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ABSTRACT

Multi-hop complex reasoning over incomplete knowledge graphs has been ex-
tensively studied, but research on numerical knowledge graphs remains relatively
limited. Recent approaches focus on separately encoding entities and numerical
values, using neural networks to process query encodings for reasoning. However,
in complex multi-hop reasoning tasks, numerical values are not merely symbols;
they carry specific semantics and logical relationships that must be accurately rep-
resented. Directly encoding numerical values often leads to the loss of such se-
mantic information. In this work, we propose a Complex Numerical Reasoning
with Numerical Semantic Pre-Training Framework (CNR-NST). Specifically, we
designed a joint link predictor to learn numerical semantics. The proposed frame-
work is the first to enable binary operations on numerical attributes in numerical
knowledge graphs, allowing new numerical attributes to be inferred from existing
knowledge. The CNR-NST framework can perform binary operations on numer-
ical attributes in numerical knowledge graphs, enabling it to infer new numerical
attributes from existing knowledge. Our approach effectively handles up to 102
types of complex numerical reasoning queries. On three public datasets, CNR-
NST demonstrates SOTA performance in complex numerical queries, achieving
an average improvement of over 40% compared to existing methods. Notably,
this work expands the range of query types for complex multi-hop numerical rea-
soning and introduces a new evaluation metric for numerical answers, which has
been validated through comprehensive experiments.

1 INTRODUCTION

Complex Query Answering (CQA) refers to the process of reasoning and performing computations
on knowledge graphs by combining multiple entities and relationships to retrieve entities that fulfill
specific logical conditions (Kotnis & Garcia-Duran|(2018))). This field has seen significant advance-
ments, with research increasingly focused on enhancing the accuracy of models in handling intricate
query tasks.(Zhu et al.[(2022)) (Arakelyan et al.|(2020)) Despite this progress, real-world knowledge
graphs are not limited to discrete entity-relation knowledge; they also contain numerous numerical
attributes, such as birth dates, event times, and territorial sizes of countries. Numerical knowledge
graphs, therefore, offer a more nuanced approach to modeling real-world query (Xue et al.[(2022)).
Figure 1 presents an example of the FB15K numerical knowledge graph (Kotnis & Garcia-Duran
(2018)) illustrating three distinct query types: Complex Queries Involving Only Entities, such as
Q1: Which film directors are married?; Complex Numerical Queries, such as Q2: Who are the
married individuals born in August 1955?; and Complex Numerical Queries with Calculations,
such as ?3:What is the combined population of Schleswig-Holstein and Dakar?

Traditional CQA methods are effective for multi-hop queries but encounter challenges in accurately
capturing the subtle nuances of numerical semantics (Ren et al.|(2023))). These methods neglect the
inherent meanings of numerical attributes. Existing approaches, such as the Numerical Reasoning
Network (NRN) (Bai et al.| (2023a)), present a framework that encodes entities and numerical val-
ues separately. However, when using Sinusoidal (Sundararaman et al.| (2020)) and DICE (Vaswani
(2017)) encoding methods for numerical values, this approach encounters issues with sparsity in the
knowledge graph. Many encoding regions lack corresponding numerical mappings in the knowledge
graph, leading to incomplete learning of numerical semantics.
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Figure 1: There are three types of queries: ()1 refers to Complex Queries Involving Only Entities,
which involve complex reasoning tasks that solely include entities. ()2 refers to Complex Numerical
Queries, which combine both numerical values and entities for reasoning. @3 refers to Complex
Numerical Queries with Calculations, where the query requires performing computations between
two numerical values within the knowledge graph.

Handling complex numerical query tasks presents several significant challenges. First, current meth-
ods are constrained by their reasoning answers, which are limited to the numerical knowledge graph
itself and cannot compute or infer new numerical answers from multiple values (like (?3). The
ability to infer new numerical attributes from existing values in knowledge graphs is essential for
practical applications. Second, unlike entities, numerical values are inherently continuous (Ren et al.
(2023))), with their semantics influenced by factors such as units, ranges, and precision, establishing
an intrinsic connection with their context (Kim et al.| (2023)). Moreover, the sparsity of numeri-
cal data within knowledge graphs introduces additional challenges (Li et al.[ (2022)) that must be
addressed to effectively tackle complex queries.

To tackle the challenges in complex numerical reasoning, we propose the CNR-NST framework:
Numerical Binary Operation Operator. As illustrated in Figure 2a, CNR-NST is capable of han-
dling queries that involve numerical answers not present in the original knowledge graph, introduc-
ing new numerical query operators. Utilizing relevant theorems from fuzzy mathematics, we can
perform operations on two fuzzy numbers within the real number domain. By representing numer-
ical values as fuzzy sets, these operations can be effectively mapped to mathematical calculations
between two numerical attributes within the knowledge graph (Detailed mathematical proof can be
found in Appendix A.1).

Numerical Semantic Learning. To effectively capture the semantics of numerical values, we uti-
lize a joint predictor to learn the relationships between entity attributes and their corresponding
numerical values, thus facilitating knowledge transfer across different tasks. Figure 2b provides a
comprehensive overview of this architecture.

Complex Numerical Reasoning and Computation. CNR-NST utilizes fuzzy sets to represent
numerical values and entities, thereby avoiding the training of neural operators in an unrestricted
numerical embedding space (as illustrated in Figure 2c¢). Fuzzy sets not only capture the uncertainty
of numerical values during complex reasoning but also effectively represent the inherent fuzzy rela-
tionships within numerical data. During the reasoning process, the values of intermediate variables
reflect the probability scores of corresponding entities or numerical values, thereby greatly enhanc-
ing the accuracy of numerical inference and reasoning.
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Figure 2: Figure a: The process of performing operations on two fuzzy numbers derived from
reasoning. Figure b: The pre-training process for learning numerical semantics in CNR-NST. Figure
c: Numerical sparsity in the knowledge graph and two numerical representation methods: direct
encoding and fuzzy sets.

In summary, our contributions are:

* We introduced the Binary Operation operator for the first time in complex numerical
queries, defining new operators and query types. The numerical binary operation oper-
ator enables the inference and computation of new attribute values from existing knowl-
edge graphs, thereby enriching attribute knowledge and contributing to the construction of
a more comprehensive knowledge graph. Additionally, we established more appropriate
evaluation metrics for numerical answers.

* We introduced the CNR-NST framework, which learns various entity-numerical relation-
ships during the pre-training stage. Our numerical semantic pre-training model can capture
subtle nuances in numerical semantics (e.g., distinguishing between 180 cm in height and
180 kg in weight). By learning complex relationships and contextual information within
the knowledge graph, the model achieves more accurate embedding and link prediction for
numerical values across different attributes.

* CNR-NST can accurately represent the highly sparse numerical attributes in numerical
knowledge graphs (Detailed statistical information on the numerical sparsity of the three
public datasets can be found in Appendix B.1), significantly enhancing the accuracy of nu-
merical predictions in query processing. Compared to the current state-of-the-art numerical
reasoning models, CNR-NST achieves substantial performance gains across all 102 types
of complex numerical queries.

2 PRELIMINARIES

Knowledge Graph With Numerical Attributes. Knowledge Graph G = (V,R,¢) contains the
set of all entities V' and the set of all relations R. Each triplet (h,r,¢) € ¢ is the set of facts in
the knowledge graph. And Numerical Knowledge Graph Gy = (V, R, A, N/, €) not only contains
entities V' and relations R, but also contains the set of all attributes A and the set of all attribute
values N (Pai & Costabello| (2021)). Meanwhile, the triplet (h,7,t) in the Numerical Knowledge
Graph is defined as Gy = {(h,7,t)} C (VxR xV)U (VY x AxN),where ANR = @.

Numerical FOL Query. A complex numerical query is defined in existential positive first-order
logic form, which can be recursively defined as:
1. Atomic Formulas: If ¢4, 9, ..., %, are variables or constants, and P is an n-ary predicate, then
P (ty,ta,...,ty,) is an atomic formula.
2. Compound formulas: It can be constructed using logical connectives A (and), V (or), and quanti-
fiers V (for all) and 3 (there exists).
Numerical Complex Query Answering. As every logic query can be converted into a disjunctive
normal form, the complex query Q on a knowledge graph with numeric literals (Gxr) can be defined
as:

q[X7] =X V,...,V; EV,Nl,...,Nj eEN:ctVeaV---Ve, (1)

i =¢ei1Neia N Negm
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Here, c; represents a conjunction of several atomic logical expressions e; ;, where each e; ; can be
one of the following expressions:

ei; =71 (E,E), with E,E € {V1,..

LVILE#E,reRr

em:a(E,C’), withEe{Vl,...,Vi},C’e{Nl,...,Nj},aeA
ei’j:f(CﬂC’), WithC,C/E{Nh...,Nj},C?éC/,fe{§,27:7...}
eij =bg (C,C', Nyesut) , with C,C" € {Ny,...,N;}, N is any number, by € {+,—, x,+,...}

In the above equation, the variable E represents a subset of entity V, and the variable C represents a
subset of the numerical attribute set N. The binary function r; determines whether a class ¢ relation-
ship exists between two entities. The function a; determines whether an entity possesses a value for
attribute j. The function f checks whether a filtering condition, such as greater than or less than,
is satisfied between two values. The function b; determines whether a quadratic operation between
the first two values yields an answer.
The objective of complex reasoning is to find a valid assignment for the variables such that the
query ¢ [X>] holds true. Due to the incompleteness of the knowledge graph, uncertainty is intro-
duced, meaning that e; ; is no longer a binary variable; instead, it represents the likelihood that
the correspondence holds, with a generalized truth value ranging between [0,1]. For this reason, as
follows (Arakelyan et al.| (2020)), we formalise Eq.(1) as an optimisation problem:

q [X?] = X?.Vl, ..

LVieV,Ny,...,N; e N =argmax (e11T ... Term)L...

2

L(en1T... Tenm) )
where e,, ,, is the probability score inferred by Multi-ComplEx based on the corresponding atomic
formula. | and T are generalisations of fuzzy logic over [0,1] for conjunctive and disjunctive
extraction, and we chose the product t-norm and t- connorm (Hajekl (2013))) as natural connectives
in fuzzy logic in this paper.
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Figure 3: CNR-NST for Numerical Reasoning and Computation. For instance, in the case of a
complex multi-hop query, the intermediate variable at each step is quantified by a score. The score
for the subsequent hop is then computed using a pre-trained Knowledge Graph Embedding (KGE)
model.

3 METHODOLOGY

In this section, we introduce the CNR-NST framework. We first describe the construction of the
entity-numerical KGE model, followed by an explanation of how the pre-trained adjacency matrix
is used for reasoning and computation in multi-hop queries. Figure 3 provides an overview of the
CNR-NST framework.
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3.1 CONSTRUCTING NUMERICAL AND ENTITY ADJACENCY MATRICES

Pre-training Framework. To address complex queries involving both entities and numerical val-
ues, we propose the Multi-ComplEx joint training framework (as shown in Figure 3), based on
the ComplEx model (Trouillon et al.[(2016)), and introduce three link predictors: f (h,¢,7) € R,
f(hyn,a) € A, and f (v,w,np) € F, which effectively capture relationships among entities, re-
lations, attributes, and numerical values. The architecture designed to learn numerical size rela-
tionships is presented in Appendix A.2. These triples are jointly trained with the existing (h,¢,r)
and (h, n, a) triples from the knowledge graph training set, and the training objective function is as

follows:
f(hrty=">_ BjRe((h,r;,%)) 3)

JE{R,AF}

where (3; represents the the weight parameters under different types of triple relationships. For any
given triple (h, t, r), the loss function for link prediction training is defined as follows:

Lyx=- 3 logo(fx(hrt) - 3 1oga(fX (h’,r,t)) @)

(h,r,t)€(RUAUF) (n',rt)e(R'UA"UF")

Ljoint = Z Bx - Lx (5)

X €(RUAUF)

Where X represents various relationships between numerical attributes and entities, o denotes a nor-
malization function, and fx is typically set as the cross-entropy loss function. The training details
of the joint training framework are provided in Appendix A.2.

As demonstrated by the experiments in Section 4.4, the Multi-ComplEx joint training framework
provides substantial improvements in numerical link prediction compared to methods that train en-
tity and numerical relationships separately.

Definition of the Scoring Function. Using a Multi-ComplEx model, we can score the likeli-
hood of three atomic formulas f, (e;,e;), fo (€:,n;), and fy (n;,n;). This is achieved by em-
ploying neural link predictors fg, fa, fy to infer missing edges in the knowledge graph in the
VX RxV,VxAxN,N xF x N space. The probabilities of all known triples within the
knowledge graph are set to 1, while the probability values of triples outside the known knowledge
graph are modeled to follow the original distribution (Arakelyan et al.|(2020)).We define the neural

adjacency matrix My, € [0, 1]F>IVVE ap, e [0, 1AXVIXINT ap e o, 1)V IN g

. exp (F (z;,z;) - [{(xi, R, z) € Firainlz € VUN)}|)

R(x;,x;) = (6)
(@i, ;) > (0)wevun XD (F (x4, 7))

R 1 if (Ii,R,I'j) S ftrain

Rz, x5) =4 {R (ziy25),1 = e} otherwise @

where x represent either a numerical value or an entity, and R refers to one of the three relationships:
R, AF , Firain represents the training set in the knowledge graph, and x; represents an entity or a
numerical value. The expression (z;, R, ;) refers to any triple in one of the three categories. The
value of ¢ is typically set to 0.0001. Also note the matrix M contains a large number of zeros, it will
be stored as a sparse matrix, significantly reducing storage space.

3.2 FuzzY REPRESENTATION AND OPERATOR DEFINITION

Fuzzy set Representation. CNR-NST utilizes fuzzy sets to address the inherent uncertainty of
numerical values. Specifically, for an anchored entity v or an anchored numerical value n, we
represent them using an initialization vector [0,0,...,1,...,0], where the position corresponding
to the entity or numerical value is set to 1, with all other positions set to 0. For intermediate entities
or numerical values, we use fuzzy vectors vy € [0, 1}"/‘ (n1,..; €10, 1}|N‘ ), respectively, to
represent their states. The uncertainty present in complex queries can then be quantified using a
membership function.

U Q) ={(z,pa (z)) |z € X} (®)
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where element x represents an entity or a numerical value, I/ (()) denotes the probability that ele-
ment z satisfies the query (), and the membership function is 4.

Numerical Operators. There are three types of numerical operators: attribute projection, reverse
attribute projection, and numerical projection. Let V* (X = z) represent the maximum truth value
of a subquery rooted at X when z is assigned as an entity or numerical value. We recursively com-

pute the V* (X) = [V* (X = 2)],cpun € [0, 1}|N‘ for each node in the query tree to maximize
the overall truth value of the query tree, ultimately deriving the truth value V* (x7) at the root node.

When a node is connected to its child node by a edge, the fuzzy set of the node is calculated as
follows:

V* (x7) = max ((V* (zx)" - x |X|) ) Mm) )

J

where max; represents the maximum value in the column, and x can represent either an entity or
a numerical value. M, refers to the entity-value probability distribution matrix M,, value-entity
probability distribution matrix M I or the value-value probability distribution matrix M.
Numerical complex queries also involve entity-related operators, such as relation projection, inter-
section, and union. The mathematical formulations of these operators are provided in Appendix A.3
and will not be detailed here.

3.3 FuzzYy REASONING AND COMPUTATION

In this section, we introduce how numerical complex queries are answered using the numerical
atomic queries defined earlier. Starting from the anchor node X, ;,.10, Which can represent either
an entity or a numerical value, numerical reasoning and computations are executed based on the
types of edges within the query computation tree.

Numerical Reasoning. At each step of numerical complex reasoning, CNR-NST assigns a score

V*(X7) € [0,1] =l to each node X, where this score reflects the likelihood of the query tree with
X as the endpoint being satisfied. CNR-NST then determines the optimal entity assignments by
back-propagating through the query tree:

Vi =i Vi1, Viz, -+, Vim) (10)

where V; refers to the fuzzy representation of non-anchor nodes, and ¢ denotes the various predic-
tion functions applied to numerical values or entities. Specifically, when V' represents a numerical
value, Vi, = pi (nm)-

Numerical Computation. It is important to distinguish between numerical computation and numer-
ical reasoning. Numerical computation involves performing arithmetic operations, such as addition,
subtraction, multiplication, or division, on numerical values in the knowledge graph. In CNR-NST,
when handling numerical complex queries, the numerical value at a given step is not a precise value

but instead a fuzzy set [0, 1] RS interpret the numerical values corresponding to the coordinates
as membership functions, converting the fuzzy set into a fuzzy number.

Let R be the real number domain, and let the mapping % : R-R — R be a binary operation on the real
number domain (Mordeson|(2001)). From this mapping, a new mapping * : F' (R)-F (R) — F (R)
can be induced. Based on the extension principle in fuzzy mathematics, we can easily derive the

following theorem:
a08= [V (@ Amw)/: an

TQQY=z2

Here, ® can represent the four basic arithmetic operations on real numbers. For convenience, we
often discretize the real number domain for processing, so the above expression is transformed into:

A0B-Y Vaogy—s (14 (@) Aps () 12

z

As aresult of the above derivation, we obtain a new fuzzy number and a membership set with a size
of |[N|”. To prevent exponential growth in dimensionality during multiple numerical operations, we
retain only the components with the highest membership values. This approach ensures that the
dimensionality of the numerical fuzzy sets remains stable throughout the reasoning process.
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Table 1: MRR (%) and MAE, MSE for the types of queries that LitCQD can support.

Dataset ‘ Method ‘ lrp 2p ppp 2pi 3p3i 2pip pppi 2pu 2pup
FBISK-237 LitCQD | 3476 1143 738 37.47 43.71 16.66 23.52 4.25 4.55
CNR-NST | 3536 18.11 15.94 43.53 59.02 27.55 36.11 16.55 16.63

FBISK LitCQD | 8522 4429 2354 74.23 71.11 60.17 51.34 13.94 9.66
CNR-NST | 8524 64.41 52.61 74.78 71.18 69.55 70.18 74.79 60.24

DBI5K LitCQD | 38.55 27.71 19.01 59.17 74.04 36.85 53.84 11.34 16.78
CNR-NST | 36.89 30.01 24.18 60.47 76.46 38.45 54.25 24.29 27.23

YAGOISK LitCQD | 51.93 1629 8.74 48.61 66.21 20.91 34.66 4.24 7.29
CNR-NST | 5451 17.14 9.33 54.71 64.58 21.29 36.32 21.88 13.04

Dataset Method nr nrp nrpi lap(MAE) 1ap(MSE) pa(MAE) pa(MSE) 2pa(MAE) 2pa(MSE)

FBISK-237 LitCQD 094 193 873 0.077 0.024 0.051 0.008 0.039 0.004
CNR-NST | 3.73 7.62 13.92 0.051 0.011 0.018 0.002 0.011 0.0007

FBISK LitCQD 005 061 572 0.376 0.223 0.386 0.228 0.414 0.265
CNR-NST | 1.61 9.22 16.19 0.048 0.011 0.029 0.006 0.032 0.006

DBI5K LitCQD 0.19 1.63 31.68 0.042 0.015 0.039 0.008 0.039 0.006
CNR-NST | 148 3.64 14.59 0.042 0.017 0.017 0.003 0.013 0.001

YAGOISK LitCQD 0.14 099 16.35 0.049 0.007 0.062 0.011 0.079 0.013
CNR-NST | 2.67 145 855 0.061 0.013 0.061 0.010 0.058 0.008

3.4 DISCUSSION

Space Complexity. The memory usage of CNR-NST includes the composite neural adjacency
matrix M, which contains [V2||R| + |N?||F| 4 [V||N||A| elements. However, as described
in Section 4.1, most values in the neural matrix M, can be filtered by a threshold ¢. Experimental
results show that M, can be stored on a single GPU.

Time Complexity. In the numerical reasoning process, each variable is computed with a complexity
of O (|X 2 ), (where X refers to either numerical values or entities) but since each variable contains
a large number of zero elements, the actual complexity of a single query, as derived from Equation
6,is O (JX]|- N - |V* (X)) > 0]) , where N represents the number of projections involved in the

query.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. We conducted experiments on three datasets: FB15K, DB15K, and YAGO15K(Kotnis &
Garcia-Duran|(2018))). Details regarding these datasets can be found in Appendix B.3. We used the
8 major categories and 92 subtypes of multi-hop numerical queries introduced by NRN (Bai et al.
(2023a)). A full statistical overview of these numerical queries is available in Appendix B.4.
Baselines. We selected the LitCQD (Demir et al.|(2023))) model and the three numerical reasoning
models from NRN (Bai et al.|(2023a)) as our baselines. However, because the calculation of average
MRR values in NRN relies heavily on the query sampling method, and their original dataset did
not include all 92 query types, we expanded the dataset accordingly. We took into account the
differences in average calculation methods and the number of queries, and conducted comprehensive
comparative experiments to ensure consistency and accuracy.

Evaluation Protocol. For each numerical complex query, the answers are classified as either easy
or hard, depending on whether they can be directly inferred from existing edges in the graph. For
example, in the test set, easy answers are those that can be derived from the training and validation
graphs, whereas hard answers require reasoning over missing edges from the training and validation
graphs. We adhere to the standard evaluation metrics used for complex multi-hop queries, which
include Mean Reciprocal Rank (MRR) and Hits@K on the test set (Zhang et al.| (2019)).
Implementation Details. We initially trained several KGE models on the training graph, using an
extended version of the Multi-ComplEx model, which is based on ComplEx (Trouillon et al.|(2016))
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Table 2: MRR Results (%) for All Query Types in the Test Set; Query_N represents the total number
of query types, while AVG_M refers to the method used to calculate the average. Avg_W indicates
the weighted average based on the number of query types, and Avg represents the direct average of
each subclass. For detailed results, see Appendix D.1.

Dataset | Query N | Ave M | Method | Avg All | 1Ip 2p 2 3i pi ip 2u up 2 3b bp pb  2pb
GQE+NRN | 2004 | 3169 815 3399 4119 2310 1010 757 451
avew | QBANRN | 2236 | 3701 774 3688 4272 2425 1009 1561 454
Q2P+NRN | 2444 | 4275 1287 3371 3875 2314 1323 2316  7.89
. CNR-NST | 4078 | 6026 3835 5149 5401 3689 3616 2491 24.19
GQE+NRN | 1176 | 1119 424 1885 3466 752 1147 341 273
Q2B+NRN | 1283 | 1433 387 2108 3436 813 1274 502  3.09
FBI5K Q2P+NRN | 1162 | 1220 331 1943 3357 552 1085 552 256
CNR-NST | 2293 | 2582 1551 2984 4307 2152 2380 1167 1220
Avg | GQE+NRN | 1505 | 979 459 2783 4544 867 1791 332 285
0 Q2B+NRN | 1620 | 1204 416 2821 4807 1893 999 502 314
Q2P+NRN | 1034 | 965 347 1750 2641 1196 547 565 258
CNR-NST | 2428 | 27.14 1979 3044 3107 2842 2417 17.38 1585 - - - - -
102 CNR-NST | 1988 | 27.14 1979 3044 3107 2842 2417 17.38 1585 1116 1151 1029 18.96 1224
GQE+NRN | 1096 | 1029 253 2014 3546 1250 252 208 214
avew | QBHNRN | 1189|1096 271 2260 3744 1381 305 241 213
Q2P+NRN | 1298 | 1471 381 2375 3666 1447 296 463 281
. CNR-NST | 2346 |2254 1698 3660 4659 30.67 1491 840  10.96
GQE+NRN | 1091 | 350 272 1760 4330 1128 554 140 191
Q2B+NRN | 1201 | 415 278 1912 47838 1253 631 136 198
DBISK Q2P+NRN | 1190 | 472 301 1352 5003 1381 521 251 241
CNR-NST | 1585 |1093 842 2338 4561 17.17 1109 446 577
Avg [ GQE+NRN | 1473 | 333 299 2347 5845 1914 712 138 197
0 Q2B+NRN | 1526 | 392 321 2516 5724 2083 813 141 219
Q2P+NRN | 1090 | 471 299 1854 3747 1398 484 246 220
CNR-NST | 1813 | 1112 856 2531 4758 2461 1200 795 794 - - - - -
102 CNR-NST | 1638 | 1112 856 2531 4758 2461 1200 795 794 1227 1139 572 2149 1694
GQE+NRN | 1560 | 1479 423 3568 3994 1829 565 423 196
avgw | QBHNRN | IS8 | 2140 459 3972 45161962 790 905 282
Q2P+NRN | 1482 | 2297 570 2570 29.04 1438 540 1187 351
- CNR-NST | 2771 | 3111 1632 4430 5498 33.64 2148 1013 971
GQE+NRN | 1553 | 272 320 2672 6276 1801 668 170 247
Q2B+NRN | 1600 | 414 310 2630 6250 2083 681 188 245
YAGO15K Q2P+NRN | 17.99 | 7.80 373 3662 59.57 2235 754 335 296
CNR-NST | 2600 | 1955 1105 4558 6813 3474 1645 631 620
Ave [ GQE+NRN | 1692 | 259 348 3113 6228 2519 663 161 247
0 Q2B+NRN | 1764 | 320 303 3252 6553 2553 740 160 234
Q2P+NRN | 1650 | 621 371 2830 5339 2551 858 328  3.03
CNR-NST | 2297 | 1550 1124 3874 5522 3423 1644 590 645 - - - - -
102 CNR-NST | 1951 | 1550 11.24 3874 5522 3423 1644 590 645 1171 1249 592 1894 20.79

Table 3: MRR and MRR_0.001 Results (%) for the Numerical Queries. For detailed results, see
Appendix D.2.

Dataset ‘ Eva_metric ‘ Method ‘ Avg_All ‘ 1p 2p 2i 3i pi ip 2u up
MRR Q2P+NRN 491 0.42 0.86 9.06 1775 7.39 3.17 0.14 0.47

FBI5K CNR-NST | 20.01 17.77 1533 27.87 37.84 28.70 1838 4.25 9.91
MRR_0.001 Q2P+NRN 1.11 0.45 0.57 1.44 3.52 1.22 0.46 0.34 0.90

- CNR-NST | 24.94 22.54 1641 36.26 4698 37.83 22.61 7.66 9.26

MRR Q2P+NRN 291 0.22 0.49 6.56 1025 329 2.12 0.06 0.31

DBI5K CNR-NST 12.84 6.77 593 1728 26.64 21.03 10.17 7.81 7.07
MRR_0.001 Q2P+NRN 10.67 4.96 6.29 4.58 5.60 9.66  13.69 1828 22.27
o CNR-NST | 2479 | 1892 1545 25.62 31.61 35.88 2490 2324 2270

MRR Q2P+NRN 10.63 0.51 1.17 2031 3620 1697 824 0.31 1.31

YAGO15K CNR-NST 17.48 1231 11.80 25.16 37.16 2587 1938 316  5.02
MRR_0.001 Q2P+NRN 19.26 566  21.09 948 1042 13.06 21.80 39.05 33.52

- CNR-NST | 25.36 1835 17.39 3292 3759 341 2237 2324 1691

and employs N3 regularization (Lacroix et al.|(2018))). Next, we derived several computational
neural adjacency matrices M, from these KGE models. To minimize memory consumption for M,
we applied an adjacency matrix filter A to eliminate values below a certain threshold, converting the
matrix into a sparse format suitable for storage on a single NVIDIA A40 GPU.
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4.2 RESULTS ON NUMERICAL COMPLEX QUERY ANSWERING

Tables 1 and 2 demonstrate the performance of CNR-NST in complex numerical query reasoning
across three public datasets. In Table 1, we provide a comprehensive comparison of CNR-NST with
the LitCQD model on query types supported by LitCQD across four public datasets. The results
indicate that CNR-NST supports a wider range of query types and generally outperforms LitCQD in
performance. Additionally, Table 2 presents a thorough comparison between CNR-NST and three
benchmark models. Notably, even without specialized training for various complex query types,
CNR-NST consistently outperforms the baseline models across almost all query types, with perfor-
mance improvements exceeding 100% in many cases. Furthermore, as shown in Table 3, CNR-NST
achieves remarkable improvements in queries with numerical answers, with an average performance
increase of over 300We attribute this improvement to the use of a pre-training framework that pre-
dicts the link probabilities between entities and numerical values, thereby enhancing the general-
ization capability for complex multi-hop queries (Section 4.4 has experimental verification). The
multiple relationships between entities and numerical values act as additional constraints during
numerical reasoning, reducing the reasoning space and improving accuracy. Moreover, fuzzy sets
naturally manage the numerical fuzziness inherent in complex reasoning, further enhancing CNR-
NST’s accuracy in these tasks.

4.3  ANSWERING COMPLEX NUMERICAL COMPUTATION QUERY

The 92 query types mentioned earlier are still restricted to reasoning with individual numerical
values. In this paper, we introduce five new query types that involve calculations and reasoning
with two or more numerical values within the knowledge graph, further increasing the diversity of
multi-hop queries. For the first time, we extend numerical reasoning in knowledge graphs to the real
number domain, whereas previous methods were confined to the discrete numerical domain within
the KG. This extension enables more precise modeling of real-world knowledge graph queries.

As shown in Table 2, we define five new query types: 2b, 3b, bp, pb, and 2pb. The B operator
represents binary operations (addition, subtraction, multiplication, and division) performed on two
numerical values. These query types result in numerical subqueries, and because their answers are
not present in the original knowledge graph, we use the new evaluation metrics introduced in Section
4.4. Detailed descriptions of these query types are provided in Appendix E.

4.4 SUPPLEMENTARY EXPERIMENTAL DETAILS

New Evaluation Metrics for Numerical-Type Answers. In complex multi-hop numerical rea-
soning, many query types return numerical values as answers. Previous approaches used the same
evaluation metrics for these queries as for entities, but this method has limitations. It does not
consider the differences between numerical values and entities, especially the continuous nature of
numerical data. Additionally, it cannot effectively evaluate queries where the numerical answers are
not present in the original knowledge graph. To address these issues, we propose a new evaluation
metric for numerical answers, analogous to Mean Reciprocal Rank (MRR). Instead of ranking based
on the exact match of numerical nodes, we compute the RANK using the probability ranking of nu-
merical nodes whose relative error compared to the correct answer is below a specified threshold
(typically set at 0.001). This new metric is denoted as MRR og1, and the ranking calculations are
applied only to hard answers.

As shown in Table 3, we re-evaluated the numerical answers across the 102 sub-queries that CNR-
NST can handle and compared the results with the baseline model, Q2P. CNR-NST significantly
outperformed Q2P on the new evaluation metric, demonstrating that although CNR-NST may not
always generate completely accurate answers in numerical reasoning, its performance improves
substantially when a margin of error is permitted. This suggests that CNR-NST’s inferred answers
are often very close to the correct values. Furthermore, the experimental results show that our
approach offers a significant advantage over baseline models in numerical reasoning tasks, with an
average performance improvement of 200%.

Ablation Study of the Pre-training Framework. As shown in Table 4, we conducted an abla-
tion study within the pre-training framework. We experimented with the single ComplEx model,
two configurations of the ComplEx model, and the Multi-ComplEx model without accounting for
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Table 4: MRR Results (%) for the Predictors (ERE, EAV, VFV) on the Validation and Test Sets
Dataset \ Pre-training Framework \ Avg Test ERE_Test EAV _Test VFV_Test

ComplEx 1854 2596 5.51 2415

FBISK Two ComplEx 1786 27.17 1.92 24.48
Multi-ComplEx WO EC | 3450  27.58 3.02 72.90
Multi-ComplEx 3536 2673 6.78 72.58

ComplEx 2042 2922 6.97 28.08

DBISK Two ComplEx 2125 3072 572 27.32
Multi-ComplEx WO EC | 33.00 3090 5.16 62.95
Multi-ComplEx 46.06 30.55 11.26 96.36

ComplEx 1159 1146 1.98 2132

Two ComplEx 114 10.68 119 21.55

YAGOISK | \rulti-ComplEx WO EC | 30.75 10.88 1.05 80.33
Multi-ComplEx 213 1148 3.39 81.53

Table 5: Training and Inference Times on the FB15K Dataset (Training Time in Hours, Inference
Time in ms/query)

Method | Training_time | 1p 2p 2i 3i pi ip 2u up 2b 3b bp pb 2pb
Q2P+NRN 32.40 0.13 014 025 033 024 026 028 029 - - - - -
CNR-NST 0.22 3.06 1583 453 10.09 21.19 1666 454 39.51 6.07 7.75 603.78 80.81 528.20

the numerical associations of entities (Multi-ComplEx W/O EC). The results demonstrate that the
Multi-ComplEx model significantly outperforms the ComplEx model in numerical prediction tasks.
Additionally, the knowledge embedded in the relationships between entities greatly enhances the
accuracy of numerical predictions and improves the performance of complex numerical queries.

Training and Inference Efficiency. As shown in Table 5, during the training phase, CNR-NST only
requires training on single-hop queries involving numerical values and entities, resulting in shorter
training times compared to NRN, which must train on the entire dataset. CNR-NST’s inference pro-
cess requires calling a pre-trained prediction model at each step of the reasoning chain. In contrast,
NRN has fixed neural network dimensions, which allows for faster inference. However, even on a
dataset with 400,000 queries, CNR-NST completes the inference in just four hours, which is still
significantly less time than what NRN requires for training.

5 RELATED WORK

Complex Query Answering over conventional Knowledge Graph. Complex Query Answering
(CQA) focuses on reasoning over relationships and entities in a knowledge graph to address complex
logical queries. Early CQA methods relied on logical reasoning rules to query knowledge graphs.
Methods like GQE (Hamilton et al.| (2018))), Q2B (Ren et al.|(2020)), Q2P (Bai et al.|(2022))), ConE
(Zhang et al|(2021)) and BetaE (Ren & Leskovec| (2020)) represent entity sets and queries using
geometric shapes or probability distributions, utilizing geometric operations (e.g., intersections, pro-
jections) or probabilistic operations for reasoning. Later, CQD (Arakelyan et al.| (2020)) introduced
a framework capable of handling complex logical expressions without explicit training on complex
queries. QTO (Bai et al.| (2023b)) further optimized the query computation tree during complex
query processing, improving reasoning accuracy and reducing the search space.

Numerical reasoning over Knowledge Graph. Numerical reasoning tasks in knowledge graphs
involve making logical inferences or predictions based on numerical values associated with enti-
ties and relationships. Methods such as RAKGE (Kim et al.| (2023)) , KR-EAR (Lin et al.| (2016))
, TransEA Wu & Wang| (2018)) and [Lacroix et al.| (2018) utilize attribute learning to improve nu-
merical reasoning within knowledge graph embeddings. LiteralE (Kristiadi et al.|(2019)) enhances
knowledge graph embeddings by incorporating textual information through learnable parametric
functions. HyNT (Chung et al.| (2023)) uses the expressive power of Transformers to capture com-
plex relational structures and numerical attributes in knowledge graphs. Neural-Num-LP (Wang
et al.|(2020)) learns numerical rules within knowledge graphs.

LLMs’ numerical reasoning. Large model numerical reasoning refers to extracting relevant numer-
ical information from textual descriptions and performing mathematical calculations (Zhang et al.
(2024)). MathPrompter (Imani et al.| (2023))) introduces the ”Chain-of-Thought” (CoT) approach,

10
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utilizing a step-by-step prompting technique to guide the model through solving complex arithmetic
problems incrementally. NumeroLogic (Schwartz et al|(2024)) defines new numerical formats to
handle and execute arithmetic operations. PoT (Chen et al.| (2022)) employs the Codex model to
represent the reasoning process as a program, which is then executed by an external system to per-
form the necessary computations and derive the final answer.

Complex Query Answering over Numerical Knowledge Graph. Research on CQA with numer-
ical values is still limited. LitCQD (Demir et al.| (2023)) decomposes complex numerical queries
into smaller subqueries, solving them by integrating symbolic and numerical reasoning. NRN (Bai
et al.[(2023a))) embeds entities, relations, and numerical attributes from the knowledge graph into a
shared vector space, using neural networks to learn and reason about numerical relationships.

6 CONCLUSION

In this paper, we present a novel framework for reasoning and computation on numerical knowledge
graphs, leveraging a pretrained multi-relational link predictor to infer over 102 types of complex
numerical queries. Extensive experiments on three publicly available KGs demonstrate that our
proposed model, CNR-NST, significantly surpasses previous SOTA methods. Furthermore, we in-
troduce additional categories of numerical reasoning tasks and new evaluation metrics for numerical
answers, contributing to the broader research of multi-hop numerical reasoning. Future work could
explore expanding the variety of numerical queries supported by CNR-NST, further enhancing its
applicability in diverse reasoning tasks.

11
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A  MATHEMATICAL PROOF

A.1 Fuzzy SET-BASED NUMERICAL COMPUTATIONS

This section will demonstrate how mappings in the set of real numbers can be induced into mappings
between fuzzy sets.

First, we explain the concept of induction. Let there be a mapping on the real number domain:
U=V
urv=f(u)
From this, a new mapping can be induced, which we still denote as f:
f:P{U)—= P(V)
A~ B=f(A4)
f(A) = {v]Fuec Alet f(u)=v,v€V}

The key to how a mapping on a set of real numbers can induce a mapping between fuzzy sets lies
in determining the membership function of the fuzzy set.The definition of the extension principle is
given below: Let f : U — V, From f, we can induce two mappings:

f:FU)=FWV),f*:F(V)—= F(U)

am(4). 8007 (1)

~

The membership functions of the induced mappings are as follows:

- \/f(u):v pa. (u) ifJueUlet f(u)=v
ppan (v) = { 0 otherwise

py-1(py (W) = pp. (v),v=f(u)

o N o a A W DN

Real Number Set Mapping Fuzzy Sets Mapping

Figure 4: Visualization of the Extension Principle
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A.2 DETAILS OF THE TRAINING PROCEDURE FOR THE MULTI-COMPLEX

-0.55 -0.39 -0.38 0.28 3.58 327.28 1986.2 20132 2013.25 331112.28 113252152.2
| L1 L1 | | | | | | >

Triplet generation {} — % . Smaller than

1
(-0.39, 3, -0.55) (-0.39, 1, -0.38) (113252152.2, 2, 331112.28) Equal to

2 o
(0.28, 3, -0.38) (2013.2, 1, 2013.25) (1986.2, 0, 2013.2) | —_ > Twice Bigger than
(0.28, 0, 3.58) (2013.25, 2, 327.28)

—3 5 Bigger than

Figure 5: Numerical relationship triplet generation based on the values in the training set for pre-
training of the model.

During the joint pre-training stage of CNR-NST, the objective function of the Multi-ComplEx model
is defined as follows:

fa(h,rt) = Re({(h,ra,t))
fB (hyr,v) = Re ((h,rg,¥))
fo (m,r,n) = Re ({m,rc,n))

where h, t denotes the entity embeddings, r refers to the embeddings for different types of relations,
and v, m, n represents the numerical embeddings.

We employ cross-entropy loss as the optimization objective. For each triplet (h, r, t), the loss func-
tion for each predictor is defined as follows:

La=— Z logo (fa(h,rt)) + Z logo(—fA<h/7r7t>)

(h,r,t)ER (n'rt)er’

Lp=— Z logo (f (h,r,n)) + Z 1oga<—fB<h/,r,n))

(h,r,n)EA (h',r,n)EA/
Lo=— Y logo(fetmrm)+ S logo(~fo(mrn))
(m,r,n)€F (m/,r,n)E]F/

The loss functions of the three predictors are weighted and combined to form a joint loss function,
where the weights are denoted by Wg 4y and Wy . These weights can be adjusted based on the
task’s requirements and importance. The joint loss function is defined as follows:

Lioint = La+Wgav - L+ Wyrv - Lo

To prevent overfitting, regularization terms are often incorporated into the loss function. L1 and L2
regularization can be applied to control the magnitude of the model parameters. For each predictor,
the regularization term is defined as follows:

2 2 2 2 2 2 2 2
Q:/\(thl + leall” + 7 + [lrsl]” + (VI + [[oaf|” + [frc| +||n|\)

The final joint objective function incorporates both the loss function and the regularization terms,
and is given by the following expression:

L= Ejoint +Q
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A.3 MATHEMATICAL REPRESENTATION OF MULTI-HOP LOGICAL REASONING

This section will use mathematical expressions to explain and infer various logical operators and
mappings involved in complex numerical reasoning.

Let V* (X7 = x) represent the maximum truth value of the subquery at the root node 2 when node
X is assigned a value z.
Assuming that the root node x is formed by merging sub-node {x%, co ol } by intersection, the
maximum truth value of the query is given by the following expression:

V*(zrs=¢€) = Ti<i<ckV* (z7 =¢)

V* (IE? = n) = TlgigKV* (:L'7 = n)

= V*(z7) = H V* (25)
1<i<K

Similarly, when the root node is merged by union, the following expression applies:

V* (gy? = 6) = J—lSiSKV* (:177 = 6)

V* (.’t? — n) = J—lSZSKV* ({E? = n)

=V*(zr)=1- H (1 -V (x?;))
1<i<K

When the root node is connected to its child edges through any relational edge, the maximum truth
value of the query with this node as the root is expressed as shown in Equation 9 in the main text.
Depending on the type of relation, the expression has the following four variations:

V* (ve) = max ((V* (o))" x |v|) ©) ME)

V* (nr) = max ((v ()T -+ x |U|) @MA>

V* (v7) = max ((V* ()T - |n|) ® Mgl)

J

V* (ne) = max ((V* ()" - x |n|> © MF)

B DATASET STATISTICS

B.1 NUMERICAL SPARSITY OF THE DATASET.

In this section, we present the numerical sparsity in the three public datasets FB15K, DB15K, and
YAGO15K.
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0

Figure 6: Numerical Distribution Across the Three Public Datasets

As shown in the three figures above, the horizontal axis represents the logarithmic transformation of
actual values, while the vertical axis shows the frequency of occurrences. We observe that most val-
ues are concentrated in a specific region, yet the overall range of values remains broad, highlighting
the numerical sparsity characteristic of numerical knowledge graphs.
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B.2 KNOWLEDGE GRAPH CONTRUCTION

Table 5 presents the detailed information for constructing knowledge graphs from the original
datasets, from which we will randomly sample to form queries.

Table 6: The statistics of the three knowledge graphs
Dataset Data Split | Nodes.N Rel N Attr N Rel Edges Attr_Edges Num_Edges

Training 25106 947540 20248 27020

FB15K Validation 26108 1345 15 1065982 22779 27376
Testing 27144 1184426 25311 27389

Training 31980 145262 33131 25495

DB15K Validation 34191 279 30 161978 37269 25596
Testing 36358 178394 41411 25680

Training 32112 196616 21732 26616

YAGO15K | Validation 33078 32 7 221194 22748 26627
Testing 36358 245772 23520 26631

B.3 DATASET INFORMATION FOR PRE-TRAINING

Table 6 shows the training dataset information used for our pre-training framework Multi-ComplEx.
The VFV triples are as defined by us, and the dataset splits are identical to those in Table 5.

Table 7: Details of the Datasets Used for Pre-training
Dataset | Data Split | ERE Triad EAV Triad VFV Triad

Training 473770 20248 220421
FB15K Validation 59221 2531 27553
Testing 59222 2532 27553
Training 79222 33145 296006
DB15K Validation 9903 4143 37001
Testing 9903 4144 37001
Training 98308 18816 229804
YAGO15K | Validation 12289 2352 28725
Testing 12289 2352 28726

B.4 SAMPLE QUERIES FROM GRAPH

Figure 7 provides a visual representation of the structure for most of the 102 query types. Tables
7 and 8 present the distribution of 13 major query types and 102 subquery types sampled from the
three datasets. Note that these quantities only include the test set. Since CNR-NST does not require
training on complex queries, we only sample from the test set and conduct experiments. Supplemen-
tary explanation: in the Query_Name column of the table, ”p” stands for relation prediction, ’ap”
stands for attribute prediction, abbreviated as ’a”, “np” stands for numerical prediction, abbreviated
as ’n”, and “rap” stands for reverse attribute prediction, abbreviated as ”r”. Table 9 shows the per-
centage of inference paths present on the top edge of the test set for each query type sampled on our
dataset, reflecting to some extent the difficulty of the queries we sampled.
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Figure 7: The visualization of complex numerical reasoning structures includes a total of 102 query
types, of which we have selected only a subset to display. The complex reasoning structures shown
in the figure can be further combined to create even more intricate query structures. At the bottom,
we present the numerical computation query structures that we defined for the first time.

19



Under review as a conference paper at ICLR 2025

Table 8: The number and types of queries sampled from the three datasets (1)

Type ‘ Query Name ‘ Query Structure Definition ‘ FB15K DBI15K YAGOI5K
Inp (nv’, Cnp’,)) 1737 3894 1271
Ip lap (Ce’, Cap’,) 2306 3407 2326
Irap Cnv’, (rap’.)) 1059 1085 1133
Ip (Ce’, Crp’,) 19953 3029 6208
an (Ce’, Cap’,)), Cnp’,)) 2735 4070 1641
2p (Ce’, Crp,)), (rp’,)) 18355 2088 1273
nr (Cnv’, Cnp’,)), Crap’,)) 2329 2197 1277
2 2n (Cnv’, Cnp,)), Cnp’.)) 2146 4655 2294
ra (Cnv’, Crap’,)), Cap’,)) 587 2481 924
pa (Ce’, Crp’,)), Cap’,)) 5257 4833 2988
ar (Ce’, Cap’,)), (rap’,)) 4570 5072 3662
p (Cnv’, Crap’,)), (rp’,)) 5549 2615 2470
ani Ce’, Cap’,)), Cnv’, Cnp’,)), (C1’,)) 7176 14727 10576
2pi (e, Crp’)), Ce’, Crp’), (1)) 25720 1192 2574
nai (Cnv’, Cnp’,)), Ce’, Cap,)), (i’,)) 7473 14829 10607
2% 2ni (Cnv’, Cnp’,)), Cnv’, Cnp’,)), (’1’,)) 9196 13349 7765
2ai (Ce’, Cap’,)), Ce’, Cap’,)), (i’,)) 1976 2307 3343
rpi (Cnv’, (Crap’,)), Ce’, (rp’,)), ('i’,)) 5221 229 132
pri (Ce’, (rp’,)), Cnv’, (rap’,)), (i’,)) 5161 214 135
2ri (Cnv’, Crap’,)), Cnv’, (rap’,)), ('1’,) 109 896 61
nan3i (Cnv’, Cnp’,)), Ce’, Cap’,)), Cnv’, Cnp’,)), ('1’,)) 12747 21454 15296
2pr3i (Ce’, Crp’,), Ce’, Crp’,)), Cnv’, (rap’,)), (1’,)) 3515 19 52
n2a3i (Cnv’, Cnp’,), Ce’, Cap’,), Ce’, Cap’,), (17,) 3703 3735 5989
2p3i (Cnv’, (rap’,)), Ce’, Crp’,)), Ce’, ('rp’,)), (1’,)) 3527 16 45
a2n3i (Ce’, Cap’,)), Cnv’, Cnp’,)), Cnv’, Cnp’,)), (C1’,)) 12641 21321 15287
3p3i (e, Crp ). (e, (p’). (e, (1), (%) 18859 294 898
p2r3i (Ce’, Crp’,), Cnv’, (Crap’,)), Cnv’, (rap’,)), ('1’,)) 93 6 6
3 2na3i (Cnv’, Cnp’,)), Cnv’, Cnp’,)), Ce’, Cap’,)), ('1’,)) 12459 21500 15285
3a3i (Ce’, Cap’,)), Ce’, Cap’,)), (Ce’, Cap’,)), (1)) 1977 1327 2454
ana3i (Ce’, Cap’,)), Cnv’, Cnp’,)), Ce’, Cap’,)), (’i’,)) 3625 3723 5921
3n3i (Cnv’, Cnp’,)), Cov’, Cnp’,)), Cnv’, Cnp’,)), ('i’,) 11444 11950 12818
prp3i (Ce’, Crp’,), Cnv’, (rap’,)), Ce’, ('rp’,)), ('1’,)) 3562 24 46
2an3i (Ce’, Cap’,)), Ce’, Cap’,)), Cnv’, Cnp’,)), (i’,)) 3724 3716 5874
2rp3i (Cnv’, Crap’,)), Cnv’, (rap’,)), (Ce’, Crp’,)), ('i’,)) 97 5 4
rpr3i (Cnv’, (rap’,)), Ce’, (rp’,)), (nv’, (rap’,)), ('i’,)) 97 2 7
3r3i (Cnv’, Crap’,)), Cnv’, Crap’,)), Cnv’, Crap’,)), (’1’,)) 1 17 4
2pip ((Ce, Crp’)), Ce’, Crp’,)), i), (1p’.)) 14745 783 828
nair ((Cnv’, Cnp’,)), Ce’, Cap’,)), (i’,)), Crap’,)) 4849 4748 4436
2pia (Ce’, Crp’,), Ce’, Crp’,), (i), Cap’,) 7104 3468 1960
2nir ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), (C1’,)), Crap’,)) 8581 4588 6937
nain ((Cnv’, Cnp’,)), Ce’, Cap’,), (1’.)), Cnp’,)) 5846 9170 5772
2nin ((Cnv’, Cnp,)), Cnv’, Cnp’,)), (Ci’,)), Cnp’,)) 5064 8043 6116
2air (Ce’, Cap’,)), Ce’, (Cap’,)), (1i’,), (rap’,)) 4196 4068 3189
ip 1pip ((Cnv’, Crap,)), Ce’, Crp’,)), (1)), (rp’,)) 5910 754 740
anin ((Ce’, Cap’,)), Cnv’, (Cnp’,)), ('i’,)), Cnp’,)) 5906 9225 5898
prip ((Ce’, (rp’,)), Cnv’, (Crap’,)), Ci,)), ('rp’,)) 6020 814 723
2rip ((Cnv’, (Crap’,)), Cnv’, (rap’,)), (i), Crp’,)) 1683 996 464
2ain ((Ce’, Cap’,), Ce’, Cap’,)), Ci’,)), Cnp’,)) 2262 2289 1981
anir ((Ce’, Cap’,)), Cnv’, Cnp’,)), (i’,)), (rap’,)) 4851 4581 4484
rpia ((Cnv’, (rap’,)), Ce’, Crp’,)), C1.), Cap’,)) 434 157 22
pria ((Ce’, (rp’)), Cnv’, Crap’,)), C1’,)), Cap’,)) 379 168 23
2ria ((Cnv’, (Crap’,)), Cnv’, (Crap’,)), (1i’,)), Cap’,)) 11 459 13
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Table 9: The number and types of queries sampled from the three datasets (2)

Type ‘ Query Name ‘ Query Structure Definition ‘ FB15K DBI5K YAGOISK
anni «(Ce’, Cap’,)), Cnp’,)), Cnv’, Cnp’,)), (1’,)) 7960 13633 9102
rppi ((Cnv’, Crap’,)), Crp’,)), Ce’, Crp’,)), (i’,)) 6511 618 1381
nrpi ((Cnv’, Cnp’,)), Crap’,)), Ce’, Crp’,)), (i’,) 13161 2829 5621
paai ((Ce’, Crp’,)), Cap’,)), Ce’, Cap’,)), (1)) 1333 1245 1349
2nni ((Cnv’, Cnp’,)), Cnp’,)), Cav’, Cnp’,)), (’i’,)) 6975 11904 11132
pani «(Ce’, Crp’,)), Cap’,)), Cnv’, Cnp’,)), (Ci’,) 10097 10100 7629
2nai ((Cnv’, Cnp’,)), Cnp’,)), Ce’, Cap’,)), ('1’,) 4537 11300 7658
i anai ((Ce’, Cap’,)), Cnp’,)), (e’ Cap’,)), Ci’,)) 4468 9727 7520
P 2ppi (Ce’, Crp’,)), Crp’)), Ce’, Crp’,)), (1)) 16875 541 1063
nrri ((Cnv’, Cnp’,)), Crap’,)), Cnv’, Crap’,)), (i’,)) 1375 3247 1291
2pri (Ce’, Crp’,)), (rp’,)), Cnv’, Crap’,)), Ci’,)) 5806 91 64
rani ((Cnv’, (rap’,)), Cap’,)), Cnv’, Cnp’,)), Ci’,)) 804 3258 1398
arpi ((Ce’, Cap’,)), Crap’,)), (e, (rp’,)), ('17,) 2933 139 131
rpri ((Cnv’, Crap’,)), Crp’,)), Cnv’, (rap’,)), (i’,)) 1467 570 112
arri (Ce’, Cap’,)), Crap’,)), Cnv’, (rap’,)), ('i’,)) 104 732 73
raai ((Ce’, (rap’,)), Cap’,)), Cnv’, (Cap’,)), (’1’,)) 65 11 42
pru (Ce’, (rp’,)), Cnv’, (Crap’,)), (u’,)) 14157 5705 6783
2pu Ce’, Crp’y)), Ce’, Crp’,)), (u’,)) 19129 3734 2964
anu (Ce’, Cap’,)), Cnv’, Cnp’,)), Cu’,)) 12581 23056 20887
u 2nu (Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)) 11988 21767 11051
rpu (Cnv’, Crap’,)), (Ce’, Crp’,)), Cu’,)) 14195 5591 6641
nau (Cnv’, Cnp’,)), Ce’, Cap’,)), Cu’,)) 12757 23000 21086
2ru (Cnv’, Crap’,)), Cnv’, Crap’,)), Cu’,)) 9359 7740 14718
2au (Ce’, Cap’,)), Ce’, Cap’,)), Cu’,)) 2548 5497 3840
2aur ((Ce’, Cap’,)), (e, Cap’,)), Cu’,), Crap’,)) 3403 2913 3922
rpup ((Cnv’, Crap’,)), Ce’, (rp’,)), Cu’,)), (rp’,)) 6871 1718 1259
2aun (Ce’, Cap’,)), Ce’, Cap’,)), (u’,)), Cnp’,)) 6705 12892 10000
naur ((Cnv’, Cnp’,)), (Ce’, Cap’,)), (u’,)), Crap’,)) 7195 5387 12506
2pup ((Ce, Crp’,)), Ce’, (rp,)), Cu’,)), Crp’,)) 10171 1022 574
rpua ((Cnv’, Crap’,)), Ce’, Crp’,)), (u’,)), Cap’,)) 3494 3352 1770
anun ((Ce’, Cap’), Cav’, Cnp’,)), Cu’,)), Cnp’,)) 7186 14110 9244
up 2nur ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)), Crap’,)) 8816 6578 9445
anur ((Ce’, Cap’,)), Cnv’, Cnp’,)), Cu’,)), Crap’,)) 7071 5473 12582
2rup ((Cnv’, (rap’,)), Cnv’, Crap’,)), Cu’,)), Crp’,)) 4336 2610 2807
naun ((Cnv’, Cnp’,)), e, Cap’,)), Cu’,)), Cnp’,)) 7337 14341 9114
2pua (Ce’, Crp’,)), Ce’, Crp,)), Cu’y)), (ap’,)) 6981 3095 1245
2nun ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)), Cnp’,)) 7575 14475 8895
prup ((Ce’, Crp’,)), Cnv’, Crap’,)), Cu’,)), Crp’,) 6779 1673 1204
prua (Ce’, Crp’,)), Cnv’, (Crap’,)), ('u’,)), Cap’,)) 3631 3295 1768
2rua ((Cnv’, Crap’,)), Cnv’, (Crap’,)), Cu’,)), Cap’,)) 864 4971 2133
2b ‘ aab ‘ (Ce’, Cap’,)), Ce’, Cap’,)), (b)) ‘ 1997 1997 1997
3b | 3ab | (Ce’, Cap’), (e, Cap’.), (e’ Cap’,), (b)) | 1997 1997 1997
2abp aabr (Ce’, Cap’,)), Ce’, Cap’,)), (b)), (Crap’,)) 885 431 1690
aabn ((Ce’, Cap’,)), Ce’, Cap’,)), (b)), (np’,)) 1110 1565 305
p2ab raab ((Cnv’, Crap’,)), Cap’,)), Ce’, Cap’,)), (b)) 349 862 1225
paab «(Ce’, Crp’,), Cap’,)), Ce’, Cap’,)), (b’,)) 1647 1134 771
rarab ((Cnv?, Crap’,), Cap’), (C€™, C1p)), Cap’)), (b)) | 510 365 826
opzab | T | €V, Crap’ ), Cap’)), (O, Crap’)), Capt), Cb)) | 99 504 481
parab | (e, (rp’)). Cap’)). (Cnv’, Crap’,)), Cap’ ), (b)) | 519 517 457
papab (e, Crp’), Cap')), (Ce’, (1p')), Cap’), (b)) | 866 608 230
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Table 10: Percentage of edges on the inference path that exist in the Test Set.

Dataset AVG 2p 2i 3i pi ip 2u up

FB15K 0.7537 0.6505 0.9123 0.9007 0.7506 0.5644 0.7364 0.7612
DBI15K 0.6298 0.5488 0.6892 0.5695 0.5483 0.6915 0.6178 0.7433
YAGOISK | 0.6048 0.5627 0.7651 0.6628 0.6924 0.5106 0.6272 0.4128

C MODEL HYPERPARAMETER SETTINGS AND TRAINING DETAILS

The hyperparameter settings for CNR-NST are shown in Table 9. W, refers to the score weight of
the relation, W 4y refers to the task score weight in joint training, and Thrshd refers to the threshold
of the corresponding adjacency matrix. Thrshdy,,,y refers to the filtering value for numerical fuzzy
sets during binary operations, which is used to speed up the inference process.

Table 11: Hyperparameter Settings of CNR-NST
Training Epoch ‘ Learning Rate ~ Ranking Decayl Decay2 Wiel Wgav Wypy

Multi-ComplEx 100 0.05 500 0.9 0.999 4 5 0.1
Fraction Thrshdgrg Thrshdgay ~ Thrshdypy ~ Thrshdfy,,y  Neggeqye
Reasoning-Model 10 0.001 0.0001 0.0001 0.001 6

D DETAILED EXPERIMENTAL RESULTS

D.1 MAIN EXPERIMENTAL RESULTS

Here, we present the MRR results for all 102 sub-queries on our dataset. We applied two sampling
methods on the public datasets FB15K, DB15K, and YAGO15K, resulting in 77 query types using
the NRN sampling method and 92 query types using our improved method. Additionally, we provide
detailed results for the 10 extended numerical computation query types.

The detailed data shows that, while Q2B+NRN and GQE+NRN exhibit decent performance on some
sub-tasks involving intersection, they perform poorly on other tasks. Q2P+NRN demonstrates better
overall performance, but our CNR-NST model significantly outperforms Q2P+NRN in both average
performance and numerical query tasks (see Section 4.2 of the main text for average performance).

9399 99 99,99

The definition of query subclass names: “p” stands for "Relation Prediction”, ”a” stands for “At-

3% 99 099 93 999

tribute Prediction”, ’r”” stands for "Reverse Attribute Prediction”, ”’n” stands for "Numerical Predic-

3% 939 9% 99193

tion”, ”u” stands for “Union”, "1 stands for “’Intersection”, and ”b” stands for "Binary Operator”.
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Table 12: Detailed MRR Results (%) in the FB15K Test Set

Query_num ‘ Method ‘ 1rap 1rp lap Inp pa ar p ra an 2n 2p nr
GQE+NRN | 1.62  30.64 - 1.31 930 025 1240 112 1.07 229 681 0.71
77 Q2B+NRN | 2.16 39.56 - 126 966 026 88 070 099 267 7.09 0.71
Q2P+NRN | 1.79  40.95 - 006 1372 0.64 11.07 101 010 009 7.80 0.70
CNR-NST | 6.13  66.92 - 30.15 2152 264 4093 443 204 269 4753 229
GQE+NRN | 136 31.18 522 141 1091 025 1323 132 204 1.61 6.69  0.72
% Q2B+NRN | 221 3925 5.14 1.57 1117 035 876 062 230 242 684 0.81
Q2P+NRN | 0.26 3752 078 005 297 0.07 1301 030 0.2 006 10.75 044
CNR-NST | 6.13 6692 421 3131 2581 261 4689 161 1746 1449 46.16 0.80
Query_num ‘ Method ‘ 2pi 2ai pri rpi 2ri 2ni nai ani
GQE+NRN | 27.65 - 2997 30.11 480 1.70
77 Q2B+NRN | 31.41 - 31.18 3141 964 177
Q2P+NRN | 37.22 - 3573 36.05 2585 0.02
CNR-NST | 56.21 - 4244 41.69 653 230
GQE+NRN | 27.83 58.17 30.11 30.70 3.61 130  35.64 3527
2 Q2B+NRN | 3129 5234 31.17 3175 6.52 144 3591 3522
Q2P+NRN | 3330 2245 30.89 30.50 098 021 10.76 1091
CNR-NST | 56.06 43.94 35.16 3547 532 893 2352 20.61
Query_num ‘ Method ‘ 2na3i  3n3i  r2p3i rpr3i  nan3i n2a3i 2rp3i  3r3i  prp3i  p2r3i  3p3i  2pr3i  2an3i  3a3i  a2n3i  ana3i
GQE+NRN - 1.98 4198 38.00 - - 37.26 - 41.96 4190 3265 41.55 - - - -
77 Q2B+NRN - 231 43.18 39.67 - - 3431 - 4335 3445 3537 4225 - - - -
Q2P+NRN - 0.03 4759 5641 - - 47.67 - 47.54 4233 39.81 4754 - - - -
CNR-NST - 589  54.02 42.10 - - 38.90 - 5430 41.05 5402 5424 - - - -
GQE+NRN | 4998 1.74 42.07 29.54 4999 8345 4036 030 41.67 41.54 3290 42.67 49.53 8723 4999 84.09
» Q2B+NRN | 50.00 1.68 43.23 3722 4940 8472 2739 048 4258 39.52 3527 4227 8577 9519 49.76 84.70
Q2P+NRN | 1583 022 4353 3649 1570 2481 2890 7.14 4292 39.83 3779 4399 2690 1588 1576 2693
CNR-NST | 1521 3.64 4254 41.10 1486 2508 46.81 263 42.12 46.13 5541 4385 27.14 4998 14.88 2579
Query_num ‘ Method ‘ pria aair ppia  ppip prip pip rrip rpia aain nain nair anin nnin nnir anir rria
GQE+NRN | 2690 0.18 1331 11.80 1233 1277 11.07 2638 105 0.75 122 062 167 1.03 021 0.04
77 Q2B+NRN | 26.66 0.19 1534 1249 1294 1328 14.80 27.87 134 080 026 0.66 214 098 026 0.05
Q2P+NRN | 17.44 034 1797 1358 1671 16.02 1897 1531 0.08 007 061 007 009 032 062 100.00
CNR-NST | 3580 896 27.60 5038 5506 55.14 57.86 35.13 245 134 335 1.28 098 071 328 5.04
GQE+NRN | 2680 0.16 18.85 12.13 1241 1258 1024 2498 564 6.13 020 597 148 098 0.17 0.04
9 Q2B+NRN | 2423  0.14 2020 1248 1298 1355 14.60 2747 929 730 024 744 157 093 730 0.06
Q2P+NRN | 836 0.08 634 1460 1571 1521 1564 794 072 097 007 09 009 077 0.06 0.03
CNR-NST | 34.17 896 33.09 5038 5477 5557 6294 31.61 1259 803 298 822 458 0.58 1.23 0.43
Query_num ‘ Method ‘ pppi ppri arpi rppi arri rpri nnai pani nnni anni anai rani nrpi raai nrri paai
GQE+NRN | 17.71 19.05 26.19 21.09 2.58 21.33 - 9.89 197 1.00 - 231 10.80 - 3.71 -
77 Q2B+NRN | 22,02 1931 2732 23.15 530 20.02 - 11.51 259 1.23 - 285  13.09 - 4.44 -
Q2P+NRN | 2488 2235 36.27 47.54 1385 2854 - 1828 0.03  0.02 - 302 19.05 - 26.01 -
CNR-NST | 50.71 33.50 40.23 51.24 21.40 4230 - 8.83 144  2.05 - 1524 12.25 - 6.44 -
GQE+NRN | 17.70  19.55 2540 2137 222 2124 39.87 1534 1.65 743 4195 260 1108 579 272 5067
9 Q2B+NRN | 21.18 20.63 26.84 23.03 438 21.07 4035 1693 195 727 4254 1.69 1278 592 434 5196
Q2P+NRN | 2336 2094 26.58 23.88 1.17 2156 1641 526 028 1.27 1407 028 1208 326 267 18.31
CNR-NST | 51.14 29.16 32.62 5034 4.01 3243 3724 739 723 8.57 39.58 205 1385 4842 263  56.79
Query_num ‘ Method ‘ 2pu rpu 2ru pru 2au 2nu anu nau
GQE+NRN | 797 814 055 797 .19 052 048 046
77 Q2B+NRN | 1265 1195 035 1185 1.31 062 074 0.67
Q2P+NRN | 19.43 1987 0.60 1898 045 0.11 0.08  0.09
CNR-NST | 4552 1803 1.12 18.03 4.10 101 277 275
GQE+NRN | 791 773 057 777 096 055 054 052
9 Q2B+NRN | 12,66 11.87 042 1178 1.17 067 082 0.77
Q2P+NRN | 1472 1474 0.09 1510 0.11 0.15 016 0.15
CNR-NST | 4491 3630 202 3589 1.19 415 740 722
Query_num ‘ Method ‘ 2pup 2pua  prup prua anun anur  2aur  2aun  naur  naun  2nun  2nur  2rup  2rua  rpua rpup
GQE+NRN | 555 526 571 377 083 059 087 033 065 083 072 075 7.1 094 383 592
77 Q2B+NRN | 587 647 6.12 545 1.10 0354 070 045 058 1.02 089 065 692 102 556 6.10
Q2P+NRN | 6.03 1075 755 931 009 062 339 010 062 008 008 058 815 113 8.05 6.91
CNR-NST | 4462 931 3935 972 097 146 243 091 147 095 085 1.12° 3103 122 1017 3958
GQE+NRN | 551 597 567 422 099 0.65 .05 071 067 09 064 076 676 092 422 5.86
9 Q2B+NRN | 551  6.89 6.05 500 164 054 071 1.05  0.62 1.58 088 068 679 109 5.11 6.09
Q2P+NRN | 9.17 1.00 872 088 0.8 036 075 015 041 022 015 046 878 039 079 8.87
CNR-NST | 43.78 22.10 4242 21.13 325 095 237 5.6l 0.95 353 233 073 4073 146 19.89 4236
2b 3b bp pb 2pb
Method
Query-num ‘ etho ‘ aab aaab  aabr aabn  raab  paab rarab rapab parab papab
102 ‘ CNR-NST ‘ 1839 1756 408 5.64 1662 2824 723 1468 1553 2693
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Table 13: Detailed MRR Results (%) in the DB15K Test Set

Query_num ‘ Method ‘ 1rap 1rp lap 1np pa ar p ra an 2n 2p nr
GQE+NRN | 1.51 8.06  3.65 0.77 428 025 655 1.38 065 066 745 0.51
77 Q2B+NRN | 2.17  9.67 380 0.97 442 042 550 130 071 0.75 850  0.60
Q2P+NRN | 0.72 1729 086 0.02 147 018 818 037 0.02 0.02 1340 047
CNR-NST | 4.61 2673 4.61 176 9.63 220 1630 530 6.66 283 2406 035
GQE+NRN | 1.52 804 296 0.82 6.00 022 615 1.54 174 067 7.2 047
9 Q2B+NRN | 230 10.10 225 1.05 7.09 033 519 125 1.95 095 839  0.56
Q2P+NRN | 0.76 17.67 0.41 0.03 1.56 017 786 034 004 0.02 13.60 0.36
CNR-NST | 431 26.64 4.25 9.29 9.60 220 1555 259 646 509 2599 1.04
Query_num ‘ Method ‘ 2pi 2ai pri rpi 2ri 2ni nai ani
GQE+NRN | 30.74 - 2941 2905 1436 120 876  9.66
77 Q2B+NRN | 28.64 - 3312 3326 1830 141 8.67 1046
Q2P+NRN | 41.69 - 37.64 3861 1531 004 7.89 693
CNR-NST | 46.16 - 3558 3466 1852 252 1299 1223
GQE+NRN | 31.19 3646 2524 2699 1255 1.03 27.14 27.17
9 Q2B+NRN | 3120 36.76 28.02 29.10 17.31 1.24 2889 28.78
Q2P+NRN | 40.81 21.36 33.68 31.75 1571 0.06 250 248
CNR-NST | 48.62 35.68 33.40 3243 18.87 337 16.03 14.03
Query_num ‘ Method ‘ 2na3i  3n3i  r2p3i  rpr3i  nan3i n2a3i 2rp3i  3r3i  prp3i  p2r3i  3p3i  2pr3i  2an3i  3a3i  a2n3i ana3i
GQE+NRN | 12,66 133 70.37 70.50 11.09 - 7358 32.12 60.82 6125 4441 70.38 - - 11.12 -
77 Q2B+NRN | 16.08 156 69.75 84.03 13.26 - 73.88 3254 63.88 93.86 43.94 66.23 - - 15.57 -
Q2P+NRN | 11.20 0.09 79.08 83.70 9.88 - 7370 29.73 82.65 81.36 55.69 81.74 - - 11.55 -
CNR-NST | 8.81 1.I5 6561 71.06 874 13.08 67.05 4271 6454 76.68 7333 59.05 1287 3938 854 12.10
GQE+NRN | 4927 124 7353 6944 4877 76.02 4375 3519 79.03 51.04 4787 7572 7676 83.67 4781 76.17
9% Q2B+NRN | 48.14 136 64.60 5727 47.63 77.07 51.71 29.33 72.84 6049 4508 73.19 77.28 8553 4690 77.41
Q2P+NRN | 326  0.18 70.57 73.61 326 17.06 73.61 2628 76.00 70.83 53.60 73.03 1692 19.03 3.17 19.12
CNR-NST | 1556 1.84 72.57 100.00 21.37 2574 80.00 31.60 76.39 53.89 61.51 72.11 31.33 57.06 21.18 39.06
Query_num ‘ Method ‘ pria aair ppia ppip prip pip rrip rpia aain nain nair anin nnin nnir anir rria
GQE+NRN | 10.19 032 1559 1129 1145 1184 6.62 1019 105 030 023 032 066 062 028 7.6l
77 Q2B+NRN | 13.17 046 17.12 1149 12.04 1353 729 1282 116 034 041 029 077 050 031 9.32
Q2P+NRN | 381 018 6.17 18.16 1852 1889 9.18 565 004 003 014 003 004 041 0.12 201
CNR-NST | 11.14 218 2831 2865 2675 2789 1685 1686 173 215 070 242 122 025 057 984
GQE+NRN | 12,13 029 2246 1225 11.72 11.74 6.84 1285 526 487 024 495 062 046 0.18 7.09
9 Q2B+NRN | 12,64 033 29.17 1368 11.71 1177 773 1264 6838 679 032 689 073 045 027 8.16
Q2P+NRN | 457 0.14 641 1697 1592 17.66 9.14 296 0.14  0.11 012 013 003 039 016 261
CNR-NST | 1457 130 1635 3296 2849 12933 1484 1739 432 694 1.21 846  3.94 149 096 944
Query_num ‘ Method ‘ pppi ppri arpi rppi arri rpri nnai pani nnni anni anai rani nrpi raai nrri paai
GQE+NRN | 24.64 2252 18.03 26.02 - 8.88 1433 586 5.54 138 0.69 198 347 2383 059 11.40
77 Q2B+NRN | 2292 23.00 2294 2646 - 11.65 1485 529 4.60 1.61 092 224 279 3163 160 1547
Q2P+NRN | 3479 2699 2695 3248 - 1024 1419 356 238 009 006 218 071 3774 162 13.11
CNR-NST | 46.00 4246 4256 39.57 - 1407 20.15 558 228 415 229 259 170 17.11 939 771
GQE+NRN | 2525 24.84 2214 2499 4461 889 1183 4063 1433 139 993 3800 344 2374 028 1184
9 Q2B+NRN | 23.15 2342 30.72 2844 4946 1281 13.15 3836 16.66 171 1037 37.57 270 3042 0.08 1439
Q2P+NRN | 3245 2656 32.86 3293 17.52 11.28 1434 268 210 0.11 022 301 066 3501 0.01 1196
CNR-NST | 44.18 46.01 3598 3721 4890 16.11 21.66 47.60 16.59 453 671 3724 578 1490 092 9.40
Query_num ‘ Method ‘ 2pu rpu 2ru pru 2au 2nu anu nau
GQE+NRN | 540 203 045 2.22 029 021 0.27  0.30
77 Q2B+NRN | 472 230 0.55 1.97 032 026 036 040
Q2P+NRN | 12.57 343 037 345 0.05 007 007 0.08
CNR-NST | 1495 649 195 6.34 0.68 .15 202 211
GQE+NRN | 527 225 056 2.07 032 022 018 021
9 Q2B+NRN | 490 215 052 2.44 028 029 036 032
Q2P+NRN | 11.65 3.68  0.39 372 008 006 005 0.05
CNR-NST | 1596 7.50 1.92 6.95 0.35 1.20 293 26.76
Query_num ‘ Method ‘ 2pup  2pua  prup prua anun  anur  2aur  2aun  naur naun  2nun  2nur 2rup  2rua rpua  rpup
GQE+NRN | 7.62 256  4.37 1.53 039 072 1.64 018 086 040 033 052 - 1.06 1.59 492
77 Q2B+NRN | 625 324 490 1.47 044 071 1.58 021 060 042 037 057 380 1.16 1.65 428
Q2P+NRN | 12.00 093  7.50 0.62 0.06 042 159 005 050 006 007 039 582 062 050 745
CNR-NST | 2222 844 1456 5.12 091 080 1.87 1.56 096 092 051 036 1053 295 474 1584
GQE+NRN | 6.82 331 448 1.43 046  0.63 1.62 058 078 045 036 048 328 092 1.69 423
9 Q2B+NRN | 6.64 462  4.65 1.41 0.64 055 1.51 1.07 059 067 042 051 371 1.15 1.68 524
Q2P+NRN | 12.02 0.61  7.12 0.42 007 042 038 006 049 007 008 038 483 063 052 7.06
CNR-NST | 21.97 925 1682 5.17 247 088 223 30.06 095 1.84 .12 058 1223 223 443 1477
Query_num Method 2 3b bp pb 2pb
aab aaab  aabr aabn raab  paab rarab rapab parab papab
102 ‘ CNR-NST ‘ 1839 17.56 4.08 5.64 16.62 2824 723 1468 1553 2693
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Table 14: Detailed MRR Results (%) in the YAGO15K Test Set
Querymum‘ Method ‘ Irap 1rp lap Inp pa ar p ra an 2n 2p nr
GQE+NRN | 148 535 - 132 681 048 7.81 1.88 0.24 0.35 7.65 0.34
77 Q2B+NRN | 1.63 937 - 141 687 0.61 6.53 1.72 0.28 0.35 8.26 0.23
Q2P+NRN | 0.12  26.72 - 0.01 1058 0.02  14.06 0.46 0.02 0.01 3.49 0.05
CNR-NST | 2.96 34.60 - 21,10 1327 1.71 18.40 4.56 19.41 766 2239 1.01
GQE+NRN | 1.18 585 1.83 149 587 037 8.21 1.93 1.97 0.35 8.78 0.34
% Q2B+NRN | 1.53 876 148 104 516 041 6.21 1.30 2.27 0.34 8.28 0.26
Q2P+NRN | 0.56 2325 0.65 037 324 035 9.18 0.57 0.71 0.16 1522 025
CNR-NST | 2.71 3465 242 2221 1340 183 1723 502 2162 7.4 2258 1.10
Qucrmem‘ Method 2pi 2ai pri rpi 2ri 2ni nai ani
29.89 - 3494 37.07 3080 0.90 - -
77 Q2B+NRN | 25.69 - 3335 3255 39.12 0.77 - -
Q2P+NRN | 35.52 - 58.84 56.40 3096 0.01 - -
CNR-NST | 46.65 - 56.10 51.93 63.00 10.20 - -
29.92 60.58 30.57 3234 31.01 0.62 3259 3144
90 Q2B+NRN | 2491 6749 2886 3557 3778 0.83 33.54 31.21
Q2P+NRN | 39.24 3937 34.80 39.88 3123 029 21.16 2042
CNR-NST | 4230 4542 5036 53.06 6352 591 2464 24.69
Query,num‘ Method ‘2na3i 3n3i  r2p3i  rpr3i  nan3i n2a3i  2rp3i 3131 prp3i  p2r3i 3p3i  2pr3i  2an3i  3a3i  a2n3i ana3i
GQE+NRN - 0.84 57.55 83.64 - - 88.75 100.00 53.10 85.00 4520 50.79
77 Q2B+NRN - 0.82 5373 84.85 - - 89.58 100.00 5580 86.11 4052 5I1.10
Q2P+NRN - 0.01 80.39 7747 - - 100.00  50.00 78.75 100.00 40.03 100.00
CNR-NST - 248 70.65 8333 46.18 - 88.89  100.00 76.04 87.18 5548 71.13
GQE+NRN | 46.21 0.63  65.17 89.29 46.18 80.63 87.50  20.00 69.88 100.00 45.61 67.49 80.70 77.32 4581 82.00
0 Q2B+NRN | 47.56 0.83 6545 8036 4573 8123 70.83 100.00 61.02 100.00 40.68 6345 8025 8574 4588 79.57
Q2P+NRN | 3237 321 63.70 73.81 3229 4626 61.11 100.00 6586 80.00 5513 6496 46.69 4873 3191 48.12
CNR-NST | 21.41  6.62 76.67 92.86 2250 48.66 70.83 100.00 8044 7222 5336 7044 4843 5560 21.40 42.10
Querymum‘ Method ‘ pria aair ppia  ppip  prip rpip 1rip rpia aain nain nair anin nnin nnir anir rria
GQE+NRN | 1995 053 16.69 14.02 1288 1143 756 1403 0.12 0.09 0.33 0.10 031 030 032 815
77 Q2B+NRN | 17.51 040 1946 1136 1426 1498 11.94 1086 0.11 0.08 0.39 0.09 030 023 038 6.67
Q2P+NRN | 35.66 0.05 18.10 507 8.69 847 7.38 20.28  0.01 0.01 0.03 0.01 001 005 003 0.02
CNR-NST | 42.49 172 2649 2329 2671 2685 2382 3854 7.69 1120 153 1072 476 088 138 15.14
GQE+NRN | 14.89 0.17 1633 13.81 1200 12.07 884 14.66  4.97 6.13 0.28 6.27 024 029 029 312
0 Q2B+NRN | 1446 0.16 17.71 1273 11.39 1232 10.88 1834 544 5.30 0.16 5.79 037 031 031 274
Q2P+NRN | 20.92 031 1509 1922 17.44 1729 16.31 16.56  4.35 3.78 0.27 391 013 025 025 1.19
CNR-NST | 39.19 158 2412 26.16 2442 26.62 2556 4620 970 1082 157 1157 454 077 137 890
Query,num‘ Method ‘ pppi ppri arpi rppi arri rpri nnai pani nnni anni anai rani nrpi raai nrri paai
GQE+NRN | 23.16 3230 2797 24.52 - 28.02  40.38 - 5.86 0.83 - 0.23 3.03 1156 - 18.28
77 Q2B+NRN | 19.72 35.65 3390 26.07 - 2972 4182 - 6.12 0.85 - 0.50 2.83  20.62 - 32.11
Q2P+NRN | 15.15 5274 39.31 2452 - 33.18 4927 - 1274 0.01 - 0.01 122 1295 - 27.96
CNR-NST | 39.56 5259 5124 43.73 - 69.50 5574 - 1220 554 - 3025  8.06 17.27 - 31.27
GQE+NRN | 22.79 31.00 35.16 23.93 4633 3495 43.85 30.71 10.13  0.66 7.68 3843 348 1220 42.01 19.85
% Q2B+NRN | 19.49 40.11 2830 23.21 4291 3296 4340 3056 829 0.66 6.02 3653 289 2032 3933 3345
Q2P+NRN | 32.87 3829 3875 3235 36.01 31.80 4073 1940 935 0.54 5.88 2728 126 2728 36.01 3028
CNR-NST | 38.01 53.34 4427 4235 5394 62.77 5033 30.62 1382 504 7.14  36.67 745 1701 5227 32.65
Query,num‘ Method ‘ 2pu rpu 2ru pru 2au 2nu anu nau
GQE+NRN | 479 370 040 370 039 031 0.16 0.16
77 Q2B+NRN | 427 382 034 433 049 071 0.53 0.58
Q2P+NRN | 13.76 1535 0.04 16.03 0.03 0.01 0.05 0.01
CNR-NST | 1463 9.63 1.14 980 1.10 291 5.36 5.88
GQE+NRN | 450 339 039 346 041 039 0.16 0.18
9 Q2B+NRN | 331 369 024 399 037 057 0.31 0.33
Q2P+NRN | 11.63 7.07 023 6.07 0.14 025 0.45 0.42
CNR-NST | 1486 9.40 1.28  9.06 117 1.99 4.79 4.67
Query,num‘ Method ‘2pup 2pua  prup prua anun  anur 2aur 2aun naur naun 2nun 2nur 2rup  2rua  rpua  rpup
GQE+NRN | 590 375 5.71 319 025 024 4.24 0.11 0.27 0.25 0.46 0.42 3.79 1.68 349 575
77 Q2B+NRN | 5.07 3.11 6.03 357 037 021 3.60 0.13 0.22 0.39 0.95 0.34 426 164 354 5.68
Q2P+NRN | 300 336 536 3.13 001 006 18.16 0.01 0.08 0.01 0.01 0.05 757 060 3.62 4388
CNR-NST | 16.57 1043 1450 921 2.03 049 1.35 4.45 0.54 2.60 1.58 053 11.15 226 828 1325
GQE+NRN | 7.70 368 6.06 4.11 071 024 4.16 0.45 0.27 0.69 0.40 0.42 332 19 327 5.1
0 Q2B+NRN | 6.27 269 623 294 111  0.15 2.12 0.40 0.18 0.91 0.87 0.21 350 148 314 528
Q2P+NRN | 9.82 272 884 192 058 020 5.08 0.24 0.23 0.56 0.45 0.34 584 192 215 7.66
CNR-NST | 1820 10.56 1505 7.89 254 044 1.38 3.98 0.33 2.39 1.47 033 1244 253 883 1486
Query_num Method 2 3b bp pb 2pb
aab aaab  aabr aabn  raab  paab  rarab rapab  parab  papab
102 ‘ CNR-NST ‘ 1171 1249 085 11.00 1349 2440 1329 21.67 2585 2233
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D.2 DETAILED EXPERIMENTAL RESULTS OF THE NEW EVALUATION METRICS

Table 15: Detailed MRR_0.001 Results (%) in all Test Set
Dataset ‘ Method ‘ lap Inp an pa ra 2n 2ai ani 2ni nai
FBISK Q2P+NRN | 0.79  0.11 0.12 097 1.07  0.11 .11 202 031 2.31
CNR-NST | 20.56 24.51 2570 15.66 896 1530 66.03 26.65 27.15 2521
DBI5K Q2P+NRN | 887 1.06 283 783 12.01 248 887 296 358 289
CNR-NST | 1741 2042 17.19 17.65 17.77 9.19 46.09 2503 1795 1342
YAGOI5K Q2P+NRN | 453 678 2051 593 281 5510 532 481 21.52 6.26
CNR-NST | 19.06 17.64 2123 19.01 12,12 1720 45.76 31.11 20.68 34.12
Dataset Method paai  pani anni  anai nnai  nnni  rani raai
FBISK Q2P+NRN | 1.72  2.02 045 132 1.37 040 091 1.53
CNR-NST | 63.62 2576 2727 4629 3946 18.67 19.96 61.60
DBI5K Q2P+NRN | 7.74 678 3.00 328 314 530 2035 27.71
CNR-NST | 56.27 2129 26.04 44.89 5148 1422 2959 4330
YAGOI5K Q2P+NRN | 695 826 24.14 522 488 4547 443 513
CNR-NST | 55.52 2046 2299 3858 3817 21.62 1795 5747
Dataset Method 2pia pria 2ain  anin rpia 2ria 2nin  nain
FBISK Q2P+NRN | 142 096 011 013 072 003 0.12 0.13
CNR-NST | 20.63 35.04 2228 2854 3289 642 12.02 23.07
DBI5K Q2P+NRN | 625 1697 751 325 20.18 4458 649 430
CNR-NST | 23.59 3434 739 16.13 40.18 5693 853 12.08
YAGOI5K Q2P+NRN | 620 291 27.87 39.73 198 081 56.38 38.59
CNR-NST | 23.67 2241 1544 2653 2621 2240 1742 2489
Dataset Method 2na3i  3n3i nan3i n2a3i 2an3i 3a3i a2n3i ana3i
FBISK Q2P+NRN | 2.85 050 3.18 205 286 1127 3.1 2.37
CNR-NST | 27.19 32.68 3671 53.68 5751 78.05 3518 54.86
DBI5K Q2P+NRN | 2.14 7.04 199 800 637 792 359 772
CNR-NST | 19.93 23.69 20.74 3590 3297 5471 2570 39.22
YAGO15K Q2P+NRN | 742 3603 7.73 722 653 523 768 550
CNR-NST | 31.78 2641 28.08 47.05 4561 5537 2883 37.60
Dataset Method aau 2nu nau 2pua  prua anun  2aun  naun 2nun  2rua  rpua
FBI5K Q2P+NRN | 047 029 026 193 166 028 028 036 034 074 1.64
CNR-NST | 491 622 11.86 1129 1405 525 1032 630 3.15 1144 1225
DBI5K Q2P+NRN | 3.76 2726 23.82 1092 2280 2324 2793 2211 21.73 2677 22.64
CNR-NST | 6.51 20.87 2499 1680 19.57 2023 2934 2494 17.87 26.63 2622
YAGO15K Q2P+NRN | 296 5748 56.71 634 557 6038 6293 59.76 6390 3.08 6.18
CNR-NST | 9.37 26.67 33.67 1343 1325 20.12 3321 20.13 1454 879 11.80

E EXAMPLES OF NUMERIC QUERIES

This section presents a subset of query types from the 102 sub-queries that involve numerical rea-
soning and computation. We selected several queries with real-world significance to demonstrate
that most of our query types are capable of reflecting real-world scenarios.

For some query answers (e.g., lap), there is only one correct answer, but we still present the top 5
inferred answers. Additionally, for queries with too many answers, we skipped some of the correctly
predicted easy answers to focus on demonstrating that our model can still infer the correct hard
answers.
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Q:What's Bradford's Iongitude? Logical Expression: Q[N7] = N2, 3Ny, aq (eg, N7)
Rank Query Answers  Correctness ~ Answer type
Bradford v 1 53.69 X -
2 53.8 v Hard
Latitude 3 51.5 X -
4 51.48 X -
5 51.51 X -

Figure 8: Intermediate variable assignments and ranks for example lap query.

Logical Expression: Q [N7] = N2, 3N, f1 (n1, N2)
Rank Query Answers  Correctness ~ Answer type
1 2002.17 v Easy
2 1988.33 v Easy
Q:What are the years earlier than 20037 3 72202 X .
4 2003 X -
2003.0 v 5 1920.92 X -
6 1963.92 v Easy
Earlier than 7 10934.93 X -
8 1911.5 X -
9 1950.83 v Easy
10 1977.33 v Easy
11 1948.67 v Easy
12 1974.5 v Easy
13 1948.92 v Hard

Figure 9: Intermediate variable assignments and ranks for example 1np query.

Logical Expression: ~ Q [N7] = N7,3N,, a1 (e1, No) A f1 (Ng, Ne)

Rank Query Answers  Correctness ~ Answer type
Q:What are the populations of half the number of people in City A?

1 53827.00 v Easy
Key West u v 2 52966.00 v Easy
A1 F1 3 53326.00 v Easy
4 53066.00 4 Easy
5 53025.00 v Hard
A1:  population_number 6 53374.00 v Easy
7 53437.00 v Easy

F1:  approximately_two_times_equal_to 8 53483.00 X ~
9 53838.00 v Easy
10 53311.00 4 Easy

Figure 10: Intermediate variable assignments and ranks for example an query.

Logical Expression: ~ Q [N7] = N2, 3E,, 71 (€1, Eq) A a1 (Eq, N7)

Rank Query Answers ~ Correctness ~ Answer type
Q:When was the first showing of the TV show that aired on CBS? 1 1978.32 v Easy
cBS " v 2 1992.75 v Easy
3 1985.75 v Easy
R1 A1

G /\ 4 1993.67 v Easy
_/ 5 1990.75 v Easy

R1:  program - e e
26 1960.83 v Hard
F1:  air_date_of_first_episode 27 1996.75 v Hard

28 2000.42 X -

29 1959.83 v Easy
30 197275 v Easy

Figure 11: Intermediate variable assignments and ranks for example pa query.

46351.0 u v Logical Expression: @ [N2] = N2, 3N,, f1 (n1, Na) A fo (Na, No)
F1 N F2 N Rank Query Answers  Correctness  Answer type
1 137776 v Hard
) 2 138296 v Easy
F1:  approximately_equal 3 137555 v Easy
4 139790 v Easy
F2:  approximately_three_times_equal_to 5 139390 X -

Figure 12: Intermediate variable assignments and ranks for example 2n query.
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Which number is three times smaller than 5038976.0

and approximately equal to 73580.0? Logical Expression: ~ Q [N?] = N7, 3No, fi (n1, No) A fa (na, No)
73580.0 u
F1 ‘ Rank Query Answers ~ Correctness ~ Answer type
> v
1 73615.00 v Hard
5038976.0 u
. ) 2 73485.00 v Easy
LN
3 73208.00 v Easy
4 7791 X -
F1 approximately_equal 5 -85 17 X _

F2:  three_times_larger_than

Figure 13: Intermediate variable assignments and ranks for example 2ni query.

Who is a voice actor by profession and is about 1.65m tall? Logical Expression: QB2 = E»,3Er, a7 (n1, E2) Ay (eq, Er)
1.65 u Rank Query Answers Correctness ~ Answer type
1 Debi Mazar v Easy
v 2 Andrea Bowen v Easy
3 Tan Holm 4 Easy
Voice Actor 4 Breckin Meyer v Easy
5 Mel Brooks v Easy
6 Christina Applegate 4 Easy
7 Roy Kinnear v Easy
8 Nathan Lane v Hard
A1:  person.height_meters 9 Molly Shannon X -
10 Common X -
R1:  people_with_this_profession 11 Anna Paquin v Hard

Figure 14: Intermediate variable assignments and ranks for example rpi query.

Which number is the date San Francisco was built
and is approximately equal to the 1764.0 and
approximately twice the 891.0?

1764.0 u
F1
——
Logical Expression:  Q [N7] = No, 3Nz, a1 (e1, N2) A f1 (n1, No) A fa (na, No)
891.0 u v Rank Query Answers ~ Correctness Answer type
F2 1 1776.50 v Hard
2 1763.83 X -
San Francisco u 3 1765.00 X -
Al 4 1775.67 X -
5 1776.67 X

F1: approximately_equal
F2:  approximately_two_times_equal_to

A1:  location.date_founded

Figure 15: Intermediate variable assignments and ranks for example 2na3i query.

Who has a career as both an actor and a television
producer while being about 1.71m tall?

Actor u

Logical Expression:  Q [E¢] = E»,3E>,ry (e1, E2) Ara (2, E2) A a"‘ (ny1, E7)

Television Producer

v Rank Query Answers  Correctness Answer type

1 Ellen DeGeneres v Easy
2 Candice Bergen v Easy
3 Joan Chen v Easy
4 Martin Lawrence v Easy
5 Martin Short v Easy
6 Kirstie Alley v Hard

R1:  people_with_this_profession
R2:  people_with_this_profession

A1: person.height_meters

Figure 16: Intermediate variable assignments and ranks for example 2pr3i query.
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Who is an actor by profession is about 1.88m tall
and was born in 1964?

Actor u

Logical Expression:

Q[Br] = B2, 3B2,71 (e1, B2) Aay ! (n1. E7) Aay ' (n2, )

v
Rank Query Answers  Correctness Answer type
1 Brendan Coyle v Easy
2 Benjamin Bratt v Hard
3 Til Schweiger X -
4 Igbal Theba X -
5 Ray Romano X -

R1:  people_with_this_profession
A1: person.date_of_birth
A2: person.height_meters

Figure 17: Intermediate variable assignments and ranks for example p2r3i query.

Who had friends who were 1.91m tall and died in 1997.58?

1997.58 u

Logical Expression:

QB = B2, 3E:, vy (Ey, Er) A (3B, a7t (1, Ey) Aay ™t (na, Ey))

Rank Query Answers ~ Correctness Answer type
v 1 Henry Fonda v Easy
2 Robert Taylor v Easy
3 Myrna Loy v Easy
4 Clark Gable v Easy
5 Robert Young v Easy
6 Joan Crawford v Easy
7 Loretta Young v Easy
A1:  date_of_death 8 James Stewart X -
9 Bette Davis v Hard
A2:  person.height_meters 10 Lucille Ball X -
R1:  friends

Figure 18: Intermediate variable assignments and ranks for example 2rip query.

When did the person born in Brooklyn and was about 1.57 tall die?

Q[Ny] N2, ay (Ey, No) A (3B, a3 " (ny, By) Ary (er, )
Query Answers ~ Correctness Answer type

2014.75 v Easy

2014.33 v Hard

2014.17 X R

2001.67 X -

2011.42 X R

1.57 u
v Logical Expression:
Rank
Brooklyn 1
2
3
4
A1:  person.height_meters 5
A2: date_of death
R1:  people_born_here

Figure 19: Intermediate variable assignments and ranks for example rpia query.

When was the death of the person who won both
the World Fantasy Award and was nominated for the Hugo Award?

World Fantasy Award u
Logical Expression: ~ Q [Nz] = No,3N7,ay (Ey, N2) A (3B, 7y (e1, Ey) Ars (2, Er))
v Rank Query Answers ~ Correctness Answer type
1 1916.67 v Easy
Hugo Award 2 1929.83 v Easy

3 1934.43 v Hard
4 1911 v Hard
5 1947.75 X -

R1:  award_winner

R2: award_nominee

A1:  date_of birth

Figure 20: Intermediate variable assignments and ranks for example 2pia query.
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What is the race of the people in the film Eragon whose actors are about 1.7m tall?

Eragon u
v Logical Expression:  Q [Er] = Bz, 3E2, 71 (Ev, ) A (3E1,a;* (n1, Bv) Arz (2, 1))
Rank Query Answers ~ Correctness Answer type

1 English people v Easy
2 Jewish people v Easy
3 Ashkenazi Jews v Easy
4 Hungarians v Hard
5 White Americans X

R1:  actor

R2: award_nominee

A1:  person_ethnicity

Figure 21: Intermediate variable assignments and ranks for example rpip query.

Which films are based on Shawn Wayans and were released around 2003?

2003.0 u u
F1 A1t
v Logical Expression:  Q[Er] = Er, 3Ez,71 (Ev, E2) A (3Ez, fi (n1, Ny) Aay ' (N1, E2))
Rank Query Answers  Correctness Answer type

Shawn Wayans 1 Scary Movie 3 v Easy
2 Pride & Prejudice v Easy
3 Scary Movie 4 v Hard
4 Scary Movie X -
5 Kill Bill Volume 1 X -

F1:  approximately_equal

R1: film_story_contributor

A1:  film.initial_release_date

Figure 22: Intermediate variable assignments and ranks for example nrpi query.

Who have won awards founded in 1988 and are 1.88m tall?

1988.0

u

v Logical Expression:  Q [E2] = E7,3Ez,a; " (n1, Er) A (3Er,a5" (na, Ey) Ay (Ey, Er))
Rank Query Answers  Correctness Answer type
1.88

1 James Coburn v Easy
2 Ray McKinnon v Easy
3 Djimon Hounsou v Hard
4 Morgan Freeman v Hard
5 Danny Huston X -

R1:  award_nominee

A1: location.date_founded

A2:  person.height_meters

Figure 23: Intermediate variable assignments and ranks for example rpri query.

Which NFL teams have the all-time superstar position of
punter and have players born in 1962.83?

1962.83 u u

A1

—

Logical Expression:  Q [Er] = Ey, 3Ey, 11 (e1, E2) A (3B, a3 " (n2, Br) Ava (Er, Er))

Rank Query Answers Correctness Answer type

punter

1 New England Patriots v Easy
2 Buffalo Bills v Easy
3 Los Angeles Chargers v Easy
4 Chicago Bears v Hard
5 Toronto Argonauts X -

R1:  sports_team_roster
R2:  football_historical_roster_position

A1:  person.date_of_birth

Figure 24: Intermediate variable assignments and ranks for example rppi query.
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Which films are in the same genre as Sideways and were released in 2008.75?

Sideways u u
R1
< ) v Logical Expression:  Q [E»] = Ez, 3By, a7 (n1, B2) A (3Ep, 7y (e1, Ey) Ara (Ey, Er))
Rank Query Answers Correctness Answer type
2008.75 .
1 The Brothers Bloom v Easy
2 Zack and Miri Make a Porno v Easy
3 Nick and Norah’s Infinite Playlist v Easy
4 Management v Hard
: 5 Good X -
R1:  netflix_genres
R2:  netflix_genre
A1: film.initial_release_date
Figure 25: Intermediate variable assignments and ranks for example ppri query.
Which number is the release date of Breakfast at Tiffany's or approximately equal to 23398.0?
Breakfast at Tiffany's u Logical Expression: @ [N7] = N2,3N,a; (e1, N2) V f1 (n1, N7)
A1
union . Rank Query Answers ~ Correctness ~ Answer type
1 1961.83 4 Easy
23398.0 U nion 2 23260.00 v Easy
| F1 3 23504.00 v Easy
4 23307.00 v Easy
5 23398.00 v Easy
Al:  fim.initial_release_date 6 23549.00 v Hard
F1:  three_times_larger_than
Figure 26: Intermediate variable assignments and ranks for example anu query.
Which entities are the subject of Austin Powers: International Man of Mystery or
cities with a longitude of -111.94 degrees?
111.94 u Logical Expression:  Q [E2] = E7,3E»,71 (e1, B2) V ay* (n1, Er)
Rank Query Answers ~ Correctness ~ Answer type
Austin Powers: International 1 action film v Easy
Man of Mystery 2 comedy v Easy
3 spy film v Easy
4 parody v Easy
5 Tempe v Easy
A1l geocode.longitude 6 Gullaug v Hard
R1:  film/genre
Figure 27: Intermediate variable assignments and ranks for example rpu query.
Which events were organised in 1927.33 or 2012.17?
2012.17 u Logical Expression: Q[Br] = B2, 3B, a7 (n1. B2) V a3 " (na, Er)
Rank Query Answers Correctness ~ Answer type
v 1 84th Academy Awards v Easy
2 Chinese Civil War v Easy
1927.33 3 54th Annual Grammy Awards v Easy
4 62nd Berlin International Film Festival v Easy
5 49th Annual Grammy Awards X -
6 38th People’s Choice Awards X
7 80th Academy Awards X
X 8 60th Academy Awards X -
AT: eventstart_date 9 65th British Academy Film Awards v Hard

A2: event.start_date

Figure 28: Intermediate variable assignments and ranks for example 2ru query.
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What is the longitude of the area in which Carol Burnett's institution or
the film in which Martin Freeman appeared was released?

Carol Burnett u

v Logical Expression: ~ Q [N2] = N2, 3Nz, a1 (E1, N2) A (3E1, 71 (e1. B1) V 2 (e2, Er))
Rank Query Answers ~ Correctness Answer type
Martin Freeman
1 11834 v Easy
2 -118.44 v Hard
3 97.74 X -
4 -87.67 X -
5 7293 X -

R1:  education/institution

R2:  performance/film

A1:  geocode.longitude

Figure 29: Intermediate variable assignments and ranks for example 2pua query.

‘What musical compositions or companies came from places
neighbouring Ashtabula County or from people who died in 1941.08?

Ashtabula County u
Logical Expression:  Q [E7] = Ez,3E;, 1 (E1, E2) A (3E1,m1 (€1, Ey) V ay* (n1, Er))
v Rank Query Answers _ Correctness Answer type
1941.08 1 Virgin Records v Easy
2 Columbia Records v Easy
3 Vanguard Records v Easy
4 Koch Entertainment v Easy
5 Warner Bros. Records X -
6 MCA Records v Hard

R1:  adjoins
R2:  music/artist/label

A1:  person.date_of_death

Figure 30: Intermediate variable assignments and ranks for example rpup query.

What are the musical compositions and categories of a place with an
area of 53.23 or a person born in 1919.42?

53.23 u

v Logical Expression:  Q [Er] = By, 3By, 11 (Ey, E2) A (3B, a7 " (n1, B1) Va; ' (na. By))

1919.42 Rank Query Answers  Correctness Answer type

1 Columbia Records v Easy
2 Vanguard Records v Hard
3 Warner Bros. Records X

4 EMI X R

A1:  location.location.area
A2: person.date_of_birth

R1:  /music/artist/label

Figure 31: Intermediate variable assignments and ranks for example 2rup query.

What is the height of a person born in 1964.33 or a person born in 1951.58?

1964.33 u
Logical Expression:  Q [N2] = N2, 3N2, a1 (E1, N2) A (31, a3 " (n1, E1) V ag ™ (na, By))
v Rank Query Answers  Correctness Answer type

1 175 v Easy
1951.58 2 1.70 v Easy

3 1.88 v Easy

4 1.68 v Easy

5 1.85 v Easy

6 1.78 v Easy

7 1.82 v Easy

A1:  person.date_of birth 8 173 X -
9 1.65 v Hard

A2: person.date_of_birth

A3:  person.height_meters

Figure 32: Intermediate variable assignments and ranks for example 2rua query.
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What is the longitude of a film or television production released in 1912.0 or
the capital of Durham?

ssion:  Q [Ne] = Ny, 3Ny, a1 (E1, No) A (3E1, a5t (n1, Br) Vg (e1, By))

Query Answers ~ Correctness Answer type

-73.96 v Easy
-1.57 v Hard
-122.25 X -
-74.01 X -
-117.07 X -

1912.0 u
v Logical Expre:
Rank
Durham 1
2
3
4
5
A1:  date_of_first_episode
A2: geocode.longitude
R1:  location/contains

Figure 33: Intermediate variable assignments and ranks for example rpua query.

What is the sum of Lubbock's total population and Hamilton's founding date?

Lubbock

u
Al
b
v
Logical Expression: ~ Q [N7 ,3N; = Ny + Na|3N1,a; (e1, N1) ,3Na, az (e2, N2)
Hamilton u b Rank Query Answers ~ Accurate Answers  Correctness  Answer type
A2 1 237858.00 237881 v Hard
2 237905.00 - X -
A1:  population_number
A2: dated_location.date_founded

Figure 34: Intermediate variable assignments and

What is the number that approximately equals the total population of
Syracuse to the longitude of the Inner Hebrides?

u
A

ranks for example aab query.

Q[N+ = No, 3Nz, (J1 (N3, No) A (3N5 = Ny + Nal3Ny, ax (e1, M), 3Na, az (€2, Na))

Query Answers _ Correctness Answer type

1
Inner Hebrides u
2
A2 3
4
5
6
7

b —
u v Logical Expression:
Rank
F1
b N 1

7981900.00 v Easy
8041685.00 v Easy
805357400 v Easy
8015348.00 v Easy
8081957.00 v Easy
8084000.00 v Hard
7977000.00 v Hard

A1:  population_number
A2: geocode.latitude
F1: approximately_equal

Figure 35: Intermediate variable assignments and ranks for example aabn query.

What is the sum of the date of birth of the person who won an Olympic
medal with A and the longitude of Rockville?

Lamar Odom u u
R1 A1
b
v Logical Expression: __Q [N] = Nv.3Ny. (f (Ng. N2)) A (N5 = Ny  Nal3N1.7s (ex, Eu) Aan (Er. V). 2Na. az (e, N2))
. Rank Query Answers_ Accurate Answers _ Correctness Answer type
Rockville u b | 190785 190727 v Hard
A2 2 1898.35 1898.35 v Easy
3 1899.18 1899.18 v Easy
4 1904.93 1904.93 v Easy
s 1899.27 - X -
A1:  person.date_of_birth
A2: location.geocode.longitude
R1:  olympic_medal_honor/medalist

Figure 36: Intermediate variable assignments and ranks for example paab query.
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What is the sum of the time of incorporation of the city situated at
longitude -5.93 degrees and the area of the city contained in Alaska?

Alaska u u
R1 A2
b
v
Togical Exprossion. QNI = V2,380, (7, (%5 320) A G = Mr % NaBNoors (s ) o (o N 3N 72 (o) o (B V)
593 u N . il Exp [ ¢ [ ) [ )
1 Rank. Query Answers  Accurate Answers  Correctness Answer type.
A1 A3
1 588510 S895.10 v Bay
2 210 &m0 v Basy
3 Presion pana v Easy
s 92823 02823 v Hard
A1: location.geocode.longitude

A2: location.location.area
A3 organization.date_founded

R1:  location/contains

Figure 37: Intermediate variable assignments and ranks for example parab query.
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