The first step can be taken as CRGD, as we explained in
Proposition 8.

We implement this problem using the Pymanopt library
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(Townsend et al., 2016), published under the BSD-3-Clause
license. We run until a fixed precision is reached in function
value, and because of this, different algorithms stop at points
at different distances from z*. We provide the results in
function value and more experiments in Appendix G, where
we observe similar behavior. The experiments show that (A)
RIPPA is a competitive algorithm for solving g-convex and
smooth optimization problems and that (B) the distance of
the iterates of RGD and RIPPA to the optimizer * mono-
tonically decrease in practice, which goes beyond what our
theoretical results predict.

For M € Ri,ug, the Karcher mean is defined as

. der 1 " 2
min {F(x) = o 2_:1 & (x, y»} : &)
For a g-convex set X C M containing all points y;, the
function F' is { ,-smooth and § p-strongly g-convex in X,
where D & diam(X). In this problem, we can analytically
compute an upper bound on R, which allows us to choose
the step sizes in a principled manner, see Appendix F.

While RGD with n = ((zL)~! is quasi-nonexpansive by
Theorem 3, Theorem 1 and Proposition 8 only guarantee
that RGD with n = 1/L and RIPPA naturally stay in a ball
around the optimizers with a radius that is larger than the
initial distance R = d(z*, x). Based on these results, one
might expect to see some increase in distance to the opti-
mizer at some point for the latter two algorithms. However,
in Figures 1 and 2 and in the results for different parameters
in Appendix G, the distance of the iterates to the optimizer is
monotonically decreasing for all algorithms. In fact, we ran
the algorithms for different settings, different initializations,
and we performed a grid search on the step sizes. In all in-
stances except those in which the step size was too large and
the algorithm diverged, the distances where monotonically
decreasing. This indicates that our bounds on the distance
of the iterates to optimizers in Theorem 1 and Proposition 8
could potentially be improved. Alternatively, it might be
that the distance between the optimizers and the iterates
only increases for some pathological functions which do not
arise in practice.

In Figure 2, RIPPA outperforms both RGD variants. The
results for RGD with both step sizes are similar, which is be
due to the fact that for the Karcher mean the step sizes and
the convergence rates coincide up to constant factors on any
M € Rrus, see Appendix F. This exemplifies the issue
with stating smoothness and strong g-convexity constants
of a function without specifying the size of the set in which
they hold. Due to Theorem 1, we have that the iterates
of RGD with = 1/L stay in B(z*,¢oR) in H%, which
allows for larger step sizes than in general manifolds. This
means that one would not expect n = 1/(L(g) to provide
an advantage in this setting, which is what we observe. We

100

10—2
[a\]
51074
&h
8
< 10~6

= RIPPA
10—8 ] RGD: n= Lil

do not have such a refined result for RIPPA in hyperbolic
space. This may be why in this special case, we see in
Figure 1 that RGD with » = 1/L converges significantly
faster than RIPPA while RGD with n = 1/(L(g) is the
slowest method.
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Figure 2: Comparison of RIPPA and of RGD with p = L™*
and 1 = (L(g)~! for solving (4) in terms of squared dis-
tance to the optimizer z* for S1% with n = 1000 cen-
ters, and dimension d(d + 1)/2 = 5050 . We observe
monotonous decrease in distance in all of our experiments.

6. Conclusion and Discussion

In spite of recent advances in Riemannian optimization, the
interplay between the curvature of the manifolds and the
behaviour of optimization algorithms is still not fully un-
derstood. In this article, we advance the understanding on
this connection for RGD and RPPA algorithms by providing
full convergence rates without artificial assumptions, and
different variants that enjoy different convergence rates, trad-
ing off its dependence on geometric constants with some
guarantee on iterate boundedness or on efficiency of im-
plementation. Further, we presented the first analysis of
the inexact Riemannian proximal point algorithm which
holds in general manifolds. We provide non-asymptotic
convergence guarantees and explicitly show that its iterates
also stay in a set around an optimizer, and provided new
properties of the Riemannian proximal operator.

One presented algorithm guarantees that the iterates move
away from an optimizer at most a small constant factor far-
ther than the initial iterate. An interesting future direction
of research is studying whether the RGD rule is a non-
expansive operator for some choice of the step size. This
would have implications to algorithmic stability and differ-
ential privacy.

For smooth functions, it is of interest to explore whether
one can implement a Riemannian inexact proximal point
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algorithm by using a constant number of iterations in the sub-
routine, and therefore avoiding an extra logarithmic factor
in the convergence results. Additionally, studying whether
we can get an efficiently implementable algorithm that ob-
tains the best of all of our rates and iterate bounds is a very
interesting open question.
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Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point

A. RGD proofs

def 5

Theorem 1. [|] Consider a manifold Myp € Rip, and f € Fr(X) for X = B(z*,pR(r) C Myp. The iterates of

RGD withn = 1/L satisfy z, € X. In addition, if Myg is a hyperbolic space, and Xy, = B(z*,¢R), f € Fr(X), then
Tt € X;L[

Proof (Theorem 1) Define ¢ = (1 +/5)/2and ¢ = Core,- We first check that ¢ = O(CR). Sinceitis ¢, €

" NBmin |, T/ | Kpmin | + 1] and ¢, > 1, for all 7 > 0, we have CWRCR < @R\/|kpinlCr +1 < 30@2{ +1= O(CI%). Now
denote A; = f (:17,) f(z*). We show by induction that d(x¢, z*) < @R(p, for all ¢ > 0. This holds for ¢ = 0 by definition

o) suppose the property holds for all ¢ < ¢ and let’s prove it for ¢ + 1. Let 7, = max,>o{n | Expwt( nVf(x)) €

B(z*,pR(z)}. Note we can write a maximum because the ball is compact. It is enough to show 7. 2 +. Suppose 7, <
def
") =

and let 2} ., = Log,, (—n.V f(x)). By definition, it must be d(x}, ,,z
have for all ¢ < ¢:

= @R(p. We will arrive to a contradiction. We

L 1
Aijr1 — Ay <(Vf(x;), Log,, (ziy1)) + Ed(xiJrhxi)? = —ﬁ||vf($z')||2, )

where we used L-smoothness of f in B(z*, pR(y) the definition of x;, 1 for i < ¢, and the induction hypothesis that allows

us to use the L-smoothness property. Similarly, by the definition of z}_; and defining A}, ; = f(x},,) — f(z*), we have:

Ln;

L @®
Alys = A1 < (V100 Loty () + 5d warse) = (- + 5 ) IVSGOI 2 =5 I9F@IP ©

where (1) is equivalent to 77, € (0,1/L). We also have the following bound, for all i < t:

O) @
A; < (=Vf(zi),Log,, (z7)) < g [d(xi, 2*)? = d(wigr, 2)? + Cd(wi, wi41)?]
L

= D atwn o) — i) + IV S

(7

where (1) uses g-convexity of f, (2) uses the cosine inequality Remark 20 and the bound ¢ d(z:,2+) < ¢ which holds by
induction hypothesis and monotonicity of r — (.. Likewise, we have

1

g [d(o 2" = dlal 2]+ SV )P ®

Ay <

Multiplying (5) by ¢ and adding it to (7), and similarly with (6) and (8) we obtain:

L
CAi1— (C—1A; < 5 (d(al:i,gl:*)2 — d(xi+1,x*)2) fori < t
9)
L * *
TI*L(CAQ-H —((— DAy < 9 (d(xt,x )2 - d(x;_,_l,x )2)
Adding up from ¢ = 0 to ¢, we obtain
= L Ld(zg, z*)?
N« LCAL 4+ (A1 — nu L) + 0 LA, + Z A+ 5d(¢2+1,$*)2 <(¢C—-1Ap+ +
i=1 (10)
@ ¢r
< (LB
- 2

where (1) uses that by smoothness Ay < M < LTRZ. Using 7, L € (0,1) dropping all the terms with A;, Aj ; > 0,
and simplifying, we obtain (2) below, while the rest of the following holds by the definition of ¢, and the fact that for all

r > 0,wehave ¢, > 1and (, € [r\/|Kpin|s "V |Emin| + 1]

@
d(z)y1,2%)? < (R® < (0CrBRA/|Fminl + 1)R? < (9 + 1)R? < (9 + 1)GRR®* = Q>R
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But this contradicts the definition of z} ; for which d(z}_ ,,2*)? = ©?CAR?. Thus 7, > 1/L, and the inductive statement
holds.

For the statement about the hyperbolic space, it is enough to show it for k,;,, = K. = —1, since the other cases can
be reduced to this one by rescaling, see (Martinez-Rubio, 2020, Remark 24). We prove d(x:, z*) < ¢R by induction in
a similar way. It holds for ¢ = 0 by definition and notice that the proof above also works for this case until (10) if we
now consider 7, = max,~o{7 | Exp,, (—n:V f(z¢)) € B(z*,pR)}, which yields d(z}, ,,z*) = ¢R, we make use of
¢ = (g, and use L-smoothness in B(z*, o R). However, we substitute the right hand side of () in (10) by p>LR?/2

which holds since by (Criscitiello & Boumal, 2023, Proposition 13) we have Ay < ”’ngj for the hyperbolic space, and

using ¢ < ¢R+1and (y > R, webound (( —1)/Cz < ¢, and use ¢ + 1 = ¢2. We note that (Criscitiello & Boumal, 2023,
Proposition 13) states global g-convexity as an assumption, but the proof only uses f € Fr,(X). Now we conclude as before.
Using 7. L € (0, 1) dropping all the terms with A;, A}, ; > 0, and simplifying, we obtain d(z},,2*)* < p*R*. This
contradicts the definition of z_; for which d(z}, |, 2*)? = ¢?R”. Consequently, 7, > 1/L, and we showed the inductive
statement. O

We note that if we were to assume smoothness in the closed ball B(z*, 29 R(y), we could just write (5) forall i =0 to ¢,
by arguing that z; is in such ball since d(x¢41,2*) < d(x¢, 2*) + d(xi41, 2¢) < @Rz + @Ry, where the bound on
the first term is due to the induction hypothesis and the one of the second term is due to the definition of x;; and that
L-smoothness implies ||V f(z¢)|| < d(x;,z*). In this case, the proof proceeds in a similar but simpler way, without
having to argue by contradiction or having to talk about the last iterate using a different learning rate. But the proof we
presented requires smoothness only in a smaller region.

2
Proposition 2. [|] Under the assumptions of Theorem 1, we obtain an e-minimizer in O( 123%) iterations, or in O((r

LR?
=)

for the hyperbolic space. If | is also u-strongly g-convex in X, it takes O(% log(LTRZ)) iterations.

Proof. (Proposition 2) By Theorem 1 our iterates stay in X, that is, R, < ¢R(g. Note ( pre = O(Cﬁ). For the
g-convex case, the corollary is an immediate consequence of this iterate bound and of the convergence result in (Zhang &
Sra, 2016, Theorems 13). This theorem proves rates O(C » L2 ), which by using the bound on R, yields O((7 LA ).

€ €
2
LRmax

Similarly, if we apply the RGD result in (Martinez-Rubio & Pokutta, 2023) that has rates O(==22<) for a function in
F1(X), we obtain the convergence rate O(Cf2 L§2 ). Note that the two approaches give the same rates.

For the p-strongly g-convex case, the corollary is an immediate consequence of our iterate bound and both the result
by (Udriste, 1994) and the one by (Martinez-Rubio & Pokutta, 2023, Proposition 17) with X" being the ball Theorem 1,
so that the algorithm becomes RGD. Both have rates of O(ﬁ log(%ﬂx))). The result is derived by the bound

f(z0) — f(x*) < LR?/2 due to smoothness. Note that due to our iterate bounds, we just need to assume L-smoothness and
the ji-strong g-convex in X = B(x*, Rz (1 + v/5)/2) and without these bounds, this rate is not obtained for the previous
results for RGD since otherwise we cannot even specify where the L-smoothness and the p-strong g-convex properties hold
and we cannot necessarily take the value of some global properties since for many manifolds there is no globally smooth
strongly g-convex function with finite condition number, namely all Hadamard manifolds for which < 0 (Criscitiello
& Boumal, 2021).

max

We note that for the strongly g-convex case, we could also use the result in (Zhang & Sra, 2016, Theorems 15) yielding the
2 2
rate O((Cp,, + 3)log(#5)) = O((Gx + ) log(+1-)).

max €

O

Remark 11. We note that RGD with step size n < 2/ L does not increase the function value. Indeed, assume smoothness
holds between x; and x4 = Exp,, (—nV f(x)). We have:

f(@es1) < fae) +(Vf(21), Log,, (x141)) + éd(xtvxt-i-l)Q = f(@e) + (—n+ Ln?) |V f(z)]? @ f(@e),

where (D) is equivalent to n) < 2/ L. This means that if Y o {y e M| f(y) < f(zo)} is the level set of f with respect to
T, the iterates of RGD in the setting of Theorem 1 stay in X N and we only need to assume g-convexity and L-smoothness
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in that set. Note that if f satisfies these properties in Y, one can also obtain a convergence result by using diam(Y) as a

bound for R,,... And if f is p-strongly g-convex in Y we obtain the rate 6(L/u) We can compute a bound that suggests
that in general, the level set could have points that are R/ L/ 1. away from the minimizer. Indeed, let y € ), we obtain

@ ©)

@
Dd(y.2)? < f(y) = f@*) £ flao) = () £ Sd(ao,a")?,

Nt

where above (1) uses pi-strong g-convexity, 2) uses y € Y and (3) uses L-smoothness. This bound can be much larger than
the O(R(g) bound in Theorem 1.

Remark 12. We note that if we know a valid upper bound R on the initial distance, we can instead minimize F(x) S
f(x) 4 r(x) where r(z) = sezd(xo, 2)% In that case, a point & that is an (¢ /2)-minimizer of v will be an € minimizer of

f, since

f(@) < f(@) +r(2) < f(27) + (@) + 5 < f@7) +e

Denote #* = argmin, r(x). We have by Lemma 27 that d(i*,x¢) < d(z*,x0) < R. The smoothness constant of F(-)
in X < B(i*,pRCp) C B(xo, pRCy + R) is L + CoRCu+RTZ = O(L + C}%%), where L is the smoothness constant
of fin X C B(xg,pR(s + R). The strong convexity constant of F(-) in X is at least %200R¢,+R- The computation
of these smoothness and strong convexity constants comes from Lemma 21. We know by Theorem 1 that the iterates of
RGD on F(-) with step size 1) S (f, + C¢R<R+R)_1 stay in X and thus by Proposition 2 we obtain the convergence rate
~( A LR?
dpR¢g+R  E0oR(g+R

). If we consider for instance a Hadamard manifold, that satisfies 6, = 1 for any r, we obtain the

~ 7 p2
convergence rate O(C 12% + %) We note that we can reduce the logarithmic factor if we use the reduction in (Martinez-Rubio,
2020).

In the hyperbolic space H of curvature —1, we make use of (Criscitiello & Boumal, 2023, Proposition 13), which says
that for a differentiable g-convex L-smooth function f : H — R in B(xo, R) with a global minimizer x* in that ball, it is
flxo) — f(x*) < 4Ld(xq, x*)Q/Cd(wmz*). With this proposition, we conclude that without loss of generality, we work with

e < LR? /Cr- On the other hand, using Theorem 1 and the reasoning above, we conclude that with L being the smoothness
def 1

constant of f in X = B(Z*, pR), we obtain a convergence rate of 6(C n+ Lﬁz) = 6(%{"2) The last expression holds by
our remark on the value of .

Now we prove our results for RGD with a different step size. The proof of iterate boundedness is similar to our proof of
Theorem 1.

Theorem 3. [|] Consider a manifold Myp € Ryp. Let f : M — R be g-convex in X < B(x*, R) C Myp and L-smooth
in B(x*,2R) C Myp. The iterates of RGD with step size n = 1/(Cz L) are quasi-nonexpansive. The convergence rate is
O(CxrLR?/¢) and if f is also p-strongly g-convex in X, then it takes O((CgL /) log(LR? /¢)) iterations.

Proof. (Theorem 3) We show d(x¢11,2%) < Ry ot d(x¢, x*), for any minimizer 2* and by induction, for any R; < R.
By the cosine inequality Lemma 19, and the monotonicity of 7 — (.., we have

d(zp41,2%)°

A

d(xe,27)* + Cpd(e, 2e11)* + 2(nV f (1), log,,, (7))

d(ze, 2*)? + PV f (@) ||* — 24
(11)
d(zy, x*)% + 20A(L¢gn — 1)

I AN INE) |

d(zs, 2*)?
where A; = f(z;) — f(z*). (D holds by g-convexity, (2) follows by ||V f(x;)|> < 2LA;, which holds by the following
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argument: Let #,11 < exp,, (—+V f(2;)), then
Ay = f(xe) — f(@7) = fze) = f(@41)
> (~Vf (), 108, (1)) — (e 1)

1
> V(@)

V

Note that we chose a different step size than the one used in the algorithm in this argument. We used smoothness between
x¢ and Z441. By our assumption that f is L-smooth in B(z*, 2R), it suffices to show that Z;11 € B(z*,2R). We have that
d(ﬂ?t,i‘t_t,_l) = %HVf(xt) - Vf(.lf*)H < d(xt,a:*). Hence d(.f?t+1,.’13*) < d(xt,a:*) + d(.]?t,.f?t+1) < 2R.

Further, (3) holds by choosing 7 = 1/(CzL). This shows our desideratum d(x;i1,2*) < d(xs,2*), which

means that RGD with np = C;%L is quasi-nonexpansive. The proof convergence follows in analogy to Proposition 2. We

provide the proof in Corollary 13 for the sake of completeness. O

Corollary 13. Under the assumption of Theorem 3, the convergence rate of RGD is O((RLR2 /e) and if f is also p-strongly
g-convex in X, then it takes O((Cg L/ 1) log(LR? [¢)) iterations.

Proof. In Theorem 3 we have shown that RGD with n = 1/({x L) is quasi-nonexpansive. In the following, we show the
resulting convergence rates. By L-smoothness of f in X, we have

L 2 1 1 2 QCR —1 2
A1 — Ay < (Vf(at),Log, (x +Zd(tpg1, 1) = | ——— + —— | |VF(x _ V()2
t4+1 t < (Vf(zt), Log,, (v1+1)) 5 (Tiy1,4) ( oL ZC}%L) IV f(ze)l 221 IV f ()l
(12)
By the g-convexity of f, the cosine inequality Lemma 19 and (y(,, ,~) < (g Which holds by the non-expansivity of RGD

and the monotonicity of r — (,. we obtain (D below

Ay < (=Vf(x),Log,, (z*)) (s, 2*)? — d(wpg1,2%) + (e, w041)]

S

2n (13)
1

[d(we, 27 = d(esr,27)%] + S IV (@),

where (2) follows by the definition of z,; and 7. Multiplying (12) by C' = ¢2/(2(; — 1) and adding it to (13), we have

L
CAt+1 - (C - 1)At S % (d(xt,x*)z - d($t+1,$*)2) . (14)

Now summing (14) from ¢ = 0 to 7' — 1, we obtain @ below:

@ T-1
TAp < CAp + ) A

t=1
@ (C = 1)Ag + Lpd(zo, z*)? B Llpd(zr,x*)?

0 2 2 (15)
©) 2 #2
= (C*lJrCR)LR _ L¢pd(zr, 2”)

2 2

@ 3¢ LR®  Lipd(er,a*)?
- 2 2 2

where (1) holds since A; > 0, C' > 1 and (3) follows from Ay < LTDz, which is implied by the L-smoothness of f. Finally
(@ can be shown since C' — 1 + (y, is increasing for (5 € [1, 00) and the limit at +oc is 3¢z /2.
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Now, dividing (15) by 7" and dropping the negative terms, we have Ap < 3(121;1%2. Thus, we have that Ap < ¢ for

2
T> %. We now prove the result for the u-strongly g-convex case. The algorithm is the same, and thus the iterates
stay in B(z*, R). The guarantee we just showed for the g-convex case implies (2) below:

® D s¢yLa(r, 0 @
Bier,a)? < flar) - fa) £ SRSty g2

where (1) holds by pi-strong g-convexity and (3) holds if T = (3§R£] Consequently, after O(QRL) iterations we reduce the

distance squared to the minimizer by a factor of 2. Applying the same argument again sequentially for r = [og, (& ? : )]

stages of length 7', we obtain that after T T = O(¢ R% log( L? )), iterations we have

Ld(zg,z*)?

o <e.

fleg) = f(2") < Ld(zp,27)* <
O
Theorem 4 (Non-smooth RGD). []] Consider a manifold Myp € Ryup and f : Mypg — R that is L,,-Lipschitz and

g-convex in X = B(x*,\/2R) C Myg. The iterates of Riemannian subgradient descent with 1 == R/(L,\/C z5T) lie in
X and the geodesic average of the iterates, cf. (2), is an e-minimizer of f after O(CRLIQ)R2 /%) iterations.

Proof. (Theorem 4) Denote by v; € Jf(z;) the subgradients obtained and used by the algorithm. By the Lipschitzness
assumption, it is ||v;|| < L,. We show by induction that d(x¢,x*) < Rforallt > 0. For t = 0 the statement holds by
definition. Assume that the statement holds for ¢ < T — 1, then we show that is also holds for ¢ + 1. By g-convexity of f,
we have for: < ¢

f) = F(&™) < (v, ~Logy, (27)) = %<—Logm (#111), ~Log,, (z*))

@ 4

= 2n [Crd(zs, xig1)? + d(zi, %) — d(zig1, 27)?]
oF B

S % [d(xi’x*)Q - d('ri-‘rla'r*)Q] + %7

where (1) holds by the cosine inequality Remark 20 and the monotonicity of R — . Further, () uses the definition of z;
and Lipschitzness of f in X'. Summing up the previous equation from ¢ = 0 to ¢, using d(xg,z*) = R < V2R t<T —1,

_ __R :
and n = LT yields

0<2n) [f(z:) = f(2°)] € R® = d(wey1,27)? + (Gt + 1D)LEn* < —d(wer1,2%)? + 2R (16)
i=0

This proves the induction statement, since d(x;;1,2*) < v2R. From (16) with t <~ T — 1 and dropping the negative
distance term, we obtain

S oo B VGLR
7 L0~ S < =

Lastly, note that geodesic average of {z, ..., z7_1} denoted by Z_1 as defined by (2) satisfies f(Z7_1) < % ZtT;()l f(zy)
by Corollary 26.

B. RPPA proofs

def

Proposition 6 (RPPA). [|] Consider a manifold M € Ryup and a function f € F(M) with X = B(z*, R) C M. For
anyn > 0 and all t > 0, the iterates of the exact RPPA, cf. (3), satisfy d(xyy1, 2*) < d(xt, x*). In particular, it is v € X.
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Proof. (Proposition 6) Fort = 0, zo € B(x*, R) by definition. Fix ¢ > 0 and assume d(z;, z*) < R, then we are done if
we show d(x¢11,2%) < d(xy,2*) < R. By Lemma 27, it is d(x¢, z141) < d(z¢, 2*) < R. By the triangular inequality, we
have that the diameter of the geodesic triangle Ax;1z,2* is 2R. This fact along with the monotonicity r — ¢, and the
cosine inequality Lemma 19 implies (2) below

NS

I =

0 < flzrg) = f(&7) < —(-Log,,,, (1), Log,, ., (z7))

1) 1 1
—%Rd(ﬂft-s-l, z)? — id(l‘t-&-l; )%+ §d($t7$*)2

a7

IN)  IAD)

DN |

1
——d(xp1, ) + id(zt,x*)z,
where (1) holds because by the first-order optimality condition in the definition of Zi41, we have that f%Logzt+1 (zy) €

Of (z¢t41)- In (2) we use Lemma 19 and in (3), we drop one negative term. The conclusion from this inequality is what we
desired to prove. O

Theorem 7 (RIPPA). []] Consider a manifold M € Ryup and a function f € F(M), and assume B (z*,3R) C M. Using
the notation in Algorithm 1, it holds that x; € B(x*,\/2R) for every t > 0, and the output of Algorithm I after T = O(I;—:)
iterations is an e-minimizer of f. If f is p-strongly convex in B(x*,/2R), then d(x;11,2*)% < md(zt, x*)? and in
particular d(zr,x*)? < eq after T = O((1 + ﬁ) log(f—;)) iterations.

Proof. (Theorem 7) We show by induction that z:; € B(z*,v/2R) for all t > 0. For t = 0 the property holds by definition.
Now assume it holds for ¢, we will prove it for ¢ + 1. We first show that d(z¢41,2*) < 3R. We have that

@

d(wr1,20%) < d(wee, ai) +d(at2fy) < gdlaneiy) +d(e,a®) < Sd(ane) < 3R. (18)

where in (1) we used the criterion in Line 2 and that by Proposition 6 it is d(x} 11, 2%) < d(x, 2*). In () we used Lemma 27,
and we use the induction hypothesis in (3). We conclude that diam(Axz, 1 2:0*) < d(xsq1,2%) + d(xs, %) < 5R. By
u-strong g-convexity of f, with possibly u = 0, v;11 € 9f(x¢11) and the definition of r; 1, we have

0< fmegr) — fla")

< —(vt41,Log,, , (z7)) — gd($t+la x*)?

1 " 1% *
;<—L0gmt+1(3«”t> — 141, Log,, , (27)) — §d($t+1>$ )

INE)

1 1) 1 1 N 1 T 2 A N "

Agyq 9 M 2
d )¢ — =d *
2 (Tey1,27) 5 (Tey1,27)

ING)

1 * 1 *
%d(xﬂ_l, T )2 + %d(xt,x )2 +

((Aryr = L= np)d(zesr, @) + d(xg, 2%)?) .

1
2n
(19)
where in (1), we used the cosine inequality Lemma 19 for the first term in the inner product. We also bounded the second
term in the inner product by Young’s inequality. In (2) we use the criterion in Line 2 to bound ||, 1]|? and cancel the result
with the first summand. We now separate two cases:

G-convex setting. From (19) with u = 0 and A1 = (¢ + 2) 2, we have that

t
1 )
d(l‘t.ﬁrl,l‘*)Q S (1 — At+1)71d(5€t,x*)2 S H ﬁd(ﬁﬁo,f*)Z S 2R2, (20)
i=0 o

18
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where (1) holds since HE:O W < 55, by Proposition 18. This proves the induction statement. Note that changing

the value of A, 1, we could have reduced the constant 2R? above to something as close to R? as we want. For the
convergence, we now sum (19) from ¢ = 0 to 7' — 1, divide by T and use d(xg,z*) < R:

1 T—1 1 ) T—1 , @ 1 , 2T—1 @SRQ
— —f(z*)< — | R*—d )2 Apyqd )l < — | R*+2R A <
T ;f(xtﬂ) flz*) < 5T ( (1, 2%)" + ; t41d” (Te41, @ )) S T < + ; t+1> ST

In (1), we dropped a negative term and used (20). Then, (2) follows from Zthfol A1 <30, t% < %2 < 2. By using

the uniform averaging scheme in Corollary 26, we obtain f(Z7) < + Zz:ol f(z¢+1), which concludes the proof for the
g-convex case.

Strongly g-convex setting By the definition of 77 and A4, ; in the strongly g-convex case, (19) implies

d(xs, x%)?

<2 o < (1 )~ (t+1) g2 21
S Trogus S < (1 +nu/2) R*, (1)

d(ze41,2%)?

Since 1 > 0, we have that 0 < < 1 and hence d(z¢41,2*) < R, which proves the induction statement. Now, if we

1
) 1+A1zu/2
set T > (1+2/(um)) In(L) = O(1 + ), we have that (21) with ¢ < T — 1 implies

d(zr,z*)? < (1 - H;/(MW)TRQ < R?exp <1+;/T(m7)> < &g,

which concludes the proof. O

B.1. RIPPA implementation via composite RGD or PRGD

We start by showing that a particular implementation of composite RGD enjoys linear convergence, and as a corollary, we
obtain that the subroutine in Line 2 of Algorithm 1 can be implemented by using only O(1) gradient oracle calls when
applied to smooth g-convex optimization defined in Hadamard manifolds, and using O((y) iterations of PRGD. We note
that if g is an indicator function, the composite RGD algorithm below is not the same as PRGD in general. That is, the
resulting algorithm is a projected RGD that does not use a metric-projection.

Proposition 5 (Composite RGD). [|] Let M € Ryuyp and let X C M be closed and g-convex. Given f € F(X), and
g € F(X), such that F = f + g is p-strongly g-convex in X, and z* = arg min, ¢y F(x). Iterating the rule

. L
Tyq14arg Igl(mWf(xt), Log,, () +5d(@, y)* + g(y),
ye

w )) iterations.

we get an e-minimizer of I’ in O(% log(
Proof. (Proposition 5) We first note that the arg min in the update rule exists. Since g is proper, lower semicontinuous
and g-convex in X, we have that ) L xn dom(g) is non-empty, closed and if € ) and v € dg(z), we have that
{y € Y| Ld(z,y)? + (v,Log,(y)) < Ld(zy,2)?} is compact by strong convexity of z — d(z;,x)?. We also have
that {y € Y | Zd(2,y)* + (Vf(2),Log,, (y)) < Ld(z¢,2)* + (Vf(z), Log,, (2))} is compact. The union of these two
compact sets is compact and if we consider z not in this union, we have (2) below

@
(V5 (20), Logs, (2)) + S, 2 +9(z) 2 (Vi (w0), Loy, () + g, 22 + g(x) + (v, Log, (2)

@

=V (w0), Log, () + 5 dlw,2)? + g(o),

where (1) uses v € 9g(z). This means that the minimization problem can be constrained to this union only and since it is
compact the arg min exists.
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Now we prove the convergence result. We have
O L )
F(zer1) < min g f(ze) +(VF(2e), & = 20)a, + 5 d(2,20)" + g(2)

%) min {F(x) + gd(x, xt)Q}

o2
min {aF(w*) +(1—a)F(x) + de(x*,xt)z}

a€l0,1]

IN@)

IANGE)

min {F(xt) —a (1 - aL> (F () — F(I*))}

a€l0,1] 7

@)

L (F(a;) - F(a")).

Fle) =7

Above, (1) holds by smoothness and the update rule of the composite Riemannian gradient descent algorithm. The g-
convexity of f implies (2). Inequality (3) results from restricting the min to the geodesic segment between z* and z; so that
z = Exp,, (aLog,, (z*) + (1 — @)Log,, (z+)). We also use the g-convexity of F. In (4), we used strong convexity of F to
bound &d(z*,x;)? < F(x;) — F(z*). Finally, in (5) we substituted a by the value that minimizes the expression, which is
1/2L. The result follows by subtracting F'(z*) to the inequality above and recursively applying the resulting inequality
fromt=1to T > ﬁlog(w). O

53

We now show that for smooth functions, we can simplify the inexactness criterion of RIPPA.

Lemma 14. Under the assumptions of Theorem 7, suppose that in addition B(z*,3R) C M, f is L-smooth in B(x*,2R)
and let

, Ai1103R

C; & min {1 4, + . (22)
! / 2(nL + C3gr)® + 28¢4103R

It is enough that we guarantee d(x} 1, t41)* < Cyd(x} 1, x1)? in order to satisfy the inexactness criterion in Line 2 of

Algorithm 1 at iteration t.

Proof. Due to the definition of C}, we just need to show the first part of the criterion in Line 2 of Algorithm 1. Fix ¢ > 0.
Firstly, we have
* * Os .
d(wg, 2e41) < d(we, v 1) + d(2ig, Te01) < §d($t7$ )s
where in (1) we used C; < 1/4 and the fact that by Lemma 27, it is d(x, xf,,) < d(z¢,2*). So the diameter of
Azyyizx;, . which bounded by 2 (d(zy, x441) + d(z, 1, @eg1) + d(ze, 27,1)), is thus most 3(2 + 1 + 1)d(z, %) <
2d(xy, z*). If the statement of Lemma 14 holds from iteration 0 to ¢ — 1, then by Theorem 7 we have d(z;,2*) < 2R. Now

let hy(z) = f(2) + ﬁd(z, z¢)? be the proximal function at step ¢ which is thus smooth in Azy12,2},; with constant
T def

L = L+ (3p/n, where the 3R comes from max{d(z, x;41), d(x, 2*)} and the bound above. Note that by definition
ri41 = nVhe(2¢41). Hence, we have

20,
1-2C

@ _
lresal? = [ Vhe(zes )P < LpPd(@g, o) < (L + Csp)?d(ze, 2e11)? 23)

Where (1) is due to the L-smoothness of /; we just showed, and the fact 2} 1 € argmin, ¢y, h(2). Further, 2 follows by
the inexactness criterion, i.e.,

d(wi11,27,1)° < Cod(my, 2741)? < 20y (d(we, 2e41)° + d(@es1, 27 11)%)
2C;

<" 4q 2,
=1-90, (xt,xt+1)

& d(eg1,7,,)°
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Note that we want to prove ||7¢41]|* < Ayy1055/2d(2t, 2441)?, s0 by (23) it is enough that

JAVIRTY:)
Cr < R : (24)
2(7’]L + C) + 2At+1533
as specified in (22). Note that for simplicity, we used 03 which is less than 055 /2 L]

Finally, we can show that we can implement RIPPA for smooth functions.

Proposition 8. [|] In the setting of Theorem 7, suppose that in additionn = 1/L, B(x*,4R) C M, and f is g-convex and
L-smooth in B(x*,4R). The composite Riemannian Gradient Descent of Proposition 5 in X = B(x,2R) implements the
criterion in Line 2 of Algorithm 1 at iteration t using 9] (1/64r) gradient oracle queries. If M is Hadamard, PRGD in X
implements the criterion after 5({12%) iterations.

Proof. (Proposition 8) We show that we can implement the subroutine at iteration ¢, starting from x, assuming that it was
successfully implemented in previous iterations and thus according to Theorem 7, we have x; € B(x*,2R). The exact
optimizer of the prox z}, satisfies, by Lemma 27, that d(z, z}) < d(x¢,2*) < 2R. Thus 2}, € X = B(x4,2R) C
B(z*,4R) and by assumption f is L-smooth in X

We now use the composite Riemannian Gradient Descent in Proposition 5 with the L-smooth function f of the statement

the set X defined above and with g(z) = ﬁd(azt, x)* = Ld(zy,x)?, which is strongly g-convex in X with parameter

def

# = L/dsp, cf. Lemma 21. If we use T' > ﬁ log(%) = 5(%) iterations on F' = f + g, we obtain

@
Ba(er,a7,1)? < Flor) — F(ay) < exp(—=Tu/4L)(F(x;) — F(},,))

5 <
%) L(1+ (op)

» @ pCd(ws, iy, )
a 2 pCdln 234 )7

exp(~Tp/AL) .

d(xh x:—i—l)
Above, (1) holds by p-strong g-convexity, (2) holds by the convergence guarantees in Proposition 5. The initial gap (3) holds
by the fact that VF'(z}, ;) = 0 and by L(1 + (,r)-smoothness of F, since the smoothness of g is L, by Lemma 21.

Finally (4) holds by the definition of 7. This inequality is the criterion in Lemma 14, so the statement for composite RGD is
proven.

For Hadamard manifolds, (Martinez-Rubio et al., 2023) showed convergence of PRGD for functions in ., 1, (X), and in
particular if the global minimizer is in the feasible set X', the rates become O((gjam () %) . Thus, taking into account that

in Hadamard §,. = 1 for all » > 0 and using PRGD on F' which is smooth with constant L= CrL, and the exact same
argument as above except for the new joint smoothness constant and except for (3) and (4) in which we use these other
convergence rates and T’ = O((5 Rl%) = O(C3), we also arrive to the criterion in Lemma 14. Note that the constant C'in the

Lemma 14 is polynomial in problems parameters, such as (p, ﬁ, so the logarithm is benign.

O

Note that the for the optimization required in the first iterate of CRGD for Proposition 8 is the optimization of a quadratic in
T,, M with a ball constraint and therefore it can be easily implemented. It is in fact, equivalent to the first step of PRGD
with possibly a different step-size.

C. Prox properties

We start by showing that the smoothness of the Moreau envelope. After the proof, we provide some other alternative proofs
that obtain a less general result. We include them because their techniques are very different and could be of independent
interest.
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C.1. Smoothness of Moreau envelope

Theorem 10 (Moreau envelope smoothness). [|] Consider My € Ryp, and let X C Myp be a g-convex closed set.
For f € F(M), we have that the Moreau envelope of g £ f + Lx with parameter 1 > 0, defined for all x € Myp as
M (z) = min,ep, {f(2) + Ix(2) + %d(m, 2)2}, satisfies for all x,y € M.:

M(y) < M(z) + (VM(z), Log, (y))
Cd(w,proxng ()

d 2,

In particular, if X is compact and its diameter is D, the Moreau envelope M (x) is ({p/n)-smooth in X.

Proof. (Theorem 10) Recall that we define prox,, ¢ () = arg min, ¢ v, {f(2) + Lx(2) + %d(ac7 2)?} € X. The result is
derived from the following.

M) = myin {FC)+ Tx(2) + 5002}

INE)

2

f(prox, ¢(z)) + id(y, prox, ¢())

2n
D (o) - D10, (0))? + -y prox, ()
@ C ZT,prox xT
< M (2) — (Log, (prox, (1)), Log, (1) + ="y, 2)°
D M(0) + (VM(0), Log, () + 2D g 2

2n

Above, we just substituted in (1) the variable in the min by prox, ¢(z) yielding a possibly greater value. In ), we used

the definition of M () and of prox, ;(z) and we used the cosine inequality Remark 20 in (3. In (@), we used Lemma 9.
Since prox, ¢(z) € X, then if x € X we have d(x, prox, ;(z)) < D and so given the inequality above, we have that M (x)
is indeed ({/n)-smooth in X’. O

We now include alternative less general proofs of the fact proven in Theorem 10. They are strictly worse, but the techniques
used can be of independent interest.

C.2. Alternative proofs

We start by showing the non-expansivity of the proximal operator. After we finished our result, we discovered that this fact
was already proven in (Jost, 1995; Mayer, 1998). One can find a review of this proofs in the book (Bacdk, 2014, Theorem
2.2.22). We still include our proof since it is very different and arguably simpler.

Lemma 15 (Non-expansivity of the prox). Consider a function f € F(H), where H is a Hadamard manifold, and let
ryeH at < prox(z), y* ] prox(y). Then

(@™, y") < d(z,y).
Proof. Let hy(z) = f(x) + ﬁd(m,p)z. Note that hy, is (1/7)-strongly g-convex, since f is g-convex. Define 2 =
argmin, 4 hy(2) and y* = argmin, 4, hy(z). We note that 9f(-) + %Logy() = Ohy(-) and similarly for h,. We

hy def

choose a subgradient g§+ € 0f(y™) and define subgradients gZﬁ € Ohy(z), 9,8 = g£+ + %Logw (y) € Ohy(y™) and

g;}i = g:;, + %LogyJr (x) € Ohy(y™) so that

h 1 1
gy — gyt = logys (#) = Log,(y). (25)
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By Lemma 23, we have:
0 < (g"1,Log,+(2)),Vz € H and 0< (gZ;Z, Log,+(2')), V2" € H.
Choosing z = yT, 2/ = z™, adding up and using Gauss lemma to transport to ™, we obtain
0< (gl — TV g" Log, (a)). (26)

Furthermore, by the (1/7)-strong g-convexity of h,, we have

1
7d(l’+, y+)2 +

5 @y ) < (hala®) — ha(y) — (g3 Log, (), +)

21
+ (o) = hala®) = (g%, Logor (5D ) @7
= IV, g% — g1, Log,+ (™).

Summing up (26) and (27), we get @ below

1 hy
L ) S ) = Lom, () < gy — gt et y)

@1

O
ILOgy+( a) — Log,+ (y)lld(z™,y ") < ﬁd(m’ y)d(z ™, y").
Therefore d(zt,y*) < d(x,y). We used (25) in (2). In (3) we use Lemma 22 which holds for Hadamard manifolds. [

Now we can prove a slightly worse result for the smoothness of the Moreau envelope by using Lemma 15.

Proposition 16. Consider a X C H closed and g-convex set where H is Hadamard Manifold. Let f : H — R be a g-convex
function in X. Then the gradient of the Moreau envelope M () = min, ey {f(2) + Ix(2) + %d(x, )2} is Lipschitz with

constant L = 1+C O(¢/n), ie.,
VM (z) = TyVM(y)|l. < Ld(z,y).

Proof. Letxt = prox(z) = argmin, c v { f(2) + Ix(2) + %d(z, 2)2}. The following holds:

D1

IVM(z) = TyVM(y)ll. = EIILng(ﬁ) — IyLog, (¥ )l

@ 1 1
< —||Log,(z") — Log, (y )|l + 5||L0gx(y+) —TIyLog, (¥«

@ 1
n n n

where (1) holds by Lemma 9 and (2) is the triangular inequality. The bound of the first summand in (3) is Lemma 22,
which holds in Hadamard manifolds, and the bound of the second summand holds by Lemma 21. Finally (4) uses the
non-expansivity of the prox, cf. Lemma 15. O

We also have the following proof of the smoothness of the Moreau envelope for twice differentiable functions by making
use of partial differential equations.

Proposition 17. Let f : M — R for a manifold Myp € Rip be a twice-differentiable g-convex function in some level set
XE (x| f(x) < flp)} LetCp = Cdiam(x)- The Riemannian Moreau envelope M (y) = mingepm{f(z) + %d(m, y)?}
is (Cp/m)-smooth in X.
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Proof. Lety € X and define y* as the arg min in the problem that defines M, that is y* = prox, ; (y). Itis y* € X because
any z € X yields f(z) + %d(y, 2?2 > fy) + %d(y, y)?2 > fly*) + %d(y,y*)? Consider the first-order optimality
condition of the problem in the definition of M (y) and note y* is a function of y. We have

nVf(y*) — Log,-(y) = 0.
Differentiating with respect to y we obtain

dy* dLog,-(y) dyt dLog, . (y)
dy oy* dy oy

nV2f(y*) - =0,
from which we deduce

C}g = (nVQf(y*)

_ OLog,. (y))_1 dLog,.(y) (28)

oy* dy

Note that we can invert the matrix above since it is the Hessian of the strongly g-convex function nf + ®, at y*. By
Lemma 9, we obtain VM (y) = —n~'Log, (y*). We differentiate again with respect to y and use (28) to deduce:

* -1 *
~ 109Log,(y") <nV2 ) — dLog,- (y)> OLog,-(y) . 1-0Los,(y")

V2M(y) =
) n  Oy* oy* dy n dy

Now, the second of the two matrices being added above is 7" V>®,-(y) < ((4(y,+)/n)1. The last inequality is due to
Lemma 21. Note that VZM (y) is symmetric. The first matrix is symmetric and positive semi-definite. Indeed, we note that
by Lezcano-Casado (2020, Theorem 3.12) one can conclude

V iy, ") I<5Logy(y*)
sinh(y/[K ;01 d(y, %)) oy’

and the symmetric statement with respect to y and y*. For symmetric positive semi-definite matrices A, Bitis A — B < A
and so V2M (y) < 7' V2@, (1) < (Cagyye)/m1, 50 M is (Cp/n)-smooth. O

D. Auxiliary results

Proposition 18. For c > 1, and T' € Ny we have that

I—(t+e)2 (c—=1)(c+T+1) ~c—1

ﬁ 1 clc+T) P
t=0
Proof. (Proposition 18) We show HtT:O 17(&6)72 = (C,TSELTT)H)

assume that the statement holds for 7 — 1. Then the statement also holds for 7", which can be shown by noting that (1)
below holds by the induction hypothesis and rearranging

by induction. The statement holds for 7" = 0. Now

l_T[ 1 @ clc+T-1) 1 B c(c+T) < C
fzol—(t+c)—2 (c—=D(c+T)1—(T+¢)2 (c—D(c+T+1) ~c—1

E. Geometric Auxiliary Results

In this section, we provide already established useful geometric results that we use in our proofs. Note that as we mentioned
in the preliminaries, we may need to restrict the size of our set if positive curvature is present. Recall for instance that a
g-convex function f : M — R defined over a compact manifold M must be constant (Boumal, 2023, Corollary 11.10).
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Lemma 19 (Riemannian Cosine-Law Inequalities). For the vertices x,y,p € M of a uniquely geodesic triangle of diameter
D, we have

(=0)

D

(Log,(v). Log, (7)) 2 Ll u)? + 3d(p, 2)? ~ 3dlp )"

and

I

(Log, (y), Log, (p)) < 2d(x,y)* + %d(p,xf a2

2 2
See (Martinez-Rubio & Pokutta, 2023) for a proof.

Remark 20. In spaces with lower bounded sectional curvature, if we substitute the constants ( , in the previous Lemma 19
by the tighter constant and ( 4, ), the result also holds. See (Zhang & Sra, 2016).

We note that if ,; < 0,itis (p = O(1+ Dy/|k,;,|) and therefore if ¢ is a constant, we have {,p = O(Cp). If K, >0
itis ¢, =1, forall r > 0, soitalso holds (., = O((p).

Lemma 21. Consider a manifold M € Ry ug that contains a uniquely g-convex set X C M of diameter D < occo. Then,
given x,y € X we have the following for the function ®, : M — R, y — %d(x, y)2:

V&, (y) = ~Log,(x)  and  dpllv]|* < Hess Dy (y)[v,v] < Cpllvfl*.

Consequently, ®,. is 0 p-strongly g-convex and ( ,-smooth in X. These bounds are tight for spaces of constant sectional
curvature.

See (Kim & Yang, 2022) for a proof, for instance. Note that the expression of V®,(y) along with Lemma 19 yields the
smoothness and strong convexity inequalities.

Lemma 22. Let H be a Hadamard manifold of sectional curvature bounded below by k

|Log, () — Log, (y)|- < d(z,y).

For any x,y,z € M, we have

min*®

Proof. Note that Hadamard manifolds are uniquely geodesic. Let D be the diameter of the geodesic triangle with vertices x,
vy, and z. Using the Euclidean cosine theorem in 7, M and Lemma 19 with § p = 1, respectively, we have

2(Log. (x),Log. (y)) = |[Log.(x)||* + |[Log. (y)||* — ||[Log. (x) — Log. (y)|I*,
2(Log, (x), Log, (y)) > d(z,z)* + d(z,y)* — d(z,y)>.

Subtracting the first equation from the inequality below it, we obtain

0> |[Log. (x) — Log. (y)[I* — d(x,)*.
O

Lemma 23. Let X C M be a closed uniquely geodesically convex set and let f : M — R be a differentiable g-convex
functionin X. Let x* € argmin,c y f(x). We have

(Vf(z*),Log,(x)) >0, forallx € X.

Proof. Let f be g-convex and =* € argmin, . f(x). Let F(t) = f(y(t)), where 7 is a geodesic such that v(0) = z* and
~v(d(z,x*)) = x. Then F reaches its minimum at ¢ = 0 and we have that 0 < F’(0) = (V f(z*), Log,« (z)). O

Corollary 24 (Projection onto Geodesically Convex Sets). Consider a closed geodesically convex set X C M in a manifold
M € Ryup, and let & € M. If k > 0, assume maxgecx{d(z,2)} < min{w%,inj(i)} where inj(x) is the

injectivity radius. We have Px (%) is unique and equal to z* = arg min,¢ y sd(x, Z)%. Further, we have

max

(Log« (%), Logg-(2))e= <0, VzeX.
Proof. Apply Lemma 23 to the function ®; : & — R,y — %d(i,y)z whose gradient at the optimizer * € X
is —Log_~ (). Finally, since the assumption implies ®; is strictly convex in X', we have d(z*, z) < d(Z,z) for all

z € X\ {z*}, so indeed Py (Z) is unique and is z*.
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Lemma 25 (Geodesic averaging). Let M € Ryup and f : M — R be a g-convex function in a g-convex set X C M and

let {x1,... ,x7} be points in X. The geodesic average T defined recursively by
_ _ w
Ty <z, te{l,...,T—1}: Ty + Expg, (;JlrlLogit (mt+1)> (29)
Zj:l wj

with wy > 0 for all t satisfies f(T1) < Zt L wef ().

Proof. We prove the statement by induction. The statement holds for 7' = 1 by definition. Now assume that the statement
holds for T — 1, i.e., f(Z7—1) < ﬁ ZtT:T we f(2+). We show that the statement holds for T" as well. By definition,
t=1 t

Z7 lies on the geodesic joining Z7_1 and zp. In particular, if we parametrize a geodesic segment joining Zr_; and

v(1) = zr as v : [0,1] = M with y(0) = Zr_; and y(1) = a7, then v (E“’T = Ir. Hence by g-convexity of f we
have that,
w w
f(zr) < <1 - TT> f@r-1) + —p— f(ar)
Dt Wi Dop—1 Wt
@ 1 T-1
e Z wi f(z1) + g f(zr) = Z wy f (1)
Zt 1 Wt 4= Zt 1 Wt Zt 1 Wt 4=
T—1

where (1) holds by the induction hypothesis and the fact that 1 — —%Z— = i we O

D1 Wi Z;‘le wt

Corollary 26. Let w; = 1 for all t, then the update rule simplifies to

T < 21, te {1, v ,T — 1} : i‘t+1 — EXpa—ct < Lngt(l’t_H)) (30)

t+1
and we have f(zZr) < = ZZ;I f(xt). We call this procedure uniform geodesic averaging.

The following lemma was proven in (Martinez-Rubio & Pokutta, 2023), but it was only stated in the context of Hadamard
manifolds. We note that it works in the general Riemannian case.

Lemma 27. Let M € Ryyg and let f : M — R be g-convex, proper and lower semicontinuous in a closed g-convex set
X C M. Let 2* € argmin, y f(z) and let z+ = prox, ¢, (x) for some x € M. Then d(z,x%)? < d(z, z*).

Proof. Let h(y) = f(y) + %d(y,x)? By definition, we have that f(x*) < f(z*) and h(z™) < h(z*), hence

It follows that d(z, ") < d(z, z*). O
Proposition 28. The optimizer x* of (4) lies in X.

e def

Proof. For the sake of contradiction, assume that * ¢ X. Denote by Z Px(x*) the projection of z* onto X'. By
Corollary 24, we have d(z,7*) < d(z,z*) for all z € X. By definition, y; € X for all 7, hence

n n
Z ayl S Z 7yz = (I*)a

which contradicts the assumption. Hence z* € X which concludes the proof. O

l\J\H
M\H
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E.1. Riemannian Generalized Danskin’s theorem

We note that the Generalized Danskin’s theorem (Bertsekas et al., 2003, Proposition 4.5.1) works in Riemannian manifolds.
The reason is essentially that Danskin’s theorem does not require convexity of the functions involved and we can talk about
the functions retracted to the tangent space of (x, y*(z)), apply the Euclidean Danskin’s theorem and then use that the
first-order information of the Riemannian function and the retracted function at (x, y*(x)) is the same since retracting with
the exponential map is a local isometry. Alternatively, one can see that the proof works without a problem in the Riemannian
case.

Proposition 29 (Riemannian Generalized Danskin’s Theorem). Let M, N be uniquely geodesic Riemannian manifolds
and let Y C N be g-convex and compact. Let f : M x Y — R be a continuous function. Then, the function
o(x) = maxycy f(x,y) has directional derivative
¢'(z;v) = max f'(z,y;0)
yeY(x)
where f'(x,y;v) is the directional derivative of f(-,y) at x with direction v, and Y () is the set of maximizing points in the

definition of ¢, that is Y (x) = arg max, oy, f(z,y). If Y(x) is a singleton y* and f(-,y*(x)) is differentiable at x, then )
is differentiable at x and V(x) = V. f(x, y* (z)).

Using the result above, we can provide the proof of Lemma 9 about the gradient of the Moreau envelope.

Lemma 9 (Gradient of Moreau envelope). [|] Let M be a uniquely geodesically Riemannian manifold, let X C M be a
g-convex closed set. For f € F(X), and the Moreau envelope of g S f+ Ix withn > 0, define as

M) ™ mip{/() + Le(2) + g-dla, 2,

we have VM (x) = —%Logz (prox,,()).

def

Proof. (Lemma 9) In order to compute VM (&) it is enough to consider the function F'(z,y) = f(y)+Ix(y) + ﬁd(m, y)?

forr € X < B (Z,6) for any 6 > 0. In such a case, it is easy to see that we can restrict to y being in a compact )
in order to define M () = minyex{f(y) + ﬁd(l‘, y)?} forall z € X, that is, M (x) = minyey{f(y) + ﬁd(aj, y)?}.
Indeed, consider Y = {y € X : (v,Log;(y)) + ﬁd(:ﬁ,y)2 < f(@)} forav € 0f(), then Log;(Y) C Tz M is the
level set of a quadratic plus Ix, which is compact and so Y is compact as well. Note that by definition, if y ¢ ) then
for all z € X we have F(&,y) > (v,Log,(y)) + ﬁd(i,y)Q > f() = F(2,2) soy ¢ argmin,cy F'(x,y). Thus,
we can apply Proposition 29 with ¢(z) = —M(z) = maxyey —F(x,y) for F defined in the compact X x ). The
optimizer of max,cy —F(Z, y) is unique by strong convexity of y — ﬁd(i“, y)? and this point is prox, (2). Thus, M(-)
is differentiable at # and VM (&) = V. F(&,prox, (1)) = —%Logi (prox,,,(2)), as desired. O

F. Experiment Details

Computing the step sizes. By the g-strong convexity of F’, the optimizer is unique. Further the optimizer z* lies in X,
as we show in Proposition 28. Recall that X was defined as a g-convex set containing all of the Karcher mean centers
y;. We generate these centers y; as follows: First, we define an anchor point z € M, then we sample a d-dimensional
vector v; € B(0,7) C T} uniformly, for some fixed radius 7. Then, we divide all but one of the randomly generated v; by a
factor of 10 and compute y; < Exp(v;). This has an impact on the condition number and makes the problem harder. This
procedure ensures that y; € X = B(z,r) for all y; and hence x* € X. It follows that if we initialize our algorithm with
xo € X, we have R = d(x¢,x*) < 2r. This allows us to upper bound R a priori by R < 2 maxe1,....n} d(Yi, T).

In order to compute an upper bound on the smoothness of F', we further need a lower bound on x,j,. Both manifolds
have non-positive sectional curvature. In particular H? has sectional curvature —1 everywhere. Further, using the so-called
affine-invariant metric,

(X, Y)p=tr(P*XP'Y) for P € S{ and X,Y € TpSY,

the sectional curvature of Sjir lies in [—0.5, 0] (Criscitiello & Boumal, 2020, Prop I.1).
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Step sizes for the Karcher Mean When using RGD with 7 = 1/(L(p) to solve (4), we can ensure that the iterates
stay in B(z*, ). Hence F'is (4,-smooth (note that we need to assume smoothness in B(z*, 2R) for technical reasons in

Theorem 3), which means that the step size is n = O(é) and the convergence rate simplifies to 0] (C 12{) If we use RGD
n = 1/L, the iterates stay in B(x*, (1 + v/5)r(y,). Hence, F is ;, smooth in that set with D = 2(1 + v/5)7(,, and
since ¢, = O(CA), we have ) = O(C%) and the convergence rate simplifies to O (¢7). For RIPPA, in the first step of the
subroutine we minimize the quadraticr upper bound given by smoothness plus the regularizer in the tangent space 1, M.
For the rest of the steps, these are in different tangent spaces so we use a regular gradient step whose step size is given by
the smoothness that is estimated as above. We performed 3 iterations in each subroutine.

G. Numerical Results

We present numerical results for the Karcher mean on H? and Sjl_ for different values of n and d.

10" A 107
~ 1072 —~ 107" 1
5 5
“~ “~ 104 4
| 1075 4 o
A & 1077 4
~ 107° 9|=—— RIPPA -~ —— RIPPA

i RGD: n=L"! 10-10 4|=— RGD:n=L"1
1075 9 —— RaD: 5 = (LO) ! —— RGD: 5 = (L¢)~!
I I I I - 1 1 1 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Gradient computations Gradient computations

Figure 3: Corresponding plots for Figures 1 and 2 comparing RIPPA and of RGD withp = L' and ) = (L¢R) for solving
(4) in terms of the primal gap. Left: H? with n = 1000 centers and dimension d = 1000. Right: 8% with n = 1000
centers, and dimension d(d + 1)/2 = 5050
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Figure 4: Karcher Mean on H?: d = 500, n = 1000, error in squared distance to the optimizer (left) and primal gap (right).
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Figure 5: Karcher Mean on H?: d = 1000, n = 500, error in squared distance to the optimizer (left) and primal gap (right).
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Figure 6: Karcher Mean on Si: d = 100, n = 100, error in squared distance to the optimizer (left) and primal gap (right).
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Figure 7: Karcher Mean on Si: d = 50, n = 100, error in squared distance to the optimizer (left) and primal gap (right).

29



	Introduction
	Preliminaries and notation
	Related work
	Riemannian Gradient Descent
	Riemannian Proximal Methods

	ConvergenceResultsandBoundedIterates
	Riemannian Gradient Descent
	Riemannian Proximal Methods

	Experiments
	Conclusion and Discussion
	RGD proofs
	RPPA proofs
	RIPPA implementation via composite RGD or PRGD

	Prox properties
	Smoothness of Moreau envelope
	Alternative proofs

	Auxiliary results
	Geometric Auxiliary Results
	Riemannian Generalized Danskin's theorem

	Experiment Details
	Numerical Results

